TS912A [STMICROELECTRONICS]

Rail-to-rail CMOS dual operational amplifier;
TS912A
型号: TS912A
厂家: ST    ST
描述:

Rail-to-rail CMOS dual operational amplifier

文件: 总21页 (文件大小:1107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS912, TS912A, TS912B  
Rail-to-rail CMOS dual operational amplifier  
Datasheet production data  
Features  
Rail-to-rail input and output voltage ranges  
Single (or dual) supply operation  
N
from 2.7 to 16 V  
DIP8  
(plastic package)  
Extremely low input bias current: 1 pA typ.  
Low input offset voltage: 2 mV max.  
Specified for 600 Ω and 100 Ω loads  
Low supply current: 200 μA/amplifier  
(V = 3 V)  
CC  
D
SO-8  
Latch-up immunity  
ESD tolerance: 3 kV  
(plastic micropackage)  
Spice macromodel included in this specification  
Related products  
Pin connections (top view)  
See TS56x series for better accuracy and  
smaller packages  
Description  
The TS912 device is a rail-to-rail CMOS dual  
operational amplifier designed to operate with  
a single or dual supply voltage.  
The input voltage range V  
includes the two  
icm  
.
+
-
supply rails V  
and V  
CC  
CC  
+
The output reaches V - +30 mV, V  
-40 mV,  
CC  
CC  
with R = 10 kΩ and V - +300 mV,  
L
CC  
+
V
-400 mV, with R = 600 Ω.  
CC  
L
This product offers a broad supply voltage  
operating range from 2.7 to 16 V and a supply  
current of only 200 μA/amp. (V = 3 V).  
CC  
Source and sink output current capability is  
typically 40 mA (at V = 3 V), fixed by an internal  
CC  
limitation circuit.  
November 2012  
Doc ID 2325 Rev 7  
1/21  
This is information on a product in full production.  
www.st.com  
21  
 
 
Contents  
TS912, TS912A, TS912B  
Contents  
1
2
3
4
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3  
Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
Important note concerning this macromodel . . . . . . . . . . . . . . . . . . . . . . 13  
Macromodel code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1  
5.2  
DIP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/21  
Doc ID 2325 Rev 7  
TS912, TS912A, TS912B  
Absolute maximum ratings and operating conditions  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
(1)  
V
Supply voltage  
18  
18  
V
V
CC  
(2)  
V
Differential input voltage  
id  
(3)  
V
Input voltage  
-0.3 to 18  
50  
V
i
I
Current on inputs  
mA  
mA  
°C  
°C  
in  
I
Current on outputs  
130  
o
T
Storage temperature  
-65 to +150  
150  
stg  
T
Maximum junction temperature  
j
(4)  
Thermal resistance junction-to-ambient  
R
85  
DIP8  
SO-8  
thja  
thjc  
°C/W  
125  
(4)  
Thermal resistance junction to case  
R
41  
40  
DIP8  
SO-8  
°C/W  
(5)  
HBM: human body model  
3
kV  
V
(6)  
ESD  
MM: machine model  
200  
1500  
(7)  
CDM: charged device model  
V
1. All voltage values, except differential voltage are with respect to network ground terminal.  
2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.  
3. The magnitude of input and output voltages must never exceed VCC+ +0.3 V.  
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all  
amplifiers. These values are typical.  
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor  
between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.  
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the  
device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations  
while the other pins are floating.  
7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly  
to ground through only one pin. This is done for all pins.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
V
V
Supply voltage  
2.7 to 16  
V
V
CC  
Common mode input voltage range  
Operating free air temperature range  
V
-0.2 to V  
+0.2  
CC+  
icm  
CC-  
T
-40 to + 125  
°C  
oper  
Doc ID 2325 Rev 7  
3/21  
 
