TS4984EIJT [STMICROELECTRONICS]

1.2W Stereo Audio Power Amplifier with Active Low Standby Mode; 1.2W立体声音频功率放大器有源低待机模式
TS4984EIJT
型号: TS4984EIJT
厂家: ST    ST
描述:

1.2W Stereo Audio Power Amplifier with Active Low Standby Mode
1.2W立体声音频功率放大器有源低待机模式

消费电路 商用集成电路 音频放大器 视频放大器 功率放大器
文件: 总30页 (文件大小:1647K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4984FC  
1.2W Stereo Audio Power Amplifier with  
Active Low Standby Mode  
Operating from V = 2.2V to 5.5V  
CC  
TS4984 - flip-chip 15 bumps  
1.2W output power per channel @ V = 5V,  
CC  
THD+N = 1%, R = 8Ω  
L
10nA standby current  
62dB PSRR @ 217Hz with grounded inputs  
High SNR: 106dB(A) typ.  
Pin connections (top view)  
Near-zero pop & click  
Available in a 15-bump flip-chip (lead-free)  
VCC  
IN2+  
IN2-  
VCC  
BYPASS  
STDBY  
Description  
VOUT2+  
GND  
VOUT1+  
IN1+  
The TS4984 has been designed for top-class  
stereo audio applications. Thanks to its compact  
and power dissipation efficient flip-chip package, it  
suits various applications.  
VOUT2-  
VOUT1-  
IN1-  
BYPASS  
GND  
With a output BTL configuration, this audio power  
amplifier is capable of delivering 1.2W per  
channel of continuous RMS output power into an  
8load @ 5V.  
Applications  
An externally-controlled standby mode reduces  
the supply current to less than 10nA per channel.  
The device also features an internal thermal  
shutdown protection.  
Cellular mobile phones  
Notebook & PDA computers  
LCD monitors & TVs  
The gain of each channel can be configured by  
external gain setting resistors.  
Portable audio devices  
Order Codes  
Part Number  
TS4984EIJT  
Temperature Range  
Package  
Packing  
Marking  
Lead free flip-chip  
Lead free flip-chip +  
back coating  
-40, +85°C  
Tape & Reel  
A84  
TS4984EIKJT  
Rev 2  
1/30  
November 2005  
www.st.com  
30  
Typical Application Schematic  
TS4984FC  
1
Typical Application Schematic  
Figure 1 show a typical application schematic for the TS4984FC.  
Figure 1. Application information  
Cfeed1  
Rfeed1  
22k  
VCC  
Cs  
U1  
Cin1  
INPUT1  
A1  
B2  
IN1-  
-
A3  
Rin1  
22k  
VOUT1-  
100nF  
IN1+  
+
OUTPUT1  
+
-
VOUT1+ B4  
AV = -1  
C5  
C3  
BYPASS  
+
Cb  
STDBY  
StandBy  
Control  
Bias  
D6  
E5  
IN2+  
IN2-  
+
-
Wire optional  
Internal connection  
E3  
VOUT2-  
OUTPUT2  
+
Cin2  
INPUT2  
Rin2  
22k  
100nF  
-
D4  
VOUT2+  
AV = -1  
C1  
BYPASS  
+
22k  
Rfeed2  
Cfeed2  
Table 1.  
External component descriptions  
Functional Description  
Inverting input resistors which sets the closed loop gain in conjunction with R  
Components  
.
feed  
R
C
in L,R  
These resistors also form a high pass filter with C = 1/2 x Pi x R x C ))  
in  
in  
in  
Input coupling capacitors which blocks the DC voltage at the amplifier input terminal  
in L,R  
R
Feedback resistors which sets the closed loop gain in conjunction with R  
Supply Bypass capacitor which provides power supply filtering  
Bypass pin capacitor which provides half supply filtering  
feed L,R  
in  
C
s
C
b
A
Closed loop gain in BTL configuration = 2 x (R  
/ R ) on each channel  
V L, R  
feed in  
2/30  
TS4984FC  
Absolute Maximum Ratings  
2
Absolute Maximum Ratings  
Table 2.  
Symbol  
Key parameters and their absolute maximum ratings  
Parameter  
Value  
Unit  
(1)  
V
6
V
CC  
Supply voltage  
(2)  
V
GND to V  
V
Input Voltage  
i
CC  
T
Operating Free Air Temperature Range  
Storage Temperature  
-40 to + 85  
-65 to +150  
150  
°C  
°C  
°C  
oper  
T
stg  
T
Maximum Junction Temperature  
j
Thermal Resistance Junction to Ambient for  
Flip-chip15  
R
180  
°C/W  
thja  
P
Power Dissipation  
Internally Limited  
2
diss  
(3)  
ESD  
ESD  
kV  
V
Human Body Model  
Machine Model  
200  
Latch-up Immunity  
200mA  
1. All voltages values are measured with respect to the ground pin  
2. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V  
3. All voltage values are measured from each pin with respect to supplies  
Table 3.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
V
V
Supply Voltage  
2.2 to 5.5  
1.2V to V  
CC  
V
Common Mode Input Voltage Range  
Standby Voltage Input:  
V
ICM  
CC  
1.35 V  
V  
CC  
V
V
STBY  
Device ON  
STBY  
GND V  
0.4  
Device OFF  
STBY  
R
Load Resistor  
4  
L
R
Resistor Output to GND (V  
= GND)  
1  
MΩ  
°C  
OUTGND  
STBY  
T
Thermal Shutdown Temperature  
150  
SD  
Thermal Resistance Junction to Ambient  
R
110  
°C/W  
thja  
(1)  
Flip-chip15  
1. When mounted on a 4-layer PCB  
3/30  
Electrical Characteristics  
TS4984FC  
3
Electrical Characteristics  
Table 4.  
Symbol  
V
= +5V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min.  
Typ. Max.  
Unit  
mA  
nA  
