TSA1005I-40IF [STMICROELECTRONICS]

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER; 双通道, 10位, 20 / 40MSPS的A / D转换器
TSA1005I-40IF
型号: TSA1005I-40IF
厂家: ST    ST
描述:

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER
双通道, 10位, 20 / 40MSPS的A / D转换器

转换器
文件: 总22页 (文件大小:546K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSA1005  
DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER  
10-bit, dual-channel A/D converter in deep  
submicron CMOS technology, 20/40Msps  
Single supply voltage: 2.5V  
PIN CONNECTIONS (top view)  
Independent supply for CMOS output stage  
with 2.5V/3.3V capability  
index  
corner  
37  
48 47 46 45 44 43 42 41 40 39 38  
D0(LSB)  
D1  
ENOB=9.5 @ 20Msps, ENOB=9.2 @  
1
36  
35  
AGND  
INI  
40Msps, Fin=10MHz  
2
3
D2  
34  
SFDR typically up to 62.5dB @ 40Msps,  
Fin=10MHz.  
AGND  
INIB  
4
5
D3  
D4  
33  
32  
AGND  
1GHz analog bandwidth Track-and-Hold  
Common clocking between channels  
Multiplexed outputs  
31  
30  
29  
28  
6
7
D5  
IPOL  
D6  
AVCCB  
TSA1005  
D7  
8
9
AGND  
INQ  
D8  
DESCRIPTION  
D9(MSB)  
VCCBE  
GNDBE  
10  
27  
26  
AGND  
INBQ 11  
AGND  
The TSA1005 belongs to a new generation of high  
speed, dual-channel Analog to Digital converters,  
processed in a mainstream 0.25 µm CMOS tech-  
nology and yielding high performances.  
25  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
The TSA1005 is specifically designed for applica-  
tions requiring a very low noise floor, high SFDR  
and good isolation between channels. It is based  
on a pipeline structure and digital error correction,  
providing high static linearity at 20/40 Msp, and  
Fin = 10 MHz.  
BLOCK DIAGRAM  
VCCBE  
+2.5V/3.3V  
SELECT OEB  
CLK  
For each channel, a voltage reference is integrat-  
ed to simplify the design and minimize external  
components. It is nevertheless possible to use the  
circuit with external references.  
Each ADC output is multiplexed on a common bus  
with small number of pins. A tri-state capability is  
available for the output signals, allowing for chip  
selection. The input signals of the ADC must be  
differentially driven.  
Timing  
VINI  
10  
AD 10  
I channel  
VINBI  
VINCMI  
common mode  
VREFPI  
REF I  
VREFMI  
10  
10  
D0  
TO  
D9  
M
U
X
The TSA1005 is supports an extended (0 to  
+85°C) temperature range, and is available in the  
small 48-pin TQFP package.  
Buffers  
Polar.  
IPOL  
VREFPQ  
VREFMQ  
VINCMQ  
REF Q  
common mode  
APPLICATIONS  
VINQ  
Medical imaging and ultrasound  
I/Q signal processing applications  
High speed data acquisition system  
Portable instrumentation  
AD 10  
Q channel  
10  
VINBQ  
GND  
GNDBE  
High resolution fax and scanners  
ORDER CODE  
PACKAGE  
Temperature  
Range  
Part Number  
Status  
Conditioning  
7 × 7 mm TQFP48  
TSA1005-20IF  
TSA1005-20IFT  
TSA1005I-40IF  
TSA1005-40IFT  
-40°C to +85°C  
-40°C to +85°C  
0°C to +85°C  
0°C to +85°C  
Sample  
Sample  
Tray  
Tape & Reel  
Tray  
Production  
Production  
Tape & Reel  
EVAL1005-20/BA  
EVAL1005-40/BA  
Evaluation board  
June 2003  
1/22  
TSA1005  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Values  
Unit  
(1)  
AVCC  
DVCC  
0 to 3.3  
0 to 3.3  
0 to 3.6  
V
V
V
Analog Supply voltage  
1)  
Digital Supply voltage  
1)  
1)  
VCCBE  
Digital buffer Supply voltage  
VCCBI  
IDout  
Tstg  
0 to 3.3  
-100 to 100  
+150  
V
Digital buffer Supply voltage  
Digital output current  
mA  
°C  
Storage temperature  
(2)  
HBM: Human Body Model  
2
ESD  
kV  
(3)  
1.5  
CDM: Charged Device Model  
(4)  
Latch-up  
A
Class  
1
All voltage values, except for differential voltage, are with respect to the network ground terminal. The magnitude of input and output volt-  
ages must not exceed -0.3 V or VCC  
2
3
4
ElectroStatic Discharge pulse (ESD pulse) simulating a human body discharge of 100 pF through 1.5 kΩ  
Discharge to Ground of a device that has been previously charged.  
Corporate ST Microelectronics procedure number 0018695  
OPERATING CONDITIONS  
(1)  
TSA1005-40  
Typ.  
TSA1005-20  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Min.  
Max.  
Unit  
AVCC  
DVCC  
Analog Supply voltage  
2.25  
2.25  
2.25  
2.25  
2.5  
2.5  
2.5  
2.5  
2.7  
2.7  
3.5  
2.7  
2.25  
2.25  
2.25  
2.25  
2.5  
2.5  
2.5  
2.5  
2.7  
2.7  
3.5  
2.7  
V
V
V
V
Digital Supply voltage  
VCCBE  
VCCBI  
External Digital buffer Supply voltage  
Internal Digital buffer Supply voltage  
VREFPI  
VREFPQ  
VREFMI  
VREFMQ  
INCMI  
Forced top voltage reference  
0.94  
0
1.4  
0.4  
1
0.94  
0
1.4  
0.4  
1
V
V
V
Forced bottom reference voltage  
Forced input common mode voltage  
0.2  
0.2  
INCMQ  
2/22  
TSA1005  
PIN CONNECTIONS (top view)  
index  
corner  
37  
48 47 46 45 44 43 42 41 40 39 38  
D0(LSB)  
D1  
1
36  
35  
AGND  
INI  
2
3
D2  
34  
AGND  
INIB  
4
5
D3  
D4  
33  
32  
AGND  
31  
30  
29  
28  
6
7
D5  
IPOL  
D6  
AVCCB  
AGND  
INQ  
TSA1005  
D7  
8
9
D8  
