TSB712 [STMICROELECTRONICS]

Precision rail-to-rail input / output 36 V, 6 MHz op-amps;
TSB712
型号: TSB712
厂家: ST    ST
描述:

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

文件: 总36页 (文件大小:3308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSB711, TSB711A, TSB712  
TSB712A, TSB714, TSB714A  
Datasheet  
Precision rail-to-rail input / output 36 V, 6 MHz op-amps  
TSB714 and TSB714A  
Features  
Rail-to-rail input and output  
Low offset voltage: 300 µV maximum  
Wide supply voltage range: 2.7 V to 36 V  
Gain bandwidth product: 6 MHz  
Slew rate : 3 V/µs  
TSSOP14  
SO14  
TSB712 and TSB712A  
Low noise : 12 nV/√Hz  
Integrated EMI filter  
2 kV HBM ESD tolerance  
MiniSO8  
TSB711 and TSB711A  
SO8  
Extended temperature range : -40 °C to +125 °C  
Automotive-grade available  
Applications  
SOT23-5  
High-side and low-side current sensing  
Hall effect sensors  
Data acquisition and instrumentation  
Test and measurement equipments  
Motor control  
Industrial process control  
Strain gauge  
Maturity status link  
Description  
TSB711, TSB711A, TSB712, TSB712A,  
TSB714, TSB714A  
The TSB711, TSB711A, TSB712, TSB712A,TSB714 and TSB714A 6 MHz bandwidth  
amplifiers feature rail-to-rail input and output, which is guaranteed to operate from  
+2.7 V to +36 V single supply as well as from ±1.35 V to ±18 V dual supplies.  
Related products  
Single, Dual op-amps for  
These amplifiers have the advantage of offering a large span of supply voltage and  
an excellent input offset voltage of 300 µV maximum at 25 °C.  
TSB571,  
TSB572  
the low-power consumption  
version (380 µA with  
2.5 MHz GBP)  
The combination of wide bandwidth, slew rate, low noise, rail-to-rail capability and  
precision makes the TSB711, TSB711A, TSB712, TSB712A,TSB714 and TSB714A  
useful in a wide variety of applications such as: filters, power supply and motor  
control, actuator driving, hall effect sensors and resistive transducers.  
DS12487 - Rev 6 - October 2020  
For further information contact your local STMicroelectronics sales office.  
www.st.com  
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Pin description  
1
Pin description  
Figure 1. TSB711 pin connections (top view)  
VCC+  
OUT  
VCC-  
IN+  
IN-  
SOT23-5  
Table 1. TSB711 pin description (SOT23-5)  
Pin n°  
Pin name  
Description  
1
2
3
4
5
OUT  
Output channel  
V
Negative supply voltage  
Non-inverting input channel  
Inverting input channel  
Positive supply voltage  
CC-  
IN1+  
IN-  
V
CC+  
Figure 2. TSB712 pin connections (top view)  
OUT1  
IN1-  
VCC+  
OUT2  
IN1+  
VCC-  
IN2-  
IN2+  
MiniSO8/SO8  
Table 2. TSB712 pin description (miniSO8/SO8)  
Pin n°  
Pin name  
Description  
1
2
3
4
5
6
7
8
OUT1  
IN1-  
Output channel 1  
Inverting input channel 1  
Non-inverting input channel 1  
Negative supply voltage  
Non-inverting input channel 2  
Inverting input channel 2  
Output channel 2  
IN1+  
V
CC-  
IN2+  
IN2-  
OUT2  
V
Positive supply voltage  
CC+  
DS12487 - Rev 6  
page 2/36  
 
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Pin description  
Figure 3. TSB714 pin connections (top view)  
Table 3. TSB714 pin description  
Pin n°  
Pin name  
OUT1  
IN1-  
Description  
1
2
Output channel 1  
Inverting input channel 1  
Non-inverting input channel 1  
Positive supply voltage  
Non-inverting input channel 2  
Inverting input channel 2  
Output channel 2  
3
IN1+  
V
4
CC+  
5
IN2+  
IN2-  
6
7
OUT2  
OUT3  
IN3-  
8
Output channel 3  
9
Inverting input channel 3  
Non-inverting input channel 3  
Negative supply voltage  
Non-inverting input channel 4  
Inverting input channel 4  
Output channel 4  
10  
11  
12  
13  
14  
IN3+  
V
CC-  
IN4+  
IN4-  
OUT4  
DS12487 - Rev 6  
page 3/36  
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Absolute maximum ratings and operating conditions  
2
Absolute maximum ratings and operating conditions  
Table 4. Absolute maximum ratings  
Symbol  
Parameter  
Value  
+40 or ±20  
±2  
Unit  
V
Supply voltage (1)  
V
CC  
Input voltage differential (2)  
Input voltage  
V
id  
V
V
in  
(V ) - 0.2 to (V  
) + 0.2  
CC+  
V
CC-  
Input current (3)  
I
±10  
mA  
°C  
in  
Storage temperature  
-65 to +150  
Thermal resistance junction-to-ambient (4) (5)  
MiniSO-8  
R
°C / W  
th-ja  
190  
150  
2
T
Maximum junction temperature  
°C  
kV  
j
HBM: human body model (6)  
CDM: charged device model (7)  
Latch-up immunity  
ESD  
1
kV  
100  
mA  
1. All voltage values, except the differential voltage are with respect to the network ground terminal.  
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. The maximum input  
voltage differential value may be extended to the condition that the input current is limited to ±10 mA. See Section 5.2 Input  
pin voltage range.  
3. Input current must be limited by a resistor in series with the inputs when the input voltage is beyond the rails (see  
Section 5.2 Input pin voltage range).  
4. Short-circuits can cause excessive heating and destructive dissipation.  
5.  
R are typical values.  
th  
6. Human body according to JEDEC standard JESD22-A114F.  
7. According to ANSI/ESD STM5.3.1.  
Table 5. Operating conditions  
Symbol  
Parameter  
Value  
V
Supply voltage  
2.7 V to 36 V  
CC  
V
(V ) to (V  
) + 0.1 V  
Common mode input voltage range  
Operating free air temperature range  
icm  
CC-  
CC+  
T
-40 °C to +125 °C  
oper  
DS12487 - Rev 6  
page 4/36  
 
