TS4962EIKJT [STMICROELECTRONICS]

3W filter-free Class D audio power amplifier with active low standby mode;
TS4962EIKJT
型号: TS4962EIKJT
厂家: ST    ST
描述:

3W filter-free Class D audio power amplifier with active low standby mode

放大器 商用集成电路
文件: 总22页 (文件大小:1256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4962  
3W Filter-free Class D Audio Power Amplifier  
PRELIMINARY DATA  
Operating from Vcc=2.4V to 5.5V  
Standby mode active low  
Pin Connections (top view)  
TS4962EIJT  
Output power: 3W into 4and 1.75W into 8Ω  
with 10% THD+N max and 5V power supply.  
Output power: 2.3W @5V or 0.75W @ 3.0V  
GND  
2/A2  
IN+  
OUT-  
3/A3  
into 4with 1% THD+N max.  
1/A1  
Output power: 1.4W @5V or 0.45W @ 3.0V  
into 8with 1% THD+N max.  
VDD  
GND  
6/B3  
VDD  
Adjustable gain via external resistors  
Low current consumption 2mA @ 3V  
Efficiency: 88% typ.  
Signal to noise ratio: 85dB typ.  
PSRR: 63dB typ. @217Hz with 6dB gain  
PWM base frequency: 250kHz  
Low pop & click noise  
5/B2  
4/B1  
STBY  
8/C2  
OUT+  
9/C3  
IN-  
7/C1  
IN+: positive differential input  
IN-: negative differential input  
VDD: analog power supply  
GND: power supply ground  
STBY: standby pin (active low)  
OUT+: positive differential output  
OUT-: negative differential output  
Thermal shutdown protection  
Available in flip-chip 9 x 300um in lead free*  
Description  
Block Diagram  
The TS4962 is a differential class-D B.T.L. power  
amplifier. Able to drive up to 2.3W into a 4load  
and 1.4W into a 8load at 5V. It achieves  
outstanding efficiency (88%typ.) compared to  
classical AB-class audio amps.  
B1  
B2  
Vcc  
Stdby  
C2  
Internal  
Bias  
Out+  
150k  
C3  
A3  
Gain of the device can be controlled via two  
external gain setting resistors. POP & CLICK  
reduction circuitry provides low on/off switch noise  
while allowing the device to start within 5ms.A  
standby function (active low) allows to lower the  
current consumption to 10nA typ.  
C1  
A1  
Output  
H
-
In-  
In+  
PWM  
+
Bridge  
150k  
Oscillator  
Out-  
GND  
A2  
Applications  
B3  
Cellular Phone  
PDA  
Notebook PC  
Order Codes  
Part Number  
Temperature Range  
Package  
Flip-Chip  
Packaging  
Marking  
TS4962IJT  
-40, +85°C  
-40, +85°C  
A62  
A62  
TS4962EIJT  
TS4962EKIJT  
Lead -Free Flip-Chip  
Tape & Reel  
Lead Free + Back  
Coating  
-40, +85°C  
A62  
February 2005  
Revision 2  
1/22  
This product preview information shows the electrical and mechanical performances of a finalized product. However, details could still be modified.  
TS4962  
Absolute Maximum Ratings  
1 Absolute Maximum Ratings  
Table 1. Key parameters and their absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
1
V
6
V
V
Supply voltage  
CC  
2
V
G
to VCC  
Input Voltage  
i
ND  
T
Operating Free Air Temperature Range  
Storage Temperature  
-40 to + 85  
-65 to +150  
150  
°C  
oper  
T
°C  
stg  
T
Maximum Junction Temperature  
°C  
j
3
R
200  
°C/W  
Thermal Resistance Junction to Ambient  
Power Dissipation  
thja  
4
Pd  
Internally Limited  
ESD  
ESD  
Human Body Model  
Machine Model  
2
kV  
V
200  
200  
Latch-up Latch-up Immunity  
V
mA  
V
5
G
to VCC  
Standby pin voltage maximum voltage  
STB  
ND  
Lead Temperature (soldering, 10sec)  
260  
°C  
1) All voltages values are measured with respect to the ground pin.  
2) The magnitude of input signal must never exceed V + 0.3V / G - 0.3V  
CC  
ND  
3) Device is protected in case of over temperature by a thermal shutdown active @ 150°C.  
4) Exceeding the power derating curves during a long period, involves abnormal operating condition.  
5) The magnitude of standby signal must never exceed V + 0.3V / G - 0.3V  
CC  
ND  
Table 2. Operating Conditions  
Symbol  
Parameter  
Value  
Unit  
1
V
2.4 to 5.5  
V
V
Supply Voltage  
CC  
2
V
0.5 to V -0.8  
Common Mode Input Voltage Range  
IC  
CC  
3
Standby Voltage Input :  
1.4 V  
V  
CC  
V
STB  
Device ON  
Device OFF  
V
STB  
4
G
V  
0.4  
STB  
ND  
RL  
Load Resistor  
4  
5
R
90  
°C/W  
Thermal Resistance Junction to Ambient  
thja  
1) For V from 2.4V to 2.5V, the operating temperature range is reduced to 0°CTamb 70°C  
CC  
2) For V from 2.4V to 2.5V, the common mode input range must be set at V /2.  
CC  
CC  
3) Without any signal on V  
, the device will be in standby  
STB  
4) Minimum current consumption shall be obtained when V  
= GND.  
STB  
2
5) With heat sink surface = 125mm .  
2/22  
Application Component Information  
TS4962  
2 Application Component Information  
Component  
Functional Description  
Bypass supply capacitor. To install as close as possible of the TS4962 to minimize high frequency rip-  
ple. A 100nF ceramic capacitor should be add to enhance the power supply filtering in high frequency.  
Cs  
Rin  
Input resistor to program the TS4962 differential gain (Gain = 300k/Rin with Rin in k)  
Input  
Capacitor  
Thanks to common mode feedback, these input capacitors are optional. However, we can add then to  
form with Rin a 1st order high pass filter with -3dB cut-off frequency = 1/(2*π*Rin*Cin)  
Figure 1. Typical application  
Vcc  
Cs  
1u  
B1  
B2  
Vcc  
Vcc  
In+  
Stdby  
C2  
Internal  
Bias  
GND  
Out+  
150k  
GND  
C3  
A3  
Rin  
GND  
+
-
C1  
A1  
Output  
H
-
Differential  
Input  
In-  
In+  
PWM  
+
Bridge  
SPEAKER  
Rin  
In-  
Input  
capacitors  
are optional  
150k  
Oscillator  
Out-  
GND  
A2  
TS4962  
GND  
B3  
GND  
Vcc  
Cs  
1u  
B1  
B2  
Vcc  
Vcc  
In+  
Stdby  
C2  
Internal  
Bias  
4 Ohms LC Output Filter  
15µH  
GND  
Out+  
150k  
GND  
C3  
A3  
Rin  
Rin  
GND  
+
Differential  
Input  
C1  
A1  
Output  
-
In-  
In+  
H
PWM  
+
1µF  
Bridge  
Load  
-
In-  
15µH  
Input  
capacitors  
are optional  
150k  
Oscillator  
Out-  
GND  
A2  
TS4962  
GND  
30µH  
B3  
GND  
0.5µF  
30µH  
8 Ohms LC Output Filter  
3/22  
TS4962  
Electrical Characteristics  
3 Electrical Characteristics  
Table 3.  
V
= +5V, GND = 0V, V  
= 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
ICM  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
No input signal, no load  
ICC  
2.3  
3.3  
mA  
1
Standby Current  
ISTANDBY  
Voo  
10  
3
1000  
25  
nA  
No input signal, V  
= GND  
STBY  
Output Offset Voltage  
mV  
No input signal, R = 8Ω  
L
Output Power, G=6dB  
THD = 1% Max, f = 1kHz, R = 4Ω  
L
2.3  
3
THD = 10% Max, f = 1kHz, R = 4Ω  
Po  
W
L
THD = 1% Max, f = 1kHz, R = 8Ω  
1.4  
1.75  
L
THD = 10% Max, f = 1kHz, R = 8Ω  
L
Total Harmonic Distortion + Noise  
Po = 900 mW  
, G = 6dB, 20Hz < f < 20kHz,  
RMS  
R = 8+ 15µH, BW < 30kHz  
THD + N  
Efficiency  
1
%
%
L
Po = 1W  
, G = 6dB, f = 1kHz,  
RMS  
0.4  
R = 8+ 15µH, BW < 30kHz  
L
Efficiency  
Po = 2 W  
, R = 4Ω + ≥ 15µH  
78  
88  
RMS  
L
Po =1.2 W  
, R = 8Ω+ ≥ 15µH  
RMS  
L
2
Power Supply Rejection Ratio with inputs grounded  
PSRR  
CMRR  
63  
57  
dB  
dB  
f = 217Hz, R = 8, G=6dB, Vripple = 200mV  
Common Mode Rejection Ratio,  
L
pp  
f = 217Hz, R = 8Ω, G = 6dB, Vic = 200mV  
L
pp  
273k300kΩ  
327kΩ  
----------------- -----------------  
------------------  
Gain value (R in k)  
Gain  
V/V  
in  
R
R
R
in  
in  
in  
R
Internal Resistance From Standby to GND  
Pulse Width Modulator Base Frequency  
273  
180  
300  
250  
85  
5
327  
320  
kΩ  
kHz  
dB  
STDBY  
F
PWM  
Signal to Noise ratio (A Weighting), Po = 1.2W, R = 8Ω  
Wake-up time  
SNR  
L
T
10  
10  
ms  
ms  
WU  
T
Standby time  
5
STB  
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB  
Unweighted R = 4Ω  
85  
60  
86  
62  
83  
60  
88  
64  
78  
57  
87  
65  
82  
59  
90  
66  
L
A weighted R = 4Ω  
L
Unweighted R = 8Ω  
L
A weighted R = 8Ω  
L
Unweighted R = 4+ 15µH  
L
A weighted R = 4+ 15µH  
L
Unweighted R = 4+ 30µH  
V
µV  
RMS  
L
N
A weighted R = 4+ 30µH  
L
Unweighted R = 8+ 30µH  
L
A weighted R = 8+ 30µH  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
1) Standby mode is active when Vstdby is tied to GND.  
2) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to V @ f = 217Hz.  
cc  
4/22  
Electrical Characteristics  
TS4962  
1
Table 4.  
Symbol  
ICC  
V
= +4.2V, GND = 0V, V  
= 2.1V, T  
= 25°C (unless otherwise specified)  
CC  
ICM  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
No input signal, no load  
2.1  
3
mA  
2
Standby Current  
ISTANDBY  
Voo  
10  
3
1000  
25  
nA  
No input signal, V  
= GND  
STBY  
Output Offset Voltage  
mV  
No input signal, R = 8Ω  
L
Output Power, G=6dB  
THD = 1% Max, f = 1kHz, R = 4Ω  
L
1.6  
2
THD = 10% Max, f = 1kHz, R = 4Ω  
Po  
W
L
THD = 1% Max, f = 1kHz, R = 8Ω  
0.95  
1.2  
L
THD = 10% Max, f = 1kHz, R = 8Ω  
L
Total Harmonic Distortion + Noise  
Po = 600 mW  
, G = 6dB, 20Hz < f < 20kHz,  
RMS  
R = 8+ 15µH, BW < 30kHz  
THD + N  
Efficiency  
1
%
%
L
Po = 700mW  
, G = 6dB, f = 1kHz,  
RMS  
0.35  
R = 8+ 15µH, BW < 30kHz  
L
Efficiency  
Po = 1.45 W  
, R = 4Ω + ≥ 15µH  
L
78  
88  
RMS  
Po = 0.9 W  
, R = 8Ω+ ≥ 15µH  
RMS  
L
3
Power Supply Rejection Ratio with inputs grounded  
PSRR  
CMRR  
dB  
dB  
63  
57  
f = 217Hz, R = 8, G=6dB, Vripple = 200mV  
L
pp  
Common Mode Rejection Ratio  
f = 217Hz, R = 8Ω, G = 6dB, Vic = 200mV  
L
pp  
300k327kΩ  
273kΩ  
------------------  
R
----------------- -----------------  
Gain value (R in k)  
Gain  
V/V  
in  
R
R
in  
in  
in  
R
Internal Resistance From Standby to GND  
Pulse Width Modulator Base Frequency  
273  
180  
300  
250  
85  
5
327  
320  
kΩ  
kHz  
dB  
STDBY  
F
PWM  
Signal to Noise ratio (A Weighting), Po = 0.9W, R = 8Ω  
SNR  
L
T
Wake-up time  
10  
10  
ms  
ms  
WU  
T
Standby time  
5
STB  
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB  
Unweighted R = 4Ω  
85  
60  
86  
62  
83  
60  
88  
64  
78  
57  
87  
65  
82  
59  
90  
66  
L
A weighted R = 4Ω  
L
Unweighted R = 8Ω  
L
A weighted R = 8Ω  
L
Unweighted R = 4+ 15µH  
L
A weighted R = 4+ 15µH  
L
Unweighted R = 4+ 30µH  
V
µV  
L
N
RMS  
A weighted R = 4+ 30µH  
L
Unweighted R = 8+ 30µH  
L
A weighted R = 8+ 30µH  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
1)  
2) Standby mode is actived when Vstdby is tied to GND.  
3) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.  
All electrical values are guaranted with correlation measurements at 2.5V and 5V.  
5/22  
TS4962  
Electrical Characteristics  
1
Table 5.  
Symbol  
ICC  
V
= +3.6V, GND = 0V, V  
= 1.8V, T  
= 25°C (unless otherwise specified)  
CC  
ICM  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
No input signal, no load  
2
2.8  
mA  
2
Standby Current  
ISTANDBY  
Voo  
10  
3
1000  
25  
nA  
No input signal, V  
= GND  
STBY  
Output Offset Voltage  
mV  
No input signal, R = 8Ω  
L
Output Power, G=6dB  
THD = 1% Max, f = 1kHz, R = 4Ω  
L
1.15  
1.51  
0.7  
THD = 10% Max, f = 1kHz, R = 4Ω  
Po  
W
L
THD = 1% Max, f = 1kHz, R = 8Ω  
L
0.9  
THD = 10% Max, f = 1kHz, R = 8Ω  
L
Total Harmonic Distortion + Noise  
Po = 500 mW  
, G = 6dB, 20Hz < f < 20kHz,  
RMS  
R = 8+ 15µH, BW < 30kHz  
THD + N  
Efficiency  
1
%
%
L
Po = 500mW  
, G = 6dB, f = 1kHz,  
RMS  
0.27  
R = 8+ 15µH, BW < 30kHz  
L
Efficiency  
Po = 1 W  
, R = 4Ω + ≥ 15µH  
78  
88  
RMS  
L
Po = 0.65 W  
, R = 8Ω+ ≥ 15µH  
RMS  
L
3
Power Supply Rejection Ratio with inputs grounded  
PSRR  
CMRR  
62  
56  
dB  
dB  
f = 217Hz, R = 8, G=6dB, Vripple = 200mV  
L
pp  
Common Mode Rejection Ratio  
f = 217Hz, R = 8Ω, G = 6dB, Vic = 200mV  
L
pp  
300k327kΩ  
273kΩ  
------------------  
R
----------------- -----------------  
Gain value (R in k)  
Gain  
V/V  
in  
R
R
in  
in  
in  
R
Internal Resistance From Standby to GND  
Pulse Width Modulator Base Frequency  
273  
180  
300  
250  
83  
5
327  
320  
kΩ  
kHz  
dB  
STDBY  
F
PWM  
Signal to Noise ratio (A Weighting), Po = 0.6W, R = 8Ω  
SNR  
L
T
Wake-up time  
10  
10  
ms  
ms  
WU  
T
Standby time  
5
STB  
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB  
Unweighted R = 4Ω  
83  
57  
83  
61  
81  
58  
87  
62  
77  
56  
85  
63  
80  
57  
85  
61  
L
A weighted R = 4Ω  
L
Unweighted R = 8Ω  
L
A weighted R = 8Ω  
L
Unweighted R = 4+ 15µH  
L
A weighted R = 4+ 15µH  
L
Unweighted R = 4+ 30µH  
V
µV  
RMS  
L
N
A weighted R = 4+ 30µH  
L
Unweighted R = 8+ 30µH  
L
A weighted R = 8+ 30µH  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
1)  
2) Standby mode is actived when Vstdby is tied to GND.  
3) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.  
All electrical values are guaranted with correlation measurements at 2.5V and 5V.  
6/22  
Electrical Characteristics  
TS4962  
1
Table 6.  
Symbol  
ICC  
V
= +3.0V, GND = 0V, V  
= 1.5V, T  
= 25°C (unless otherwise specified)  
CC  
ICM  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
1.9  
2.7  
1000  
25  
mA  
No input signal, no load  
2
Standby Current  
ISTANDBY  
Voo  
10  
3
nA  
No input signal, V  
= GND  
STBY  
Output Offset Voltage  
mV  
No input signal, R = 8Ω  
L
Output Power, G=6dB  
THD = 1% Max, f = 1kHz, R = 4Ω  
L
0.75  
1
THD = 10% Max, f = 1kHz, R = 4Ω  
Po  
W
L
THD = 1% Max, f = 1kHz, R = 8Ω  
0.5  
0.6  
L
THD = 10% Max, f = 1kHz, R = 8Ω  
L
Total Harmonic Distortion + Noise  
Po = 350 mW  
, G = 6dB, 20Hz < f < 20kHz,  
RMS  
R = 8+ 15µH, BW < 30kHz  
THD + N  
Efficiency  
1
%
%
L
Po = 350mW  
, G = 6dB, f = 1kHz,  
RMS  
0.21  
R = 8+ 15µH, BW < 30kHz  
L
Efficiency  
Po = 0.7 W  
, R = 4Ω + ≥ 15µH  
78  
88  
RMS  
L
Po = 0.45 W  
, R = 8Ω+ ≥ 15µH  
RMS  
L
3
Power Supply Rejection Ratio with inputs grounded  
f = 217Hz, R = 8, G=6dB, Vripple = 200mV  
PSRR  
CMRR  
dB  
dB  
60  
54  
L
pp  
Common Mode Rejection Ratio, f = 217Hz, R = 8Ω, G = 6dB, Vic  
L
= 200mV  
pp  
300k327kΩ  
273kΩ  
------------------  
R
----------------- -----------------  
Gain value (R in k)  
Gain  
V/V  
in  
R
R
in  
in  
in  
R
Internal Resistance From Standby to GND  
Pulse Width Modulator Base Frequency  
273  
180  
300  
250  
82  
5
327  
320  
kΩ  
kHz  
dB  
STDBY  
F
PWM  
Signal to Noise ratio (A Weighting), Po = 0.4W, R = 8Ω  
SNR  
L
T
Wake-up time  
10  
10  
ms  
ms  
WU  
T
Standby time  
5
STB  
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB  
Unweighted R = 4Ω  
83  
57  
83  
61  
81  
58  
87  
62  
77  
56  
85  
63  
80  
57  
85  
61  
L
A weighted R = 4Ω  
L
Unweighted R = 8Ω  
L
A weighted R = 8Ω  
L
Unweighted R = 4+ 15µH  
L
A weighted R = 4+ 15µH  
L
Unweighted R = 4+ 30µH  
V
µV  
L
N
RMS  
A weighted R = 4+ 30µH  
L
Unweighted R = 8+ 30µH  
L
A weighted R = 8+ 30µH  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
1) All electrical values are guaranted with correlation measurements at 2.5V and 5V.  
2) Standby mode is actived when Vstdby is tied to GND.  
3) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.  
7/22  
TS4962  
Table 7.  
Electrical Characteristics  
V
= +2.5V, GND = 0V, V  
= 1.25V, T  
= 25°C (unless otherwise specified)  
CC  
ICM  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
No input signal, no load  
ICC  
1.7  
2.4  
mA  
1
Standby Current  
ISTANDBY  
Voo  
10  
3
1000  
25  
nA  
No input signal, V  
= GND  
STBY  
Output Offset Voltage  
mV  
No input signal, R = 8Ω  
L
Output Power, G=6dB  
THD = 1% Max, f = 1kHz, R = 4Ω  
L
0.52  
0.71  
0.33  
0.42  
THD = 10% Max, f = 1kHz, R = 4Ω  
Po  
W
L
THD = 1% Max, f = 1kHz, R = 8Ω  
L
THD = 10% Max, f = 1kHz, R = 8Ω  
L
Total Harmonic Distortion + Noise  
Po = 200 mW  
, G = 6dB, 20Hz < f < 20kHz,  
RMS  
R = 8+ 15µH, BW < 30kHz  
THD + N  
Efficiency  
1
%
%
L
Po = 200mW  
, G = 6dB, f = 1kHz,  
RMS  
0.19  
R = 8+ 15µH, BW < 30kHz  
L
Efficiency  
Po = 0.47 W  
, R = 4Ω + ≥ 15µH  
L
78  
88  
RMS  
Po = 0.3 W  
, R = 8Ω+ ≥ 15µH  
RMS  
L
2
Power Supply Rejection Ratio with inputs grounded  
PSRR  
CMRR  
60  
54  
dB  
dB  
f = 217Hz, R = 8, G=6dB, Vripple = 200mV  
L
pp  
Common Mode Rejection Ratio  
f = 217Hz, R = 8Ω, G = 6dB, Vic = 200mV  
L
pp  
300k327kΩ  
273kΩ  
------------------  
R
----------------- -----------------  
Gain value (R in k)  
Gain  
V/V  
in  
R
R
in  
in  
in  
R
Internal Resistance From Standby to GND  
Pulse Width Modulator Base Frequency  
273  
180  
300  
250  
80  
5
327  
320  
kΩ  
kHz  
dB  
STDBY  
F
PWM  
Signal to Noise ratio (A Weighting), Po = 0.4W, R = 8Ω  
SNR  
L
T
Wake-up time  
10  
10  
ms  
ms  
WU  
T
Standby time  
5
STB  
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB  
Unweighted R = 4Ω  
85  
60  
86  
62  
76  
56  
82  
60  
67  
53  
78  
57  
74  
54  
78  
59  
L
A weighted R = 4Ω  
L
Unweighted R = 8Ω  
L
A weighted R = 8Ω  
L
Unweighted R = 4+ 15µH  
L
A weighted R = 4+ 15µH  
L
Unweighted R = 4+ 30µH  
V
µV  
RMS  
L
N
A weighted R = 4+ 30µH  
L
Unweighted R = 8+ 30µH  
L
A weighted R = 8+ 30µH  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
1) Standby mode is actived when Vstdby is tied to GND.  
2) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.  
8/22  
Electrical Characteristics  
TS4962  
1
Table 8.  
Symbol  
ICC  
V
= +2.4V , GND = 0V, V  
= 1.2V, T  
= 25°C (unless otherwise specified)  
CC  
ICM  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
No input signal, no load  
1.7  
mA  
2
Standby Current  
ISTANDBY  
Voo  
10  
3
nA  
No input signal, V  
= GND  
STBY  
Output Offset Voltage  
mV  
No input signal, R = 8Ω  
L
Output Power, G=6dB  
THD = 1% Max, f = 1kHz, R = 4Ω  
L
0.48  
0.65  
0.3  
THD = 10% Max, f = 1kHz, R = 4Ω  
Po  
W
L
THD = 1% Max, f = 1kHz, R = 8Ω  
L
0.38  
THD = 10% Max, f = 1kHz, R = 8Ω  
L
Total Harmonic Distortion + Noise  
Po = 200 mW  
, G = 6dB, 20Hz < f < 20kHz,  
THD + N  
Efficiency  
1
%
%
RMS  
R = 8+ 15µH, BW < 30kHz  
L
Efficiency  
Po = 0.38 W  
Po = 0.25 W  
, R = 4Ω + ≥ 15µH  
77  
86  
RMS  
RMS  
L
, R = 8Ω+ ≥ 15µH  
L
Common Mode Rejection Ratio  
CMRR  
Gain  
54  
dB  
f = 217Hz, R = 8Ω, G = 6dB, Vic = 200mV  
L
pp  
300k327kΩ  
273kΩ  
------------------  
R
----------------- -----------------  
Gain value (R in k)  
V/V  
in  
R
R
in  
in  
in  
R
Internal Resistance From Standby to GND  
Pulse Width Modulator Base Frequency  
273  
300  
250  
80  
5
327  
kΩ  
kHz  
dB  
STDBY  
F
PWM  
Signal to Noise ratio (A Weighting), Po = 0.25W, R = 8Ω  
SNR  
L
T
Wake-up time  
ms  
ms  
WU  
T
Standby time  
5
STB  
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB  
Unweighted R = 4Ω  
85  
60  
86  
62  
76  
56  
82  
60  
67  
53  
78  
57  
74  
54  
78  
59  
L
A weighted R = 4Ω  
L
Unweighted R = 8Ω  
L
A weighted R = 8Ω  
L
Unweighted R = 4+ 15µH  
L
A weighted R = 4+ 15µH  
L
Unweighted R = 4+ 30µH  
V
µV  
L
N
RMS  
A weighted R = 4+ 30µH  
L
Unweighted R = 8+ 30µH  
L
A weighted R = 8+ 30µH  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
Unweighted R = 4+ Filter  
L
A weighted R = 4+ Filter  
L
1) Parameters guaranteed by evaluation and design, not by test.  
2) Standby mode is actived when Vstdby is tied to GND.  
9/22  
TS4962  
Electrical Characteristics  
Note:In the graphs that follow, the following abbreviations are used:  
RL + 15µH or 30µH = pure resistor+ very low series resistance inductor  
Filter = LC output filter (1µF+30µH for 4and 0.5µF+60µH for 8)  
All measurements done with Cs1=1µF and Cs2=100nF except for PSRR where Cs1 is removed  
Figure 2. Test diagram for measurements  
Vcc  
1uF  
Cs1  
100nF  
Cs2  
+
GND GND  
In+  
Cin  
Cin  
Rin  
Out+  
4 or 8 Ohms  
RL  
15uH or 30uH  
or  
5th order  
50kHz low pass  
filter  
150k  
TS4962  
Rin  
LC Filter  
In-  
Out-  
150k  
GND  
Audio Measurement  
Bandwidth < 30kHz  
Figure 3. Test diagram for PSRR measurements  
100nF  
Cs2  
20Hz to 20kHz  
Vcc  
GND  
GND  
In+  
4.7uF  
4.7uF  
Rin  
Out+  
4 or 8 Ohms  
RL  
15uH or 30uH  
or  
5th order  
50kHz low pass  
filter  
150k  
TS4962  
Rin  
LC Filter  
In-  
Out-  
150k  
GND  
GND  
5th order  
50kHz low pass  
filter  
RMS Selective Measurement  
Bandwidth=1% of Fmeas  
Reference  
10/22  
Electrical Characteristics  
TS4962  
Figure 4. Current consumption vs power  
supply voltage  
Figure 7. Output offset voltage vs common  
mode input voltage  
2.5  
10  
No load  
G = 6dB  
Tamb = 25°C  
Tamb=25°C  
2.0  
1.5  
1.0  
0.5  
0.0  
8
6
4
2
0
Vcc=5V  
Vcc=3.6V  
Vcc=2.5V  
0
1
2
3
4
5
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
Figure 5. Current consumption vs standby  
voltage  
Figure 8. Efficiency vs output power  
2.5  
2.0  
1.5  
1.0  
100  
600  
Efficiency  
80  
500  
400  
300  
60  
40  
Power  
Dissipation  
200  
100  
0
Vcc=5V  
RL=4  
F=1kHz  
THD+N  
0.5  
20  
0
Vcc = 5V  
No load  
Tamb=25  
+ 15µH  
°C  
1%  
0.0  
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
2.3  
Standby Voltage (V)  
Output Power (W)  
Figure 9. Efficiency vs output power  
Figure 6. Current consumption vs standby  
voltage  
100  
200  
150  
100  
50  
2.0  
1.5  
1.0  
Efficiency  
80  
60  
Power  
Dissipation  
40  
Vcc=3V  
RL=4  
F=1kHz  
THD+N  
0.5  
20  
+
15  
µH  
Vcc = 3V  
No load  
Tamb=25  
1%  
°C  
0
0.0  
0
0.0  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5 0.6  
0.7  
0.5  
1.0  
1.5  
2.0  
2.5 3.0  
Output Power (W)  
Standby Voltage (V)  
11/22  
TS4962  
Electrical Characteristics  
Figure 10. Efficiency vs output power  
Figure 13. Output power vs power supply  
voltage  
100  
2.0  
150  
100  
50  
RL = 8  
F = 1kHz  
BW < 30kHz  
+ 15µH  
80  
Efficiency  
1.5  
1.0  
0.5  
0.0  
Tamb = 25  
°C  
60  
THD+N=10%  
40  
20  
0
Power  
Dissipation  
Vcc=5V  
RL=8  
F=1kHz  
THD+N=1%  
4.5  
+ 15µH  
THD+N  
1%  
0
1.4  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
2.5  
3.0  
3.5  
4.0  
Vcc (V)  
5.0  
5.5  
Output Power (W)  
Figure 14. PSRR vs frequency  
Figure 11. Efficiency vs output power  
100  
75  
50  
25  
0
0
Vripple = 200mVpp  
Inputs = Grounded  
-10  
80  
G = 6dB, Cin = 4.7  
RL = 4 + 15  
R/R 0.1%  
Tamb = 25  
µF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Efficiency  
µH  
°
C
60  
40  
Vcc=5V, 3.6V, 2.5V  
Power  
Vcc=3V  
Dissipation  
20  
0
RL=8Ω  
+
15  
µH  
F=1kHz  
THD+N  
1%  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Output Power (W)  
Figure 12. Output power vs power supply  
voltage  
Figure 15. PSRR vs frequency  
0
3.5  
RL = 4+ 15µH  
Vripple = 200mVpp  
Inputs = Grounded  
F = 1kHz  
BW < 30kHz  
Tamb = 25  
-10  
THD+N=10%  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
G = 6dB, Cin = 4.7  
RL = 4 + 30  
R/R 0.1%  
Tamb = 25  
µF  
°C  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
µH  
°
C
Vcc=5V, 3.6V, 2.5V  
THD+N=1%  
2.5  
3.0  
3.5  
4.0  
Vcc (V)  
4.5  
5.0  
5.5  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
12/22  
Electrical Characteristics  
Figure 16. PSRR vs frequency  
TS4962  
Figure 19. PSRR vs frequency  
0
0
Vripple = 200mVpp  
Inputs = Grounded  
Vripple = 200mVpp  
Inputs = Grounded  
-10  
-10  
G = 6dB, Cin = 4.7  
RL = 4 + Filter  
R/R 0.1%  
Tamb = 25  
µ
F
G = 6dB, Cin = 4.7  
R/R 0.1%  
RL = 8 + Filter  
Tamb = 25  
µF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
°C  
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 17. PSRR vs frequency  
Figure 20. PSRR vs frequency Common Mode  
Input Voltage  
0
0
Vripple = 200mVpp  
Inputs = Grounded  
Vripple = 200mVpp  
F = 217Hz, G = 6dB  
-10  
-10  
G = 6dB, Cin = 4.7  
RL = 8 + 15  
R/R 0.1%  
Tamb = 25  
µF  
RL  
4+ 15µH  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Vcc=2.5V  
µH  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Tamb = 25  
°C  
°
C
Vcc=3.6V  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
Figure 18. PSRR vs frequency  
Figure 21. CMRR vs frequency  
0
0
Vripple = 200mVpp  
Inputs = Grounded  
RL=4  
G=6dB  
+ 15µH  
-10  
G = 6dB, Cin = 4.7  
RL = 8 + 30  
R/R 0.1%  
Tamb = 25  
µF  
Vicm=200mVpp  
R/R 0.1%  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
µH  
-20  
-40  
-60  
Cin=4.7  
Tamb = 25  
µF  
°
C
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
13/22  
TS4962  
Electrical Characteristics  
Figure 22. CMRR vs frequency  
Figure 25. CMRR vs frequency  
0
0
-20  
-40  
-60  
RL=4  
G=6dB  
+ 30µH  
RL=8+ 30µH  
G=6dB  
Vicm=200mVpp  
R/R 0.1%  
Vicm=200mVpp  
R/R 0.1%  
-20  
-40  
-60  
Cin=4.7  
Tamb = 25  
µF  
Cin=4.7µF  
°C  
Tamb = 25  
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 23. CMRR vs frequency  
Figure 26. CMRR vs frequency  
0
0
RL=4+ Filter  
RL=8+ Filter  
G=6dB  
G=6dB  
Vicm=200mVpp  
R/R 0.1%  
Vicm=200mVpp  
R/R 0.1%  
-20  
-40  
-60  
-20  
-40  
-60  
Cin=4.7  
Tamb = 25  
µF  
Cin=4.7  
Tamb = 25  
µF  
°C  
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 24. CMRR vs frequency  
Figure 27. CMRR vs frequency Common  
Mode Input Voltage  
0
-20  
RL=8+ 15µH  
Vicm = 200mVpp  
G=6dB  
F = 217Hz  
G = 6dB  
RL  
Tamb = 25  
Vicm=200mVpp  
R/R 0.1%  
-30  
-40  
-50  
-60  
-70  
-20  
-40  
-60  
Vcc=2.5V  
4+ 15µH  
Cin=4.7  
Tamb = 25  
µF  
°C  
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=3.6V  
Vcc=5V  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
14/22  
Electrical Characteristics  
TS4962  
Figure 28. THD+N vs output power  
Figure 31. THD+N vs output power  
10  
10  
Vcc=5V  
RL = 4  
F = 100Hz  
G = 6dB  
BW < 30kHz  
Tamb = 25  
+ 15  
µH  
RL = 8+ 30µH or Filter  
F = 100Hz  
G = 6dB  
BW < 30kHz  
Vcc=5V  
Vcc=3.6V  
Vcc=2.5V  
Vcc=3.6V  
°C  
Tamb = 25°C  
Vcc=2.5V  
1
1
0.1  
0.1  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
2
3
3
2
Output Power (W)  
Output Power (W)  
Figure 29. THD+N vs output power  
Figure 32. THD+N vs output power  
10  
10  
RL = 4  
F = 100Hz  
G = 6dB  
BW < 30kHz  
+ 30  
µH or Filter  
RL = 4+ 15µH  
F = 1kHz  
G = 6dB  
BW < 30kHz  
Tamb = 25°C  
Vcc=5V  
Vcc=5V  
Vcc=3.6V  
Vcc=2.5V  
Vcc=3.6V  
Vcc=2.5V  
Tamb = 25  
°C  
1
1
0.1  
0.1  
1E-3  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
3
Output Power (W)  
Output Power (W)  
Figure 30. THD+N vs output power  
Figure 33. THD+N vs output power  
10  
10  
RL = 8  
F = 100Hz  
G = 6dB  
BW < 30kHz  
+ 15µH  
RL = 4+ 30µH or Filter  
F = 1kHz  
G = 6dB  
BW < 30kHz  
Tamb = 25°C  
Vcc=5V  
Vcc=5V  
Vcc=3.6V  
Vcc=2.5V  
Vcc=3.6V  
Vcc=2.5V  
Tamb = 25  
°C  
1
1
0.1  
0.1  
1E-3  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
3
Output Power (W)  
Output Power (W)  
15/22  
TS4962  
Electrical Characteristics  
Figure 34. THD+N vs output power  
Figure 37. THD+N vs frequency  
10  
10  
RL=4  
G=6dB  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
+ 30µH or Filter  
RL = 8  
F = 1kHz  
G = 6dB  
BW < 30kHz  
Tamb = 25  
+ 15µH  
Vcc=5V  
Vcc=3.6V  
Po=1.5W  
°C  
Vcc=2.5V  
1
1
Po=0.75W  
0.1  
0.1  
1E-3  
0.01  
0.1  
1
2
50 100  
1000  
Frequency (Hz)  
10000 20k  
Output Power (W)  
Figure 38. THD+N vs frequency  
Figure 35. THD+N vs output power  
10  
10  
RL=4  
G=6dB  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
+ 15µH  
RL = 8  
F = 1kHz  
G = 6dB  
BW < 30kHz  
Tamb = 25  
+ 30µH or Filter  
Vcc=5V  
Po=0.9W  
Vcc=3.6V  
°C  
Vcc=2.5V  
1
1
Po=0.45W  
0.1  
0.1  
1E-3  
50 100  
1000  
Frequency (Hz)  
10000 20k  
0.01  
0.1  
1
2
Output Power (W)  
Figure 36. THD+N vs frequency  
Figure 39. THD+N vs frequency  
10  
10  
RL=4  
G=6dB  
+ 30µH or Filter  
RL=4  
G=6dB  
+ 15µH  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Po=0.9W  
Po=1.5W  
1
1
Po=0.45W  
0.1  
Po=0.75W  
0.1  
50 100  
1000  
Frequency (Hz)  
10000 20k  
50 100  
1000  
Frequency (Hz)  
10000 20k  
16/22  
Electrical Characteristics  
TS4962  
Figure 40. THD+N vs frequency  
Figure 43. THD+N vs frequency  
10  
10  
RL=4+ 15µH  
RL=8+ 30µH or Filter  
G=6dB  
G=6dB  
Bw < 30kHz  
Vcc=2.5V  
Po=0.4W  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Tamb = 25°C  
Po=0.9W  
1
1
Po=0.2W  
Po=0.45W  
0.1  
0.1  
200  
1000  
Frequency (Hz)  
10000  
20k  
50 100  
1000  
Frequency (Hz)  
10000 20k  
Figure 41. THD+N vs frequency  
Figure 44. THD+N vs frequency  
10  
10  
RL=4  
G=6dB  
+ 30µH or Filter  
RL=8  
G=6dB  
+ 15µH  
Bw < 30kHz  
Vcc=2.5V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Po=0.4W  
Po=0.5W  
1
1
Po=0.2W  
0.1  
0.1  
Po=0.25W  
50 100  
1000  
Frequency (Hz)  
10000 20k  
50 100  
1000  
Frequency (Hz)  
10000 20k  
Figure 42. THD+N vs frequency  
Figure 45. THD+N vs frequency  
10  
10  
RL=8Ω  
+ 15µH  
RL=8+ 30µH or Filter  
G=6dB  
G=6dB  
Bw < 30kHz  
Vcc=5V  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25  
°C  
Tamb = 25°C  
Po=0.9W  
Po=0.5W  
1
1
0.1  
0.1  
Po=0.45W  
Po=0.25W  
50 100  
1000  
Frequency (Hz)  
10000 20k  
50 100  
1000  
Frequency (Hz)  
10000 20k  
17/22  
TS4962  
Electrical Characteristics  
Figure 46. THD+N vs frequency  
Figure 49. Gain vs frequency  
8
6
4
2
0
10  
RL=8  
G=6dB  
Bw < 30kHz  
Vcc=2.5V  
Tamb = 25°C  
+ 15µH  
Po=0.2W  
1
0.1  
Vcc=5V, 3.6V, 2.5V  
RL=4  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
+ 30µH  
µ
F
Po=0.1W  
°
C
0.01  
20  
100  
1000  
10000 20k  
10000 20k  
10000 20k  
50 100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (Hz)  
Figure 50. Gain vs frequency  
Figure 47. THD+N vs frequency  
8
10  
RL=8+ 30µH or Filter  
G=6dB  
Bw < 30kHz  
Vcc=2.5V  
6
Po=0.2W  
1
0.1  
Tamb = 25°C  
Vcc=5V, 3.6V, 2.5V  
4
RL=4  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
+ Filter  
2
0
µF  
Po=0.1W  
°
C
0.01  
20  
100  
1000  
50 100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (Hz)  
Figure 51. Gain vs frequency  
Figure 48. Gain vs frequency  
8
8
6
6
Vcc=5V, 3.6V, 2.5V  
4
Vcc=5V, 3.6V, 2.5V  
4
RL=8  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
+ 15µH  
RL=4  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
+ 15µH  
2
0
2
0
µF  
µ
F
°
C
°C  
20  
100  
1000  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (Hz)  
18/22  
Electrical Characteristics  
TS4962  
Figure 52. Gain vs frequency  
Figure 55. Startup & shutdown time  
Vcc=5V, G=6dB, C =1µF (5ms/div)  
IN  
8
6
Vo1  
Vo2  
Vcc=5V, 3.6V, 2.5V  
4
Standby  
RL=8  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
+ 30µH  
2
0
Vo1-Vo2  
µF  
°C  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Figure 56. Startup & shutdown time  
Vcc=3V, G=6dB, C =1µF (5ms/div)  
Figure 53. Gain vs frequency  
IN  
8
6
Vo1  
Vo2  
Vcc=5V, 3.6V, 2.5V  
4
Standby  
RL=8  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
+ Filter  
2
0
Vo1-Vo2  
µF  
°C  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Figure 57. Startup & shutdown time  
Vcc=5V, G=6dB, C =100nF (5ms/div)  
Figure 54. Gain vs frequency  
IN  
8
Vo1  
Vo2  
6
Vcc=5V, 3.6V, 2.5V  
4
Standby  
RL=No Load  
G=6dB  
Vo1-Vo2  
2
Vin=500mVpp  
Cin=1µF  
Tamb = 25  
°C  
0
20  
100  
1000  
10000 20k  
Frequency (Hz)  
19/22  
TS4962  
Electrical Characteristics  
Figure 58. Startup & shutdown time  
Vcc=3V, G=6dB, C =100nF (5ms/div)  
IN  
Vo1  
Vo2  
Standby  
Vo1-Vo2  
Figure 59. Startup & shutdown time  
Vcc=5V, G=6dB, NoC (5ms/div)  
IN  
Vo1  
Vo2  
Standby  
Vo1-Vo2  
Figure 60. Startup & shutdown time  
Vcc=3V, G=6dB, NoC (5ms/div)  
IN  
Vo1  
Vo2  
Standby  
Vo1-Vo2  
20/22  
Package Mechanical Data  
TS4962  
4 Package Mechanical Data  
4.1 Pin-out and markings for 9-bump flip-chip  
Figure 61. Pin-out for 9-bump flip-chip (top view)  
GND  
2/A2  
IN+  
OUT-  
3/A3  
1/A1  
Bumps are underneath  
Bump diameter = 300µm  
VDD  
GND  
6/B3  
VDD  
5/B2  
4/B1  
STBY  
8/C2  
OUT+  
9/C3  
IN-  
7/C1  
Figure 62. Marking for 9-bump flip-chip (top view)  
Marking: A62  
E
ST Logo  
Part Number: A62  
Three digits Datecode: YWW  
E symbol for lead-free only  
The dot is for marking pin A1  
A62  
YWW  
4.2 Mechanical data for 9-bump flip-chip  
Die size: 1.6mm x 1.6mm ±±3µm  
Die height (including bumps): 600µm  
Bump diameter: 315µm ±50µm  
1.60 mm  
Bump diameter before Reflew: 300µm ±10µm  
Bump height: 250µm ±ꢀ0µm  
Die Height: 350µm ±ꢁ0µm  
1.60 mm  
Pitch: 500µm ±50µm  
0.5mm  
*Back Coating layer Height: 100µm ±10µm  
Coplanarity: 60µm max  
* Optional  
0.5mm  
0.25mm  
100µm  
600µm  
21/22  
TS4962  
Revision History  
5 Revision History  
Date  
Revision  
Description of Changes  
01 Sept. 2004  
01 Oct. 2004  
0.1  
0.2  
First release corresponding to Target Specification version of datasheet.  
Update Gain Values.  
First published version corresponding to Preliminary Data version of  
datasheet. Specific content changes as follows:  
01 Nov. 2004  
01 Jan. 2005  
1
2
update Electrical Values + curves.  
Technical parameter updated (Output Power at 3W).  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
22/22  

相关型号:

TS4962EKIJT

3W Filter-free Class D Audio Power Amplifier
STMICROELECTR

TS4962IJT

3W Filter-free Class D Audio Power Amplifier
STMICROELECTR

TS4962IQT

2.8W filter-free mono class D audio power amplifier
STMICROELECTR

TS4962M

3W filter-free class D audio power amplifier
STMICROELECTR

TS4962MEIJT

3W filter-free class D audio power amplifier
STMICROELECTR

TS4962MEIKJT

3 W filter-free class D audio power amplifier
STMICROELECTR

TS4962M_07

3W filter-free class D audio power amplifier
STMICROELECTR

TS4962_07

2.8W filter-free mono class D audio power amplifier
STMICROELECTR

TS4962_10

2.8 W filter-free mono class D audio power amplifier
STMICROELECTR

TS496T11CKT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T1XCLT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T2XIAT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS