TSB571IYLT [STMICROELECTRONICS]

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier;
TSB571IYLT
型号: TSB571IYLT
厂家: ST    ST
描述:

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier

文件: 总31页 (文件大小:4083K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSB571, TSB572  
Datasheet  
Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier  
Features  
TSB571  
Low-power consumption: 380 µA typ.  
Wide supply voltage: 4 V - 36 V  
Rail-to-rail input and output  
Gain bandwidth product: 2.5 MHz  
Low input bias current: 30 nA max.  
No phase reversal  
SOT23-5  
TSB572  
High tolerance to ESD: 4 kV HBM  
Extended temperature range: -40 °C to 125 °C  
Automotive grade  
Small SMD packages  
40 V BiCMOS technology  
MiniSO8  
Enhanced stability vs. capacitive load  
SO8  
Applications  
DFN8 (3x3 mm)  
Active filtering  
Audio systems  
Automotive  
Power supplies  
Industrial  
Low/high side current sensing  
Maturity status link  
TSB571, TSB572  
Description  
Related products  
The TSB571 (single) and TSB572 (dual) operational amplifiers offer an extended  
voltage operating range from 4 V to 36 V and rail-to-rail input/output.  
For below 100 µA  
solution  
TSB611  
The TSB571 and TSB572 give a very good speed/power consumption ratio with a  
2.5 MHz gain bandwidth product and a consumption of 380 µA typically only at 36 V  
supply voltage.  
TSB711  
TSB712  
For a higher precision  
Stability and robustness of these devices make them an ideal solution for a wide  
voltage range of applications.  
DS11248 - Rev 7 - May 2020  
For further information contact your local STMicroelectronics sales office.  
www.st.com  
TSB571, TSB572  
Package pin connections  
1
Package pin connections  
Figure 1. Pin connections (top view)  
VCC+  
OUT  
VCC-  
IN+  
IN-  
SOT23-5  
Table 1. Pin description (SOT23-5)  
Pin n°  
Pin name  
Description  
1
2
3
4
5
OUT  
Output channel  
V
Negative supply voltage  
Non-inverting input channel  
Inverting input channel  
Positive supply voltage  
CC-  
IN1+  
IN-  
V
CC+  
DS11248 - Rev 7  
page 2/31  
 
 
 
TSB571, TSB572  
Package pin connections  
Figure 2. Pin connections for each package (top view)  
Out1  
In1-  
VCC+  
Out2  
In2-  
Out1  
In1-  
VCC+  
Out2  
In2-  
In1+  
VCC-  
In1+  
VCC-  
In2+  
In2+  
SO8  
MiniSO8  
1
2
3
4
8
7
6
5
Out1  
In1-  
VCC+  
Out2  
In2-  
In1+  
VCC-  
In2+  
DFN8 (3 x 3) (1)  
1.  
Exposed pad can be left floating or connected to ground.  
Table 2. Pin description (miniSO8/SO8/DFN8)  
Pin  
1
Pin name  
OUT1  
IN1-  
Description  
Output channel 1  
2
Inverting input channel 1  
Non-inverting input channel 1  
Negative supply voltage  
Non-inverting input channel 2  
Inverting input channel 2  
Output channel 2  
3
IN1+  
V
4
CC-  
5
IN2+  
IN2-  
6
7
OUT2  
V
8
Positive supply voltage  
CC+  
DS11248 - Rev 7  
page 3/31  
 
 
TSB571, TSB572  
Absolute maximum ratings and operating conditions  
2
Absolute maximum ratings and operating conditions  
Table 3. Absolute maximum ratings  
Symbol  
Parameter  
Supply voltage (1)  
Value  
Unit  
V
40  
±1  
CC  
Differential input voltage (2)  
Input voltage (3)  
V
V
id  
-
+
V
(V  
CC  
) - 0.2 to (V  
) + 0.2  
CC  
in  
Input current (4)  
I
10  
mA  
°C  
in  
T
Storage temperature  
-65 to 150  
stg  
T
Maximum junction temperature  
150  
250  
190  
40  
j
SOT23-5  
MiniSO8  
DFN8 3x3  
SO-8  
Thermal resistance junction to  
ambient (5) (6)  
R
thja  
°C/W  
125  
4
Human body model (HBM) (7)  
Machine model (MM) (8)  
CDM: charged device model (9)  
Latch-up immunity  
kV  
V
ESD  
100  
1.5  
100  
kV  
mA  
1. All voltage values, except the differential voltage are with respect to network ground terminal.  
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.  
3.  
4. Input current must be limited by a resistor in-series with the inputs.  
5. are typical values.  
V
-V must not exceed 40 V, Vin must not exceed 40 V.  
CC in  
R
th  
6. Short-circuits can cause excessive heating and destructive dissipation.  
7. According to JEDEC standard JESD22-A114F.  
8. According to JEDEC standard JESD22-A115A.  
9. According to ANSI/ESD STM5.3.1.  
Table 4. Operating conditions  
Symbol  
Parameter  
Value  
4 to 36  
Unit  
V
Supply voltage  
CC  
V
-
+
V
Common mode input voltage range  
Operating free-air temperature range  
(V  
) - 0.1 to (V  
) + 0.1  
icm  
CC  
CC  
T
-40 to 125  
°C  
oper  
DS11248 - Rev 7  
page 4/31  
 