 
 
 
 
 
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Electrical characteristics  
3
Electrical characteristics  
Table 6. Electrical characteristics at VCC = 36 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to  
VCC / 2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
DC performance  
TSB711A, TSB712A, T = 25 °C,  
≤ V ≤ V - 1.5 V  
Min.  
Typ.  
Max.  
Unit  
±300  
±650  
±580  
±930  
±800  
±1200  
±1100  
V
CC-  
ICM  
CC+  
TSB711A, TSB712A, T = 25 °C,  
≤ V ≤ V  
V
CC-  
ICM  
CC+  
TSB711A, TSB712A, -40 °C < T < 125 °C,  
≤ V ≤ V - 1.5 V  
V
CC-  
ICM  
CC+  
TSB711A, TSB712A, -40 °C < T < 125 °C,  
≤ V ≤ V  
V
CC-  
ICM  
CC+  
V
Input offset voltage  
µV  
io  
TSB711, TSB712, T = 25 °C,  
≤ V ≤ V -1.5 V  
V
CC-  
ICM  
CC+  
TSB711, TSB712, T = 25 °C,  
≤ V ≤ V  
V
CC-  
ICM  
CC+  
TSB711, TSB712, -40 °C < T < 125 °C,  
≤ V ≤ V - 1.5 V  
V
CC-  
ICM  
CC+  
TSB711, TSB712, -40 °C < T < 125 °C,  
≤ V ≤ V  
±1400  
2.8  
V
CC-  
ICM  
CC+  
-40°C < T < 125 °C (1)  
T = 25 °C (2)  
ΔV / ΔT  
Input offset voltage drift  
µV / °C  
io  
ΔV  
Long-term input offset voltage drift  
0.57  
µV / √mo  
io  
V
ICM  
V
ICM  
V
ICM  
V
ICM  
V
ICM  
V
ICM  
= V  
= V  
= V  
= V  
= V  
= V  
, T = 25 °C  
CC+  
0
300  
900  
0
-40 °C < T < 125 °C  
0
CC+,  
CC-,  
Input bias current (3)  
Input offset current (4)  
I
IB  
T = 25 °C  
-40 °C < T < 125 °C  
-100  
-200  
nA  
0
CC-,  
CC+  
CC-  
10  
10  
I
IO  
R ≥ 10 kΩ,  
L
(V ) + 0.5 V ≤ V  
≤ (V  
≤ (V  
) - 0.5 V,  
) - 0.5 V,  
110  
125  
CC-  
OUT  
CC+  
T = 25 °C  
A
Open loop gain  
VD  
R ≥ 10 kΩ,  
L
105  
115  
(V ) + 0.5 V ≤ V  
CC-  
OUT  
CC+  
-40 °C < T < 125 °C  
dB  
(V ) ≤ V  
≤ ( V  
) - 1.5 V,  
CC-  
ICM  
CC+  
130  
120  
T = 25 °C  
Common-mode rejection ratio  
(V  
≤ V  
≤ (V  
- 1.5 V,  
CMR  
CC-)  
ICM  
CC+)  
20 log (∆V  
/ ∆V )  
IO  
110  
100  
INCM  
-40 °C < T < 125 °C  
TSB711A,TSB712A (V ) ≤ V  
≤ (V ),  
CC+  
CC-  
ICM  
DS12487 - Rev 6  
page 5/36  
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
T = 25 °C  
TSB711A,TSB712A (V ) ≤ V  
≤ (V  
),  
CC-  
ICM  
CC+  
95  
90  
-40 °C < T < 125 °C  
Common-mode rejection ratio  
CMR  
TSB711, TSB712 (V ) ≤ V  
≤ (V  
),  
CC+  
CC-  
ICM  
20 log (∆V  
/ ∆V )  
IO  
120  
125  
INCM  
T = 25 °C  
dB  
TSB711 , TSB712 (V ) ≤ V  
≤ (V  
),  
CC+  
CC-  
ICM  
85  
-40 °C < T < 125 °C  
Power supply rejection ratio  
20 log (∆V / ∆V  
5 V < (V  
) - (V ) < 36 V, V  
= V / 2  
ICM CC  
CC+  
CC-  
SVR  
100  
)
IO  
-40 °C < T < 125 °C  
CC  
No load, -40 °C < T < 125 °C  
120  
200  
High level output voltage (drop  
voltage from V  
I
= 2 mA, -40 °C < T < 125 °C  
= 15 mA, -40 °C < T < 125 °C  
V
SOURCE  
SOURCE  
OH  
)
CC+  
I
1000  
120  
mV  
No load , -40 °C < T < 125 °C  
I
= 2 mA, -40 °C < T < 125 °C  
= 15 mA , -40 °C < T < 125 °C  
V
200  
Low level output voltage  
SINK  
SINK  
OL  
I
1000  
V
V
V
V
= V , T = 25 °C  
25  
20  
25  
20  
50  
50  
OUT  
OUT  
OUT  
OUT  
CC  
I
I
SINK  
= V , -40 °C < T < 125 °C  
CC  
I
mA  
mA  
OUT  
= 0 V, T = 25 °C  
SOURCE  
= 0 V, -40 °C < T < 125 °C  
No load, T = 25 °C  
1.8  
I
Supply current by op-amp  
CC  
No load, -40 °C < T < 125 °C  
AC performance  
3
R = 10 kΩ, C = 100 pF  
GBP  
SR  
Gain bandwidth product  
Slew rate  
4.5  
2.2  
6
3
MHz  
L
L
9 V step, R = 10 kΩ, C = 100 pF,  
L
L
V / µs  
A
V
= 1 V/V, 10% to 90%  
V
= 1 Vrms , R = 10 kΩ, A = +1,  
IN  
L
V
0,0003  
0,00034  
125  
f = 1 kHz, BW = 22 kHz  
= 1 Vrms , R = 1 kΩ, A = +1,  
THD+N Total harmonic distorsion + noise  
%
V
IN  
L
V
f = 1 kHz, BW = 22 kHz  
= 5 Vpp, f = 1 kHz, A = +11,  
V
OUT  
V
R = 10 kΩ  
L
CR  
Crosstalk  
dB  
V
= 5Vpp, f = 10 kHz, A = +11,  
V
OUT  
100  
R = 10 kΩ  
L
Φm  
Phase margin  
At unity gain, 25 °C, 10 kΩ, 100 pF  
45  
100(5)  
20  
C
LOAD  
Capacitive load drive  
pF  
f = 10 Hz  
e
Input voltage noise density  
Input noise voltage  
f = 100 Hz  
13  
nV / √Hz  
n
f = 10 kHz  
12  
e
µV  
0.1 Hz ≤ f ≤ 10 Hz  
0.5  
n p-p  
PP  
DS12487 - Rev 6  
page 6/36  
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
0.15 (6)  
i
Input current noise density  
f = 1 kHz  
pA / √Hz  
n
1. See Section 5.4 Input offset voltage drift over the temperature in application information.  
2. Typical value is based on the V drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law  
IO  
and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See  
Section 5.5 Long term input offset voltage drift.  
3. Current is positive when it is sinked into the op-amp.  
4.  
I
is defined as |I – I  
|
ibn  
io  
ibp  
5. For higher capacitive values see Figure 26. Phase margin vs. output current at V = 36 V, Figure 27. Phase margin vs.  
CC  
capacitive load and Figure 28. Overshoot vs. capacitive load at V = 36 V  
CC  
6. Theoretical value of the input current noise density based on the measurement of the input transistor base current:  
i
= 2. q.i  
n
b
DS12487 - Rev 6  
page 7/36  
 