D9(MSB)  
VCCBE  
GNDBE  
10  
AGND  
27  
26  
INBQ 11  
AGND  
25  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
PIN DESCRIPTION  
Pin No  
Name  
Description  
Analog ground  
Observation  
Pin No  
Name  
Description  
Observation  
1
2
AGND  
INI  
0V  
0V  
0V  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
GNDBE Digital buffer ground  
0V  
2.5V/3.3V  
I channel analog input  
Analog ground  
VCCBE Digital Buffer power supply  
D9(MSB) Most Significant Bit output  
3
AGND  
INBI  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
4
I channel inverted analog input  
Analog ground  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
5
AGND  
IPOL  
AVCC  
AGND  
INQ  
6
Analog bias current input  
Analog power supply  
Analog ground  
7
2.5V  
0V  
8
9
Q channel analog input  
Analog ground  
10  
11  
12  
13  
14  
AGND  
INBQ  
AGND  
0V  
0V  
0V  
Q channel inverted analog input  
Analog ground  
D0(LSB) Least Significant Bit output  
REFPQ Q channel top reference voltage  
NC  
NC  
Non connected  
Non connected  
REFMQ Q channel bottom reference  
voltage  
15  
INCMQ Q channel input common mode  
39  
VCCBE Digital Buffer power supply  
GNDBE Digital buffer ground  
2.5V/3.3V - See Application  
Note  
16  
17  
18  
19  
20  
21  
22  
23  
24  
AGND  
AVCC  
DVCC  
DGND  
CLK  
Analog ground  
0V  
40  
41  
42  
43  
44  
45  
46  
47  
48  
0V  
Analog power supply  
Digital power supply  
Digital ground  
2.5V  
VCCBI  
VCCBI  
OEB  
Digital Buffer power supply  
Digital Power Supply  
2.5V  
2.5V  
2.5V  
0V  
Output Enable input  
2.5V/3.3V CMOS input  
Clock input  
2.5V CMOS input  
AVCC  
AVCC  
INCMI  
REFMI  
REFPI  
Analog power supply  
2.5V  
2.5V  
SELECT Channel selection  
2.5V CMOS input  
Analog power supply  
DGND  
DVCC  
Digital ground  
0V  
I channel input common mode  
Digital power supply  
2.5V  
0V  
I channel bottom reference voltage 0V  
I channel top reference voltage  
GNDBI Digital buffer ground  
3/22  
TSA1005  
ELECTRICAL CHARACTERISTICS  
AVCC = DVCC = VCCB = 2.5 V, Fs = 20/40 Msps, Fin = 10.13 MHz, Vin@ -1 dBFS, VREFP = 0.8 V,  
VREFM = 0 V  
Tamb = 25°C (unless otherwise specified)  
TIMING CHARACTERISTICS  
(1)  
TSA1005-40  
Typ.  
TSA1005-20  
Symbol  
Parameter.  
Min.  
0.5  
Typ.  
Max.  
Min.  
Max.  
Unit  
FS  
DC  
Sampling Frequency  
20  
0.5  
45  
40  
55  
MHz  
%
Clock Duty Cycle  
50  
25  
25  
50  
TC1  
TC2  
Clock pulse width (high)  
Clock pulse width (low)  
12.5  
12.5  
ns  
ns  
Data Output Delay (Clock edge to Data  
Valid) - 10pF load capacitance  
Tod  
5
5
ns  
Tpd I  
Data Pipeline delay for I channel  
Data Pipeline delay for Q channel  
7
7
cycles  
cycles  
Tpd Q  
7.5  
7.5  
Falling edge of OEB to digital output  
valid data  
Ton  
Toff  
1
1
1
1
ns  
ns  
Rising edge of OEB to digital output  
tri-state  
1
Preliminary data.  
TIMING DIAGRAM  
Simultaneous sampling  
on I/Q channels  
N+4  
N+5  
N+13  
N+3  
N+6  
N+12  
I
N+11  
N+7  
N+2  
N-1  
N
N+1  
N+8  
N+10  
N+9  
Q
CLK  
Tpd I + Tod  
Tod  
SELECT  
CLOCK AND SELECT CONNECTED TOGETHER  
OEB  
sample N-6  
Q channel  
sample N+2  
Q channel  
sample N+1  
Q channel  
sample N-8  
I channel  
sample N  
Q channel  
DATA  
OUTPUT  
sample N-9  
I channel  
sample N-7  
Q channel  
sample N+3  
I channel  
sample N+1  
I channel  
sample N+2  
I channel  
4/22  
TSA1005  
CONDITIONS  
AVCC = DVCC = VCCB = 2.5V, Fs= 20/40Msps, Fin=2MHz, Vin@ -1dBFS, VREFM=0V  
Tamb = 25°C (unless otherwise specified)  
ANALOG INPUTS  
(1)  
TSA1005-40  
Typ.  
TSA1005-20  
Symbol  
Parameter  
Min.  
1.1  
Typ.  
Max.  
Min.  
Max.  
Unit  
VIN-VINB Full scale reference voltage  
2.0  
7.0  
3.3  
2.8  
1.1  
2.0  
7
2.8  
Vpp  
pF  
Cin  
Input capacitance  
Req  
Equivalent input resistor  
Analog Input Bandwidth  
Vin Full scale, Fs max  
Effective Resolution Bandwidth  
1.6  
KΩ  
BW  
1000  
70  
1000  
70  
MHz  
MHz  
ERB  
1
Preliminary data  
DIGITAL INPUTS AND OUTPUTS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Clock and Select inputs  
VIL  
VIH  
Logic "0" voltage  
Logic "1" voltage  
0
0.8  
V
V
2.0  
2.5  
OEB input  
0.25 x  
VCCBE  
VIL  
Logic "0" voltage  
Logic "1" voltage  
0
V
V
0.75 x  
VCCBE  
VIH  
VCCBE  
Digital Outputs  
VOL  
VOH  
IOZ  
Iol=10µA  
Ioh=10µA  
0.1 x  
VCCBE  
Logic "0" voltage  
0
V
V
0.9 x  
VCCBE  
-1.67  
Logic "1" voltage  
VCCBE  
0
High Impedance leakage current OEB set to VIH  
Output Load Capacitance  
1.67  
15  
µA  
pF  
C
L
REFERENCE VOLTAGE  
(1)  
TSA1005-40  
Typ.  
TSA1005-20  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Min.  
Max.  
Unit  
VREFPI  
Top internal reference voltage  
Input common mode voltage  
0.81  
0.41  
0.88  
0.94  
0.81  
0.88  
0.46  
0.94  
V
VREFPQ  
VINCMI  
0.46  
0.50  
0.41  
0.50  
V
VINCMQ  
5/22  
TSA1005  
CONDITIONS  
AVCC = DVCC = VCCB = 2.5V, Fs= 20/40Msps, Fin=2MHz, Vin@ -1dBFS, VREFP=0.8V, VREFM=0V  