 
 
 
 
 
 
 
 
 
 
 
TSB571, TSB572  
Electrical characteristics  
3
Electrical characteristics  
Table 5. Electrical characteristics at Vcc = 4 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise  
specified)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
DC performance  
-1.5  
-2.1  
1.5  
2.1  
6
V
Input offset voltage  
mV  
io  
-40 °C < T < 125 °C  
ΔV /ΔT  
Input offset voltage drift  
Input offset current  
-40 °C < T < 125 °C  
-40 °C < T < 125 °C  
-40 °C < T < 125 °C  
1.5  
2
μV/°C  
io  
15  
35  
30  
70  
I
io  
nA  
8
I
Input bias current  
ib  
C
Input capacitor  
2
1
pF  
IN  
R
IN  
Input impedance  
TΩ  
V
= (V ) to (V  
) - 1.5 V, V = V /2  
90  
80  
75  
70  
90  
85  
114  
icm  
CC-  
CC+  
out  
CC  
-40 °C < T < 125 °C  
= (V ) to (V  
Common mode rejection ratio 20 log  
CMR  
(ΔV /ΔV )  
icm  
io  
V
icm  
), V = V /2  
97  
100  
19  
CC-  
CC+  
out  
CC  
dB  
-40 °C < T < 125 °C  
R = 10 kΩ, V = 0.5 to 3.5 V  
L
out  
A
Large signal voltage gain  
vd  
-40 °C < T < 125 °C  
R = 10 kΩ  
60  
80  
50  
70  
L
High level output voltage (drop  
V
OH  
voltage from (V  
))  
CC+  
-40 °C < T < 125 °C  
mV  
R = 10 kΩ  
L
12  
V
Low level output voltage  
OL  
-40 °C < T < 125 °C  
V
= V  
CC  
20  
5
38  
out  
I
sink  
-40 °C < T < 125 °C  
= 0 V  
I
mA  
μA  
out  
CC  
V
10  
5
32  
out  
I
source  
-40 °C < T < 125 °C  
No load, V = V /2  
340 430  
500  
out  
CC  
I
Supply current (per channel)  
-40 °C < T < 125 °C  
AC performance  
R = 10 kΩ, C = 100 pF  
1.5  
1.2  
2.2  
L
L
GBP  
Gain bandwidth product  
MHz  
-40 °C < T < 125 °C  
ϕ
R = 10 kΩ, C = 100 pF  
Phase margin  
Gain margin  
45  
5
degrees  
dB  
m
L
L
G
R = 10 kΩ, C = 100 pF  
m
L
L
V
= 3.5 to 0.5 V, A = 1, 10 % to 90 %, R = 10 kΩ,  
v L  
in  
0.50 0.78  
0.37  
C = 100 pF  
L
Negative slew rate  
SR  
V/μs  
-40 °C < T < 125 °C  
DS11248 - Rev 7  
page 5/31  
 