 
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Electrical characteristics  
Table 7. Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to  
VCC / 2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
DC performance  
Min.  
Typ.  
Max.  
Unit  
TSB711A, TSB712A, T = 25 °C,  
± 350  
± 650  
V
CC-  
≤ V  
≤ V  
- 1.5 V  
CC+  
ICM  
TSB711A,TSB712A, T = 25 °C,  
≤ V ≤ V  
V
CC-  
ICM  
CC+  
TSB711A,TSB712A, -40 °C < T < 125 °C,  
≤ V ≤ V - 1.5 V  
± 750  
V
CC-  
ICM  
CC+  
TSB711A, TSB712A, -40 °C < T < 125 °C,  
≤ V ≤ V  
± 1050  
± 800  
V
CC-  
ICM  
CC+  
V
Input offset voltage  
µV  
io  
TSB711, TSB712, T = 25 °C,  
≤ V ≤ V - 1.5 V  
V
CC-  
ICM  
CC+  
TSB711, TSB712, T = 25 °C,  
≤ V ≤ V  
± 1200  
± 1100  
± 1400  
V
CC-  
ICM  
CC+  
TSB711, TSB712, -40 °C < T < 125 °C,  
≤ V ≤ V - 1.5 V  
V
CC-  
ICM  
CC+  
TSB711, TSB712, -40 °C < T < 125 °C,  
≤ V ≤ V  
V
CC-  
ICM  
CC+  
-40°C < T < 125 °C (1)  
ΔV / ΔT  
Input offset voltage drift  
Input bias current (2)  
4
300  
900  
0
µV / °C  
io  
V
ICM  
V
ICM  
V
ICM  
V
ICM  
V
ICM  
V
ICM  
= V  
= V  
, T = 25 °C  
CC+  
0
-40 °C < T < 125 °C  
0
CC+,  
I
IB  
= V , T = 25 °C  
-100  
-200  
CC-  
nA  
= V  
= V  
= V  
-40 °C < T < 125 °C  
0
CC-,  
CC+  
CC-  
10  
10  
Input offset current (3)  
I
IO  
R ≥ 10 kΩ,  
L
105  
100  
120  
(V ) + 0.5 V ≤ V  
T = 25 °C  
≤ (V  
≤ (V  
) - 0.5 V,  
) - 0.5 V,  
CC-  
OUT  
CC+  
A
Open loop gain  
dB  
VD  
R ≥ 10 kΩ,  
L
(V ) + 0.5 V ≤ V  
CC-  
OUT  
CC+  
-40 °C < T < 125 °C  
(V ) ≤ V  
≤ ( V  
) - 1.5 V,  
- 1.5 V,  
CC-  
ICM  
CC+  
95  
90  
80  
125  
T = 25 °C  
(V  
≤ V  
≤ (V  
CC+)  
CC-)  
ICM  
-40 °C < T < 125 °C  
Common-mode rejection ratio  
TSB711A, TSB712A (V ) ≤ V  
≤ (V  
≤ (V  
),  
),  
CMR  
dB  
CC-  
ICM  
CC+  
20 log ( ∆V  
/ ∆V  
)
IO  
105  
105  
INCM  
T = 25 °C  
TSB711A, TSB712A (V ) ≤ V  
CC-  
ICM  
CC+  
75  
75  
-40 °C < T < 125 °C  
TSB711, TSB712 (V ) ≤ V  
≤ (V  
CC+  
),  
CC-  
ICM  
DS12487 - Rev 6  
page 8/36  
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
T = 25 °C  
Common-mode rejection ratio  
CMR  
TSB711, TSB712 (V ) ≤ V  
≤ (V ),  
CC+  
dB  
CC-  
ICM  
20 log ( ∆V  
/ ∆V  
)
70  
INCM  
IO  
-40 °C < T < 125 °C  
No load, -40 °C < T < 125 °C  
= 2 mA, -40 °C < T < 125 °C  
90  
200  
90  
High level output voltage (drop  
voltage from VCC+)  
V
OH  
I
SOURCE  
mV  
No load, -40 °C < T < 125 °C  
V
Low level output voltage  
OL  
I
= 2 mA, -40 °C < T < 125 °C  
200  
SINK  
V
V
V
V
= V , T = 25 °C  
20  
15  
20  
15  
50  
50  
OUT  
OUT  
OUT  
OUT  
CC  
I
I
SINK  
= V , -40 °C < T < 125 °C  
CC  
I
mA  
mA  
OUT  
= 0 V, T = 25 °C  
SOURCE  
= 0 V, -40 °C < T < 125 °C  
No load, T = 25 °C  
1.4  
I
Supply current by op-amp  
CC  
No load, -40 °C < T < 125 °C  
AC performance  
2.3  
R = 10 kΩ, C = 100 pF  
GBP  
SR  
Gain bandwidth product  
Slew rate  
4.5  
2
6
MHz  
L
L
3 V step, R = 10 kΩ, C = 100 pF,  
L
L
2.7  
V / µs  
A
V
= 1 V/V, 10% to 90%  
V
= 1 Vrms , R = 10 kΩ, A = +1,  
IN  
L
V
0,00032  
0,0004  
f = 1 kHz, BW = 22 kHz  
= 1 Vrms , R = 1 kΩ, A = +1,  
THD+N Total harmonic distorsion + noise  
%
V
IN  
L
V
f = 1 kHz, BW = 22 kHz  
Φm  
Phase margin  
At unity gain, 25 °C, 10 kΩ, 100 pF  
34  
100(4)  
20  
C
Capacitive load drive  
pF  
LOAD  
f = 10 Hz  
e
Input voltage noise density  
f = 100 Hz  
13  
nV / √Hz  
n
f = 10 kHz  
12  
e
n p-p  
µV  
Input noise voltage  
0.1 Hz ≤ f ≤ 10 Hz  
0.8  
PP  
0.15 (5)  
i
Input current noise density  
f = 1 kHz  
pA / √Hz  
n
1. See Section 5.4 Input offset voltage drift over the temperature in application information.  
2. Current is positive when it is sinked into the op-amp.  
3.  
I is defined as |I – I |.  
io ibp ibn  
4. For higher capacitive values see Figure 25. Phase margin vs. output current at V = 5 V, Figure 27. Phase margin vs.  
CC  
capacitive load  
5. Theoretical value of the input current noise density based on the measurement of the input transistor base current:  
i
= 2. q.i  
n
b
DS12487 - Rev 6  
page 9/36  
 