Tamb = 25°C (unless otherwise specified)  
POWER CONSUMPTION  
(1)  
TSA1005-40  
Typ.  
TSA1005-20  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Min.  
Max.  
Unit  
ICCA  
ICCD  
Analog Supply current  
Digital Supply Current  
30  
4
69.5  
3.5  
72.8  
3.6  
mA  
mA  
Digital Buffer Supply Current (10pF  
load)  
ICCBE  
ICCBI  
Pd  
6
6.5  
131  
199.5  
80  
6.9  
149  
mA  
uA  
Digital Buffer Supply Current  
274  
100  
80  
Power consumption in normal opera-  
tion mode  
207.7  
mW  
°C/W  
Rthja  
Thermal resistance (TQFP48)  
ACCURACY  
Symbol  
(1)  
TSA1005-40  
Typ.  
TSA1005-20  
Parameter  
Min.  
Typ.  
Max.  
Min.  
Max.  
Unit  
OE  
GE  
DNL  
INL  
-
Offset Error  
2.97  
0.1  
2.97  
0.1  
LSB  
%
Gain Error  
Differential Non Linearity  
Integral Non Linearity  
Monotonicity and no missing codes  
±0.5  
±0.6  
±1  
LSB  
LSB  
±0.7  
Guaranteed  
Guaranteed  
DYNAMIC CHARACTERISTICS  
(1)  
TSA1005-40  
TSA1005-20  
Symbol  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit  
Spurious Free Dynamic Range  
Signal to Noise Ratio  
-73  
60  
-62.6  
59.8  
-62  
-58.1  
dBc  
dB  
SFDR  
57.1  
SNR  
Total Harmonics Distortion  
Signal to Noise and Distortion Ratio  
Effective number of bits  
-73  
59  
-57.5  
dBc  
dB  
THD  
54.9  
8.8  
57.3  
9.2  
SINAD  
ENOB  
9.5  
bits  
MATCHING BETWEEN CHANNELS  
(1)  
TSA1005-40  
Typ.  
TSA1005-20  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Min.  
Max.  
Unit  
GM  
OM  
Gain match  
Offset match  
Phase match  
0.04  
0.5  
1
0.04  
0.5  
1
1
%
LSB  
dg  
PHM  
XTLK  
Crosstalk rejection  
85  
85  
dB  
1
Preliminary data  
6/22  
TSA1005  
Static parameter: Integral Non Linearity  
Fs=20MSPS; Icca=30mA; Fin=10MHz  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
200  
400  
600  
800  
1000  
Output Code  
Static parameter: Integral Non Linearity  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
0
200  
400  
600  
800  
1000  
Output Code  
Static parameter: Differential Non Linearity  
Fs=20MSPS; Icca=30mA; Fin=10MHz  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
200  
400  
600  
800  
1000  
Output Code  
7/22  
TSA1005  
Static parameter: Differential Non Linearity  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
200  
400  
600  
800  
1000  
Output Code  
Linearity vs. Fin  
Fs=20MHz; Icca=30mA  
Distortion vs. Fin  
Fs=20MHz; Icca=30mA  
0
-20  
-40  
100  
90  
12  
11  
10  
9
ENOB_Q  
ENOB_I  
80  
70  
60  
50  
40  
30  
SFDR_I  
THD_I  
-60  
SNR_Q  
SINAD_Q  
-80  
8
-100  
-120  
-140  
THD_Q  
7
SFDR_Q  
SNR_I  
SINAD_I  
20  
6
5
0
20  
40  
60  
0
40  
60  
Fin (MHz)  
Fin (MHz)  
Linearity vs. Fin  
Fs=40MHz; Icca=45mA  
Distortion vs. Fin  
Fs=40MHz; Icca=45mA  
100  
90  
10  
9
0
-20  
-40  
ENOB_Q  
SNR_Q  
ENOB_I  
80  
8
THD_I  
SFDR_I  
70  
60  
50  
SINAD_Q  
7
-60  
-80  
6
SFDR_Q  
THD_Q  
SNR_I  
SINAD_I  
20  
-100  
-120  
5
40  
30  
4
0
20  
40  
60  
0
40  
60  
Fin (MHz)  
Fin (MHz)  
8/22  
TSA1005  
Linearity vs. AVCC  
Fs=20MSPS; Icca=30mA; Fin=5MHz  
Distortion vs. AVCC  
Fs=20MSPS; Icca=30mA; Fin=5MHz  
-30  
-40  
-50  
80  
10  
9.8  
9.6  
9.4  
9.2  
9
75  
70  
65  
60  
55  
50  
ENOB_I  
ENOB_Q  
SFDR_Q  
THD_Q  
-60  
-70  
SNR_Q  
SINAD_Q  
-80  
8.8  
8.6  
8.4  
8.2  
8
-90  
THD_I  
2.35  
SFDR_I  
-100  
-110  
-120  
SINAD_I  
SNR_I  
2.25  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
AVCC (V)  
AVCC (V)  
Distortion vs. AVCC  
Linearity vs. AVCC  
Fs=40MSPS; Icca=45mA; Fin=5MHz  
Fs=40MSPS; Icca=45mA; Fin=5MHz  
-30  
-40  
-50  
100  
90  
10  
9.5  
9
SFDR_Q  
THD_Q  
ENOB_Q ENOB_I  
80  
8.5  
8
-60  
-70  
70  
7.5  
7
SFDR_I  
-80  
SNR_Q  
SINAD_Q  
SNR_I  
-90  
60  
50  
40  
THD_I  
6.5  
6
-100  
-110  
-120  
SINAD_I  
2.35  
5.5  
5
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.45  
2.55  
2.65  
AVCC (V)  
AVCC (V)  
Linearity vs. DVCC  
Fs=20MSPS; Icca=30mA; Fin=10MHz  
Distortion vs. DVCC  
Fs=20MSPS; Icca=30mA; Fin=10MHz  
-40  
-50  
80  
75  
10  
9.8  
9.6  
9.4  
9.2  
9
ENOB_Q  
ENOB_I  
THD_Q  
SFDR_Q  
-60  
-70  
70  
65  
60  
55  
50  
-80  
SNR_Q  
SNR_I  
8.8  
8.6  
8.4  
8.2  
8
-90  
THD_I  
SFDR_I  
-100  
-110  
-120  
SINAD_I  
SINAD_Q  
2.55  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.65  
DVCC (V)  
DVCC (V)  
9/22  
TSA1005  
Linearity vs. DVCC  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
Distortion vs. DVCC  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
0
-20  
-40  
100  
10  
9.5  
9
90  
80  
70  
60  
50  
40  
ENOB_Q  
ENOB_I  
8.5  
8
SFDR_I  
SFDR_Q  
-60  
-80  
7.5  
7
SINAD_Q  
SNR_Q  
6.5  
6
THD_I  
THD_Q  
SNR_I  
-100  
SINAD_I  
5.5  
5
-120  
2.25  
2.35  
2.45  
2.55  
2.65  
2.65  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
DVCC (V)  
DVCC (V)  
Linearity vs. VCCBI  
Fs=20MSPS; Icca=30mA; Fin=10MHz  
Distortion vs. VCCBI  
Fs=20MSPS; Icca=30mA; Fin=10MHz  
-40  
90  
85  
10  
9.8  
9.6  
9.4  
9.2  
9
-50  
THD_Q  
ENOB_I ENOB_Q  
80  
-60  
-70  
SFDR_Q  
75  
70  
-80  
8.8  
8.6  
8.4  
8.2  
8
-90  
SNR_Q  
65  
60  
55  
50  
SFDR_I  
SNR_I  
THD_I  
-100  
-110  
-120  
SINAD_I  
SINAD_Q  
2.25  
2.35  
2.45  
2.55  
2.25  
2.35  
2.45  
2.55  
2.65  
VCCBI (V)  
VCCBI (V)  
Linearity vs. VCCBI  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
Distortion vs. VCCBI  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
-40  
90  
10  
9.5  
9
-50  
85  
THD_Q  
ENOB_Q  
-60  
-70  
SFDR_Q  
ENOB_I  
80  
8.5  
8
75  
-80  
70  
7.5  
7
-90  
SINAD_Q  
THD_I  
SNR_Q  
65  
60  
55  
50  
SFDR_I  
6.5  
6
-100  
-110  
-120  
SINAD_I  
2.35  
5.5  
5
SNR_I  
2.25  
2.35  
2.45  
2.55  
2.25  
2.45  
2.55  
2.65  
VCCBI (V)  
VCCBI (V)  
10/22  
TSA1005  
Linearity vs. VCCBE  
Fs=20MSPS; Icca=30mA; Fin=10MHz  
Distortion vs. VCCBE  
Fs=20MSPS; Icca=30mA; Fin=10MHz  
-60  
90  
85  
10  
9.8  
9.6  
9.4  
9.2  
9
THD_Q  
SFDR_Q  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
ENOB_I  
ENOB_Q  
80  
75  
70  
65  
60  
55  
50  
8.8  
8.6  
8.4  
8.2  
8
THD_I  
SNR_I  
SINAD_I  
SFDR_I  
SNR_Q  
SINAD_Q  
1.8  
2.3  
2.8  
3.3  
1.8  
2.3  
2.8  
3.3  
VCCBE (V)  
VCCBE (V)  
Linearity vs. VCCBE  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
Distortion vs. VCCBE  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
-30  
-40  
90  
85  
80  
10  
9.8  
9.6  
9.4  
9.2  
9
-50  
-60  
SFDR_Q  
THD_Q  
ENOB_Q  
ENOB_I  
75  
70  
-70  
-80  
8.8  
8.6  
8.4  
8.2  
8
65  
THD_I  
SNR_I  
-90  
SFDR_I  
SINAD_I  
60  
-100  
-110  
-120  
SINAD_Q  
3.25  
55  
50  
SNR_Q  
2.25  
2.75  
3.25  
2.25  
2.75  
VCCBE (V)  
VCCBE (V)  
Linearity vs. Duty Cycle  
Fs=20MHz; Icca=30mA; Fin=5MHz  
Distortion vs. Duty Cycle  
Fs=20MHz; Icca=30mA; Fin=5MHz  
-40  
90  
10  
9.5  
9
-50  
85  
ENOB_I  
SFDR_Q  
ENOB_Q  
-60  
80  
75  
70  
65  
60  
55  
50  
THD_Q  
-70  
-80  
8.5  
8
SINAD_I  
SFDR_I  
-90  
-100  
-110  
-120  
SNR_I  
THD_I  
7.5  
7
SINAD_Q  
53  
SNR_Q  
45  
47  
49  
51  
55  
45  
47  
49  
51  
53  
55  
Positive Duty Cycle (%)  
Positive Duty Cycle (%)  
11/22  
TSA1005  
Linearity vs. Duty Cycle  
Fs=40MHz; Icca=45mA; Fin=5MHz  
Distortion vs. Duty Cycle  
Fs=40MHz; Icca=45mA; Fin=5MHz  
100  
10  
9.5  
9
-40  
-50  
SFDR  
90  
ENOB  
-60  
-70  
8.5  
8
80  
70  
7.5  
7
-80  
SNR  
SINAD  
THD  
-90  
-100  
-110  
-120  
60  
50  
40  
6.5  
6
5.5  
5
45  
47  
49  
51  
53  
55  
45  
47  
49  
51  
53  
55  
Positive Duty Cycle (%)  
Positive Duty Cycle (%)  
Single-tone 8K FFT at 24.8Msps - Q Channel  
Fin=10MHz; Icca=30mA, Vin@-1dBFS  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
2
4
6
8
10  
12  
Frequency (MHz)  
Single-tone 8K FFT at 39.7Msps - Q Channel  
Fin=10MHz; Icca=45mA, Vin@-1dBFS  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (MHz)  
12/22  
TSA1005  
DEFINITIONS OF SPECIFIED PARAMETERS  
STATIC PARAMETERS  
components in the Nyquist band (f /2) excluding  
DC, fundamental and the first five harmonics.  
SNR is reported in dB.  
s
Static measurements are performed using a  
histogram method with on a 2 MHz input signal,  
sampled at 40 Msps, which is high enough to fully  
characterize the test frequency response. An  
input level of +1 dBFS is required to saturate the  
signal.  
Signal to Noise and Distortion Ratio (SINAD)  
Similar ratio as for SNR but including the  
harmonic distortion components in the noise  
figure (not DC signal). It is expressed in dB.  
Differential Non Linearity (DNL)  
The average deviation of any output code width  
from the ideal code width of 1 LSB.  
From the SINAD, the Effective Number of Bits  
(ENOB) can easily be deduced using the formula:  
SINAD= 6.02 × ENOB + 1.76 dB.  
Integral Non linearity (INL)  
An ideal converter presents a transfer function as  
When the applied signal is not Full Scale (FS), but  
being the straight line from the starting code to the  
ending code. The INL is the deviation for each  
transition from this ideal curve.  
has an A amplitude, the SINAD expression  
0
becomes:  
SINAD  
= SINAD  
+ 20 log (2A /FS)  
2Ao  
Full Scale 0  
DYNAMIC PARAMETERS  
Dynamic measurements are performed by  
spectral analysis, applied to an input sine wave of  
various frequencies and sampled at 40 Msps.  
SINAD = 6.02 ×ENOB + 1.76dB + 20 log (2A /FS)  
2Ao 0  
The ENOB is expressed in bits.  
The input level is -1 dBFS to measure the linear  
behavior of the converter. All the parameters are  
given without correction for the full scale  
amplitude performance except the calculated  
ENOB parameter.  
Analog Input Bandwidth  
The maximum analog input frequency at which  
the spectral response of a full power signal is  
reduced by 3 dB. Higher values can be achieved  
with smaller input levels.  
Spurious Free Dynamic Range (SFDR)  
Effective Resolution Bandwidth (ERB)  
The band of input signal frequencies that the ADC  
is intended to convert without loosing linearity i.e.  
the maximum analog input frequency at which the  
SINAD is decreased by 3dB or the ENOB by 1/2  
bit.  
The ratio between the power of the worst spurious  
signal (not always an harmonic) and the  
amplitude of fundamental tone (signal power)  
over the full Nyquist band. It is expressed in dBc.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the first five harmonic  
distortion components to the rms value of the  
fundamental line. It is expressed in dB.  
Pipeline delay  
Delay between the initial sample of the analog  
input and the availability of the corresponding  
digital data output, on the output bus. Also called  
data latency. It is expressed as a number of clock  
cycles.  
Signal to Noise Ratio (SNR)  
The ratio of the rms value of the fundamental  
component to the rms sum of all other spectral  
13/22  
TSA1005 APPLICATION NOTE  
DETAILED INFORMATION  
The TSA1005 is a dual-channel, 10-bit resolution  
analog to digital converter based on a pipeline  
structure and the latest deep sub micron CMOS  
process to achieve the best performances in  
terms of linearity and power consumption.  
Each channel achieves 10-bit resolution through  
the pipeline structure. A latency time of 7 clock pe-  
riods is necessary to obtain the digitized data on  
the output bus.  
and enables to keep the same package as single  
channel ADC like TSA1002.  
The selection of the channel information is done  
through the "SELECT" pin. When set to high level  
(VIH), the I channel data are present on the bus  
D0-D9. When set to low level (VIL), the Q channel  
data are on the output bus D0-D9.  
The input signals are simultaneously sampled on  
both channels on the rising edge of the clock. The  
output data is valid on the rising edge of the clock  
for I channel and on the falling edge of the clock  
for Q channel. The digital data out from the differ-  
ent stages must be time delayed depending on  
their order of conversion. Then a digital data cor-  
rection completes the processing and ensures the  
validity of the ending codes on the output bus.  
The structure has been specifically designed to  
accept differential signals.  
Connecting SELECT to CLK allows I and Q chan-  
nels to be simultaneously present on D0-D9; I  
channel on the rising edge of the clock and Q  
channel on the falling edge of the clock. (see tim-  
ing diagram page 2).  
REFERENCES AND COMMON MODE  
CONNECTION  
VREFM must be always connected externally.  
The TSA1005 is pin to pin compatible with the  
dual 12bits/20Msps TSA1204 and the dual 12bits/  
40Msps TSA1203.  
Internal reference and common mode  
COMPLEMENTARY FUNCTIONS  
In the default configuration, the ADC operates with  
its own reference and common mode voltages  
generated by its internal bandgap. VREFM pins  
are connected externally to the Analog Ground  
while VREFP (respectively INCM) are set to their  
internal voltage of 0.88V (respectively 0.46V). It is  
recommended to decouple the VREFP and INCM  
in order to minimize low and high frequency noise  
(refer to Figure 1)  
Some functionalities have been added in order to  
simplify as much as possible the application  
board. These operational modes are described as  
followed.  
Output Enable (OEB)  
When set to low level (VIL), all digital outputs  
remain active and are in low impedance state.  
When set to high level (VIH), all digital outputs  
buffers are in high impedance state while the  
converter goes on sampling. When OEB is set to a  
low level again, the data are then present on the  
output with a very short Ton delay.  
Figure 1: Internal reference and common mode  
setting  
Therefore, this allows the chip select of the device.  
The timing diagram summarizes this functionality.  
In order to remain in the normal operating mode,  
this pin should be grounded through a low value of  
resistor.  
330pF 10nF 4.7uF  
VREFP  
VIN  
TSA1005  
INCM  
330pF 10nF 4.7uF  
VINB  
SELECT  
VREFM  
The digital data out from each ADC core are mul-  
tiplexed together to share the same output bus.  
This prevents from increasing the number of pins  
14/22  
TSA1005  
External reference and common mode  
1:4) to reduce the driving requirement on the  
analog signal source.  
Each of the voltages VREFP and INCM can be  
fixed externally to better fit to the application  
Each analog input can drive a 1.4Vpp amplitude  
input signal, so the resultant differential amplitude  
is 2.8Vpp.  
needs  
(Refer  
to  
table  
’OPERATING  
CONDITIONS’ page 4 for min/max values).  
The VREFP, VREFM voltages set the analog  
dynamic at the input of the converter that has a full  
scale amplitude of 2*(VREFP-VREFM). Using  
internal references, the dynamic range is 1.8V.  
The INCM is the mid voltage of the analog input  
signal.  
Figure 3: Differential input configuration with  
transformer  
ADT1-1  
Analog source  
1:1  
It is possible to use an external reference voltage  
device for specific applications requiring even  
VIN  
TSA1005  
50Ω  
33pF  
I or Q ch.  
better  
linearity,  
accuracy  
or  
enhanced  
VINB  
temperature behavior.  
INCM  
Using the STMicroelectronics TS821 or  
TS4041-1.2 Vref leads to optimum performances  
when configured as shown on Figure 2.  
330pF  
10nF  
470nF  
Figure 2: External reference setting  
1k  
Figure 4 represents the biasing of a differential  
input signal in AC-coupled differential input  
configuration. Both inputs VIN and VINB are  
centered around the common mode voltage, that  
can be let internal or fixed externally.  
330pF 10nF 4.7uF  
VCCA VREFP  
VIN  
TSA1005  
TS821  
TS4041  
external  
reference  
VINB  
VREFM  
Figure 4: AC-coupled differential input  
VIN  
DRIVING THE DIFFERENTIAL ANALOG  
INPUTS  
10nF  
50Ω  
100kΩ  
TSA1005  
33pF  
INCM  
common  
The TSA1005 has been designed to obtain  
optimum performances when being differentially  
driven. An RF transformer is a good way to  
achieve such performances.  
mode  
100kΩ  
VINB  
10nF  
50Ω  
Figure 3 describes the schematics. The input  
signal is fed to the primary of the transformer,  
while the secondary drives both ADC inputs. The  
common mode voltage of the ADC (INCM) is  
connected to the center-tap of the secondary of  
the transformer in order to bias the input signal  
around this common voltage, internally set to  
0.46V. It determines the DC component of the  
analog signal. As being an high impedance input,  
it acts as an I/O and can be externally driven to  
adjust this DC component. The INCM is  
decoupled to maintain a low noise level on this  
node. Our evaluation board is mounted with a 1:1  
ADT1-1WT transformer from Minicircuits. You  
might also use a higher impedance ratio (1:2 or  
Figure 5: AC-coupled Single-ended input  
Signal source  
10nF  
VIN  
100kΩ  
50Ω  
TSA1005  
INCM  
33pF  
100kΩ  
VINB  
15/22  
TSA1005  
Clock input  
APPLICATION  
The TSA1005 performance is very dependant on  
your clock input accuracy, in terms of aperture  
jitter; the use of low jitter crystal controlled  
oscillator is recommended.  
Layout precautions  
To use the ADC circuits in the best manner at high  
frequencies, some precautions have to be taken  
for power supplies:  
- First of all, the implementation of 4 separate  
proper supplies and ground planes (analog,  
digital, internal and external buffer ones) on the  
PCB is recommended for high speed circuit  
applications to provide low inductance and low  
resistance common return.  
The separation of the analog signal from the  
digital part is mandatory to prevent noise from  
coupling onto the input signal. The best  
compromise is to connect from one part AGND,  
DGND, GNDBI in a common point whereas  
GNDBE must be isolated. Similarly, the power  
supplies AVCC, DVCC and VCCBI must be  
separated from the VCCBE one.  
- Power supply bypass capacitors must be placed  
as close as possible to the IC pins in order to  
improve high frequency bypassing and reduce  
harmonic distortion.  
- Proper termination of all inputs and outputs must  
be incorporated with output termination resistors;  
then the amplifier load will be only resistive and  
the stability of the amplifier will be improved. All  
leads must be wide and as short as possible  
especially for the analog input in order to decrease  
parasitic capacitance and inductance.  
The duty cycle must be between 45% and 55%.  
The clock power supplies must be separated from  
the ADC output ones to avoid digital noise  
modulation at the output.  
It is recommended to always keep the circuit  
clocked, even at the lowest specified sampling  
frequency of 0.5Msps, before applying the supply  
voltages.  
Power consumption  
So as to optimize both performance and power  
consumption of the TSA1005 according the  
sampling frequency, a resistor is placed between  
IPOL and the analog Ground pins. Therefore, the  
total dissipation is adjustable from 5Msps up to  
40Msps.  
The TSA1005 will combine highest performances  
and lowest consumption at 20Msps when Rpol is  
equal to 70k, at 40Msps when Rpol is equal to  
35k. These values are nevertheless dependant  
on application and environment.  
At lower sampling frequency range, this value of  
resistor may be adjusted in order to decrease the  
analog current without any degradation of  
dynamic performances.  
- To keep the capacitive loading as low as  
possible at digital outputs, short lead lengths of  
routing are essential to minimize currents when  
the output changes. To minimize this output  
capacitance, buffers or latches close to the output  
pins will relax this constraint.  
The figure 6 sums up the relevant data.  
- Choose component sizes as small as possible  
(SMD).  
Figure 6: analog current consumption  
optimization depending on Rpol value  
Digital Interface application  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
250  
200  
150  
100  
50  
Thanks to its wide external buffer power supply  
range, the TSA1005 is perfectly suitable to plug in  
to 2.5V low voltage DSPs or digital interfaces as  
well as to 3.3V ones.  
ICCA  
Medical Imaging application  
Driven by the demand of the applications requiring  
nowadays either portability or high degree of par-  
allelism (or both), this product has been devel-  
oped to satisfy medical imaging, and telecom in-  
frastructures needs.  
As a typical system diagram shows figure 10, a  
narrow input beam of acoustic energy is sent into  
a living body via the transducer and the energy re-  
flected back is analyzed.  
RPOL  
25  
0
5
15  
35  
45  
55  
Fs (MHz)  
16/22  
TSA1005  
Figure 7: Medical imaging application  
noise and very high linearity are mandatory fac-  
tors.  
These applications need high speed, low power  
and high performance ADCs. 10-12 bit resolution  
is necessary to lower the quantification noise. As  
multiple channels are used, a dual converter is a  
must for room saving issues.  
HV TX amps  
TX  
The input signal is in the range of 2 to 20MHz  
(mainly 2 to 7MHz) and the application uses most-  
ly a 4 over-sampling ratio for Spurious Free Dy-  
namic Range (SFDR) optimization.  
The next RX beam former and processing blocks  
enable the analysis of the outputs channels ver-  
sus the input beam.  
Mux  
AD  
RX  
and  
TGC amplifier  
Proces  
EVAL1005/BA evaluation board  
The EVAL1005/BA is a 4-layer board with high  
decoupling and grounding level. The schematic of  
the evaluation board is reported figure 11 and its  
top overlay view figure 10.The characterization of  
the board has been made with a fully ADC  
devoted test bench as shown on Figure 8. The  
analog input signal must be filtered to be very  
pure.  
The dataready signal is the acquisition clock of the  
logic analyzer.  
The ADC digital outputs are latched by the octal  
buffers 74LCX573.  
The transducer is a piezoelectric ceramic such as  
zirconium titanate. The whole array can reach up  
to 512 channels.  
The TX beam former, amplified by the HV TX  
amps, delivers up to 100V amplitude excitation  
pulses with phase and amplitude shifts.  
The mux and T/R switch is a two way input signal  
transmitter/ output receiver.  
To compensate for skin and tissues attenuation  
effects, The Time Gain Compensation (TGC) am-  
plifier is an exponential amplifier that enables the  
amplification of low voltage signals to the ADC in-  
put range. Differential output structure with low  
All characterization measurements have been  
made with:  
- SFSR=1dB for static parameters.  
- SFSR=-1dB for dynamic parameters.  
Figure 8: Analog to Digital Converter characterization bench  
HP8644  
Data  
Vin  
ADC  
evaluation  
Sine Wave  
Generator  
Logic  
PC  
Clk  
Clk  
Pulse  
HP8133  
HP8644  
Sine Wave  
Generator  
17/22  
TSA1005  
Operating conditions of the evaluation board:  
Find below the connections to the board for the  
power supplies and other pins:  
Grounding consideration  
So as to better reject noise on the board, connect  
on the bottom overlay AG (AGND), DG(DGND),  
GB1(GNDBI) together from one part, and  
GB2(GNDBE) with GB3(GNDB3) from the other  
part.  
board  
internal  
external  
connection  
voltage (V)  
voltage (V)  
notation  
2.5  
AV  
AG  
AVCC  
AGND  
Mode select  
0
0.94 to 1.4  
0 to 0.4  
0.2 to 1  
0.94 to 1.4  
0 to 0.4  
0.2 to 1  
2.5  
So as to evaluate a single channel or the dual  
ones, you have to connect on the board the  
relevant position for the SELECT pin.  
With the strap connected:  
- to the upper connectors, the I channel at the out-  
put is selected.  
- horizontally, the Q channel at the output is se-  
lected.  
- to the lower connectors, both channels are se-  
lected, relative to the clock edge.  
0.88  
RPI  
REFPI  
REFMI  
INCMI  
RMI  
CMI  
RPQ  
RMQ  
CMQ  
DV  
0.46  
0.88  
REFPQ  
REFMQ  
INCMQ  
DVCC  
0.46  
Figure 9: mode select  
0
DG  
DGND  
GNDBI  
VCCBI  
GNDBE  
VCCBE  
GNDB3  
VCCB3  
SELECT  
0
GB1  
VB1  
GB2  
VB2  
GB3  
VB3  
I channel  
2.5  
SELECT  
0
Q channel  
2.5/3.3  
0
I/Q channels  
CLK  
DGND DVCC  
2.5  
schematic  
board  
Care should be taken for the evaluation board  
considering the fact that the outputs of the con-  
verter are 2.5V/3.3V (VB2) tolerant whereas the  
74LCX573 external buffers are operating up to  
2.5V.  
The ADC outputs on the connector J6 are D11  
(MSB) to D2 (LSB).  
Consumption adjustment  
Before any characterization, care should be taken  
to adjust the Rpol (Raj1) and therefore Ipol value  
in function of your sampling frequency.  
Single and Differential Inputs:  
The ADC board components are mounted to test  
the TSA1005 with single analog input; the  
ADT1-1WT transformer enables the differential  
drive into the converter; in this configuration, the  
resistors RSI6, RSI7, RSI8 for I channel (respec-  
tively RSQ6, RSQ7, RSQ8 for Q one) are con-  
nected as short circuits whereas RSI5, RSI9 (re-  
spectively RSQ5, RSQ9) are open circuits.  
The other way is to test it via JI1 and JI1B differen-  
tial inputs. So, the resistances RSI5, RSI9 for I  
channel (respectively RSQ5, RSQ9 for Q one) are  
connected as short circuits whereas RSI6, RSI7,  
RSI8 (respectively RSQ6, RSQ7, RSQ8 for Q  
one) are open circuits.  
18/22  
TSA1005  
Figure 10: Printed circuit of evaluation board.  
19/22  
TSA1005  
Figure 11: TSA1005 Evaluation board schematic  
+
3
3
2
2
1
1
V c c B  
n d G B  
V c c B  
n d G B  
V c c B  
n d G B  
+
+
N C  
N C  
C C V B E  
G N D B  
C C V B I  
C C V B I  
O E  
I
G N D B  
D V C  
D G N D  
E S L E C  
K C L  
D G N D  
D V C  
A V C  
3 7  
3 8  
3 9  
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
2 4  
C
2 3  
2 2  
2 1  
2 0  
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
+
E
T
B
C
C
C
C
A V C  
A V C  
A G N D  
I
I
M C I N  
M F R E  
F P E I R  
Q M C I N  
Q M F R E  
F P E Q R  
N D  
C C  
+
+
M C I N  
M F R E  
P F R E  
M C I N  
M F R E  
P F R E  
20/22  
TSA1005  
Figure 12: Printed circuit board - List of components  
Name  
Footprint Name  
Footprint Name  
Footprint Name Part  
Type  
Footprint  
Part  
Type  
0
0
0
0
0
0
47  
47  
47  
47  
47  
Part  
Part  
Type  
Type  
10nF  
10nF  
10nF  
RSQ6  
RSQ7  
RSQ8  
RSI6  
RSI7  
RSI8  
R3  
R5  
RQ19  
RI1  
805  
805  
805  
805  
805  
805  
603  
603  
603  
603  
603  
603  
CD2  
C40  
C39  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
C26  
C20  
C33  
C25  
CI1  
CQ1  
C34  
C42  
C35  
C44  
C36  
C32  
C37  
330pF 603  
330pF 603  
330pF 603  
330pF 603  
33pF 603  
33pF 603  
47µF RB.1  
47µF RB.1  
47µF RB.1  
47µF RB.1  
47µF RB.1  
47µF RB.1  
470nF 805  
CQ6  
CI6  
U2  
U3  
U1  
NC  
NC  
74LCX573  
74LCX573  
STG719  
805  
805  
TSSOP20  
TSSOP20  
SOT23-6  
CQ12 10nF  
CQ9  
C52  
C18  
C21  
C4  
C15  
C27  
C11  
CI9  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
JA  
ANALOGIC connector  
J17  
J25  
J4  
J27  
J26  
JD  
BUFPOW  
CKDATA  
CLK  
CON2  
CON2  
DIGITAL  
InI  
connector  
SMA  
SMA  
SIP2  
SIP2  
connector  
SMA  
SMA  
SMA  
SMA  
RQ1  
RI19 47  
RSI9 0NC 805  
JI1  
0NC  
0NC  
0NC  
0NC  
0NC  
RSQ5  
RSQ9  
RSI5  
R24  
R23  
R21  
R22  
R2  
805  
805  
805  
805  
805  
CI12  
CI31  
CQ31 10nF  
CQ10 470nF 805  
C28  
CI10  
JI1B  
JQ1  
JQ1B InQB  
InIB  
InQ  
470nF 805  
470nF 805  
CQ30 330pF 603  
CQ32 470nF 805  
CQ13 470nF 805  
SW1 SWITCH  
connector  
connector  
connector  
CI11  
C51  
C2  
330pF 603  
330pF 603  
330pF 603  
330pF 603  
330pF 603  
330pF 603  
330pF 603  
S5  
S4  
SW-SPST  
SW-SPST  
0NC 805  
0NC 805  
CI32  
C13  
C53  
C16  
C3  
C22  
CI13  
C38  
CD1  
C19  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
TI2  
TQ2  
JI2  
JQ2  
J6  
T2-AT1-1WT ADT  
T2-AT1-1WT ADT  
VREFI  
VREFQ  
32Pin  
1K  
603  
603  
603  
VR5  
trimmer  
1210  
C17  
CD3  
C10  
CQ8  
47K  
47K  
200K  
R12  
R11  
Raj1  
connector  
connector  
IDC-32  
CQ11 330pF 603  
CI8  
connector  
10µF  
C23  
C41  
C29  
330pF 603  
330pF 603  
330pF 603  
10µF 1210  
10µF 1210  
C14  
CI30  
NC: non soldered  
21/22  
TSA1005  
PACKAGE MECHANICAL DATA  
TQFP48 MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
TYP  
MAX.  
1.6  
MIN.  
MAX.  
0.063  
0.006  
0.057  
0.011  
0.0079  
A
A1  
A2  
B
0.05  
1.35  
0.17  
0.09  
0.15  
1.45  
0.27  
0.20  
0.002  
0.053  
0.007  
0.0035  
1.40  
0.22  
0.055  
0.009  
C
D
9.00  
7.00  
5.50  
0.50  
9.00  
7.00  
5.50  
0.60  
1.00  
3.5˚  
0.354  
0.276  
0.216  
0.020  
0.354  
0.276  
0.216  
0.024  
0.039  
3.5˚  
D1  
D3  
e
E
E1  
E3  
L
0.45  
0˚  
0.75  
7˚  
0.018  
0˚  
0.030  
7˚  
L1  
K
0110596/C  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom  
http://www.st.com  
22/22  

相关型号:

TSA100A

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SURGE

TSA100C

Trans Voltage Suppressor Diode, 400W, Bidirectional, 1 Element, Silicon, DO-214AA,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SURGE

TSA1015

PNP SILICON TRANSISTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TSA1036

General Purpose PNP Transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TSA1036CX

General Purpose PNP Transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TSA1036CXRF

General Purpose PNP Transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TSA1036D

General Purpose Dual PNP Transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TSA1036DCU6

General Purpose Dual PNP Transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TSC

TSA1041IF

4-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, TQFP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1041IFT

4-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, TQFP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA10A

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SURGE

TSA11

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SURGE