 
TSB571, TSB572  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
= 0.5 to 3.5 V, A = 1, 10 % to 90 %, R = 10 kΩ,  
Min. Typ. Max.  
Unit  
V
in  
v
L
0.50 0.89  
C = 100 pF  
SR  
L
V/μs  
Positive slew rate  
-40 °C < T < 125 °C  
f = 1 kHz  
0.37  
20  
nV/√Hz  
μVpp  
%
e
Equivalent input noise voltage  
n
f = 0.1 Hz to 10 Hz  
0.7  
f = 1 kHz, V = 3.8 V , R = 10 kΩ, C = 100 pF  
THD+N Total harmonic distortion + noise  
0.001  
in  
pp  
L
L
DS11248 - Rev 7  
page 6/31  
TSB571, TSB572  
Electrical characteristics  
Table 6. Electrical characteristics at Vcc = 12 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise  
specified)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
DC performance  
-1.5  
-2.1  
1.5  
2.1  
6
V
Input offset voltage  
mV  
io  
-40 °C < T < 125 °C  
ΔV /ΔT  
Input offset voltage drift  
Input offset current  
-40 °C < T < 125 °C  
-40 °C < T < 125 °C  
-40 °C < T < 125 °C  
1.5  
2
μV/°C  
io  
15  
35  
30  
70  
I
io  
nA  
8
I
Input bias current  
ib  
C
Input capacitor  
2
1
pF  
IN  
R
IN  
Input impedance  
TΩ  
V
= (V ) to (V  
) - 1.5 V, V = V /2  
100  
90  
85  
80  
90  
80  
95  
90  
123  
icm  
CC-  
CC+  
out  
CC  
-40 °C < T < 125 °C  
= (V ) to (V  
Common mode rejection ratio 20 log  
CMR  
SVR  
(ΔV /ΔV )  
icm  
io  
V
), V = V /2  
106  
99  
icm  
CC-  
CC+  
out  
CC  
-40 °C < T < 125 °C  
= 4 to 12 V  
dB  
V
CC  
Supply voltage rejection ratio 20 log  
(ΔV /ΔV )  
CC  
io  
-40 °C < T < 125 °C  
R = 10 kΩ, V = 0.5 to 11.5 V  
106  
38  
L
out  
A
Large signal voltage gain  
vd  
-40 °C < T < 125 °C  
R = 10 kΩ  
100  
150  
70  
L
High level output voltage (drop  
V
OH  
voltage from V  
)
CC+  
-40 °C < T < 125 °C  
mV  
R = 10 kΩ  
L
16  
V
I
Low level output voltage  
OL  
-40 °C < T < 125 °C  
90  
V
= V  
CC  
20  
8
42  
out  
I
sink  
-40 °C < T < 125 °C  
= 0 V  
mA  
μA  
out  
V
15  
7
35  
out  
I
source  
-40 °C < T < 125 °C  
No load, V = V /2  
360  
450  
530  
out  
CC  
I
Supply current (per channel)  
CC  
-40 °C < T < 125 °C  
AC performance  
R = 10 kΩ, C = 100 pF  
1.6  
1.3  
2.4  
L
L
GBP  
Gain bandwidth product  
MHz  
-40 °C < T < 125 °C  
ϕ
R = 10 kΩ, C = 100 pF  
Phase margin  
Gain margin  
50  
6
degrees  
dB  
m
L
L
G
R = 10 kΩ, C = 100 pF  
m
L
L
V
= 10.5 to 1.5 V, A = 1, 10 % to 90 %, R = 10 kΩ,  
v L  
in  
0.53 0.82  
0.40  
C = 100 pF  
L
Negative slew rate  
Positive slew rate  
-40 °C < T < 125 °C  
SR  
V/μs  
V
= 1.5 to 10.5 V, A = 1, 10 % to 90 %, R = 10 kΩ,  
v L  
in  
0.55 0.92  
C = 100 pF  
L
DS11248 - Rev 7  
page 7/31  
 
TSB571, TSB572  
Electrical characteristics  
Symbol  
Parameter  
Positive slew rate  
Conditions  
Min. Typ. Max.  
Unit  
SR  
V/μs  
-40 °C < T < 125 °C  
f = 1 kHz  
0.40  
20  
nV/√Hz  
μVpp  
%
e
Equivalent input noise voltage  
n
f = 0.1 Hz to 10 Hz  
0.7  
f = 1 kHz, V = 7 V , R = 10 kΩ, C = 100 pF  
THD+N Total harmonic distortion + noise  
0.0005  
in  
pp  
L
L
DS11248 - Rev 7  
page 8/31  
TSB571, TSB572  
Electrical characteristics  
Table 7. Electrical characteristics at Vcc = 36 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise  
specified)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
DC performance  
-1.5  
-2.1  
1.5  
2.1  
6
V
Input offset voltage  
mV  
io  
-40 °C < T < 125 °C  
ΔV /ΔT  
Input offset voltage drift  
-40 °C < T < 125 °C  
T = 25 °C  
1.5  
1.5  
2
μV/°C  
io  
Long-term input offset voltage drift (1)  
ΔV  
µV/√month  
io  
15  
35  
30  
70  
I
io  
Input offset current  
Input bias current  
-40 °C < T < 125 °C  
-40 °C < T < 125 °C  
nA  
8
I
ib  
C
Input capacitor  
2
1
pF  
IN  
R
IN  
Input impedance  
TΩ  
V
= (V ) to (V  
) - 1.5 V, V = V /2  
105 129  
95  
icm  
CC-  
CC+  
out  
CC  
-40 °C < T < 125 °C  
= (V ) to (V  
Common mode rejection ratio 20 log  
CMR  
SVR  
(ΔV /ΔV )  
icm  
io  
V
), V = V /2  
CC+  
95  
90  
90  
85  
95  
90  
115  
104  
114  
78  
icm  
CC-  
out  
CC  
-40 °C < T < 125 °C  
= 4 to 36 V  
dB  
V
CC  
Supply voltage rejection ratio 20 log  
(ΔV /ΔV )  
CC  
io  
-40 °C < T < 125 °C  
R = 10 kΩ, V = 0.5 to 35.5 V  
L
out  
A
Large signal voltage gain  
vd  
-40 °C < T < 125 °C  
R = 10 kΩ  
150  
200  
90  
L
High level output voltage (drop  
V
OH  
voltage from V  
)
CC+  
-40 °C < T < 125 °C  
mV  
R = 10 kΩ  
L
30  
V
I
Low level output voltage  
OL  
-40 °C < T < 125 °C  
120  
V
= V  
CC  
25  
10  
20  
10  
65  
out  
I
sink  
-40 °C < T < 125 °C  
= 0 V  
mA  
μA  
out  
V
50  
out  
I
source  
-40 °C < T < 125 °C  
No load, V = V /2  
380 470  
550  
out  
CC  
I
Supply current (per channel)  
CC  
-40 °C < T < 125 °C  
AC performance  
R = 10 kΩ, C = 100 pF  
1.7  
1.4  
2.5  
L
L
GBP  
Gain bandwidth product  
MHz  
-40 °C < T < 125 °C  
ϕ
R = 10 kΩ, C = 100 pF  
Phase margin  
Gain margin  
50  
8
degrees  
dB  
m
L
L
G
R = 10 kΩ, C = 100 pF  
m
L
L
V
= 22.5 to 13.5 V, A = 1, 10 % to 90 %, R = 10 kΩ,  
v L  
in  
0.57 0.88  
0.44  
C = 100 pF  
L
Negative slew rate  
SR  
V/μs  
-40 °C < T < 125 °C  
DS11248 - Rev 7  
page 9/31  
 
TSB571, TSB572  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
= 13.5 to 22.5 V, A = 1, 10 % to 90 %, R = 10 kΩ,  
Min. Typ. Max.  
Unit  
V
in  
v
L
0.60 1.00  
C = 100 pF  
SR  
L
V/μs  
Positive slew rate  
-40 °C < T < 125 °C  
f = 1 kHz  
0.44  
20  
nV/√Hz  
μVpp  
%
e
Equivalent input noise voltage  
n
f = 0.1 Hz to 10 Hz  
0.7  
f = 1 kHz, V = 7 V , R = 10 kΩ, C = 100 pF  
THD+N Total harmonic distortion + noise  
0.001  
in  
pp  
L
L
1. Typical value is based on the V drift observed after 1000h at 125 °C extrapolated to 25 °C using Arrhenius  
io  
law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode  
configuration (see Section 4.5 Section 4.5).  
DS11248 - Rev 7  
page 10/31  
 
TSB571, TSB572  
Electrical characteristics  
Figure 4. Input offset voltage distribution at VCC = 4 V  
Figure 3. Supply current vs. supply voltage  
0.5  
35  
Vicm = Vcc/2  
Vcc=4V  
Vicm=2V  
T=25°C  
T = 125 °C  
30  
25  
20  
15  
10  
5
0.4  
T = 25°C  
0.3  
0.2  
T = -40°C  
0.1  
0.0  
0
0
5
10  
15  
20  
25  
30  
35  
-1.5  
-1.2  
-0.9  
-0.6  
-0.3  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
Supply Voltage (V)  
Input offset voltage (mV)  
Figure 5. Input offset voltage distribution at VCC = 12 V  
Figure 6. Input offset voltage distribution at VCC = 36 V  
35  
35  
Vcc=36V  
Vicm=18V  
T=25°C  
Vcc=12V  
Vicm=6V  
T=25°C  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-1.5  
-1.2  
-0.9  
-0.6  
-0.3  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
-1.5  
-1.2  
-0.9  
-0.6  
-0.3  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
Input offset voltage (mV)  
Input offset voltage (mV)  
Figure 7. Input offset voltage vs. temperature at  
VCC = 36 V  
Figure 8. Input offset voltage temperature variation  
distribution at VCC = 36 V  
2.5  
Vio limit  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
Vcc=36V  
Vicm=18V  
-2.0  
-2.5  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature(°C)  
DS11248 - Rev 7  
page 11/31  
 
 
 
 
TSB571, TSB572  
Electrical characteristics  
Figure 10. Input offset voltage vs. common-mode voltage  
at VCC = 4 V  
Figure 9. Input offset voltage vs. supply voltage  
-0.2  
Vicm=Vcc/2  
-0.3  
-0.4  
-0.5  
-0.6  
T=-40°C  
T=25°C  
T=125°C  
-0.7  
-0.8  
4
8
12  
16  
20  
24  
28  
32  
36  
Supply voltage (V)  
Figure 11. Input offset voltage vs. common-mode voltage  
at VCC = 36 V  
Figure 12. Input bias current vs. temperature at  
VICM = VCC/2  
0
Vicm=Vcc/2  
-2  
-4  
-6  
Vcc=36V  
Vcc=4V  
Vcc=12V  
-8  
-10  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Figure 13. Input bias current vs. common-mode voltage at  
VCC = 36 V  
Figure 14. Output current vs. output voltage at VCC = 4 V  
50  
60  
Sink  
Vid=-1V  
40  
Vcc=36V  
T=-40°C  
40  
30  
20  
T=25°C  
20  
10  
T=125°C  
T=125°C  
0
-10  
-20  
-30  
-40  
-50  
T=25°C  
Vcc=4V  
0
-20  
-40  
-60  
T=-40°C  
Source  
Vid=1V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
0
5
10  
15  
20  
25  
30  
35  
Output Voltage (V)  
Input Common Mode Voltage (V)  
DS11248 - Rev 7  
page 12/31  
 
 
 
 
 
TSB571, TSB572  
Electrical characteristics  
Figure 15. Output current vs. output voltage at VCC = 36 V  
Figure 16. Output voltage (Voh) vs. supply voltage  
70  
110  
100  
90  
Vcc=36V  
Sink  
Vid=-1V  
56  
42  
80  
28  
70  
14  
60  
0
T=125°C  
T=25°C T=-40°C  
50  
-14  
-28  
-42  
-56  
-70  
40  
T=125°C  
T=25°C  
T=-40°C  
30  
20  
10  
0
Source  
Vid=1V  
Vid=0.1V  
Rl=10kΩ to Vcc/2  
24 28 32  
Power supply voltage (V)  
4
8
12  
16  
20  
36  
0
5
10  
15  
20  
25  
30  
35  
Output Voltage (V)  
Figure 18. Negative slew rate at VCC = 36 V  
Figure 17. Output voltage (Vol) vs. supply voltage  
1.2  
40  
35  
30  
25  
20  
15  
10  
1.0  
0.8  
Vcc=36V  
Vicm=Vcc/2  
Rl=10kΩ  
0.6  
T=-40°C  
T=25°C  
Cl=100pF  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
T=125°C  
T=-40°C T=25°C  
Vid=-0.1V  
T=125°C  
5
0
  
Rl=10kΩ to Vcc/2  
4
8
12  
16  
20 24 28  
32  
36  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Power supply voltage (V)  
Time (µs)  
Figure 19. Positive slew rate at VCC = 36 V  
Figure 20. Slew rate vs. supply voltage  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vicm=Vcc/2  
Vload=Vcc/2  
Rl=10kΩ  
T=-40°C  
T=125°C T=25°C T=-40°C  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-0.2  
T=25°C  
Cl=100pF  
Vcc=36V  
Vicm=Vcc/2  
Rl=10kΩ  
-0.4  
T=125°C  
-0.6  
-0.8  
-1.0  
-1.2  
Cl=100pF  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0  
Time (µs)  
Supply Voltage (V)  
DS11248 - Rev 7  
page 13/31  
 
 
 
 
 
 
TSB571, TSB572  
Electrical characteristics  
Figure 21. Bode diagram at VCC = 4 V  
Figure 22. Bode diagram at VCC = 36 V  
60  
40  
20  
0
0
60  
40  
20  
0
0
T=-40°C  
T=25°C  
T=125°C  
T=-40°C  
T=25°C  
T=125°C  
-60  
-60  
Phase  
Phase  
-120  
-180  
-240  
-300  
-360  
-120  
-180  
-240  
-300  
-360  
Gain  
Gain  
-20  
-40  
-60  
-20  
-40  
-60  
Vcc=4V  
Vcc=36V  
Vicm=18V  
Rl=10kΩ  
Cl=100pF  
Gain=100  
Vicm=2V  
Rl=10kΩ  
Cl=100pF  
Gain=100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 23. Phase margin vs. output current at VCC = 4 V  
Figure 24. Phase margin vs. output current at VCC = 36 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
-1.0 -0.8 -0.6 -0.4 -0.2 0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Figure 26. Overshoot vs. capacitive load at VCC = 36 V  
Figure 25. Phase margin vs. capacitive load  
50  
100  
Vcc=36V  
Vicm=Vcc/2  
Rl=10kΩ  
Vin=100mVpp  
Gain=1  
40  
80  
T=25°C  
30  
60  
Vcc=4V  
40  
20  
Vcc=36V  
Vicm=Vcc/2  
Rl=10kΩ  
T=25°C  
20  
10  
Sustained Oscillations  
0
0
10  
100  
1000  
10000  
100  
200  
300  
400 500  
700  
1000  
Capacitive load (pF)  
Capacitive load (pF)  
DS11248 - Rev 7  
page 14/31  
 
 
 
 
TSB571, TSB572  
Electrical characteristics  
Figure 27. Small step response vs. time at VCC = 4 V  
Figure 28. Output desaturation vs. time  
0.15  
Vcc=4V  
Vicm=2V  
Rl=10kΩ  
20  
15  
10  
5
Vcc=+/-18V  
Vicm=0V  
Gain=4.7  
Rl=10kΩ  
Cl=100pF  
Follower  
Configuration  
T=25°C  
0.07  
Cl=100pF  
0
0.00  
-0.07  
-0.15  
-5  
-10  
-15  
-20  
0
200  
400  
600  
800  
1000  
Time (µs)  
0.0  
2.5  
5.0  
Time (µs)  
7.5  
10.0  
Figure 29. Amplifier behavior close to the rails at  
VCC = 36 V  
Figure 30. Noise vs. frequency at VCC = 36 V  
100  
36.00  
35.95  
35.90  
35.85  
35.80  
35.75  
35.70  
@Vcc=36V  
@Vcc=12V  
@Vcc=4V  
Vicm=Vcc/2  
T=25°C  
80  
60  
40  
20  
0
0.25  
T=-40°C  
T=25°C  
T=125°C  
0.20  
0.15  
Vcc=36V  
0.10  
Follower configuration  
0.05  
0.00  
10  
100  
1000  
10000  
Input voltage (V)  
Frequency (Hz)  
Figure 31. Noise vs. time at VCC = 36 V  
Figure 32. THD+N vs. frequency  
0.01  
1E-3  
1E-4  
400  
Vicm=Vcc/2  
Gain=1  
Vcc=36V  
Vicm=Vcc/2  
Vload=Vcc/2  
300  
200  
100  
0
Rl=10kΩ  
Cl=100pF  
BW=80kHz  
T=25°C  
Vcc=4V  
with Vin=3.8Vpp  
Vcc=12V  
with Vin=7Vpp  
-100  
-200  
-300  
-400  
Vcc=36V  
with Vin=7Vpp  
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
1000  
10000  
Time (s)  
Frequency (Hz)  
DS11248 - Rev 7  
page 15/31  
 
 
 
 
 
 
TSB571, TSB572  
Electrical characteristics  
Figure 34. PSRR vs. frequency at VCC = 36 V  
Figure 33. THD+N vs. output voltage  
-20  
0.1  
-40  
0.01  
1E-3  
1E-4  
-60  
PSRR +  
Vicm=Vcc/2  
Gain=1  
f=1kHz  
BW=22kHz  
Rl=10kΩ  
Cl=100pF  
T=25°C  
-80  
4V  
12V  
PSRR -  
-100  
-120  
36V  
10  
100  
1k  
10k  
100k  
0.01  
0.1  
1
10  
Output Voltage (Vpp)  
Frequency (Hz)  
Figure 35. Channel separation vs. frequency at VCC= 36 V  
160  
Vcc=36V  
Vicm=18V  
140  
Gain=11  
Vin = 1Vpp  
120  
100  
80  
60  
40  
20  
0
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
DS11248 - Rev 7  
page 16/31  
 
 
 
TSB571, TSB572  
Application information  
4
Application information  
4.1  
Operating voltages  
The TSB571 and TSB572 can operate from 4 V to 36 V. The parameters are fully specified for 4 V, 12 V, and 36 V  
power supplies. However, the parameters are stable in the full VCC range. Additionally, the main specifications are  
guaranteed in extended temperature ranges from -40 to 125 °C.  
4.2  
Input pin voltage ranges  
The TSB571 and TSB572 have an internal ESD diode protection on the inputs. These diodes are connected  
between the inputs and each supply rail to protect the input transistors from electrical discharge.  
If the input pin voltage exceeds the power supply by 0.2 V, the ESD diodes become conductive and excessive  
current can flow through them. Without limitation this over current can damage the device.  
In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as shown in  
Figure 37. Input current limitation.  
Figure 36. Input current limitation  
16 V  
+
R
-
V
out  
V
+
in  
-
4.3  
4.4  
Rail-to-rail input  
The TSB571 and TSB572 have rail-to-rail inputs. The input common mode range is extended from (VCC -) - 0.1 V  
to (VCC+) + 0.1 V at T = 25 °C.  
Input offset voltage drift over temperature  
The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset  
value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and  
the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be  
compensated during production at application level. The maximum input voltage drift over temperature enables  
the system designer to anticipate the effect of temperature variations.  
The maximum input voltage drift over temperature is computed using Equation 1.  
Equation 1  
Vio  
T  
°C  
Vio(T) Vio(25  
T 25 °C  
)
= max  
where T = -40 °C and 125 °C.  
The TSB571 and TSB572 datasheet maximum value is guaranteed by measurements on a representative sample  
size ensuring a Cpk (process capability index) greater than 1.3.  
DS11248 - Rev 7  
page 17/31  
 
 
 
 
 
 
 
TSB571, TSB572  
Long term input offset voltage drift  
4.5  
Long term input offset voltage drift  
To evaluate product reliability, two types of stress acceleration are used:  
Voltage acceleration, by changing the applied voltage  
Temperature acceleration, by changing the die temperature (below the maximum junction temperature  
allowed by the technology) with the ambient temperature.  
The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2.  
Equation 2  
S VU  
)
AFV = eβ . (V  
Where:  
AFV is the voltage acceleration factor  
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)  
VS is the stress voltage used for the accelerated test  
VU is the voltage used for the application  
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.  
Equation 3  
Ea  
1
1
.
------  
AFT = e k  
TU TS  
Where:  
AFT is the temperature acceleration factor  
Ea is the activation energy of the technology based on the failure rate  
k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)  
TU is the temperature of the die when VU is used (K)  
TS is the temperature of the die under temperature stress (K)  
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature  
acceleration factor (Equation 4).  
Equation 4  
AF = AFT × AFV  
AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can  
then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress  
duration.  
Equation 5  
(
/
Months = AF × 1000 h × 12 months 24 h × 365 25 days)  
.
To evaluate the op amp reliability, a follower stress condition is used where VCC is defined as a function of the  
maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).  
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement  
conditions (see Equation 6).  
Equation 6  
VCC = maxVop with Vicm = VCC  
2
/
The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the  
ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation  
7).  
Equation 7  
DS11248 - Rev 7  
page 18/31  
 
 
 
 
 
 
TSB571, TSB572  
Capacitive load  
Viodrift  
Vio  
=
(months)  
Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration.  
4.6  
Capacitive load  
Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain  
peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that  
with a gain peaking higher than 2.3 dB an op amp might become unstable.  
Generally, unity gain configuration is the worst situation for stability and the ability to drive large capacitive loads.  
Figure 38. Stability criteria with a serial resistor at different supply voltages shows the serial resistor that must be  
added to the output, to make a system stable. Figure 39. Test configuration for Riso shows the test configuration  
using an isolation resistor, Riso.  
Figure 37. Stability criteria with a serial resistor at different supply voltages  
Vcc=36V  
Vicm=18V  
follower  
100  
Stable  
configuration  
T=25°C  
10  
Unstable  
1
@Vcc=4V  
@Vcc=12V  
@Vcc=36V  
0.1  
102  
103  
104  
105  
106  
Capacitive load (pF)  
Figure 38. Test configuration for Riso  
V
CC+  
Riso  
C
-
V
OUT  
V
+
IN  
10 kΩ  
load  
V
CC-  
4.7  
PCB layout recommendations  
Particular attention must be paid to the layout of the PCB tracks connected to the amplifier, load, and power  
supply. The power and ground traces are critical as they must provide adequate energy and grounding for all  
circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic  
inductance.  
In addition, to minimizing parasitic impedance over the entire surface, a multi-via technique that connects the  
bottom and top layer ground planes together in many locations is often used.  
The copper traces that connect the output pins to the load and supply pins should be as wide as possible to  
minimize trace resistance.  
DS11248 - Rev 7  
page 19/31  
 
 
 
 
 
TSB571, TSB572  
Optimized application recommendation  
4.8  
Optimized application recommendation  
It is recommended to place a 22 nF capacitor as close as possible to the supply pin. A good decoupling will help  
to reduce electromagnetic interference impact.  
DS11248 - Rev 7  
page 20/31  
 
TSB571, TSB572  
Package information  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
5.1  
SOT23-5 package information  
Figure 39. SOT23-5 package outline  
Table 8. SOT23-5 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
Min.  
Max.  
0.057  
0.006  
0.051  
0.020  
0.020  
0.118  
A
A1  
A2  
B
0.90  
1.20  
0.035  
0.047  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.35  
0.035  
0.014  
0.004  
0.110  
0.041  
0.016  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.014  
C
D
D1  
e
E
2.60  
1.50  
0.10  
0°  
3.00  
1.75  
0.60  
10°  
0.102  
0.059  
0.004  
0°  
0.118  
0.069  
0.024  
10°  
F
L
K
DS11248 - Rev 7  
page 21/31  
 
 
 
 
TSB571, TSB572  
MiniSO8 package information  
5.2  
MiniSO8 package information  
Figure 40. MiniSO8 package outline  
Table 9. MiniSO8 package mechanical data  
Dimensions  
Millimeters  
Ref.  
Inches  
Min.  
Typ.  
Max.  
1.1  
Min.  
Typ.  
Max.  
0.043  
0.0006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
A
A1  
A2  
b
0
0.15  
0.95  
0.40  
0.23  
3.20  
5.15  
3.10  
0
0.75  
0.22  
0.08  
2.80  
4.65  
2.80  
0.85  
0.030  
0.009  
0.003  
0.11  
0.033  
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
0.183  
0.11  
E1  
e
L
0.40  
0°  
0.80  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.10  
0.004  
DS11248 - Rev 7  
page 22/31  
 
 
 
TSB571, TSB572  
DFN8 3x3 package information  
5.3  
DFN8 3x3 package information  
Figure 41. DFN8 3x3 package outline and mechanical data  
BOTTOM VIEW  
DETAIL A  
SIDE VIEW  
TOP VIEW  
Table 10. DFN8 3x3 mechanical data  
mm  
Symbol  
Min.  
0.70  
0.0  
Typ.  
Max.  
0.80  
0.05  
A
A1  
A3  
b
0.75  
0.20 Ref.  
0.30  
0.25  
2.95  
2.25  
0.35  
3.05  
2.45  
D
3.00  
D2  
e
2.35  
0.65 BSC  
3.00  
E
2.95  
1.45  
0.35  
3.05  
1.65  
0.55  
E2  
L
1.55  
0.45  
K
2.75 Ref.  
8
N
DS11248 - Rev 7  
page 23/31  
 
 
 
TSB571, TSB572  
DFN8 3x3 package information  
Figure 42. DFN8 3x3 footprint data  
DS11248 - Rev 7  
page 24/31  
 
TSB571, TSB572  
SO-8 package information  
5.4  
SO-8 package information  
Figure 43. SO-8 package outline  
0016023_So-807_fig2_Rev10  
Table 11. SO-8 mechanical data  
mm  
Dim.  
Min.  
Typ.  
Max.  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.28  
0.10  
0.10  
4.80  
5.80  
3.80  
0.51  
0.48  
0.25  
0.23  
5.00  
6.20  
4.00  
b1  
c
c1  
D
4.90  
6.00  
3.90  
1.27  
E
E1  
e
h
0.25  
0.40  
0.50  
1.27  
L
L1  
L2  
k
1.04  
0.25  
0°  
8°  
ccc  
0.10  
DS11248 - Rev 7  
page 25/31  
 
 
 
TSB571, TSB572  
Ordering information  
6
Ordering information  
Table 12. Order codes  
Order code  
TSB571ILT  
Temperature range  
Package  
Packing  
Marking  
K31  
-40 °C to +125 °C  
-40 °C to 125 °C  
SOT23-5  
Tape and reel  
TSB571IYLT (1)  
TSB572IQ2T  
TSB572IYQ2T (1)  
TSB572IST  
K32  
K31  
DFN8 3x3  
K32  
Tape and reel  
K31  
MiniSO8  
TSB572IYST (1)  
TSB572IDT  
K32  
SO8 package  
TSB572I  
1. Automotive qualification according to AEC-Q100.  
DS11248 - Rev 7  
page 26/31  
 
 
 
TSB571, TSB572  
Revision history  
Table 13. Document revision history  
Date  
Version  
Changes  
12-Oct-2015  
1
Initial release  
Section 2: "Absolute maximum ratings and operating conditions": updated ESD,  
MM value. Section 6: "Ordering information": removed footnote (1) from order code  
TSB572IQ2T  
17-Dec-2015  
2
In Table1: "Absolute maximum ratings":  
- Updated Latch-up immunity Parameter Value  
- updated footnote (3)  
26-Jun-2017  
10-Nov-2017  
3
4
Added: new SO-8 Package information and new order code TSB572IDT Section 6  
Ordering information  
26-Mar-2018  
22-Jul-2019  
06-May-2020  
5
6
7
Updated: Section 5.2 DFN8 3x3 package information  
Added the root part number TSB571 and updated the whole document accordingly.  
Updated cover page  
DS11248 - Rev 7  
page 27/31  
 
 
TSB571, TSB572  
Contents  
Contents  
1
2
3
4
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Application information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Input pin voltage ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Optimized application recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5
6
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.1  
5.2  
5.3  
5.4  
SOT23-5 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
DFN8 3x3 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
SO-8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
DS11248 - Rev 7  
page 28/31  
TSB571, TSB572  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Pin description (SOT23-5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin description (miniSO8/SO8/DFN8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical characteristics at Vcc = 4 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise  
specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics at Vcc = 12 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise  
specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical characteristics at Vcc = 36 V, Vicm = Vcc/2, Tamb = 25 °C, and RL connected to Vcc/2 (unless otherwise  
specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MiniSO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10. DFN8 3x3 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 11. SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 12. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 13. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DS11248 - Rev 7  
page 29/31  
TSB571, TSB572  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin connections for each package (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage distribution at VCC = 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage distribution at VCC = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage distribution at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs. temperature at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage temperature variation distribution at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input offset voltage vs. common-mode voltage at VCC = 4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input offset voltage vs. common-mode voltage at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input bias current vs. temperature at VICM = VCC/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input bias current vs. common-mode voltage at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output current vs. output voltage at VCC = 4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output current vs. output voltage at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output voltage (Voh) vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output voltage (Vol) vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Negative slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Positive slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Slew rate vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bode diagram at VCC = 4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Bode diagram at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Phase margin vs. output current at VCC = 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Phase margin vs. output current at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Phase margin vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overshoot vs. capacitive load at VCC = 36 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Small step response vs. time at VCC = 4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output desaturation vs. time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Amplifier behavior close to the rails at VCC = 36 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Noise vs. frequency at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Noise vs. time at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
THD+N vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PSRR vs. frequency at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Channel separation vs. frequency at VCC= 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Input current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Stability criteria with a serial resistor at different supply voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Test configuration for Riso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SOT23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DFN8 3x3 package outline and mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DFN8 3x3 footprint data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SO-8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
DS11248 - Rev 7  
page 30/31  
TSB571, TSB572  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS11248 - Rev 7  
page 31/31  

相关型号:

TSB572

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier
STMICROELECTR

TSB572IDT

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier
STMICROELECTR

TSB572IQ2T

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier
STMICROELECTR

TSB572IST

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier
STMICROELECTR

TSB572IYQ2T

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier
STMICROELECTR

TSB572IYST

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier
STMICROELECTR

TSB5881

ANZEIGE LED 12.7MM LEITERPLATTENMONTAGE
ETC

TSB5882

ANZEIGE LED 12.7MM LEITERPLATTENMONTAGE
ETC

TSB6

EURO TERMINAL BLOCKS
ETC

TSB6.8

Trans Voltage Suppressor Diode, 600W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSB6.8A

Trans Voltage Suppressor Diode, 600W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSB6.8C

Trans Voltage Suppressor Diode, 600W, Bidirectional, 1 Element, Silicon, DO-214AA,
SURGE