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Typical performance characteristics  
4
Typical performance characteristics  
RL connected to VCC / 2 (unless otherwise specified).  
Figure 5. Input offset voltage distribution at VCC = 5 V  
TSB711A, TSB712A  
Figure 4. Supply current vs. supply voltage  
Figure 6. Input offset voltage distribution at VCC = 36 V  
TSB711A, TSB712A  
Figure 7. Input offset voltage vs. temperature at VCC = 5 V  
DS12487 - Rev 6  
page 10/36  
 
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Typical performance characteristics  
Figure 8. Input offset voltage vs. temperature at  
Figure 9. Input offset voltage thermal coefficient  
distribution at VCC = 5 V  
VCC = 36 V  
Figure 10. Channel separation vs. frequency at VCC = 36 V  
Figure 11. Input offset voltage vs. supply voltage  
Figure 12. Input offset voltage vs. common mode voltage Figure 13. Input offset voltage vs. common mode voltage  
at VCC = 5 V TSB711A, TSB712A at VCC = 36 V TSB711A, TSB712A  
DS12487 - Rev 6  
page 11/36  
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Typical performance characteristics  
Figure 14. Input bias current vs. temperature at  
VICM = VCC / 2  
Figure 15. Output current vs. output voltage at  
VCC = 5 V  
Figure 16. Input bias current vs. common mode voltage at Figure 17. Input bias current vs. common mode voltage at  
VCC = 5 V  
VCC = 36 V  
Figure 18. Output current vs. output voltage at VCC = 36 V  
Figure 19. Output voltage (VOH) vs. supply voltage  
DS12487 - Rev 6  
page 12/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Typical performance characteristics  
Figure 20. Output voltage (VOL) vs. supply voltage  
Figure 21. Positive slew rate at VCC = 36 V  
Figure 22. Negative slew rate at VCC = 36 V  
Figure 23. Bode diagram at VCC = 5 V  
Figure 24. Bode diagram at VCC = 36 V  
Figure 25. Phase margin vs. output current at VCC = 5 V  
DS12487 - Rev 6  
page 13/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Typical performance characteristics  
Figure 26. Phase margin vs. output current at VCC = 36 V  
Figure 27. Phase margin vs. capacitive load  
Figure 29. Small step response vs. time at VCC = 5 V  
Figure 31. Desaturation time at high rail at VCC = 5 V  
Figure 28. Overshoot vs. capacitive load at VCC = 36 V  
Figure 30. Desaturation time at low rail at VCC = 5 V  
DS12487 - Rev 6  
page 14/36  
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Typical performance characteristics  
Figure 33. Amplifier behavior close to the low rail at  
Figure 32. Small step response vs. time at VCC = 36 V  
VCC = 36 V  
Figure 34. Amplifier behavior close to the high rail at  
VCC = 36 V  
Figure 35. Noise vs. frequency at VCC = 5 V  
Figure 36. Noise vs. frequency at VCC = 36 V  
Figure 37. Noise vs. time at VCC = 36 V  
DS12487 - Rev 6  
page 15/36  
 
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Typical performance characteristics  
Figure 39. THD+N vs. output voltage  
Figure 38. THD+N vs. frequency  
Figure 40. PSRR vs. frequency at VCC = 10 V  
Figure 41. CMRR vs. frequency at VCC = 10 V  
DS12487 - Rev 6  
page 16/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Application information  
5
Application information  
5.1  
Operating voltages  
The TSB711, TSB711A, TSB712, TSB712A devices can operate from 2.7 to 36 V. The parameters are fully  
specified at 5 V and 36 V power supplies. However, the parameters are very stable over the full VCC range and  
several characterization curves show the TSB711, TSB711A, TSB712, TSB712A device characteristics over the  
full operating range. Additionally, the main specifications are guaranteed in extended temperature range from -40  
to 125 °C.  
5.2  
Input pin voltage range  
The TSB711, TSB711A,TSB712 and TSB712A devices have an internal ESD diode protection on the inputs.  
These diodes are connected between the inputs and each supply rail to protect the input stage from electrical  
discharge, as shown in the figure below.  
Figure 42. Input current limitation  
Vcc+  
100Ω  
-
In  
-
VCC +  
VCC -  
Out  
D1  
Out  
D2  
100Ω  
+
In+  
Vcc-  
When the input pin voltage exceeds the power supply, the ESD diodes become conductive and, depending on  
this voltage, excessive current can flow through them. Without limitation this overcurrent can damage the device.  
In this case, the current has to be limited to 10 mA by adding a resistance in series with the input pin.  
Similarly, in order to avoid excessive current in the protection diodes between the positive and negative inputs,  
the differential voltage should be limited to ± 2 V, or the current limited to 10 mA. Such a high differential voltage  
can be reached when the output is in saturation mode, or slew rate limited. In particular, it can happen when the  
device is used in comparator mode.  
The TSB711, TSB711A, TSB712, TSB712A do not show any phase reversal for any input common mode voltage  
inside the absolute maximum ratings (AMR) voltage window, (VCC-) - 200 mV < VICM < (VCC+) + 200 mV.  
DS12487 - Rev 6  
page 17/36  
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Rail-to-rail input stage  
5.3  
Rail-to-rail input stage  
The TSB711, TSB711A, TSB712, TSB712A devices are built with two complementary NPN and PNP input  
differential pairs, as shown in the figure below.  
Figure 43. Rail-to-rail input stage  
V
CC  
Ip  
VIP  
VIN  
P
P
p
n
[ … ]  
[ … ]  
[ … ]  
[ … ]  
Nn  
Np  
In  
GND  
The devices have rail-to-rail inputs, and the input common mode range is extended from VCC- to (VCC+) + 0.1  
V. However, the performance of these devices is optimized for the P-channel differential pair (which means  
from VCC- to (VCC+) - 1.5 V). Around (VCC+) – 1 V, and with slight variations depending on the process, a  
transition occurs between the P-channel and the N-channel differential pair, impacting the input offset voltage (see  
Figure 12. Input offset voltage vs. common mode voltage at VCC = 5 V TSB711A, TSB712A and Figure 13. Input  
offset voltage vs. common mode voltage at VCC = 36 V TSB711A, TSB712A). As a consequence, CMRR can  
be degraded around this transition region. In order to achieve the best possible performance, this operating point  
should be avoided.  
Please also notice that the input bias current polarity depends on the operation of NPN or PNP input stage.  
This transition is visible in figures Figure 16. Input bias current vs. common mode voltage at VCC = 5 V and  
Figure 17. Input bias current vs. common mode voltage at VCC = 36 V.  
5.4  
Input offset voltage drift over the temperature  
The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset  
value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain,  
and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C  
can be compensated during the production at application level. The maximum input voltage drift overtemperature  
enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift  
overtemperature is computed using the following formula:  
ΔV  
io  
ΔT  
V
T − V 25°C  
io  
io  
= max  
(1)  
T − 25°C  
T = 40 °C and T = 125 °C  
The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk  
(process capability index) greater than 1.3.  
DS12487 - Rev 6  
page 18/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Long term input offset voltage drift  
5.5  
Long term input offset voltage drift  
To evaluate product reliability, two types of stress acceleration are used:  
Voltage acceleration, by changing the applied voltage.  
Temperature acceleration, by changing the die temperature (below the maximum junction temperature  
allowed by the technology) with the ambient temperature.  
The voltage acceleration has been defined based on JEDEC results, and is defined using:  
(2)  
- V )  
U
AFV = еβ.(V  
S
Where:  
AFV is the voltage acceleration factor  
β is the voltage acceleration coefficient in 1/V, constant technology parameter (β = 1)  
VS is the stress voltage used for the accelerated test  
VU is the voltage used for the application  
The temperature acceleration is driven by the Arrhenius model, and is defined as follows:  
(3)  
E
a
1
1
.
A
= e  
.
k
T
T
FT  
U
S
Where:  
AFT is the temperature acceleration factor  
Ea is the activation energy of the technology based on the failure rate  
k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)  
TU is the temperature of the die when VU is used (K)  
TS is the temperature of the die under temperature stress (K)  
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature  
acceleration factor.  
(4)  
AF = AFT . AFV  
AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can  
then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress  
duration.  
(5)  
Months = AF × 1000 h × 12 months / (24 h × 365.25 days)  
To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the  
maximum operating voltage and the absolute maximum ratings (as recommended by JEDEC rules). Vio drift (in  
µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions.  
(6)  
VCC = max(VOP) with Vicm = VCC/2  
The long term drift parameter ΔVio (in µV.month-1/2), estimating the reliability performance of the product, is  
obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of  
months.  
(7)  
V
drift  
io  
monts  
∆ V  
=
io  
Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration.  
The Vio final drift, in µV, to be measured on the device in real operation conditions can be computed from:  
(8)  
E
. e  
k
a
1
297  
1
β . V − V  
CC CC nom  
.
V
t
, T , V  
= ∆ V  
. t . e  
T
io final drift op op CC  
io, 25°C  
op  
op  
DS12487 - Rev 6  
page 19/36  
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
EMI rejection  
Where:  
ΔVio is the long term drift parameter in µV.month-1/2  
top is the operating time seen by the device, in months  
Top is the operating temperature  
VCC is the power supply during operating time  
VCC nom is the nominal VCC at which the ΔVio is computed (36 V for the TSB712A).  
Ea is the activation energy of the technology (here 0.7 eV).  
5.6  
EMI rejection  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many op-amps is a change in the offset voltage as a result of RF  
signal rectification. EMIRR is defined as follows:  
V
in pp  
EMIRR = 20.log  
(9)  
ΔV  
io  
The TSB711, TSB711A, TSB712, TSB712A have been specially designed to minimize susceptibility to EMIRR  
and shows a low sensitivity. As visible on figure below, EMI rejection ratio has been measured on both inputs and  
outputs, from 400 MHz to 2.4 GHz.  
Figure 44. EMIRR on In+, In- and out pins  
EMIRR performance might be improved by adding small capacitances (in the pF range) on the inputs, power  
supply and output pins. These capacitances help in minimizing the impedance of these nodes at high frequencies.  
DS12487 - Rev 6  