I
Supply Current  
Standby Current  
No input signal, no load  
7.4  
10  
1
12  
1000  
10  
CC  
(1)  
I
No input signal, V  
= GND, R = 8Ω  
STBY L  
STBY  
V
No input signal, R = 8Ω  
Output Offset Voltage  
Output Power  
mV  
W
OO  
L
P
THD = 1% Max, F = 1kHz, R = 8Ω  
0.9  
1.2  
out  
L
P
= 1Wrms, A = 2  
V
Total Harmonic Distortion  
+ Noise  
out  
THD + N  
PSRR  
0.2  
62  
64  
%
20Hz F 20kHz, R = 8Ω  
L
R = 8Ω, A = 2, V = 200mVpp,  
ripple  
Input Grounded, F = 217Hz  
L
V
55  
55  
Power Supply Rejection  
dB  
(2)  
Ratio  
R = 8Ω, A = 2, V = 200mVpp,  
Input Grounded, F = 1kHz  
L
V
ripple  
R = 8, F = 1kHz  
107  
82  
L
Crosstalk Channel Separation,  
dB  
R = 8, F = 20Hz to 20kHz  
L
t
C = 1µF  
Wake-Up Time  
Standby Time  
90  
130  
ms  
µs  
wu  
b
t
C = 1µF  
10  
stby  
b
Standby Voltage Level  
High  
V
1.3  
0.4  
V
V
STBYH  
Standby Voltage Level  
Low  
V
STBYL  
Phase Margin at Unity  
Gain  
Φ
R = 8, C = 500pF  
65  
Degrees  
M
L
L
R = 8, C = 500pF  
GM  
Gain Margin  
15  
dB  
L
L
R = 8Ω  
GBP  
Gain Bandwidth Product  
1.5  
MHz  
L
1. Standby mode is activated when VSTBY is tied to Gnd.  
2. All PSRR data limits are guaranteed by production sampling tests.  
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC  
.
4/30  
TS4984FC  
Electrical Characteristics  
= 25°C (unless otherwise specified)  
amb  
Table 5.  
Symbol  
V
= +3.3V, GND = 0V, T  
Parameter  
CC  
Min. Typ. Max.  
Unit  
mA  
nA  
I
Supply Current  
Standby Current  
No input signal, no load  
6.6  
10  
1
12  
1000  
10  
CC  
(1)  
I
No input signal, V  
= GND, R = 8Ω  
STBY L  
STBY  
V
No input signal, R = 8Ω  
Output Offset Voltage  
Output Power  
mV  
mW  
OO  
L
P
THD = 1% Max, F = 1kHz, R = 8Ω  
375  
500  
out  
L
P
= 400mWrms, A = 2  
V
Total Harmonic Distortion  
+ Noise  
out  
THD + N  
PSRR  
0.1  
61  
63  
%
20Hz F 20kHz, R = 8Ω  
L
R = 8Ω, A = 2, V = 200mVpp,  
ripple  
Input Grounded, F = 217Hz  
L
V
55  
55  
Power Supply Rejection  
dB  
(2)  
Ratio  
R = 8Ω, A = 2, V = 200mVpp,  
Input Grounded, F = 1kHz  
L
V
ripple  
R = 8, F = 1kHz  
107  
82  
L
Crosstalk Channel Separation,  
dB  
R = 8, F = 20Hz to 20kHz  
L
t
C = 1µF  
Wake-Up Time  
Standby Time  
110  
10  
140  
ms  
µs  
wu  
b
t
C = 1µF  
stby  
b
Standby Voltage Level  
High  
V
1.2  
0.4  
V
V
STBYH  
Standby Voltage Level  
Low  
V
STBYL  
Phase Margin at Unity  
Gain  
Φ
R = 8, C = 500pF  
65  
Degrees  
M
L
L
R = 8, C = 500pF  
GM  
Gain Margin  
15  
dB  
L
L
R
= 8Ω  
GBP  
Gain Bandwidth Product  
1.5  
MHz  
L
1. Standby mode is activated when VSTBY is tied to Gnd.  
2. All PSRR data limits are guaranteed by production sampling tests.  
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC  
.
5/30  
Electrical Characteristics  
TS4984FC  
Table 6.  
Symbol  
V
= +2.6V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Min. Typ. Max.  
Unit  
mA  
nA  
I
Supply Current  
Standby Current  
No input signal, no load  
6.2  
10  
1
12  
1000  
10  
CC  
(1)  
I
No input signal, V  
= GND, R = 8Ω  
STBY  
STBY L  
V
No input signal, R = 8Ω  
Output Offset Voltage  
Output Power  
mV  
mW  
OO  
L
P
THD = 1% Max, F = 1kHz, R = 8Ω  
220  
300  
out  
L
P
= 200mWrms, A = 2  
V
Total Harmonic Distortion  
+ Noise  
out  
THD + N  
PSRR  
0.1  
60  
62  
%
20Hz F 20kHz, R = 8Ω  
L
R = 8Ω, A = 2, V = 200mVpp,  
ripple  
Input Grounded, F = 217Hz  
L
V
55  
55  
Power Supply Rejection  
dB  
(2)  
Ratio  
R = 8Ω, A = 2, V = 200mVpp,  
Input Grounded, F = 1kHz  
L
V
ripple  
R = 8, F = 1kHz  
107  
82  
L
Crosstalk Channel Separation,  
dB  
R = 8, F = 20Hz to 20kHz  
L
t
C = 1µF  
Wake-Up Time  
Standby Time  
125  
10  
150  
ms  
µs  
wu  
b
t
C = 1µF  
stby  
b
Standby Voltage Level  
High  
V
1.2  
0.4  
V
V
STBYH  
Standby Voltage Level  
Low  
V
STBYL  
Phase Margin at Unity  
Gain  
Φ
R = 8, C = 500pF  
Degrees  
M
L
L
65  
15  
R = 8, C = 500pF  
GM  
Gain Margin  
dB  
L
L
R
= 8Ω  
GBP  
Gain Bandwidth Product  
MHz  
L
1.5  
1. Standby mode is activated when VSTBY is tied to Gnd.  
2. All PSRR data limits are guaranteed by production sampling tests.  
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC  
.
6/30  
TS4984FC  
Table 7.  
Electrical Characteristics  
Index of graphics  
Description  
Figure  
Page  
Open Loop Frequency Response  
Figure 2 to 7  
Figure 8 to 13  
page 8  
page 9  
Power Supply Rejection Ratio (PSRR) vs. Frequency  
page 10 to  
page 11  
Power Supply Rejection Ratio (PSRR) vs. DC Output Voltage  
Figure 14 to 22  
Figure 23  
Power Supply Rejection Ratio (PSRR) at F=217Hz vs. Bypass  
Capacitor  
page 11  
page 11 to  
page 12  
Output Power vs. Power Supply Voltage  
Output Power vs. Load Resistor  
Figure 24 to 27  
Figure 28 to 30  
Figure 31 to 33  
page 12  
page 12 to  
page 13  
Power Dissipation vs. Output Power  
Figure 34,  
Figure 35  
Clipping Voltage vs. Power Supply Voltage and Load Resistor  
Current Consumption vs. Power Supply Voltage  
Current Consumption vs. Standby Voltage  
Power Derating Curves  
page 13  
page 13  
Figure 36  
Figure 37 to 39  
Figure 40  
page 13 to  
page 14  
page 14  
page 14 to  
page 15  
THD+N vs. Output Power  
Figure 41 to 49  
THD+N vs. Frequency  
Crosstalk vs. Frequency  
Figure 50 to 52  
Figure 53 to 55  
page 16  
page 16  
SIgnal to Noise Ratio vs. Power Supply with Unweighted Filter  
(20Hz to 20kHz)  
Figure 56,  
Figure 57  
page 17  
page 17  
Figure 58,  
Figure 59  
SIgnal to Noise Ratio vs. Power Supply with A-weighted Filter  
Output Noise Voltage, Device ON  
Figure 60  
Figure 61  
page 17  
page 17  
Output Noise Voltage, Device in Standby  
7/30  
Electrical Characteristics  
TS4984FC  
Figure 3. Open loop frequency response  
Figure 2. Open loop frequency response  
100  
80  
60  
40  
20  
0
0
60  
40  
20  
0
0
Gain  
Gain  
-40  
-80  
-120  
-160  
-200  
-40  
-80  
-120  
-160  
-200  
Phase  
Phase  
-20  
-40  
-60  
Vcc = 5V  
RL = 8  
Vcc = 5V  
CL = 560pF  
-20  
Tamb = 25  
°C  
Tamb = 25  
°C  
-40  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Figure 4. Open loop frequency response  
Figure 5. Open loop frequency response  
60  
40  
20  
0
0
100  
80  
60  
40  
20  
0
0
Gain  
Gain  
-40  
-80  
-120  
-160  
-200  
-40  
Phase  
-80  
Phase  
-120  
-160  
-200  
-20  
-40  
-60  
Vcc = 3.3V  
RL = 8  
Vcc = 3.3V  
CL = 560pF  
-20  
Tamb = 25  
°C  
Tamb = 25  
°C  
-40  
0.1  
0.1  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Figure 6. Open loop frequency response  
Figure 7. Open loop frequency response  
60  
40  
20  
0
0
100  
80  
60  
40  
20  
0
0
Gain  
Gain  
-40  
-80  
-120  
-160  
-200  
-40  
-80  
-120  
-160  
-200  
Phase  
Phase  
-20  
-40  
-60  
Vcc = 2.6V  
RL = 8  
Vcc = 2.6V  
CL = 560pF  
-20  
-40  
Tamb = 25  
°C  
Tamb = 25  
°C  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
8/30  
TS4984FC  
Electrical Characteristics  
Figure 8. Power supply rejection ratio (PSRR) Figure 9. Power supply rejection ratio (PSRR)  
vs. frequency  
vs. frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Vripple = 200mVpp  
Vripple = 200mVpp  
Av = 2  
Input = Grounded  
Vcc = 2.2, 2.6, 3.3, 5V  
Rfeed = 22k  
Input = Floating  
Cb = 0.1  
RL >= 4  
Tamb = 25  
µF  
Cb = Cin = 1  
RL >= 4  
Tamb = 25  
µ
F
Vcc :  
2.2V  
2.6V  
3.3V  
5V  
°C  
°
C
100  
1000  
10000  
Frequency (Hz)  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Figure 10. Power supply rejection ratio (PSRR) Figure 11. Power supply rejection ratio (PSRR)  
vs. frequency  
vs. frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Vripple = 200mVpp  
Av = 5  
Input = Grounded  
Vripple = 200mVpp  
Vcc :  
Vcc = 2.2, 2.6, 3.3, 5V  
Rfeed = 22k  
Input = Floating  
Cb = 1  
RL >= 4  
Tamb = 25  
2.2V  
2.6V  
3.3V  
5V  
Cb = Cin = 1  
RL >= 4  
Tamb = 25  
µ
F
µF  
°
C
°C  
100  
1000  
10000  
100000  
100  
1000  
10000  
Frequency (Hz)  
100000  
Frequency (Hz)  
Figure 12. Power supply rejection ratio (PSRR) Figure 13. Power supply rejection ratio (PSRR)  
vs. frequency  
vs. frequency  
0
-10  
-20  
-30  
-40  
-50  
0
-10  
-20  
-30  
-40  
-50  
-60  
Vripple = 200mVpp  
Av = 10  
Input = Grounded  
Vripple = 200mVpp  
Av = 2  
Input = Grounded  
Vcc :  
2.2V  
2.6V  
3.3V  
5V  
Cb = Cin = 1  
RL >= 4  
Tamb = 25  
µ
F
Cb = 0.1  
RL >= 4  
Tamb = 25  
µF, Cin = 1µF  
°
C
°C  
Vcc = 5, 3.3, 2.5 & 2.2V  
100  
1000  
10000  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
9/30  
Electrical Characteristics  
TS4984FC  
Figure 14. Power supply rejection ratio (PSRR) Figure 15. Power supply rejection ratio (PSRR)  
vs. DC output voltage  
vs. DC output voltage  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
-60  
Vcc = 5V  
Vripple = 200mVpp  
Vcc = 5V  
Vripple = 200mVpp  
RL = 8  
RL = 8  
Cb = 1µF  
Cb = 1µF  
AV = 2  
Tamb = 25°C  
AV = 5  
Tamb = 25°C  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Differential DC Output Voltage (V)  
Differential DC Output Voltage (V)  
Figure 16. Power supply rejection ratio (PSRR) Figure 17. Power supply rejection ratio (PSRR)  
vs. DC output voltage  
vs. DC output voltage  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
Vcc = 3.3V  
Vripple = 200mVpp  
Vcc = 5V  
Vripple = 200mVpp  
RL = 8  
RL = 8  
Cb = 1µF  
Cb = 1µF  
AV = 2  
Tamb = 25°C  
AV = 10  
Tamb = 25°C  
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Differential DC Output Voltage (V)  
Differential DC Output Voltage (V)  
Figure 18. Power supply rejection ratio (PSRR) Figure 19. Power supply rejection ratio (PSRR)  
vs. DC output voltage  
vs. DC output voltage  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
Vcc = 3.3V  
Vripple = 200mVpp  
Vcc = 3.3V  
Vripple = 200mVpp  
RL = 8  
RL = 8  
Cb = 1µF  
Cb = 1µF  
AV = 5  
Tamb = 25°C  
AV = 10  
Tamb = 25°C  
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0  
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0  
Differential DC Output Voltage (V)  
Differential DC Output Voltage (V)  
10/30  
TS4984FC  
Electrical Characteristics  
Figure 20. Power supply rejection ratio (PSRR) Figure 21. Power supply rejection ratio (PSRR)  
vs. DC output voltage  
vs. DC output voltage  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
-60  
Vcc = 2.6V  
Vripple = 200mVpp  
Vcc = 2.6V  
Vripple = 200mVpp  
RL = 8  
RL = 8  
Cb = 1µF  
Cb = 1µF  
AV = 2  
Tamb = 25°C  
AV = 5  
Tamb = 25°C  
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5  
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5  
Differential DC Output Voltage (V)  
Differential DC Output Voltage (V)  
Figure 22. Power supply rejection ratio (PSRR) Figure 23. Power supply rejection ratio (PSRR)  
vs. DC output voltage  
at F = 217Hz vs. bypass capacitor  
0
-10  
-20  
-30  
-40  
-50  
Av=10  
Vcc:  
2.6V  
3.3V  
5V  
Vcc = 2.6V  
Vripple = 200mVpp  
-30  
-40  
-50  
-60  
-70  
-80  
RL = 8  
Cb = 1µF  
AV = 10  
Tamb = 25°C  
Av=2  
Vcc:  
2.6V  
3.3V  
5V  
Av=5  
Vcc:  
2.6V  
3.3V  
5V  
Tamb=25°C  
0.1  
1
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5  
Bypass Capacitor Cb ( F)  
Differential DC Output Voltage (V)  
Figure 24. Output power vs. power supply  
voltage  
Figure 25. Output power vs. power supply  
voltage  
11/30  
Electrical Characteristics  
TS4984FC  
Figure 27. Output power vs. power supply  
Figure 26. Output power vs. power supply  
voltage  
voltage  
Figure 28. Output power vs. load resistor  
Figure 29. Output power vs. load resistor  
Figure 30. Output power vs. load resistor  
Figure 31. Power dissipation vs. output power  
per channel  
12/30  
TS4984FC  
Electrical Characteristics  
Figure 32. Power dissipation vs. output power Figure 33. Power dissipation vs. output power  
per channel  
per channel  
Figure 34. Clipping voltage vs. power supply  
voltage and load resistor  
Figure 35. Clipping voltage vs. power supply  
voltage and load resistor  
Figure 36. Current consumption vs. power  
supply voltage  
Figure 37. Current consumption vs. standby  
voltage at V  
= 5V  
CC  
No Loads  
Tamb=25°C  
Vcc = 5V  
No Loads  
Tamb=25°C  
13/30  
Electrical Characteristics  
TS4984FC  
Figure 38. Current consumption vs. standby  
Figure 39. Current consumption vs. standby  
voltage at V = 2.6V  
voltage at V = 3.3V  
CC  
CC  
Vcc = 3.3V  
No Loads  
Vcc = 2.6V  
No Loads  
Tamb=25°C  
Tamb=25°C  
Figure 40. Power derating curves  
Figure 41. THD + N vs. output power  
Figure 42. THD + N vs. output power  
Figure 43. THD + N vs. output power  
14/30  
TS4984FC  
Electrical Characteristics  
Figure 45. THD + N vs. output power  
Figure 44. THD + N vs. output power  
Figure 46. THD + N vs. output power  
Figure 47. THD + N vs. output power  
Figure 48. THD + N vs. output power  
Figure 49. THD + N vs. output power  
15/30  
Electrical Characteristics  
TS4984FC  
Figure 50. THD + N vs. frequency  
Figure 51. THD + N vs. frequency  
Figure 52. THD + N vs. frequency  
Figure 53. Crosstalk vs. frequency  
0
Vcc = 2.6V  
−2 0 Pout = 200mW  
RL = 8  
Av = 2  
BW < 125kHz  
Tamb = 25°C  
−4 0  
−6 0  
OUT1 to OUT2  
OUT2 to OUT1  
−8 0  
100  
120  
140  
100  
1000  
Frequency(Hz)  
10000  
Figure 54. Crosstalk vs. frequency  
Figure 55. Crosstalk vs. frequency  
0
0
Vcc = 3.3V  
Vcc = 5V  
−2 0 Pout = 400mW  
−2 0 Pout = 1W  
RL = 8  
Av = 2  
BW < 125kHz  
Tamb = 25°C  
RL = 8  
Av = 2  
BW < 125kHz  
Tamb = 25°C  
−4 0  
−6 0  
−4 0  
−6 0  
OUT1 to OUT2  
OUT1 to OUT2  
OUT2 to OUT1  
OUT2 to OUT1  
−8 0  
−8 0  
100  
120  
140  
100  
120  
140  
100  
1000  
Frequency(Hz)  
10000  
100  
1000  
Frequency(Hz)  
10000  
16/30  
TS4984FC  
Electrical Characteristics  
Figure 56. Signal to noise ratio vs. power  
supply with unweighted filter (20Hz  
to 20kHz)  
Figure 57. Signal to noise ratio vs. power  
supply with unweighted filter (20Hz  
to 20kHz)  
Figure 58. Signal to noise ratio vs. power  
supply with A weighted filter  
Figure 59. Signal to noise ratio vs. power  
supply with A weighted filter  
Figure 60. Output noise voltage, device ON  
Figure 61. Output noise voltage, device in  
standby  
17/30  
Application Information  
TS4984FC  
4
Application Information  
The TS4984 integrates two monolithic power amplifiers with a BTL (Bridge Tied Load) output  
type (explained in more detail in Section 4.1). For this discussion, only the left-channel amplifier  
will be referred to.  
Referring to the schematic in Figure 62, we assign the following variables and values:  
V = Vin1-  
in  
V
= VOUT1+  
= VOUT1-  
out1  
V
out2  
R = Rin1  
in  
R
C
= Rfeed1  
= Cfeed1  
feed  
feed  
Figure 62. Typical application schematic - left channel  
Cfeed = Cfeed1  
VCC  
Rfeed = Rfeed1  
Cs  
1u  
TS4984  
Cin = Cin1  
Vin- = VIN1-  
IN1  
-
2
1
GND  
Rin = Rin1  
Vout1 = VOUT1+  
Vout2 = VOUT1-  
Vin+ = VIN1+  
+
RL  
-
STDBY  
Bias  
AV = -1  
BYPASS  
+
Cb  
1u  
4.1  
BTL configuration principle  
BTL (Bridge Tied Load) means that each end of the load is connected to two single-ended  
output amplifiers. Thus, we have:  
Single-ended output 1 = V  
Single-ended output 2 = V  
= V  
(V),  
out1  
out2  
out  
= -V  
(V), V  
- V  
= 2V  
(V)  
out  
out1  
out2  
out  
18/30  
TS4984FC  
The output power is:  
Application Information  
2
(2VoutRMS  
Pout = ---------------------------------  
RL  
)
For the same power supply voltage, the output power in a BTL configuration is four times higher  
than the output power in a single-ended configuration.  
4.2  
Gain in typical application schematic  
The typical application schematic (Figure 62) is shown on page 18.  
In the flat region (no C effect), the output voltage of the first stage is:  
in  
Rfeed  
--------------  
Vout1 = (Vin)  
(V)  
Rin  
For the second stage:  
V
= -V  
(V)  
out2  
out1  
The differential output voltage is:  
Rfeed  
--------------  
Rin  
V
out2 Vout1 = 2Vin  
(V)  
The differential gain, referred to as G for greater convenience, is:  
v
Rfeed  
--------------  
Rin  
V
out2 Vout1  
Gv = ---------------------------------- = 2  
Vin  
V
is in phase with V and V  
is phased 180° with V . This means that the positive  
out2  
in  
out1 in  
terminal of the loudspeaker should be connected to V  
and the negative to V  
.
out2  
out1  
4.3  
Low and high frequency response  
In the low frequency region, C starts to have an effect. C forms with R a high-pass filter with  
in  
in  
in  
a -3dB cut-off frequency:  
1
------------------------  
FCL  
=
(Hz)  
2πRinCin  
In the high frequency region, you can limit the bandwidth by adding a capacitor (C  
) in  
feed  
parallel with R  
. It forms a low-pass filter with a -3dB cut-off frequency. F is in Hz.  
feed  
CH  
1
------------------------------------  
FCH  
=
(Hz)  
2πRfeedCfeed  
19/30  
Application Information  
The following graph (Figure 63) shows an example of Cin and Cfeed influence.  
TS4984FC  
Figure 63. Frequency response gain versus C & C  
in  
feed  
10  
5
0
-5  
Cfeed = 330pF  
Cfeed = 680pF  
Cfeed = 2.2nF  
Cin = 470nF  
-10  
-15  
-20  
-25  
Cin = 22nF  
Cin = 82nF  
Rin = Rfeed = 22k  
Tamb = 25  
°C  
10  
100  
Frequency (Hz)  
1000  
10000  
4.4  
Power dissipation and efficiency  
Hypotheses:  
Voltage and current in the load are sinusoidal (V and I ).  
out out  
Supply voltage is a pure DC source (V ).  
CC  
Regarding the load we have:  
and  
Vout = VPEAK sinωt (V)  
Vout  
------------  
RL  
Iout  
=
(A)  
and  
2
VPEAK  
----------------------  
2RL  
Pout  
=
(W)  
Therefore, the average current delivered by the supply voltage is:  
VPEAK  
-----------------  
ICC  
= 2  
(A)  
AVG  
πRL  
The power delivered by the supply voltage is:  
Psupply = VCC ICC  
(W)  
(W)  
AVG  
Then, the power dissipated by each amplifier is:  
Pdiss = Psupply Pout  
2 2VCC  
----------------------  
Pdiss  
=
P
out Pout  
(W)  
π RL  
20/30  
TS4984FC  
and the maximum value is obtained when:  
Application Information  
Pdiss  
------------------  
Pout  
= 0  
and its value is:  
2Vc2c  
Pdissmax = -------------  
π2RL  
(W)  
Note:  
This maximum value is only depending on power supply voltage and load values.  
The efficiency, η, is the ratio between the output power and the power supply:  
Pout  
πVPEAK  
4VCC  
------------------- ----------------------  
η =  
=
Psupply  
The maximum theoretical value is reached when V  
= V , so that:  
CC  
PEAK  
π
---- = 78.5%  
4
The TS4984 has two independent power amplifiers, and each amplifier produces heat due to its  
power dissipation. Therefore, the maximum die temperature is the sum of the each amplifier’s  
maximum power dissipation. It is calculated as follows:  
P
P
= Power dissipation due to the 1st channel power amplifier.  
= Power dissipation due to the 2nd channel power amplifier.  
diss1  
diss2  
Total P  
= P  
+ P  
(W)  
diss2  
diss  
diss1  
In most cases, P  
= P  
, giving:  
diss1  
diss2  
Total Pdiss= Pdiss1= Pdiss2  
(W)  
or, stated differently:  
4 2VCC  
----------------------  
Total Pdiss  
=
P
out 2Pout  
(W)  
π RL  
4.5  
Decoupling the circuit  
Two capacitors are needed to correctly bypass the TS4984. A power supply bypass capacitor  
C and a bias voltage bypass capacitor C .  
S
b
C has particular influence on the THD+N in the high frequency region (above 7kHz) and an  
S
indirect influence on power supply disturbances. With a value for C of 1µF, you can expect  
S
similar THD+N performances to those shown in the datasheet. For example:  
In the high frequency region, if C is lower than 1µF, it increases THD+N and disturbances  
S
on the power supply rail are less filtered.  
On the other hand, if C is higher than 1µF, those disturbances on the power supply rail  
S
are more filtered.  
C has an influence on THD+N at lower frequencies, but its function is critical to the final result  
b
of PSRR (with input grounded and in the lower frequency region), in the following manner:  
If C is lower than 1µF, THD+N increases at lower frequencies and PSRR worsens.  
b
21/30  
Application Information  
TS4984FC  
If C is higher than 1µF, the benefit on THD+N at lower frequencies is small, but the benefit  
b
to PSRR is substantial.  
Note:  
The TS4984FC has two BYPASS pins. C can be connected equally to pin C5 or to pin C1.  
b
These pins are internally connected. Connecting pin C5 and pin C1 together by an external  
wire is optional.  
C has a non-negligible effect on PSRR at lower frequencies. The lower the value of C , the  
in  
in  
higher the PSRR.  
4.6  
Wake-up time, twu  
When the standby is released to put the device ON, the bypass capacitor C will not be charged  
b
immediately. As C is directly linked to the bias of the amplifier, the bias will not work properly  
b
until the C voltage is correct. The time required to reach this voltage is called the wake-up time  
b
or t and specified in the tables in Chapter 3: Electrical Characteristics with C = 1µF.  
wu  
b
If C has a value other than 1µF, please refer to the graph in Figure 64 to establish the wake-up  
b
time value.  
Due to process tolerances, the maximum value of wake-up time could be establish by the graph  
in Figure 65.  
Figure 64. Typical wake-up time vs. C  
Figure 65. Maximum wake-up time vs. C  
b
b
600  
Tamb=25°C  
Tamb=25°C  
600  
500  
400  
300  
200  
100  
0
Vcc=3.3V  
500  
400  
300  
200  
100  
0
Vcc=3.3V  
Vcc=2.6V  
Vcc=2.6V  
Vcc=5V  
Vcc=5V  
1
2
3
4
0.1  
4.7  
0.1  
1
2
3
4
4.7  
Bypass Capacitor Cb ( F)  
Bypass Capacitor Cb ( F)  
Note:  
Bypass capacitor C as also a tolerance of typically +/-20%. To calculate the wake-up time with  
b
this tolerance, refer to the previous graph (considering for example for C = 1µF in the range of  
b
0.8µF 1µF 1.2µF).  
4.7  
Shutdown time  
When the standby command is set, the time required to put the two output stages in high  
impedance and the internal circuitry in shutdown mode is a few microseconds.  
Note:  
In shutdown mode, Bypass pin and Vin- pin are short-circuited to ground by internal switches.  
This allows for the quick discharge of the C and C capacitors.  
b
in  
22/30  
TS4984FC  
Application Information  
4.8  
Pop performance  
Pop performance is intimately linked with the size of the input capacitor C and the bias voltage  
in  
bypass capacitor C .  
b
The size of C is dependent on the lower cut-off frequency and PSRR values requested. The  
in  
size of C is dependent on THD+N and PSRR values requested at lower frequencies.  
b
Moreover, C determines the speed with which the amplifier turns ON. In order to reach near  
b
zero pop and click, the equivalent input constant time,  
τ = (R + 2k) x C (s) with R 5kΩ  
in  
in  
in  
in  
must not reach the τ maximum value as indicated in the graph below in Figure 66.  
in  
Figure 66. τ max. versus bypass capacitor  
in  
Tamb=25°C  
160  
120  
80  
40  
0
Vcc=3.3V  
Vcc=2.6V  
Vcc=5V  
1
2
3
4
Bypass Capacitor Cb ( F)  
By following the previous rules, the TS4984 can reach near zero pop and click even with high  
gains such as 20dB.  
Example calculation:  
With R = 22kand a 20Hz, -3dB lower cut-off frequency, C = 361nF.  
in  
in  
So, C =390nF with standard value which gives a lower cut-off frequency equal to 18.5Hz.  
in  
In this case, (R + 2k) x C = 9.36ms.  
in  
in  
When referring to the previous graph, if C =1µF and V = 5V, we read 20 ms max.  
b
CC  
This value is twice as high as our current value, thus we can state that pop and click will be  
reduced to its lowest value. Minimizing both C and the gain benefits both the pop phenomena,  
in  
and the cost and size of the application.  
23/30  
Application Information  
TS4984FC  
4.9  
Application example: differential-input BTL power stereo  
amplifier  
The schematic in Figure 67 shows how to design the TS4984 to work in differential-input mode.  
For this discussion, only the left-channel amplifier will be referred to.  
Let:  
R
C
= R = R , R = R = R  
2L 1 2R 2L  
1R  
2
= C = C  
in  
inR  
inL  
The gain of the amplifier is:  
R2  
R1  
-------  
GVdif= 2  
In order to reach the optimal performance of the differential function, R and R should be  
1
2
matched at 1% maximum.  
Figure 67. Differential input amplifier configuration  
R2L  
VCC  
CinL  
CinL  
R1L  
R1L  
Neg. Input LEFT  
Pos. Input LEFT  
Cs  
TS4984  
IN-L  
-
VO-L  
IN+L  
+
R2L  
LEFT Speaker  
8 Ohms  
-
StandBy  
BypassL  
StandBy  
Control  
Bias  
VO+L  
AV = -1  
+
R2R  
R1R  
CinR  
CinR  
Pos. Input RIGHT  
Neg. Input RIGHT  
IN+R  
IN-R  
+
-
VO-R  
R1R  
RIGHT Speaker  
8 Ohms  
-
AV = -1  
VO+R  
BypassR  
+
Cb  
R2R  
The value of the input capacitor C can be calculated with the following formula, using the -3dB  
in  
lower frequency required (where F is the lower frequency required):  
L
1
--------------------  
Cin  
(F)  
2πR1FL  
24/30  
TS4984FC  
Note: This formula is true only if:  
Application Information  
1
---------------------------------------  
FCB  
=
(Hz)  
2π(R1 + R2)Cb  
is 5 times lower than F .  
L
The following bill of materials is provided as an example of a differential amplifier with a gain of  
2 and a -3dB lower cut-off frequency of about 80Hz.  
Table 8.  
Example of a bill of materials  
Designator  
Part Type  
R
R
= R  
= R  
20k/ 1%  
20k/ 1%  
100nF  
1L  
2L  
1R  
2R  
C
= C  
inR  
inL  
C = C  
1µF  
b
s
U1  
TS4984  
4.10 Demoboard  
A demoboard for the TS4984 in flip-chip package is available.  
For more information about this demoboard, please refer to Application Note AN2153, which  
can be found on www.st.com.  
Figure 68 shows the component locations, and Figure 69 and Figure 70 show top layer and  
bottom layers of the demoboard, respectively. Figure 71 shows a schematic of the demoboard  
Figure 68. Component locations  
25/30  
Application Information  
Figure 69. Top layer  
TS4984FC  
Figure 70. Bottom layer  
26/30  
TS4984FC  
Figure 71. Demoboard schematic  
Application Information  
C2  
1
2
2
R2  
1
22K  
VCC  
Cn9  
1
2
Vcc  
GND  
C7  
1uF  
C8  
100nF  
U1  
TS4984_FC_ADAPTER  
C1  
Cn1  
Cn3  
R1  
1
2
1
1
2
1
1
2
2
6
5
IN-L  
neg.  
GND  
-
22K  
VO-L  
100nF  
C3  
2
4
Input L  
R3  
1
2
IN+L  
pos.  
GND  
+
VCC  
Cn7  
1
2
3
Cn2  
-
STDBY  
7
2
1
neg.  
pos.  
Jumper J1  
Bias  
VO+L  
3
AV = -1  
OUTL  
StandBy  
+
C4  
2
Cn4  
Cn6  
R4  
1
2
1
1
1
1
2
2
13  
14  
IN-R  
neg.  
GND  
-
22K  
Cn5  
100nF  
C6  
2
VO-R  
11  
2
1
neg.  
pos.  
OUTR  
Input R  
R6  
1
2
IN+R  
pos.  
GND  
+
-
R7  
R8  
VO+R  
12  
AV = -1  
Bypass  
Bypass  
8
+
15  
C9  
1uF  
R5  
1
2
2
22K  
C5  
1
27/30  
Package Mechanical Data  
TS4984FC  
5
Package Mechanical Data  
Figure 72. Pinout (top view)  
VCC  
6
IN2+  
IN2-  
VCC  
BYPASS  
STDBY  
5
4
VOUT2+  
GND  
VOUT1+  
IN1+  
VOUT2-  
VOUT1-  
3
2
1
IN1-  
BYPASS  
GND  
Note: Balls are underneath  
A
B
C
D
E
Figure 73. Marking (top view)  
Marking shows:  
ST Logo  
Product & assembly code: XXX  
E
- A84 from Tours  
- 848 from Singapore  
- 84K from Shenzhen  
XXX  
YWW  
3-digit datecode: YWW  
“E” lead-free symbol  
The dot marks position of pin A1  
28/30  
TS4984FC  
Figure 74. Package mechanical data for 15-bump flip-chip  
Package Mechanical Data  
2.40 mm  
Die size: 2.40 x 1.90 mm 30µm  
Die height (including bumps): 600µm  
0.25m  
m
0.5mm  
Back Coating height (optional):  
1.90 mm  
60µm 10µm  
Bump Diameter: 315µm 50µm  
Bump Diameter Before Reflow:  
300µm 10µm  
0.3mm  
0.86mm  
Bump Height: 250µm 40µm  
Die Height: 350µm 20µm  
Pitch: 500µm 50µm  
60 µm Back coating *  
600 µm  
Coplanarity: 60µm max.  
* Optional  
Figure 75. Tape & Reel specification (top view)  
1.5  
4
1
1
A
A
8
Die size X + 70µm  
4
All dimensions are in mm  
User direction of feed  
29/30  
Revision History  
TS4984FC  
6
Revision History  
Date  
Revision  
Changes  
20 May 2005  
1
Initial release.  
Typical application schematic corrected see Figure 1: Application  
information on page 2.  
Nov. 2005  
2
Change to layout of tables in Chapter 3: Electrical Characteristics on  
page 4.  
Minor grammatical and formatting changes throughout.  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
30/30  

相关型号:

TS4984EIKJT

1.2W Stereo Audio Power Amplifier with Active Low Standby Mode
STMICROELECTR

TS4984EKIJT

1.2W, 2 CHANNEL, AUDIO AMPLIFIER, PBGA15, LEAD FREE, FCP-15
STMICROELECTR

TS4984FC

1.2W Stereo Audio Power Amplifier with Active Low Standby Mode
STMICROELECTR

TS4984IQT

2 x 1W Stereo audio power amplifier with active low standby mode
STMICROELECTR

TS4985

2x1.2w Stereo Audio Power Amplifier with Dedicated Standby Pins
STMICROELECTR

TS4985EIJT

2x1.2w Stereo Audio Power Amplifier with Dedicated Standby Pins
STMICROELECTR

TS4985EIKJT

2x1.2w Stereo Audio Power Amplifier with Dedicated Standby Pins
STMICROELECTR

TS4985EKIJT

2x1.2w Stereo Audio Power Amplifier with Dedicated Standby Pins
STMICROELECTR

TS498T11IAT

Parallel - 3Rd Overtone Quartz Crystal, 49.86MHz Nom, HC-49/US, 2 PIN
CTS

TS498T12IGT

Parallel - 3Rd Overtone Quartz Crystal, 49.86MHz Nom, HC-49/US, 2 PIN
CTS

TS498T15CKT

Parallel - 3Rd Overtone Quartz Crystal, 49.86MHz Nom, HC-49/US, 2 PIN
CTS

TS498T1XCGT

Parallel - 3Rd Overtone Quartz Crystal, 49.86MHz Nom, HC-49/US, 2 PIN
CTS