Schematic diagram  
TS912, TS912A, TS912B  
2
Schematic diagram  
Figure 1.  
Schematic diagram (1/2 TS912)  
input  
input  
4/21  
Doc ID 2325 Rev 7  
TS912, TS912A, TS912B  
Electrical characteristics  
3
Electrical characteristics  
Table 3.  
Symbol  
V
= 3 V, V  
= 0 V, R , C connected to V /2, T  
= 25 °C  
CC+  
CC-  
L
L
CC  
amb  
(unless otherwise specified)  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Input offset voltage (V = V = V /2)  
ic  
o
CC  
TS912  
TS912A  
TS912B  
10  
5
2
V
mV  
io  
T
T  
T  
min  
amb max  
TS912  
TS912A  
TS912B  
12  
7
3
ΔV  
Input offset voltage drift  
5
1
μV/°C  
io  
(1)  
Input offset current  
100  
200  
I
pA  
io  
T
T  
T  
min  
amb  
max  
(1)  
Input bias current  
T T  
1
150  
300  
I
pA  
ib  
T
min  
amb  
max  
Supply current (per amplifier, A  
= 1, no load)  
200  
300  
400  
VCL  
I
μA  
CC  
T
T  
T  
min  
amb max  
Common mode rejection ratio  
= 0 to 3 V, V = 1.5 V  
CMR  
SVR  
70  
dB  
dB  
V
ic  
o
+
Supply voltage rejection ratio (V  
= 2.7 to 3.3 V, V = V /2)  
50  
80  
10  
CC  
o
CC  
Large signal voltage gain (R = 10 kΩ, V = 1.2 V to 1.8 V)  
3
2
L
o
A
V/mV  
vd  
T
T  
T  
min  
amb max  
High level output voltage (V = 1 V)  
id  
R = 100 kΩ  
2.95  
2.9  
2.3  
L
R = 10 kΩ  
2.96  
2.6  
2
L
R = 600 Ω  
L
V
V
OH  
R = 100 Ω  
L
T
T  
T  
min  
amb max  
2.8  
2.1  
R = 10 kΩ  
L
R = 600 Ω  
L
Low level output voltage (V = -1 V)  
id  
R = 100 kΩ  
50  
70  
400  
L
R = 10 kΩ  
30  
300  
900  
L
R = 600 Ω  
L
V
mV  
OL  
R = 100 Ω  
L
T
T  
T  
min  
amb max  
R = 10 kΩ  
L
100  
600  
L
R = 600 Ω  
Output short-circuit current (V  
= 1 V)  
id  
I
mA  
Source (V = V  
)
CC-  
)
20  
20  
40  
40  
o
o
Sink (V = V  
o
CC+  
Gain bandwidth product  
(A = 100, R = 10 kΩ, C = 100 pF, f = 100 kHz)  
GBP  
0.8  
MHz  
VCL  
L
L
Doc ID 2325 Rev 7  
5/21  
Electrical characteristics  
TS912, TS912A, TS912B  
Table 3.  
Symbol  
V
= 3 V, V  
= 0 V, R , C connected to V /2, T  
= 25 °C  
CC+  
CC-  
L
L
CC  
amb  
(unless otherwise specified) (continued)  
Parameter  
Min.  
Typ.  
Max.  
Unit  
+
SR  
Slew rate (A  
Slew rate (A  
= 1, R = 10 kΩ, C = 100 pF, V = 1.3 V to 1.7 V)  
0.4  
0.3  
30  
V/μs  
V/μs  
VCL  
VCL  
L
L
i
-
SR  
= 1, R = 10 kΩ, C = 100 pF, V = 1.3 V to 1.7 V)  
L L i  
φm  
Phase margin  
Equivalent input noise voltage (R = 100 Ω, f = 1 kHz)  
Degrees  
nV/Hz  
en  
30  
s
1. Maximum values include unavoidable inaccuracies of the industrial tests.  
6/21  
Doc ID 2325 Rev 7  
TS912, TS912A, TS912B  
Electrical characteristics  
Table 4.  
Symbol  
V
= 5 V, V  
= 0 V, R , C connected to V /2, T  
= 25 °C  
CC+  
CC-  
L
L
CC  
amb  
(unless otherwise specified)  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Input offset voltage (V = V = V /2)  
ic  
o
CC  
TS912  
TS912A  
TS912B  
10  
5
2
V
mV  
io  
T
T  
T  
amb max  
min  
TS912  
TS912A  
TS912B  
12  
7
3
ΔV  
Input offset voltage drift  
5
1
μV/°C  
io  
(1)  
Input offset current  
100  
200  
I
I
pA  
io  
T
T  
T  
min  
amb  
max  
(1)  
Input bias current  
T T  
1
150  
300  
pA  
ib  
T
min  
amb  
max  
Supply current (per amplifier, A  
= 1, no load)  
230  
350  
450  
VCL  
I
μA  
CC  
T
T  
T  
min  
amb max  
Common mode rejection ratio  
= 1.5 to 3.5 V, V = 2.5 V  
CMR  
SVR  
60  
55  
85  
dB  
dB  
V
ic  
o
Supply voltage rejection ratio (V  
= 3 to 5 V, V = V /2)  
80  
40  
CC+  
o
CC  
Large signal voltage gain (R = 10 kΩ, V = 1.5 V to 3.5 V)  
10  
7
L
o
A
V/mV  
vd  
T
T  
T  
min  
amb max  
High level output voltage (V = 1 V)  
id  
R = 100 kΩ  
4.95  
4.9  
4.25  
L
R = 10 kΩ  
4.95  
4.55  
3.7  
L
R = 600 Ω  
L
V
V
OH  
R = 100 Ω  
L
T
T  
T  
amb max  
min  
R = 10 kΩ  
4.8  
4.1  
L
R = 600 Ω  
L
Low level output voltage (V = -1 V)  
id  
R = 100 kΩ  
50  
100  
500  
L
R = 10 kΩ  
40  
350  
1400  
L
R = 600 Ω  
L
V
mV  
OL  
R = 100 Ω  
L
T
T  
T  
amb max  
min  
R = 10 kΩ  
150  
750  
L
R = 600 Ω  
L
Output short-circuit current (V  
= 1 V)  
id  
I
mA  
Source (V = V  
)
CC-  
)
45  
45  
65  
65  
o
o
Sink (V = V  
o
CC+  
Gain bandwidth product  
(A  
GBP  
1
MHz  
= 100, R = 10 kΩ, C = 100 pF, f = 100 kHz)  
VCL  
L
L
+
SR  
Slew rate (A  
Slew rate (A  
= 1, R = 10 kΩ, C = 100 pF, V = 1 V to 4 V)  
0.8  
0.6  
V/μs  
V/μs  
VCL  
L
L
i
-
SR  
= 1, R = 10 kΩ, C = 100 pF, V = 1 V to 4 V)  
VCL  
L
L
i
Doc ID 2325 Rev 7  
7/21  
Electrical characteristics  
TS912, TS912A, TS912B  
Table 4.  
V
= 5 V, V  
= 0 V, R , C connected to V /2, T  
= 25 °C  
CC+  
CC-  
L
L
CC  
amb  
(unless otherwise specified) (continued)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
en  
Equivalent input noise voltage (R = 100 Ω, f = 1 kHz)  
30  
120  
30  
nV/Hz  
dB  
s
V
/V  
Channel separation (f = 1 kHz)  
Phase margin  
O1 O2  
φm  
Degrees  
1. Maximum values include unavoidable inaccuracies of the industrial tests.  
8/21  
Doc ID 2325 Rev 7  
TS912, TS912A, TS912B  
Electrical characteristics  
Table 5.  
Symbol  
V
= 10 V, V  
= 0 V, R , C connected to V /2, T  
= 25 °C  
amb  
CC+  
CC-  
L
L
CC  
(unless otherwise specified)  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Input offset voltage (V = V = V /2)  
ic  
o
CC  
TS912  
TS912A  
TS912B  
10  
5
2
V
mV  
io  
T
T  
T  
min  
amb max  
TS912  
TS912A  
TS912B  
12  
7
3
ΔV  
Input offset voltage drift  
5
1
μV/°C  
io  
(1)  
Input offset current  
100  
200  
I
I
pA  
io  
T
T  
T  
min  
amb  
max  
(1)  
Input bias current  
T T  
1
150  
300  
pA  
ib  
T
min  
amb  
max  
Supply current (per amplifier, A  
= 1, no load)  
400  
600  
700  
VCL  
I
μA  
CC  
T
T  
T  
min  
amb max  
Common mode rejection ratio  
CMR  
SVR  
dB  
V
V
= 3 to 7 V, V = 5 V  
60  
50  
90  
75  
ic  
ic  
o
= 0 to 10 V, V = 5 V  
o
Supply voltage rejection ratio (V  
= 5 to 10 V, V = V /2)  
60  
90  
50  
dB  
CC+  
o
CC  
Large signal voltage gain (R = 10 kΩ, V = 2.5 V to 7.5 V)  
min  
15  
10  
L
o
A
V/mV  
vd  
T
T  
T  
amb max  
High level output voltage (V = 1V)  
id  
R = 100 kΩ  
L
9.95  
9.85  
9
L
R = 10 kΩ  
9.95  
9.35  
7.8  
R = 600 Ω  
L
V
V
OH  
R = 100 Ω  
L
T
T  
T  
min  
amb max  
R = 10 kΩ  
9.8  
8.8  
L
R = 600 Ω  
L
Low level output voltage (V = -1 V)  
id  
R = 100 kΩ  
50  
150  
800  
L
R = 10 kΩ  
50  
650  
2300  
L
R = 600 Ω  
L
V
mV  
OL  
R = 100 Ω  
L
T
T  
T  
min  
amb max  
R = 10 kΩ  
150  
900  
L
R = 600 Ω  
L
Output short-circuit current (V  
= 1 V)  
id  
I
mA  
Source (V = V  
)
CC-  
)
45  
50  
65  
75  
o
o
Sink (V = V  
o
CC+  
Gain bandwidth product  
(A = 100, R = 10 kΩ, C = 100 pF, f = 100 kHz)  
GBP  
1.4  
MHz  
VCL  
L
L
Doc ID 2325 Rev 7  
9/21  
Electrical characteristics  
TS912, TS912A, TS912B  
Table 5.  
Symbol  
V
= 10 V, V  
= 0 V, R , C connected to V /2, T  
= 25 °C  
amb  
CC+  
CC-  
L
L
CC  
(unless otherwise specified) (continued)  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Slew rate  
(A = 1, R = 10 kΩ, C = 100 pF, V = 2.5 V to 7.5 V)  
+
SR  
1.3  
V/μs  
VCL  
L
L
i
Slew rate  
(A = 1, R = 10 kΩ, C = 100 pF, V = 2.5 V to 7.5 V)  
-
SR  
0.8  
V/μs  
VCL  
L
L
i
φm  
Phase margin  
40  
30  
Degrees  
en  
Equivalent input noise voltage (R = 100 Ω, f = 1 kHz)  
nV/Hz  
s
Total harmonic distortion  
(A  
= 1, R = 10 kΩ, C = 100 pF, V = 4.75 V to 5.25 V,  
THD  
0.02  
1.5  
%
VCL  
L L o  
f = 1 kHz)  
Input capacitance  
1. Maximum values include unavoidable inaccuracies of the industrial tests.  
C
pF  
in  
10/21  
Doc ID 2325 Rev 7  
TS912, TS912A, TS912B  
Electrical characteristics  
Figure 2.  
Supply current (each amplifier)  
vs. supply voltage  
Figure 3.  
High level output voltage vs. high  
level output current  
(V = +5 V, V = +3 V)  
CC  
CC  
Output current  
Supply voltage  
Figure 4.  
Low level output voltage vs. low  
level output current  
Figure 5.  
Input bias current vs. temperature  
(V = +3 V, V = +5 V)  
CC  
CC  
Temperature  
Output current  
Figure 6.  
High level output voltage vs. high Figure 7.  
level output current  
Low level output voltage vs. low  
level output current  
(V = +16 V, V = +10 V)  
(V = 16 V, V = 10 V)  
CC  
CC  
CC CC  
Output current  
Output current  
Doc ID 2325 Rev 7  
11/21  
 
 
 
Electrical characteristics  
TS912, TS912A, TS912B  
Figure 8.  
Gain and phase vs. frequency  
(R = 10 kΩ)  
Figure 9.  
Gain bandwidth product vs. supply  
voltage (R = 10 kΩ)  
L
L
Gain  
Phase  
Frequency  
Supply voltage  
Figure 10. Phase margin vs. supply voltage  
Figure 11. Gain and phase vs. frequency  
(R = 10 kΩ)  
(R = 600 Ω)  
L
L
Gain  
Phase  
Supply voltage  
Frequency  
Figure 12. Gain bandwidth product vs. supply Figure 13. Phase margin vs. supply voltage  
voltage (R = 600 Ω)  
(R = 600 Ω)  
L
L
Supply voltage  
Supply voltage  
12/21  
Doc ID 2325 Rev 7  
 
TS912, TS912A, TS912B  
Macromodel  
Figure 14. Input voltage noise vs. frequency  
Frequency  
4
Macromodel  
4.1  
Important note concerning this macromodel  
All models are a trade-off between accuracy and complexity (i.e. simulation time).  
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of  
a design approach and help to select surrounding component values.  
A macromodel emulates the nominal performance of a typical device within specified  
operating conditions (temperature, supply voltage, for example). Thus the  
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the  
main parameters of the product.  
Data derived from macromodels used outside of the specified conditions (V , temperature,  
CC  
for example) or even worse, outside of the device operating conditions (V , V , for  
CC  
icm  
example), is not reliable in any way.  
Doc ID 2325 Rev 7  
13/21  
 
Macromodel  
TS912, TS912A, TS912B  
4.2  
Macromodel code  
** Standard Linear Ics Macromodels, 1993.  
** CONNECTIONS :  
* 1 INVERTING INPUT  
* 2 NON-INVERTING INPUT  
* 3 OUTPUT  
* 4 POSITIVE POWER SUPPLY  
* 5 NEGATIVE POWER SUPPLY  
.SUBCKT TS912 1 2 3 4 5  
**********************************************************  
.MODEL MDTH D IS=1E-8 KF=6.563355E-14 CJO=10F  
* INPUT STAGE  
CIP 2 5 1.500000E-12  
CIN 1 5 1.500000E-12  
EIP 10 5 2 5 1  
EIN 16 5 1 5 1  
RIP 10 11 6.500000E+00  
RIN 15 16 6.500000E+00  
RIS 11 15 7.655100E+00  
DIP 11 12 MDTH 400E-12  
DIN 15 14 MDTH 400E-12  
VOFP 12 13 DC 0.000000E+00  
VOFN 13 14 DC 0  
IPOL 13 5 4.000000E-05  
CPS 11 15 3.82E-08  
DINN 17 13 MDTH 400E-12  
VIN 17 5 -0.5000000e+00  
DINR 15 18 MDTH 400E-12  
VIP 4 18 -0.5000000E+00  
FCP 4 5 VOFP 7.750000E+00  
FCN 5 4 VOFN 7.750000E+00  
* AMPLIFYING STAGE  
FIP 5 19 VOFP 5.500000E+02  
FIN 5 19 VOFN 5.500000E+02  
RG1 19 5 5.087344E+05  
RG2 19 4 5.087344E+05  
CC 19 29 2.200000E-08  
HZTP 30 29 VOFP 12.33E+02  
HZTN 5 30 VOFN 12.33E+02  
DOPM 19 22 MDTH 400E-12  
DONM 21 19 MDTH 400E-12  
HOPM 22 28 VOUT 3135  
VIPM 28 4 150  
HONM 21 27 VOUT 3135  
VINM 5 27 150  
EOUT 26 23 19 5 1  
VOUT 23 5 0  
ROUT 26 3 65  
COUT 3 5 1.000000E-12  
DOP 19 68 MDTH 400E-12  
VOP 4 25 1.924  
14/21  
Doc ID 2325 Rev 7  
TS912, TS912A, TS912B  
Macromodel  
HSCP 68 25 VSCP1 1E8  
DON 69 19 MDTH 400E-12  
VON 24 5 2.4419107  
HSCN 24 69 VSCN1 1.5E8  
VSCTHP 60 61 0.1375  
DSCP1 61 63 MDTH 400E-12  
VSCP1 63 64 0  
ISCP 64 0 1.000000E-8  
DSCP2 0 64 MDTH 400E-12  
DSCN2 0 74 MDTH 400E-12  
ISCN 74 0 1.000000E-8  
VSCN1 73 74 0  
DSCN1 71 73 MDTH 400E-12  
VSCTHN 71 70 -0.75  
ESCP 60 0 2 1 500  
ESCN 70 0 2 1 -2000  
.ENDS  
Doc ID 2325 Rev 7  
15/21  
Package information  
TS912, TS912A, TS912B  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com. ECOPACK  
is an ST trademark.  
16/21  
Doc ID 2325 Rev 7  
TS912, TS912A, TS912B  
Package information  
5.1  
DIP8 package information  
Figure 15. DIP8 package outline  
Table 6.  
DIP8 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
2.92  
3.30  
0.115  
0.130  
Doc ID 2325 Rev 7  
17/21  
Package information  
TS912, TS912A, TS912B  
5.2  
SO-8 package information  
Figure 16. SO-8 package outline  
Table 7.  
SO-8 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.75  
0.25  
0.069  
0.010  
0.10  
1.25  
0.28  
0.17  
4.80  
5.80  
3.80  
0.004  
0.049  
0.011  
0.007  
0.189  
0.228  
0.150  
0.48  
0.23  
5.00  
6.20  
4.00  
0.019  
0.010  
0.197  
0.244  
0.157  
c
D
4.90  
6.00  
3.90  
1.27  
0.193  
0.236  
0.154  
0.050  
E
E1  
e
h
0.25  
0.40  
0.50  
1.27  
0.010  
0.016  
0.020  
0.050  
L
L1  
k
1.04  
0.040  
0
8°  
1°  
8°  
ccc  
0.10  
0.004  
18/21  
Doc ID 2325 Rev 7  
TS912, TS912A, TS912B  
Ordering information  
6
Ordering information  
Table 8.  
Order codes  
Temperature  
Part number  
Package  
Packing  
Marking  
range  
TS912IN  
TS912IN  
DIP8  
Tube  
TS912AIN  
TS912AIN  
TS912ID  
912I  
912AI  
912BI  
TS912IDT  
TS912AID  
SO-8  
TS912AIDT  
-40 °C, +125 °C  
Tube or  
tape and reel  
TS912BID  
TS912BIDT  
(1)  
TS912IYDT  
912IY  
912AIY  
912BY  
SO-8  
(1)  
(1)  
TS912AIYDT  
TS912BIYDT  
(automotive grade level)  
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening  
according to AEC Q001 and Q 002 or equivalent.  
Doc ID 2325 Rev 7  
19/21  
 
Revision history  
TS912, TS912A, TS912B  
7
Revision history  
Table 9.  
Date  
Document revision history  
Revision  
Changes  
04-Dec-2001  
31-Jul-2005  
1
2
First release.  
PPAP references inserted in the datasheet, see order codes table.  
ESD protection inserted in AMR table.  
Some errors in the Order Codes table were corrected.  
03-Oct-2005  
13-Feb- 2006  
3
4
Reorganization of Section 4: Macromodel.  
Parameters added in AMR table (T , ESD, R , R ).  
j
thja  
thjc  
Corrected units and ESD footnotes in Table 1: Absolute maximum  
ratings.  
Corrected misalignments in electrical characteristics table.  
16-Oct-2007  
5
Updated Section 4: Macromodel.  
Added missing automotive grade order codes and footnote in  
Table 8: Order codes.  
Format update.  
01-Feb-2010  
06-Nov-2012  
6
7
Added TS912A and TS912B part numbers on cover page.  
Updated Features (added Related products).  
Updated Figure 3, Figure 4, Figure 6 to Figure 13 (added conditions  
to differentiate them).  
Removed TS912IYD, TS912AIYD, and TS912BIYD device from  
Table 8.  
Minor corrections throughout document.  
20/21  
Doc ID 2325 Rev 7  
TS912, TS912A, TS912B  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 2325 Rev 7  
21/21  

相关型号:

TS912ACN

DUAL OP-AMP, 5000uV OFFSET-MAX, 1MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
STMICROELECTR

TS912AI

RAIL TO RAIL CMOS DUAL OPERATIONAL AMPLIFIER
STMICROELECTR

TS912AID

Rail-to-Rail CMOS Dual Operational Amplifier
STMICROELECTR

TS912AIDT

Rail-to-rail CMOS dual operational amplifier
STMICROELECTR

TS912AIN

Rail-to-Rail CMOS Dual Operational Amplifier
STMICROELECTR

TS912AIYD

Rail-to-Rail CMOS Dual Operational Amplifier
STMICROELECTR

TS912AIYDT

Rail-to-rail CMOS dual operational amplifier
STMICROELECTR

TS912AMN

DUAL OP-AMP, 5000uV OFFSET-MAX, 1MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
STMICROELECTR

TS912B

Rail-to-rail CMOS dual operational amplifier
STMICROELECTR

TS912BCN

DUAL OP-AMP, 1500uV OFFSET-MAX, 1MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
STMICROELECTR

TS912BI

RAIL TO RAIL CMOS DUAL OPERATIONAL AMPLIFIER
STMICROELECTR

TS912BID

Rail-to-Rail CMOS Dual Operational Amplifier
STMICROELECTR