page 20/36  
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Maximum power dissipation  
5.7  
Maximum power dissipation  
The usable output load current drive is limited by the maximum power dissipation allowed by the device package.  
The absolute maximum junction temperature for the TSB711, TSB711A, TSB712, TSB712A is 150 °C. The  
junction temperature can be estimated as follows:  
T
= P × R  
t− ja  
+ T  
A
(10)  
J
D
TJ is the die junction temperature  
PD is the power dissipated in the package  
Rth-ja is the junction to ambient thermal resistance of the package  
TA is the ambient temperature  
The power dissipated in the package PD is the sum of the quiescent power dissipated and the power dissipated  
by the output stage transistor. It is calculated as follows:  
P
=
V
× I  
CC  
+
V
− V  
× ILoad  
(11)  
D
CC  
CC +  
OUT  
when the op-amp sources the current  
P
=
V
× I  
CC  
+
V
− V  
× ILoad  
(12)  
D
CC  
OUT  
CC−  
when the op-amp is sinks the current.  
Do not exceed the 150 °C maximum junction temperature for the device. Exceeding the junction temperature limit  
can cause degradation in the parametric performance or even destroy the device.  
5.8  
Capacitive load and stability  
Stability analysis must be performed for large capacitive loads over 100 pF. Increasing the load capacitance to  
high values produces gain peaking in the frequency response, with overshoot and ringing in the step response.  
Generally, unity gain configuration is the worst situation for stability and the ability to drive large capacitive loads.  
For additional capacitive load drive capability in unity-gain configuration, stability can be improved by inserting  
a small resistor RISO (10 Ω to 30 Ω) in series with the output. This resistor significantly reduces ringing while  
maintaining DC performance for purely capacitive loads. However, if there is a resistive load in parallel with the  
capacitive load, a voltage divider is created introducing a gain error on the output and slightly reducing the output  
swing. The error introduced is proportional to the ratio RISO / RL. RISO modifies the maximum capacitive load  
acceptable from a stability point-of-view as described in the following figure:  
Figure 45. Stability criteria with a serial resistor at different capacitive loads  
S
Unstable  
DS12487 - Rev 6  
page 21/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Capacitive load and stability  
Figure 46. Test configuration for RISO  
Please note that RISO = 30 Ω is sufficient to make the TSB711, TSB711A, TSB712, TSB712A stable whatever the  
capacitive load.  
DS12487 - Rev 6  
page 22/36  
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
PCB layout recommendations  
5.9  
PCB layout recommendations  
Particular attention must be paid to the layout of the PCB tracks connected to the amplifier, load, and power  
supply. The power and ground traces are critical as they must provide adequate energy and grounding for  
all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic  
inductance. In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that  
connects the bottom and top layer ground planes together in many locations is often used. The copper traces  
connecting the output pins to the load and supply pins should be as wide as possible to minimize trace resistance.  
5.10  
Decoupling capacitor  
In order to ensure op-amp full functionality, it is mandatory to place a decoupling capacitor of at least 22 nF  
as close as possible to the op-amp supply pin. A good decoupling helps to reduce electromagnetic interference  
impact.  
DS12487 - Rev 6  
page 23/36  
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Typical applications  
6
Typical applications  
6.1  
Low-side current sensing  
Power management mechanisms are found in most electronic systems. Current sensing is useful to protect  
applications. The low-side current sensing method consists of placing a sense resistor between the load and the  
circuit ground. The resulting voltage drop is amplified using the TSB711A and the TSB712A (see the following  
figure).  
Figure 47. Low-side current sensing schematic  
C1  
Rg1  
Rg2  
Rf1  
I
5 V  
+
I
I
n
p
-
+
R
shunt  
V
out  
-
TSB711A  
TSB712A  
Rf2  
Vout can be expressed as follows:  
R
R
R
R
.R  
R
R
g2  
f1  
g1  
g2 f2  
f1  
V
= R  
.I 1 −  
. 1 −  
+ I .  
. 1 +  
− I .R  
n f1  
(13)  
(14)  
OUT  
sunt  
p
R
+ R  
R
+ R  
g2  
f2  
g2  
f2  
g1  
R
f1  
− V . 1 −  
io  
R
g1  
Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, can be simplified in the following manner:  
R
R
R
R
f
f
V
= R  
sunt  
.I .  
− V . 1 +  
io  
+ R .I  
f io  
OUT  
g
g
The main advantage of using the TSB711A and the TSB712A for a low-side current sensing relies on its low  
Vio, compared to general purpose operational amplifiers. For the same current and targeted accuracy, the shunt  
resistor can be chosen with a lower value, resulting in lower power dissipation, lower drop in the ground path, and  
lower cost. Particular attention must be paid to the matching and precision of Rg1, Rg2, Rf1, and Rf2, to maximize  
the accuracy of the measurement.  
DS12487 - Rev 6  
page 24/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
7.1  
SOT23-5 package information  
Figure 48. SOT23-5 package outline  
Table 8. SOT23-5 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
Min.  
Max.  
0.057  
0.006  
0.051  
0.020  
0.020  
0.118  
A
A1  
A2  
B
0.90  
1.20  
0.035  
0.047  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.35  
0.035  
0.014  
0.004  
0.110  
0.041  
0.016  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.014  
C
D
D1  
e
E
2.60  
1.50  
0.10  
0°  
3.00  
1.75  
0.60  
10°  
0.102  
0.059  
0.004  
0°  
0.118  
0.069  
0.024  
10°  
F
L
K
DS12487 - Rev 6  
page 25/36  
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
MiniSO8 package information  
7.2  
MiniSO8 package information  
Figure 49. MiniSO8 package outline  
Table 9. MiniSO8 mechanical data  
Inches  
Dim.  
Millimeters  
Min.  
Typ.  
Max.  
1.1  
Min.  
Typ.  
Max.  
0.043  
0.006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
A
A1  
A2  
b
0
0.15  
0.95  
0.4  
0
0.75  
0.22  
0.08  
2.8  
0.85  
0.03  
0.009  
0.003  
0.11  
0.033  
c
0.23  
3.2  
D
3
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.01  
E
4.65  
2.8  
4.9  
3
5.15  
3.1  
0.183  
0.11  
E1  
e
0.65  
0.6  
0.95  
0.25  
L
0.4  
0°  
0.8  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.1  
0.004  
DS12487 - Rev 6  
page 26/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
SO8 package information  
7.3  
SO8 package information  
Figure 50. SO8 package outline  
Table 10. SO-8 mechanical data  
Inches  
mm  
Dim.  
Min.  
Typ.  
Max.  
1.75  
0.25  
Min.  
Typ.  
Max.  
0.069  
0.01  
A
A1  
A2  
b
0.1  
1.25  
0.28  
0.17  
4.8  
0.004  
0.049  
0.011  
0.007  
0.189  
0.228  
0.15  
0.48  
0.23  
5
0.019  
0.01  
c
D
4.9  
6
0.193  
0.236  
0.154  
0.05  
0.197  
0.244  
0.157  
E
5.8  
6.2  
4
E1  
e
3.8  
3.9  
1.27  
h
0.25  
0.4  
0.5  
0.01  
0.02  
0.05  
L
1.27  
0.016  
L1  
k
1.04  
0.04  
0
8 °  
1 °  
8 °  
ccc  
0.1  
0.004  
DS12487 - Rev 6  
page 27/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
SO14 package information  
7.4  
SO14 package information  
Figure 51. SO14 package outline  
Table 11. SO14 mechanical data  
Dimensions (1)  
Millimeters  
Inches  
Typ.  
Symbol  
Min.  
1.35  
0.10  
1.10  
0.33  
0.19  
8.55  
3.80  
Typ.  
Max.  
1.75  
0.25  
1.65  
0.51  
0.25  
8.75  
4.0  
Min.  
0.05  
0.004  
0.04  
0.01  
0.007  
0.33  
0.15  
Max.  
0.068  
0.009  
0.06  
A
A1  
A2  
B
0.02  
C
0.009  
0.34  
D (2)  
E
0.15  
e
1.27  
0.05  
H
5.80  
0.40  
0°  
6.20  
1.27  
8°  
0.22  
0.015  
0°  
0.24  
0.05  
8°  
L
k
ddd  
0.10  
0.004  
1. Drawing dimensions include “Single” and “Matrix” versions.  
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15 mm per side.  
DS12487 - Rev 6  
page 28/36  
 
 
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
TSSOP14 package information  
7.5  
TSSOP14 package information  
Figure 52. TSSOP14 package outline  
D
E1  
A1 A2  
A
c
b
aaa  
14  
C
8
SEATING  
PLANE  
0.25 mm  
GAGE PLANE  
C
E
k
PIN 1 IDENTIFICATION  
L
1
7
e
L1  
Table 12. TSSOP14 mechanical data  
Dimensions  
Millimeters  
Symbol  
Inches  
Typ.  
Min.  
Typ.  
Max.  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
6.60  
4.50  
Min.  
Max.  
0.047  
0.006  
0.041  
0.012  
0.0089  
0.201  
0.260  
0.176  
A
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
4.90  
6.20  
4.30  
0.002  
0.031  
0.007  
0.004  
0.193  
0.244  
0.169  
0.004  
0.039  
1.00  
c
D
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
0.197  
0.252  
0.173  
0.0256  
0.024  
0.039  
E
E1  
e
L
0.45  
0°  
0.75  
0.018  
0°  
0.030  
L1  
k
8°  
8°  
aaa  
0.10  
0.004  
DS12487 - Rev 6  
page 29/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Ordering information  
8
Ordering information  
Table 13. Order code  
Order code  
TSB711AILT  
TSB711ILT  
Temperature range  
Package  
SOT23-5  
SOT23-5  
SOT23-5  
SOT23-5  
MiniSO8  
SO8  
Packing  
Marking  
K223  
-40° to +125 °C  
K219  
TSB711AIYLT  
TSB711IYLT  
TSB712AIST  
TSB712AIDT  
TSB712IDT  
K225  
-40 °C to +125 °C automotive grade  
K221  
K214  
TSB712AI  
TSB712I  
712S  
-40° to +125 °C  
SO8  
TSB712IST  
MiniSO8  
SO8  
TSB712AIYDT  
TSB712AIYST  
TSB712IYDT  
TSB712IYST  
TSB714AIDT  
TSB714IDT  
712AIY  
712Y  
MiniSO8  
SO8  
-40 to 125 °C automotive grade (1)  
Tape and reel  
712IY  
MiniSO8  
K215  
B714AI  
B714I  
-40° to +125 °C  
-40 to 125 °C automotive grade (1)  
-40° to +125 °C  
SO14  
TSB714AIYDT  
TSB714IYDT  
TSB714AIPT  
TSB714IPT  
B714AY  
B714Y  
B714AI  
B714I  
TSSOP14  
TSB714AIYPT  
TSB714IYPT  
B714AY  
B714IY  
-40 to 125 °C automotive grade (1)  
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001  
and Q002 or equivalent.  
SO8 package for single op-amp may be available for qualification under customer request. Please contact sales  
office for such request.  
DFN8 package for dual op-amp may be available for qualification under customer request. Please contact sales  
office for such request.  
DS12487 - Rev 6  
page 30/36  
 
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Revision history  
Table 14. Document revision history  
Date  
Revision  
Changes  
23-Apr-2018  
1
Initial release.  
Added the TSB712 as root part number; cover page has been updated accordingly.  
Updated Section 3 Electrical characteristics, Section 4 Typical performance  
characteristics, Section 5 Application information and Table 7. Order code.  
17-Sep-2018  
2
3
Added Section 7.2 SO8 package information.  
Updated Table 3. Electrical characteristics at VCC = 36 V, VICM = VOUT = VCC / 2,  
Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) and Table 4.  
Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL  
connected to VCC / 2 (unless otherwise specified).  
29-Nov-2018  
18-Feb-2019  
11-Jun-2019  
4
5
Updated Figure 44. Stability criteria with a serial resistor at different capacitive loads.  
Added the root part numbers TSB711 and TSB711A, therefore the whole document has  
been updated accordingly.  
Added new part numbers in Table 13. Order code, new Section 7.4 SO14 package  
information and Section 7.5 TSSOP14 package information.  
28-Oct-2020  
6
DS12487 - Rev 6  
page 31/36  
 
 
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
Contents  
Contents  
1
2
3
4
5
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Application information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Input pin voltage range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Rail-to-rail input stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Input offset voltage drift over the temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
EMI rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Maximum power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Capacitive load and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.10 Decoupling capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6
7
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
6.1  
Low-side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
7.1  
7.2  
7.3  
7.4  
7.5  
SOT23-5 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
SO14 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
TSSOP14 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
DS12487 - Rev 6  
page 32/36  
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
TSB711 pin description (SOT23-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
TSB712 pin description (miniSO8/SO8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
TSB714 pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical characteristics at VCC = 36 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless  
otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless  
otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MiniSO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 7.  
Table 8.  
Table 9.  
Table 10. SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 11. SO14 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 12. TSSOP14 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 13. Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 14. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DS12487 - Rev 6  
page 33/36  
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
TSB711 pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
TSB712 pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
TSB714 pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage distribution at VCC = 5 V TSB711A, TSB712A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage distribution at VCC = 36 V TSB711A, TSB712A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage vs. temperature at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage vs. temperature at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage thermal coefficient distribution at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Channel separation vs. frequency at VCC = 36 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs. common mode voltage at VCC = 5 V TSB711A, TSB712A . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs. common mode voltage at VCC = 36 V TSB711A, TSB712A . . . . . . . . . . . . . . . . . . . . 11  
Input bias current vs. temperature at VICM = VCC / 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
Figure 45.  
Figure 46.  
Figure 47.  
Figure 48.  
Output current vs. output voltage at  
VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input bias current vs. common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input bias current vs. common mode voltage at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output current vs. output voltage at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output voltage (VOH) vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output voltage (VOL) vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Positive slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Negative slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bode diagram at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bode diagram at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Phase margin vs. output current at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Phase margin vs. output current at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Phase margin vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overshoot vs. capacitive load at VCC = 36 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Small step response vs. time at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Desaturation time at low rail at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Desaturation time at high rail at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Small step response vs. time at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Amplifier behavior close to the low rail at VCC = 36 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Amplifier behavior close to the high rail at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Noise vs. frequency at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Noise vs. frequency at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Noise vs. time at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
THD+N vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PSRR vs. frequency at VCC = 10 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
CMRR vs. frequency at VCC = 10 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Input current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Rail-to-rail input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
EMIRR on In+, In- and out pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Stability criteria with a serial resistor at different capacitive loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Test configuration for RISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Low-side current sensing schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SOT23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DS12487 - Rev 6  
page 34/36  
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
List of figures  
Figure 49.  
Figure 50.  
Figure 51.  
Figure 52.  
MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SO8 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SO14 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
TSSOP14 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DS12487 - Rev 6  
page 35/36  
TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS12487 - Rev 6  
page 36/36  

相关型号:

TSB712A

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB712AIDT

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB712AIST

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB712AIYDT

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB712AIYST

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB712IDT

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB712IST

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB712IYDT

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB712IYST

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB714

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB714A

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSB714AIDT

Precision rail-to-rail input / output 36 V, 6 MHz op-amps

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR