TS635DW [STMICROELECTRONICS]

DUAL WIDE BAND OPERATIONAL AMPLIFIER FOR ADSL LINE INTERFACE; 双宽频带运算放大器,用于ADSL线路接口
TS635DW
型号: TS635DW
厂家: ST    ST
描述:

DUAL WIDE BAND OPERATIONAL AMPLIFIER FOR ADSL LINE INTERFACE
双宽频带运算放大器,用于ADSL线路接口

运算放大器
文件: 总10页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS635  
DUAL WIDE BAND OPERATIONAL AMPLIFIER  
FOR ADSL LINE INTERFACE  
LOW NOISE : 3.2nV/Hz, 1.5pA/Hz  
HIGH OUTPUT CURRENT : 160mA min.  
VERY LOW HARMONIC AND INTERMODU-  
LATION DISTORTION  
D
SO8  
HIGH SLEW RATE : 40V/µs  
SPECIFIED FOR 25LOAD  
(Plastic Micropackage)  
DESCRIPTION  
This device is particularly intended for applications  
where multiple carriers must be amplified simulta-  
neously with very low intermodulation products. It  
has been mainly designed to fit with ADSL  
chip-set such as ST70134 or ST70135.  
DW  
SO8 Exposed-Pad  
(Plastic Micropackage)  
The TS635 is a high output current dual operation-  
al amplifier, with a large gain-bandwidth product  
(130MHz) and capable of driving a 25load at  
12V power supply. The TS635 is fitted out with  
Power Down function in order to decrease the  
consumption.  
PIN CONNECTIONS (top view)  
The TS635 is housed in a SO8 plastic package  
and a SO8 Exposed-Pad plastic package.  
Output1  
VCC +  
1
2
3
4
8
7
6
5
APPLICATION  
_
+
Inverting Input1  
Non Inverting Input1  
VCC -  
Output2  
UPSTREAM line driver for Asymmetric Digital  
_
+
Inverting Input2  
Non Inverting Input2  
Subscriber Line (ADSL) (NT).  
ORDER CODE  
Package  
Part  
Temperature  
Range  
Cross Section View Showing Exposed-Pad  
This pad can be connected to a (-Vcc) copper area on the PCB  
Number  
D
DW  
TS635ID  
-40, +85°C  
-40, +85°C  
TS635IDW  
D = Small Outline Package (SO) - also available in Tape & Reel (DT)  
DW = Small Outline Package in Exposed-Pad (SO) - also available in  
Tape & Reel (DWT)  
December 2002  
1/10  
TS635  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
1)  
V
±7  
±2  
V
V
Supply voltage  
CC  
2)  
V
Differential Input Voltage  
id  
in  
3)  
V
±6  
V
Input Voltage Range  
T
Operating Free Air Temperature Range TS635ID  
Storage Temperature  
-40 to + 85  
-65 to +150  
150  
°C  
°C  
°C  
oper  
T
std  
T
Maximum Junction Temperature  
j
SO8  
R
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient Area  
Maximum Power Dissipation (@25°C)  
28  
°C/W  
°C/W  
mW  
thjc  
thja  
R
175  
715  
Pmax.  
SO8 Exposed-Pad  
R
R
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient Area  
Maximum Power Dissipation (@25°C)  
16  
60  
°C/W  
°C/W  
mW  
thjc  
thja  
Pmax.  
2000  
1. All voltages values, except differential voltage are with respect to network terminal.  
2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.  
3. The magnitude of input and output voltages must never exceed V  
+0.3V.  
CC  
OPERATING CONDITIONS  
Symbol  
Parameter  
Value  
±2.5 to ±6  
Unit  
V
V
Supply Voltage  
Common Mode Input Voltage  
CC  
+
V
V
(V ) +2 to (V  
) -1  
icm  
CC  
CC  
APPLICATION: ADSL LINE INTERFACE  
TS635  
Line Driver  
ASCOT ADSL  
CHIP-SET  
TX  
LP filter  
upstream  
emission  
(analog  
signal)  
HYBRID  
CIRCUIT  
ST70135  
ST70134  
Power Down  
twisted-pair  
telephone  
line  
RX  
downstream  
TS636  
VGA  
reception  
(analog signal)  
Receiver  
4-bit Gain Control  
2/10  
TS635  
ELECTRICAL CHARACTERISTICS. VCC = ±6V, Tamb = 25°C (unless otherwise specified).  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max  
Unit  
DC PERFORMANCE  
Vio  
T
amb = 25°C  
Tamb  
Tmin. < Tamb < Tmax.  
Tamb  
Differential Input Offset Voltage  
6
3
mV  
0.2  
5
Iio  
Input Offset Current  
µA  
5
15  
30  
Iib  
Input Bias Current  
µA  
Tmin. < Tamb < Tmax.  
Vic = 2V to 2V, Tamb  
Tmin. < Tamb < Tmax.  
Vic = ±6V to ±4V, Tamb  
Tmin. < Tamb < Tmax.  
No load, Vout = 0  
90  
70  
70  
50  
108  
88  
11  
CMR Common Mode Rejection Ratio  
dB  
SVR  
ICC  
Supply Voltage Rejection Ratio  
Total Supply Current per Operator  
dB  
15  
-4  
mA  
DYNAMIC PERFORMANCE  
VOH  
I
I
out = 160mA, RL to GND  
out = 160mA, RL to GND  
High Level Output Voltage  
4
4.5  
V
V
VOL  
Low Level Output Voltage  
-4.5  
Vout = 7V peak  
RL = 25, Tamb  
6500  
5000  
11000  
130  
AVD  
Large Signal Voltage Gain  
Gain Bandwidth Product  
V/V  
Tmin. < Tamb < Tmax.  
A
VCL = +7, f = 20MHz  
RL = 100Ω  
VCL = +7, RL = 50Ω  
GBP  
MHz  
A
SR  
Iout  
Slew Rate  
23  
40  
V/µs  
Output Short Circuit Current  
±240  
mA  
Vid = ±1V, Tamb  
Tmin. < Tamb < Tmax.  
RL = 25//15pF  
RL = 25//15pF  
±160  
±140  
Isink  
Isource  
Output Current  
mA  
Phase Margin at AVCL = 14dB  
Phase Margin at AVCL = 6dB  
ΦM14  
ΦM6  
60  
40  
°
°
NOISE AND DISTORTION  
en  
Equivalent Input Noise Voltage  
f = 100kHz  
3.2  
1.5  
nV/Hz  
pA/Hz  
in  
Equivalent Input Noise Current  
Total Harmonic Distorsion  
f = 100kHz  
Vout = 4Vpp, f = 100kHz  
AVCL = -10  
THD  
IM2-10  
IM3-10  
-69  
-77  
-77  
dB  
RL = 25//15pF  
F1 = 80kHz, F2 = 70kHz  
Vout = 8Vpp, AVCL = -10  
Load = 25//15pF  
2nd Order Intermodulation Product  
3rd Order Intermodulation Product  
dBc  
dBc  
F1 = 80kHz, F2 = 70kHz  
Vout = 8Vpp, AVCL = -10  
Load = 25//15pF  
3/10  
TS635  
INTERMODULATION DISTORTION  
The curves shown below are the measurements results of a single operator wired as an adder with a gain  
of 15dB.  
The operational amplifier is supplied by a symmetric ±6V and is loaded with 25.  
Two synthesizers (Rhode & Schwartz SME) generate two frequencies (tones) (70 & 80kHz ; 180 &  
280kHz).  
An HP3585 spectrum analyzer measures the spurious level at different frequencies.  
The curves are traced for different output levels (the value in the X ax is the value of each tone).  
The output levels of the two tones are the same.  
The generators and spectrum analyzer are phase locked to enhance measurement precision.  
3rd ORDER INTERMODULATION  
Gain=15dB, Vcc=±6V, RL=25, 2 tones 70kHz/  
80kHz  
3rd ORDER INTERMODULATION  
Gain=15dB, Vcc=±6V, RL=25, 2 tones 180kHz/  
280kHz  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
90kHz  
-50  
-50  
80kHz  
-60  
230kHz  
-60  
380kHz  
-70  
-70  
-80  
-80  
640kHz  
60kHz  
-90  
-90  
740kHz  
220kHz  
-100  
-100  
1
1,5  
2
2,5  
3
3,5  
4
4,5  
1
1,5  
2
2,5  
3
3,5  
4
4,5  
Vout peak (V)  
Vout peak (V)  
4/10  
TS635  
Closed Loop Gain and Phase vs. Frequency  
Closed Loop Gain and Phase vs. Frequency  
Gain=+2, Vcc=±6V, RL=25Ω  
Gain=+6, Vcc=±6V, RL=25Ω  
10  
0
200  
20  
200  
100  
0
Gain  
Gain  
15  
100  
0
10  
5
Phase  
0
Phase  
-10  
-20  
-30  
-5  
-10  
-15  
-20  
-100  
-200  
-100  
-200  
10kHz  
100kHz  
1MHz  
10MHz  
100MHz  
10kHz  
100kHz  
1MHz  
10MHz  
100MHz  
Frequency  
Frequency  
Closed Loop Gain and Phase vs. Frequency  
Equivalent Input Voltage Noise  
Gain=+11, Vcc=±6V, RL=25Ω  
Gain=+100, Vcc=±6V, no load  
30  
20  
200  
20  
15  
10  
5
Gain  
+
_
100  
0
10  
10k  
Phase  
100  
0
-10  
-20  
-30  
-100  
-200  
0
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10kHz  
100kHz  
1MHz  
10MHz  
100MHz  
Frequency  
Frequency  
Maximum Output Swing  
Channel Separation (Xtalk) vs. Frequency  
Vcc=±6V, RL=25Ω  
XTalk=20Log(V2/V1), Vcc=±6V, RL=25Ω  
-20  
5
4
3
2
VIN  
+
49.9Ω  
output  
_
V1  
-30  
-40  
-50  
-60  
-70  
-80  
k
1
100Ω  
100Ω  
25Ω  
input  
1
+
49.9Ω  
0
_
V2  
-1  
-2  
-3  
-4  
-5  
1kΩ  
25Ω  
0
2
4
6
Time (µs)  
8
10  
100kHz  
1MHz  
10MHz  
10kHz  
Frequency  
5/10  
TS635  
THE TS635 AS LINE DRIVER ON ADSL LINE  
INTERFACE. SINGLE SUPPLY  
IMPLEMENTATION WITH PASSIVE OR ACTIVE  
IMPEDANCE MATCHING.  
namic range between 0 and +12 V. Several op-  
tions are possible to provide this bias supply (such  
as a virtual ground using an operational amplifier),  
such as a two-resistance divider which is the  
cheapest solution. A high resistance value is re-  
quired to limit the current consumption. On the  
other hand, the current must be high enough to  
bias the inverting input of the TS635. If we consid-  
er this bias current (5µA) as the 1% of the current  
through the resistance divider (500µA) to keep a  
stable mid supply, two 47kresistances can be  
used.  
THE LINE INTERFACE - ADSL Remote  
Terminal (RT):  
The Figure1 shows a typical analog line interface  
used for ADSL service. On this note, the accent  
will be made on the emission path. The TS635 is  
used as a dual line driver for the upstream signal.  
The input provides two high pass filters with a  
break frequency of about 1.6kHz which is neces-  
sary to remove the DC component of the input sig-  
nal. To avoid DC current flowing in the primary of  
the transformer, an output capacitor is used. The  
this case the load impedance is 25for each driv-  
er.  
Figure 1 : Typical ADSL Line Interface  
high output  
current  
ASCOT ADSL  
Chip-Set  
upstream  
LP filter  
emission  
(analog)  
impedance  
matching  
TS635  
Line Driver  
HYBRID  
CIRCUIT  
ST70135  
ST70134  
For the ADSL upstream path necessary to avoid  
any distortion. In this simple non-inverting amplifi-  
cation configuration, it will be easy to implement a  
Sallen-Key lowpass filter by using the TS635. For  
ADSL over POTS, a maximum frequency of  
135kHz is reached. For ADSL over ISDN, the  
maximum frequency will be 276kHz.  
twisted-pair  
telephone  
line  
downstream  
VGA  
reception  
(analog)  
TS636  
Receiver  
For the remote terminal it is required to create an  
ADSL modem easy to plug in a PC. In such an ap-  
plication, the driver should be implemented with a  
+12 volts single power supply. This +12V supply is  
available on PCI connector of purchase.  
The Figure 2 shows a single +12V supply circuit  
that uses the TS635 as a remote terminal trans-  
mitter in differential mode.  
INCREASING THE LINE LEVEL BY USING AN  
ACTIVE IMPEDANCE MATCHING  
With passive matching, the output signal ampli-  
tude of the driver must be twice the amplitude on  
the load. To go beyond this limitation an active  
maching impedance can be used. With this tech-  
nique it is possible to keep good impedance  
matching with an amplitude on the load higher  
than the half of the ouput driver amplitude. This  
concept is shown in Figure 3 for a differential line.  
Figure 2 : TS635 as a differential line driver with  
a +12V single supply  
Figure 3 : TS635 as a differential line driver with  
1µ  
100n  
an active impedance matching  
+12V  
10n  
+
_
12.5  
+12V  
GND  
R2  
1k  
1:2  
Vi  
Vi  
47k  
µ
1
Vo  
Vo  
1/2 R1  
Hybrid  
100n  
&
Vcc+  
GND  
Vcc/2  
10n  
+
_
Rs1  
25  
100Ω  
Transformer  
1/2 R1  
Vcc+  
10µ  
100n  
1k  
47k  
R2  
R3  
Vo°  
1:n  
Vi  
Vi  
R3  
Vo  
1k  
GND  
+12V  
+
12.5  
1/2 R1  
Hybrid  
&
Transformer  
RL  
_
100  
Vcc/2  
R5  
GND  
1/2 R1  
100n  
10µ  
100n  
Vo  
Vo°  
Rs2  
R4  
Vcc+  
1k  
GND  
+
The driver is biased with a mid supply (nominaly  
+6V), in order to maintain the DC component of  
the signal at +6V. This allows the maximum dy-  
_
GND  
100n  
6/10  
TS635  
Component calculation:  
By identification of both equations (2) and (3), the  
Let us consider the equivalent circuit for a single  
ended configuration, Figure 4.  
synthesized impedance is, with Rs1=Rs2=Rs:  
Rs  
----------------  
Ro =  
,(4 )  
R2  
------  
Figure 4 : Single ended equivalent circuit  
1 –  
R3  
Figure 5 : Equivalent schematic. Ro is the syn-  
+
thesized impedance  
Rs1  
Vi  
_
Vo°  
Vo  
R2  
Iout  
Ro  
-1  
R3  
1/2  
R1  
1/2  
RL  
Vi.Gi  
1/2RL  
Let us consider the unloaded system. Assuming  
the currents through R1, R2 and R3  
as respectively:  
2Vi (Vi Vo°)  
(Vi + Vo)  
--------- --------------------------  
-----------------------  
and  
,
R1  
R2  
R3  
Unlike the level Vo° required for a passive imped-  
ance, Vo° will be smaller than 2Vo in our case. Let  
us write Vo°=kVo with k the matching factor vary-  
ing between 1 and 2. Assuming that the current  
through R3 is negligeable, it comes the following  
resistance divider:  
As Vo° equals Vo without load, the gain in this  
case becomes :  
2 R 2 R 2  
---------- ------  
1 +  
+
Vo(noload)  
R 1 R 3  
----------------------------------  
------------------------------  
G =  
=
Vi  
R2  
------  
1 –  
R3  
kVoRL  
---------------------------  
Ro =  
The gain, for the loaded system will be (1):  
RL + 2Rs1  
2 R 2 R 2  
After choosing the k factor, Rs will equal to  
1/2RL(k-1).  
A good impedance matching assumes:  
---------- ------  
1 +  
+
Vo(withload)  
1
2
R 1 R 3  
------------------------------------  
-- ----------------------------------  
,(1 )  
GL =  
=
Vi  
R2  
R3  
------  
1 –  
1
--  
Ro = RL,(5)  
As shown in Figure 5, this system is an ideal gen-  
erator with a synthesized impedance as the inter-  
nal impedance of the system. From this, the out-  
put voltage becomes:  
2
From (4) and (5) it becomes:  
R2  
R3  
2 Rs  
RL  
------  
---------  
= 1 –  
,(6 )  
Vo = (ViG) (RoIout),(2)  
By fixing an arbitrary value for R2, (6) gives:  
with Ro the synthesized impedance and Iout the  
output current. On the other hand Vo can be ex-  
pressed as:  
R2  
-------------------  
R3 =  
2Rs  
---------  
1 –  
RL  
2R2 R 2  
---------- ------  
Vi 1 +  
+
Finally, the values of R2 and R3 allow us to extract  
R1 from (1), and it comes:  
R1 R 3  
Rs1Iout  
---------------------------------------------- ---------------------  
,(3 )  
Vo =  
R2  
R3  
R2  
------  
------  
1 –  
1 –  
2 R 2  
R3  
---------------------------------------------------------  
R 1 =  
,(7 )  
R2  
R2  
------  
------  
GL 1 –  
2 1 –  
R3  
R3  
with GL the required gain.  
GL (gain for the  
loaded system)  
GL is fixed for the application requirements  
GL=Vo/Vi=0.5(1+2R2/R1+R2/R3)/(1-R2/R3)  
R1  
2R2/[2(1-R2/R3)GL-1-R2/R3]  
Abritrary fixed  
R2 (=R4)  
R3 (=R5)  
Rs  
R2/(1-Rs/0.5RL)  
0.5RL(k-1)  
7/10  
TS635  
CAPABILITIES  
MEASUREMENT OF THE POWER  
CONSUMPTION  
The table below shows the calculated compo-  
nents for different values of k. In this case  
R2=1000and the gain=16dB. The last column  
displays the maximum amplitude level on the line  
regarding the TS635 maximum output capabilities  
(18Vpp diff.) and a 1:2 line transformer ratio.  
Conditions:  
Power Supply: 12V  
Passive impedance matching  
Transformer turns ratio: 2  
Maximun level required on the line: 12.4Vpp  
Maximum output level of the driver: 12.4Vpp  
Crest factor: 5.3 (Vp/Vrms)  
The TS635 power consumption during emission  
on 900 and 4550 meter twisted pair telephone  
lines: 360mW  
Active matching  
TS635 Output  
Level to get  
12.4Vpp on  
the line  
Maximum  
Line level  
(Vpp diff)  
R1  
()  
R3  
()  
Rs  
()  
k
(Vpp diff)  
1.3  
1.4  
1.5  
1.6  
1.7  
820 1500 3.9  
490 1600 5.1  
360 2200 6.2  
270 2400 7.5  
240 3300 9.1  
Passive matching  
8
27.5  
25.7  
25.3  
23.7  
22.3  
18  
8.7  
9.3  
9.9  
10.5  
12.4  
8/10  
TS635  
PACKAGE MECHANICAL DATA  
8 PINS - PLASTIC MICROPACKAGE (SO)  
Millimeters  
Dim.  
Inches  
Typ.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
a1  
a2  
a3  
b
1.75  
0.25  
1.65  
0.85  
0.48  
0.25  
0.5  
0.069  
0.010  
0.065  
0.033  
0.019  
0.010  
0.020  
0.1  
0.004  
0.65  
0.35  
0.19  
0.25  
0.026  
0.014  
0.007  
0.010  
b1  
C
c1  
D
45° (typ.)  
4.8  
5.8  
5.0  
6.2  
0.189  
0.228  
0.197  
0.244  
E
e
1.27  
3.81  
0.050  
0.150  
e3  
F
3.8  
0.4  
4.0  
1.27  
0.6  
0.150  
0.016  
0.157  
0.050  
0.024  
L
M
S
8° (max.)  
9/10  
TS635  
PACKAGE MECHANICAL DATA  
8 PINS - PLASTIC MICROPACKAGE (SO Exposed-Pad)  
Millimeters  
Dim.  
Inches  
Typ.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
A2  
B
1.350  
0.000  
1.100  
0.330  
0.190  
4.800  
3.800  
1.750  
0.250  
1.650  
0.510  
0.250  
5.000  
4.000  
0.053  
0.001  
0.043  
0.013  
0.007  
0.189  
0.150  
0.069  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
C
D
E
e
1.270  
0.050  
H
5.800  
0.250  
0.400  
0d  
6.200  
0.500  
1.270  
8d  
0.228  
0.010  
0.016  
0d  
0.244  
0.020  
0.050  
8d  
h
L
k
ddd  
0.100  
0.004  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom  
http://www.st.com  
10/10  

相关型号:

TS635ID

DUAL WIDE BAND OPERATIONAL AMPLIFIER FOR ADSL LINE INTERFACE
STMICROELECTR

TS635IDT

Voltage-Feedback Operational Amplifier
ETC

TS635IDW

DUAL WIDE BAND OPERATIONAL AMPLIFIER FOR ADSL LINE INTERFACE
STMICROELECTR

TS635IDWT

Voltage-Feedback Operational Amplifier
ETC

TS635T11IJT

Parallel - 3Rd Overtone Quartz Crystal, 63.53MHz Nom, HC-49/US, 2 PIN
CTS

TS635T13CST

Series - 3Rd Overtone Quartz Crystal, 63.53MHz Nom, HC-49/US, 2 PIN
CTS

TS635T13ILT

Parallel - 3Rd Overtone Quartz Crystal, 63.53MHz Nom, HC-49/US, 2 PIN
CTS

TS635T21CDT

Parallel - 3Rd Overtone Quartz Crystal, 63.53MHz Nom, HC-49/US, 2 PIN
CTS

TS635T22IBT

Parallel - 3Rd Overtone Quartz Crystal, 63.53MHz Nom, HC-49/US, 2 PIN
CTS

TS635T23IKT

Parallel - 3Rd Overtone Quartz Crystal, 63.53MHz Nom, HC-49/US, 2 PIN
CTS

TS635T2YCLT

Parallel - 3Rd Overtone Quartz Crystal, 63.53MHz Nom, HC-49/US, 2 PIN
CTS

TS635T32CFT

Parallel - 3Rd Overtone Quartz Crystal, 63.53MHz Nom, HC-49/US, 2 PIN
CTS