TSC2011IDT [STMICROELECTRONICS]

High voltage, precision, bidirectional current sense amplifiers;
TSC2011IDT
型号: TSC2011IDT
厂家: ST    ST
描述:

High voltage, precision, bidirectional current sense amplifiers

文件: 总54页 (文件大小:1868K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSC2010, TSC2011, TSC2012  
Datasheet  
High voltage, precision, bidirectional current sense amplifiers  
Features  
Wide common mode voltage: - 20 to 70 V  
Offset voltage: ± 200 µV max  
2.7 to 5.5 V supply voltage  
Different gain available  
SO8  
TSC2010: 20 V/V  
TSC2011: 60 V/V  
TSC2012: 100 V/V  
Gain error: 0.3% max  
MiniSO8  
Offset drift: 5 µV/°C max  
Quiescent current: 20 µA in shutdown mode  
SO8 and MiniSO8 package  
Applications  
High-side current sensing  
Low-side current sensing  
Data acquisition and instrumentation  
Test and measurement equipment  
Industrial process control  
Motor control  
Solenoid control  
Maturity status link  
TSC2010, TSC2011, TSC2012  
Description  
The TSC2010, TSC2011 and TSC2012 are precision bidirectional current sense  
amplifiers. They can sense the current thanks to a shunt resistor over a wide range of  
common mode voltages, from - 20 to + 70 V, whatever the supply voltage is. They  
are available with an amplifier gain of 20V/V for TSC2010, 60 V/V for TSC2011 and  
100 V/V for TSC2012.  
They are able to sense very low drop voltages as low as 10 mV full scale minimizing  
the measurement error.  
The TSC2010, TSC2011 and TSC2012 can also be used in other functions such as:  
precision current measurement, overcurrent protection, current monitoring, and  
feedback loops.  
This device fully operates over the broad supply voltage range from 2.7 to 5.5 V and  
over the industrial temperature range from -40 to 125 °C.  
DS13057 - Rev 4 - August 2020  
www.st.com  
For further information contact your local STMicroelectronics sales office.  
TSC2010, TSC2011, TSC2012  
Diagram  
1
Diagram  
Figure 1. Block diagram  
DS13057 - Rev 4  
page 2/54  
 
 
TSC2010, TSC2011, TSC2012  
Pin configuration  
2
Pin configuration  
Figure 2. Pin connection (top view)  
Table 1. Pin description  
Pin  
1
Pin name  
IN -  
Description  
Negative input  
Ground  
2
GND  
VREF2  
SHDN  
OUT  
3
Reference voltage 2  
Shutdown  
4
5
Output  
6
VCC  
Supply voltage  
Reference voltage 1  
Positive input  
7
VREF1  
IN +  
8
DS13057 - Rev 4  
page 3/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Maximum ratings  
3
Maximum ratings  
Table 2. Absolute maximum ratings  
Symbol  
Parameter  
Value  
-0.3 to 7  
-25 to 76  
7
Unit  
V
Supply voltage (1)  
V
CC  
V
Common mode voltage on input pins  
Differential voltage between input pins (In+, In-)  
Voltage present on pins Ref1, Ref2, Out  
Input current to any pins (2)  
V
ICM  
V
DIF  
V
V
V
V
Gnd - 0.3 to V + 0.3  
V
REF1 REF2 OUT  
cc  
I
5
mA  
°C  
°C  
IN  
T
Storage temperature  
-65 to 150  
150  
STG  
T
J
Junction temperature  
Thermal resistance junction to ambient (3)(4)  
R
THJA  
°C/W  
SO8  
125  
190  
MiniSO8  
Human body model (HBM) (5)  
Charged device model (CDM) (6)  
Latch-up immunity  
2000  
1000  
200  
ESD  
V
mA  
1. All voltage values, except the differential voltage are with respect to the network ground terminal.  
2. Input voltage can go beyond supply voltage but input current must be limited. Using a serial resistor with the input is highly  
recommended in that case.  
3. Short-circuits can cause excessive heating and destructive dissipation.  
4.  
R are typical values.  
th  
5. According to JEDEC standard JESD22-A114F.  
6. According to ANSI/ESD STM5.3.1.According to ANSI/ESD STM5.3.1.  
Table 3. Operating conditions  
Symbol  
Parameter  
Value  
Unit  
V
V
Supply voltage  
2.7 to 5.5  
-20 to +70  
cc  
V
icm  
Common mode voltage on input pins  
Output offset adjustment range  
V
V
0 to V  
V
ref  
cc  
T
Operating free-air temperature range  
-40 to 125  
°C  
DS13057 - Rev 4  
page 4/54  
 
 
 
 
 
 
 
 
 
TSC2010, TSC2011, TSC2012  
Electrical characteristics  
4
Electrical characteristics  
Table 4. Electrical characteristics Vcc = 2.7 V, Vicm = 12 V, T = 25 °C (unless otherwise specified).  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Power supply  
V
= -20 to 70 V  
1.5  
20  
2.3  
2.3  
icm  
Current consumption  
mA  
µA  
T
< T < T  
max  
min  
I
cc  
V
= - 20 to 70 V  
50  
icm  
Current consumption with  
shutdown active  
150  
T
< T < T  
min  
max  
Input  
V
= 1 V  
200  
700  
icm  
T
< T < T  
min  
max  
Offset voltage (RTI) (1)  
|V  
|
os  
µV  
V
= 12 V  
500  
icm  
T
< T < T  
1100  
min  
max  
V
V
V
= 1 V, T  
< T < T  
5
8
icm  
min max  
|ΔV /ΔT|  
Offset drift vs. temperature  
Common mode rejection  
Input bias current  
µV/°C  
dB  
os  
= 12 V, T  
< T < T  
max  
icm  
min  
= -20 to 70 V, DC mode  
115  
350  
100  
90  
85  
icm  
min  
CMR  
T
< T < T  
max  
max  
V
T
= 12 V  
icm  
I
ib+  
< T < T  
, V  
= -20 to 70 V  
icm  
-400  
-150  
600  
350  
min  
µA  
V
= 12 V  
icm  
min  
I
ib-  
Input bias current  
T
< T < T  
, V = - 20 to 70 V  
icm  
max  
max  
max  
max  
TSC2010  
< T < T  
123.6  
122.4  
T
min  
TSC2011  
< T < T  
40.5  
39.3  
Vsense operating range with  
Eg ≤ 0.3% (2)  
|V  
|
mV  
sense  
T
min  
TSC2012  
< T < T  
23.9  
22.7  
T
min  
Output  
TSC2010  
TSC2011  
TSC2012  
20  
60  
G
Gain  
V/V  
%
100  
ΔV = 100 mV to (V - 100 mV)  
0.3  
0.3  
out  
cc  
Eg  
Gain error vs. temperature  
T
< T < T  
min  
min  
max  
T
< T < T  
= 12 V  
ΔEg/ΔT  
NLE  
Gain error drift  
Linearity error  
25  
ppm/°C  
%
max  
V
0.03  
8
icm  
I
= 0.2 mA  
15  
20  
source  
V
- V  
oh  
Drop voltage output high  
mV  
cc  
T
< T < T  
max  
min  
DS13057 - Rev 4  
page 5/54  
 
 
TSC2010, TSC2011, TSC2012  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
I
= 0.2 mA  
12  
20  
30  
sink  
V
Output voltage low  
mV  
ol  
T
< T < T  
max  
min  
Sink mode  
< T < T  
12  
8
20  
10  
25  
30  
T
min  
max  
I
Output current  
mA  
out  
Source mode  
6
4
14  
17  
T
I
< T < T  
max  
min  
= - 10 to +4 mA  
Reg Load Load regulation  
0.3  
1.5  
mV/mA  
out  
OFFSET adjustment  
R
Ratiometric accuracy  
Accuracy, RTO  
0.5  
0.1  
V/V  
%
t
Voltage applied to Vref1 and Vref2 in  
parallel  
Acc  
Dynamic performances  
R = 10 kΩ, C = 100 pF  
l
l
TSC2010  
TSC2010, T  
600  
300  
750  
620  
415  
< T < T  
< T < T  
< T < T  
min  
min  
max  
max  
max  
BW  
Small signal -3 dB bandwidth TSC2011  
TSC2011, T  
500  
250  
kHz  
TSC2012  
330  
170  
TSC2012, T  
min  
R = 10 kΩ, C = 100 pF, V = 1 V  
icm  
l
l
TSC2010, Vsense = 120 mV  
TSC2010, T < T < T  
3.0  
2.7  
3.9  
3.5  
2.8  
min  
max  
SR  
Slew rate  
TSC2011, Vsense = 40 mV  
TSC2011, T < T < T  
2.7  
2.5  
V/µs  
min  
max  
TSC2012, Vsense = 24 mV  
TSC2012, T < T < T  
2.0  
1.8  
min  
max  
Noise, RTI  
0.1 Hz to 10 Hz  
f = 1 kHz  
37  
µVpp  
E
n
Spectral density, RTI  
100  
nV/√Hz  
Shutdown function (active high)  
V
V
0.3xV  
Logical low level  
Logical high level  
Leakage current  
0
il  
cc  
V
0.7xV  
V
cc  
ih  
cc  
I
ih  
V
V
= V (Shutdown mode)  
cc  
0.9  
µA  
shdn  
shdn  
= 2.7 V to 0 V, R = 10 kΩ  
l
T
Turn-on time  
Turn-off time  
µs  
µs  
TSC2011  
6
8
on  
off  
TSC2010, TSC2012  
V
= 0 V to 2.7 V, R = 10 kΩ  
l
shdn  
T
TSC2011  
4
5
TSC2010, TSC2012  
DS13057 - Rev 4  
page 6/54  
TSC2010, TSC2011, TSC2012  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
I
Output leakage current  
Shdn active  
50  
nA  
out  
1. RTI stands for “Related to input”.  
2. =(V ) – (V ).  
V
sense  
in+  
in-  
DS13057 - Rev 4  
page 7/54  
 
 
TSC2010, TSC2011, TSC2012  
Electrical characteristics  
Table 5. Electrical characteristics (Vcc = 5 V, Vicm = 12 V, T = 25 °C unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Power supply  
V
= -20 to 70 V  
1.6  
20  
2.4  
2.4  
icm  
Current consumption  
mA  
T
< T < T  
max  
min  
I
cc  
V
= - 20 to 70 V  
50  
icm  
Current consumption with  
shutdown active  
µA  
dB  
150  
T
< T < T  
max  
min  
80  
75  
100  
V
cc  
= 2.7 to 5.5 V  
SVR  
Supply voltage rejection  
T
< T < T  
min  
max  
Input  
V
= 1 V  
200  
700  
icm  
T
< T < T  
min  
max  
Offset voltage (RTI) (1)  
|V  
os  
|
µV  
V
= 12 V  
500  
icm  
T
< T < T  
1100  
min  
max  
V
V
V
= 1 V, T  
< T < T  
5
8
icm  
min max  
|ΔV /ΔT|  
Offset drift vs. temperature  
Common mode rejection  
Input bias current  
µV/°C  
dB  
os  
= 12 V, T  
< T < T  
max  
icm  
min  
= -20 to 70 V, DC mode  
90  
85  
120  
350  
100  
icm  
min  
CMR  
T
< T < T  
max  
max  
V
T
= 12 V  
icm  
I
ib+  
< T < T  
, V  
= -20 to 70 V  
icm  
-400  
-150  
600  
350  
min  
µA  
V
= 12 V  
icm  
min  
I
ib-  
Input bias current  
T
< T < T  
, V = - 20 to 70 V  
icm  
max  
max  
max  
max  
TSC2010  
< T < T  
238.3  
237.1  
T
min  
TSC2011  
< T < T  
78  
Vsense operating range with  
Eg ≤ 0.3% (2)  
|V  
|
mV  
sense  
T
77.6  
min  
TSC2012  
< T < T  
46.9  
45.7  
T
min  
Output  
TSC2010  
TSC2011  
TSC2012  
20  
60  
G
Gain  
V/V  
%
100  
ΔV = 100 mV to (V - 100 mV)  
0.3  
0.3  
out  
cc  
Eg  
Gain error vs. temperature  
T
< T < T  
min  
min  
max  
T
< T < T  
= 12 V  
ΔEg/ΔT  
NLE  
Gain error drift  
Linearity error  
25  
ppm/°C  
%
max  
V
0.03  
15  
icm  
I
= 0.2 mA  
30  
35  
source  
V
- V  
oh  
Drop voltage output high  
mV  
cc  
T
< T < T  
max  
min  
DS13057 - Rev 4  
page 8/54  
 
TSC2010, TSC2011, TSC2012  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
I
= 0.2 mA  
26  
40  
50  
sink  
V
Output voltage low  
mV  
ol  
T
< T < T  
max  
min  
Sink mode  
< T < T  
25  
15  
36  
25  
50  
60  
T
min  
max  
I
Output current  
mA  
out  
Source mode  
12  
8
45  
55  
T
I
< T < T  
max  
min  
= -10 to +10 mA  
Reg Load Load regulation  
0.3  
1.5  
mV/mA  
out  
OFFSET adjustment  
R
Ratiometric accuracy  
Accuracy, RTO  
0.5  
0.1  
V/V  
%
t
Voltage applied to Vref1 and Vref2 in  
parallel  
Acc  
Dynamic performance  
R = 10 kΩ, C = 100 pF  
l
l
TSC2010  
TSC2010, T  
650  
330  
600  
300  
390  
200  
820  
750  
490  
< T < T  
< T < T  
< T < T  
min  
min  
max  
max  
max  
BW  
Small signal -3 dB bandwidth TSC2011  
TSC2011, T  
kHz  
TSC2012  
TSC2012, T  
min  
R = 10 kΩ, C = 100 pF, V = 1 V  
icm  
l
l
TSC2010, Vsense = 230 mV  
TSC2010, T < T < T  
5.7  
4.4  
7.5  
7
min  
max  
SR  
Slew rate  
TSC2011, Vsense = 78 mV  
TSC2011, T < T < T  
5.4  
4.1  
V/µs  
min  
max  
TSC2012, Vsense = 47 mV  
TSC2012, T < T < T  
4.4  
3.2  
5.2  
min  
max  
Noise, RTI  
0.1 Hz to 10 Hz  
f = 1 kHz  
37  
µVpp  
E
n
Spectral density, RTI  
100  
nV/√Hz  
Shutdown function (active high)  
V
V
0.3xV  
Logical low level  
Logical high level  
Leakage current  
0
il  
cc  
V
0.7xV  
V
cc  
ih  
cc  
I
ih  
V
V
= V (Shutdown mode)  
cc  
1.2  
µA  
shdn  
shdn  
= 5 V to 0 V, R = 10 kΩ  
l
T
Turn-on time  
Turn-off time  
µs  
µs  
TSC2011  
6
8
on  
off  
TSC2010, TSC2012  
V
shdn  
= 0 V to 5 V, R = 10 kΩ  
l
T
TSC2011  
4
5
TSC2010, TSC2012  
DS13057 - Rev 4  
page 9/54  
TSC2010, TSC2011, TSC2012  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
I
Output leakage current  
Shdn active  
50  
nA  
out  
1. RTI stands for “Related to input”.  
2. = (V ) – (V ).  
V
sense  
in+  
in-  
DS13057 - Rev 4  
page 10/54  
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
4.1  
Typical characteristics  
TSC2011 is used for typical characteristics, unless otherwise noted.  
Figure 3. Supply current vs. supply voltage  
Figure 4. Supply current vs. input common mode  
1.9  
1.9  
Vref=Vcc/2  
Vsense=0V  
T=25°C  
Vicm=2.5V  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
Vicm=0V  
Vicm=12V  
Vicm=70V  
Vcc=5V  
Vcc=3.3V  
Vcc=2.7V  
Vref=Vcc/2  
Vsense=0V  
T=25°C  
2.8  
3.1  
3.5  
3.9  
4.2  
4.5  
4.9  
5.3  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
Vicm (V)  
Supply voltage (V)  
Figure 6. Supply current vs. input common mode with  
active shutdown mode  
Figure 5. Supply current vs. temperature  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
24  
22  
20  
18  
16  
Vicm=-20V  
Vicm=0V  
Vicm=12V  
Vicm=70V  
Vcc=5V  
14  
12  
10  
8
Vcc=3.3V  
Vicm=48V  
Vref=Vcc/2  
SHDN=Vcc  
Vsense=0V  
T=25°C  
6
Vcc=2.7V  
Vref=Vcc/2  
Vsense=0V  
Vcc=5V  
4
2
0
-20  
-40 -20  
0
20  
40  
60  
80  
100 120  
-10  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (°C)  
Vicm (V)  
DS13057 - Rev 4  
page 11/54  
 
 
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 7. Input bias current vs. input common mode with  
shutdown active  
Figure 8. Input bias current vs. temperature VCC = 2.7 V  
600  
500  
400  
400  
300  
Iibp  
300  
200  
100  
0
Iibp 25°C  
Iibp -40 °C  
200  
100  
Iibn  
Iibn [-40° : 125°]  
0
-100  
-200  
-300  
-400  
-500  
-600  
-100  
Iibp 125°C  
Vref=Vcc/2  
-200  
SHDN=Vcc  
Vsense=0V  
T=25 °C  
Vref=VCC/2  
Vsense=0V  
Vcc=2.7V  
-300  
Vcc=2.7 to 5.5V  
-400  
-20 -10  
0
10  
20  
30  
40  
50  
60  
70  
-20 -10  
0
10  
20  
30  
40  
50  
60  
70  
Vicm (V)  
Vicm (V)  
Figure 9. Input bias current vs. temperature with VCC = 5 V  
Figure 10. Input offset voltage vs. temperature  
600  
500  
400  
700  
600  
500  
Vicm=48V  
Vicm=12V  
Vicm=70V  
400  
300  
200  
100  
0
Iibp -40 °C  
300  
200  
100  
0
Vicm=-20V  
Iibp 25°C  
Iibn [-40 °:125 °]  
Vicm=0V  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-100  
-200  
-300  
-400  
-500  
-600  
Iibp 125°C  
Vref=Vcc/2  
Vsense=0V  
Vcc=5V  
Vref=Vcc/2  
Vsense=0V  
Vcc=5V  
-20 -10  
0
10  
20  
30  
40  
50  
60  
70  
-40 -20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Vicm (V)  
DS13057 - Rev 4  
page 12/54  
 
 
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 11. Input offset voltage vs. input common mode  
with VCC = 2.7 V  
Figure 12. Input offset voltage vs. input common mode  
with VCC = 5 V  
700  
600  
700  
600  
T=125°C  
T=125°C  
500  
500  
400  
400  
300  
200  
T=25 °C  
T=25°C  
T=85°C  
T=85 °C  
300  
200  
100  
0
-100  
100  
T=-20°C  
T=0°C  
0
T=-20°C  
T=-40°C  
-100  
T=-40°C  
-200  
-300  
-400  
-200  
-300  
T=0°C  
-400  
Vref=Vcc/2  
Vsense=0V  
Vref=Vcc/2  
-500  
-500  
Vsense=0V  
Vcc=5V  
-600  
-700  
Vcc=2.7V  
-600  
-700  
-20 -10  
0
10  
20  
30  
40  
50  
60  
70  
-20 -10  
0
10  
20  
30  
40  
50  
60  
70  
Vicm(V)  
Vicm (V)  
Figure 13. Input offset voltage vs. supply voltage  
Figure 14. Output current vs. output voltage  
40  
500  
35  
30  
25  
20  
15  
10  
5
400  
300  
200  
100  
0
Vicm=12V  
Isink  
Vicm=5V  
Vcc=2.7V  
Vcc=3.3V  
Vcc=5.5V  
0
-5  
Vicm=1V  
Vicm=48V  
Vicm= -20V  
Vicm= -10V  
-100  
-200  
-300  
-400  
-500  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
Vicm=70V  
Vref=Vcc/2  
Vsense=100mV  
Vicm=12V  
Vref=Vcc/2  
Vsense=0V  
T=25°C  
Isource  
T=25°C  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
3.0  
3.5  
4.0  
Vcc (V)  
4.5  
5.0  
5.5  
Vout (V)  
DS13057 - Rev 4  
page 13/54  
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 15. Output current vs. temperature with VCC = 5 V Figure 16. Output current vs. temperature with VCC = 2.7 V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Vcc=2.7V  
Vicm=12V  
Vref=Vcc/2  
Vsense=100mV  
Isink  
Isink  
Isource  
Vcc=5V  
Vicm=12V  
Vref=Vcc/2  
Vsense=100mV  
Isource  
0
0
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
Figure 17. Voh and Vol vs. input common mode voltage  
with VCC = 5 V  
Figure 18. (Output voltage + Vref) vs. Vsense  
unidirectionnal with VCC = 5 V  
6.0  
Vref=0V  
Vcc=5V  
T=25 °C  
Unidirectionnal  
5.4  
4.8  
4.2  
3.6  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
-0.6  
Vcc=5V; Vref=Vcc/2  
Vsense=100mV  
Rl=10kconnected to Vcc/2  
T=25 °C  
43  
34  
26  
VOL  
VOH  
17  
9
0
-10  
0
10 20 30 40 50 60 70 80 90  
Vsense (mV)  
-20 -10  
0
10  
20  
30  
40  
50  
60  
70  
Vicm (V)  
DS13057 - Rev 4  
page 14/54  
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 19. (Output voltage + Vref) vs. Vsense bidirectionnal  
with VCC = 5 V  
Figure 20. Output rail linearity vs. load with VCC = 5 V  
5.5  
6.0  
Vcc=5V  
Vref=Vcc/2  
Vcc=5V  
T=25°C  
Bidirectionnal  
5.4  
Vicm=12V  
Vref=Vcc/2  
T=25°C  
No load  
Rl=10kΩ  
4.8  
4.2  
3.6  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
-0.6  
5.0  
4.5  
Rl=1kΩ  
0.0  
Rl=2kΩ  
Rl=4.7k Ω  
-0.5  
-50 -40 -30 -20 -10  
0
10 20 30 40 50  
Vsense (mV)  
Vsense (mV)  
Figure 21. Linearity vs. Vsense with VCC = 5 V  
Figure 22. Linearity vs. Vsense and temperature  
0.15  
0.15  
0.12  
0.09  
0.06  
0.12  
0.09  
0.06  
Vicm=1V  
Vicm=-10V  
0.03  
T=25°C  
0.03  
0.00  
0.00  
-0.03  
-0.06  
-0.09  
-0.12  
-0.15  
-0.03  
-0.06  
-0.09  
-0.12  
-0.15  
T=-40°C  
Vicm=12V  
T=125°C  
Vref=Vcc/2  
Vcc=5V  
T=25°C  
Vref=Vcc/2  
Vcc=5V  
Vicm=12V  
-50 -40 -30 -20 -10  
0
10 20 30 40 50  
-50 -40 -30 -20 -10  
0
10 20 30 40 50  
Vsense(mV)  
Vsense(mV)  
DS13057 - Rev 4  
page 15/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 24. Gain error vs. input common mode and  
temperature  
Figure 23. Gain error vs. input common mode  
0.30  
0.30  
0.25  
0.20  
0.25  
0.20  
0.15  
0.15  
0.10  
T=125°C  
0.10  
Vcc=2.7V  
0.05  
Vcc=3.3V  
Vcc=5V  
T=25°C  
0.05  
0.00  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
T=-40°C  
Vref=Vcc/2  
T=25°C  
Vref=Vcc/2  
Vcc=5V  
-20 -10  
0
10  
20  
30  
40  
50  
60  
70  
-20 -10  
0
10  
20  
30  
40  
50  
60  
70  
Vicm(V)  
Vicm(V)  
Figure 25. Load regulation with VCC = 5 V  
Figure 26. Gain vs. frequency  
1.30  
1.25  
1.20  
1.15  
1.10  
Vcc = 3.3 V  
Vcc = 5 V  
40  
20  
0
Isink  
Isource  
Vcc = 2.7 V  
Vicm=70V  
Vicm=12V  
Vicm=-20V  
Vicm=0V  
-20  
-40  
Vref=Vcc/2  
Vsense=19.8mV  
Vcc=5V  
Vicm = 12 V, Vref = Vcc / 2  
Rl = 10k,Cl = 100 pF connected to Vcc / 2  
T=25°C  
-15.0  
-10.0  
-5.0  
0.0  
5.0  
10.0  
15.0  
1
10  
100  
1000  
10000  
Iout (mA)  
Frequency (kHz)  
DS13057 - Rev 4  
page 16/54  
 
 
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 27. Gain vs. frequency VCC = 5 V  
Figure 28. Gain vs. frequency different capacitive load  
TSC2012  
40  
20  
0
40  
CI = 100 pF  
TSC2011  
20  
TSC2010  
CI = 330 pF  
0
CI = 470 pF  
-20  
-20  
-40  
Vcc=5V, Vicm=12V, Vref=Vcc/2  
-40  
Vcc = 5 V, Vicm = 12 V, Vref = Vcc/2  
Rl = 10k,Cl = 10 pF connected to Vcc/2  
RI=10kΩ connected to Vcc/2  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Figure 29. Gain vs. frequency different capacitive load  
(TSC2010)  
Figure 30. Gain vs. frequency different capacitive load  
(TSC2012)  
40  
40  
Cl = 100 pF  
Cl = 100 pF  
20  
20  
Cl = 330 pF  
Cl = 330 pF  
0
Cl = 470 pF  
Cl = 680 pF  
0
-20  
-40  
Cl = 470 pF  
Cl = 680 pF  
-20  
Vcc = 5 V, Vicm = 12 V, Vref = Vcc/2  
Rl = 10 kΩ connected to Vcc/2  
-40  
Vcc = 5 V, Vicm = 12 V, Vref = Vcc / 2  
RI = 10kΩ connected to Vcc / 2  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
DS13057 - Rev 4  
page 17/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 31. Bandwidth vs. input common mode  
Figure 32. Bandwidth vs. input common mode (TSC2010)  
1.2M  
1.1M  
1.1M  
T = -40°C  
T = 25°C  
1.0M  
900.0k  
800.0k  
700.0k  
600.0k  
500.0k  
400.0k  
300.0k  
200.0k  
100.0k  
0.0  
1.0M  
T = -40°C  
T = 25°C  
900.0k  
800.0k  
700.0k  
T =125°C  
600.0k  
T = 125°C  
500.0k  
400.0k  
300.0k  
Vref = Vcc/2  
Vcc= 5 V  
Rl = 10kΩ,Cl = 100pF connectedto Vcc/2  
200.0k  
Vref=Vcc/2  
Vcc=5V  
100.0k  
0.0  
Rl=10k, Cl=100pF connected to Vcc/2  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
-20  
-10 10 20 30 40  
0
50  
60  
70  
Vicm (V)  
Vicm (V)  
Figure 33. Bandwidth vs. input common mode (TSC2012)  
Figure 34. Overshoot vs. capacitive load  
40  
35  
30  
25  
20  
15  
10  
5
1.2M  
1.1M  
TSC2011  
Vsense step= 10mVpp  
1.0M  
T = -40°C  
T = 25°C  
TSC2010  
Vsense step= 30mVpp  
900.0k  
800.0k  
700.0k  
600.0k  
T = 125°C  
500.0k  
400.0k  
300.0k  
TSC2012  
Vsense step= 6 mVpp  
Vref = Vcc/2  
Vcc= 5 V  
200.0k  
Vcc= 5 V,  
Vref = Vcc/2, Vicm [-20V : 70V],  
Rl = 10k, Cl connect to Gnd  
Rl = 10kΩ,Cl = 100pF connectedto Vcc/2  
100.0k  
0.0  
0
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
100  
200  
300  
400  
500  
600  
700  
Vicm (V)  
Capacitive load (pF)  
DS13057 - Rev 4  
page 18/54  
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 35. Small signal response with VCC = 5 V  
Figure 36. Small signal response with VCC = 5 V  
(TSC2010)  
1.0  
0.5  
50  
25  
0
Vout  
Vsense  
0.0  
-0.5  
-25  
Vcc=5V, Vicm=12V, Vsense=10mVpp  
T=25°C, Cl=100pF  
-1.0  
-60µ  
-50  
20µ  
-40µ  
-20µ  
0
Time (s)  
Figure 37. Small signal response with VCC = 5 V  
(TSC2012)  
Figure 38. Small signal response with VCC= 2.7 V  
1.0  
0.5  
50  
25  
0
1.0  
50  
Vout  
0.5  
25  
0
Vout  
Vsense  
0.0  
0.0  
Vsense  
-0.5  
-1.0  
-25  
-50  
-0.5  
-25  
Vcc=2.7V, Vicm=12V, Vsense=10mVpp  
T=25°C, Cl=100pF  
Vcc = 5 V, Vicm = 12 V, Vsense = 6 mVpp  
T = 25 °C, Cl = 100 pF  
-1.0  
-60µ  
-50  
20µ  
-60µ  
-40µ  
-20µ  
0
20µ  
-40µ  
-20µ  
0
Time (s)  
Time (s)  
DS13057 - Rev 4  
page 19/54  
 
 
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 40. Large signal response with VCC = 5 V  
(TSC2010)  
Figure 39. Large signal response with VCC = 5 V  
3
2
50  
25  
0
3
2
150  
125  
100  
75  
1
1
50  
25  
Vsense  
Vsense  
Vout  
Vout  
0
0
0
-25  
-50  
-75  
-100  
-125  
-150  
Vcc = 5 V,  
Vcc=5V,  
-1  
-2  
-3  
-1  
-2  
-3  
Vicm = 12 V,  
Vsense = 230 mVpp  
Cl =100 pF,  
T = 25 °C  
Vicm=12V,  
Vsense=80mVpp  
Cl=100pF,  
T=25°C  
-25  
-50  
15µ  
-5µ  
0
5µ  
10µ  
15µ  
-5µ  
0
5µ  
10µ  
Time (s)  
Time (s)  
Figure 41. Large signal response with VCC = 5 V  
(TSC2012)  
Figure 42. Large signal response with VCC = 2.7 V  
3
2
50  
25  
0
3
2
150  
125  
100  
75  
1
50  
1
25  
Vsense  
Vout  
Vsense  
Vout  
0
0
0
-25  
-50  
-75  
-100  
-125  
-150  
Vcc =5 V,  
-1  
-2  
-3  
Vcc=2.7V,  
-1  
-2  
-3  
Vicm = 12 V,  
Vsense = 45 mVpp  
Cl = 100 pF,  
T = 25°C  
Vicm=12V,  
Vsense=40mVpp  
Cl=100pF,  
T=25°C  
-25  
-50  
-5µ  
0
5µ  
10µ  
15µ  
-5µ  
0
5µ  
10µ  
15µ  
Time (s)  
Time (s)  
DS13057 - Rev 4  
page 20/54  
 
 
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 43. 12 V common mode step response recovery  
Figure 44. 50 V common mode step response recovery  
5
4
70  
60  
50  
40  
30  
20  
10  
0
5
4
20  
15  
10  
5
Vicm  
Vicm  
Vout  
Vout  
3
3
2
2
0
1
-10  
-20  
-30  
-40  
-50  
-60  
-70  
1
-5  
Vcc=5V,  
Vcc=5V,  
0
0
Vicm edge 10ns,  
Vsense=0V, Vref=2.5V  
Rl=10k, Cl=100pF,  
T=25°C  
Vicm edge 10ns,  
Vsense=0V, Vref=2.5V  
Rl=10k, Cl=100pF,  
T=25°C  
-10  
-15  
-20  
-1  
-2  
-1  
-2  
-10µ  
0
10µ  
20µ  
30µ  
-10µ  
0
10µ  
20µ  
30µ  
Time (s)  
Time (s)  
Figure 45. PSRR vs. frequency  
Figure 46. CMRR vs. frequency  
-120  
-100  
-80  
-60  
-40  
-20  
0
-120  
-100  
-80  
-60  
-40  
-20  
0
Vcc=3.3V  
Vcc=2.7V  
Vcc=3.3V  
Vcc=2.7V  
Vcc=5V  
Vcc=5V  
Vicm=12V  
Vicm=12V  
Vripple=100mVpp  
T=25°C  
Vripple=100mVpp  
T=25°C  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency(Hz)  
Frequency(Hz)  
DS13057 - Rev 4  
page 21/54  
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 47. Positive overvoltage recovery VCC = 2.7 V  
Figure 48. Negative overvoltage recovery VCC = 2.7 V  
100  
3
2
1
0
200  
150  
100  
50  
Vcc=2.7V,  
Vicm=12V,  
CI=100pF  
T=25°C  
0
50  
Vsense  
0
-1  
-50  
Vout  
Vout  
Vsense  
-100  
-150  
-200  
Vcc=2.7V,  
Vicm=12V,  
CI=100pF,  
T=25°C  
0
-2  
-3  
-50  
-100  
6µ  
-3µ  
-2µ  
-1µ  
0
1µ  
2µ  
3µ  
4µ  
5µ  
6µ  
-3µ  
-2µ  
-1µ  
0
1µ  
2µ  
3µ  
4µ  
5µ  
Time (s)  
Time (s)  
Figure 49. Overvoltage recovery vs. Vicm VCC = 5 V  
Figure 50. Noise vs. frequency  
2.0  
10000  
1000  
100  
10  
Vref = Vcc / 2  
Vcc = 5 V,  
T = 25 °C  
1.8  
Vout = 100 mV drop after Vsense edge  
5V  
1.5  
Negative recovery time  
3.3V  
1.3  
1.0  
0.8  
0.5  
2.7V  
Vicm=Vcc/2  
Tamb=25°C  
Positive recovery time  
0.3  
1
0.0  
-20  
100m  
1
10  
100  
1k  
10k 100k 1M  
-10  
0
10  
20  
30  
40  
Frequency (Hz)  
Vicm (V)  
DS13057 - Rev 4  
page 22/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Typical characteristics  
Figure 52. Output voltage vs. Vsense beyond the sense  
operating  
Figure 51. ON/OFF delay for shutdown mode  
3
4.0  
Vout phase reversal for Vsense<-4V  
3.2  
2.4  
2
1
VSHDN  
1.6  
Vout  
0.8  
0
0.0  
Vref=Vcc/2  
Vsense=20mV,  
Vcc=5V, Vicm=12V,  
RI=10kconnected to Vcc-,  
T=25°C  
-0.8  
-1.6  
-2.4  
-3.2  
-4.0  
-1  
-2  
-3  
Vref=Vcc/2  
Vcc=5V  
Vicm=12V  
T=25°C  
-10µ  
0
10µ 20µ 30µ 40µ 50µ 60µ 70µ  
Time (s)  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
Vsense (V)  
Figure 53. Power up time delay  
6
5
Vcc  
4
3
2
Vout  
1
0
Vref=0V  
Vsense=20mV,  
Vcc=5V, Vicm=12V,  
RI=10k, Cl=100pF connected to Vcc-,  
T=25°C  
-1  
-2  
-3  
-40µ -20µ  
0
20µ 40µ 60µ 80µ 100µ 120µ 140µ  
Time (s)  
DS13057 - Rev 4  
page 23/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Application information  
5
Application information  
5.1  
Overview  
The TSC2011 is especially designed to accurately measure the current by amplifying the voltage across a shunt  
resistor connected to its input. This voltage drop Vsense is then amplified by an instrumentation amplifier providing  
a max. input offset voltage of 500 µV (25°C) for an input common voltage of 12 V.  
The TSC2011 is a fixed gain current sensing amplifier of 60 V/V. Thanks to a thin film resistor, the TSC2011 offers  
an extremely precise gain and a very high CMRR performance even in a high frequency range. Moreover, by  
fixing the output common mode voltage, the TSC2011 can be either used as unidirectional or bidirectional current  
sensing amplifier.  
The TSC2011 provides an extended input common range from - 20 V below the negative supply voltage, and up  
to 70 V allowing either low-side or high-side current sensing, while the TSC2011 device can operate from 2.7 to  
5.5 V.  
The parameters are very stable in the full Vcc range and characterization curves show the TSC2011  
characteristics at 2.7 V and 5.0 V. Moreover, the main specifications are guaranteed in an extended temperature  
range from -40 to 125 °C.  
5.2  
Theory of operation  
The main feature of the TSC2011 is the ability to work with an input common mode voltage largely beyond the  
power supply Vcc range (2.7 V to 5.5 V). It is ideal, for example for automotive applications where a reverse  
battery can be supported by the TSC2011 without any damage. It also works with 48 V battery applications as the  
TSC2011 can support and measure the current on line at voltage up to 70 V. No additional protective components  
are needed in that range.  
Vcc < Vicm < 70 V  
In this case, the power supply of the TSC2011 is issued by the input and not only by the Vcc power supply. More  
precisely, a current is drawn by the common mode rail as depicted in the Figure 54. Power supply when Vicm  
Vcc to power it.  
>
Figure 54. Power supply when Vicm > Vcc  
DS13057 - Rev 4  
page 24/54  
 
 
 
 
TSC2010, TSC2011, TSC2012  
Theory of operation  
In Figure 55. Input bias current vs. common mode voltage Vcc = 5 V, the current used to power the TSC2011  
increases together with the Vicm voltage. The slope represents the internal common mode resistances. The most  
part of the current is drawn by the pin In+ as we can see on the iibp curve of Figure 9. Input bias current vs.  
temperature with VCC = 5 V the current is around 450 µA. Some of it being Vicm / (R4+R1) and some supplies the  
input stage of the circuit, roughly 250 µA. On the In- pin 250 µA is drawn only.  
So due to the architecture of the TSC2011, the current to be measured must be much larger than the input bias  
current. In case of small current to measure the Iib current must be taken into account.  
Figure 55. Input bias current vs. common mode voltage Vcc = 5 V  
600  
500  
400  
300  
Iibp  
200  
100  
Iibn  
0
-100  
-200  
-300  
-400  
-500  
-600  
Vref=Vcc/2  
Vsense=0V  
Vcc=5V  
-20 -10  
0
10  
20  
30  
40  
50  
60  
70  
Vicm(V)  
Gnd < Vicm < Vcc  
In this manner, the TSC2011 is only powered by the power supply Vcc, and the iib currents are very close to 0 µA  
and do not have any impact on the current measurement.  
- 20 V < Vicm < Gnd  
The TSC2011 is fully functional in this range of common mode voltage and has also been characterized.  
As the high positive common mode voltage, in this specific range, the TSC2011 is also powered by the input, see  
Figure 56. Power supply when Vicm < Gnd.  
DS13057 - Rev 4  
page 25/54  
 
TSC2010, TSC2011, TSC2012  
Theory of operation  
Figure 56. Power supply when Vicm < Gnd  
Most part of the current is still due to the pin In+ as we can see on the iibp curve of Figure 9. Input bias current vs.  
temperature with VCC = 5 V. The current is about - 300 µA, some of it being Vicm / (R4 + R1) and some other  
supplies the circuit, roughly 250 µA. A small part of the current, coming from the common mode rail, is also due to  
the input In– in order to power the TSC2011, in a range of - 100 µV.  
Output common mode range  
The TSC2011 output common mode voltage level can be set thanks to voltages applied on the Vref1 and Vref2  
pins. These two pins allow the device to be set either in bidirectional or in unidirectional operation. The voltage  
applied to those pins must not exceed the Vcc range. The different configurations are detailed in the section  
Unidirectionnal/Bidirectionnal operation.  
As depicted by the Figure 57. Vref powered by an external voltage source, Vref1 and Vref2 pins can be driven by  
an external voltage source capable of sourcing/sinking a current following the equation below:  
Vicm − Vref  
Iref =  
(1)  
5kΩ + 275kΩ + 25kΩ  
Figure 57. Vref powered by an external voltage source  
DS13057 - Rev 4  
page 26/54  
 
 
TSC2010, TSC2011, TSC2012  
Theory of operation  
When the output common mode voltage is supplied by an external power supply, in order to improve the output  
voltage measurement, it is recommended to measure the Vout differentially with respect to Vref voltage. It provides  
a better CMRR measurement, better noise immunity and also a more accurate Vout voltage. A decoupling  
capacitance of 1 nF minimum can be also added to better filter the power supply, and can also be used as a tank  
capacitance in case an ADC is connected to this reference voltage.  
DS13057 - Rev 4  
page 27/54  
TSC2010, TSC2011, TSC2012  
Unidirectionnal / bidirectionnal operation  
5.3  
Unidirectionnal / bidirectionnal operation  
Unidirectional operation  
Unidirectional mode of operation allows the device to measure the current through a shunt resistor in one  
direction only. The output reference can be ground or Vcc and can be set by using Vref1 and Vref2 pins for  
adjustment.  
Ground referenced  
Figure 58. Output reference to ground  
In this configuration Vref1 pin and Vref2 pin are connected together to the ground. The output common mode  
voltage is then automatically set to GND when no current flows through the Rshunt resistance. This configuration  
allows the full scale output in unidirectional mode. It allows a current to be measured as described in  
Figure 58. Output reference to ground.  
Vcc referenced  
Figure 59. Output reference to Vcc  
DS13057 - Rev 4  
page 28/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Unidirectionnal / bidirectionnal operation  
In this configuration Vref1 pin and Vref2 pin are connected together to the Vcc power supply. The output common  
mode voltage is then automatically set to Vcc voltage when no current flows through the Rshunt resistance. This  
configuration allows the full scale output in unidirectional mode. It measures the current as described in  
Figure 59. Output reference to Vcc.  
Bidirectional operation  
Bidirectional mode of operation allows the device to measure currents through a shunt resistor in two directions.  
The output reference can be set anywhere within the power supply range. If the output common mode voltage is  
set at mid-range, the full scale current measurement range is equal in both directions. This is achieved by  
connecting one Vref pin to Vcc and the other Vref pin to Gnd as described by Figure 60. Split supply. It can be  
done as well connecting both Vref pins to Vcc / 2 voltage as described by Figure 61. External supply. In case the  
current measurement is not equal in both directions, user can set the output in a non-symmetrical configuration,  
adjusting Vref according to the user's needs.  
Split supply  
Figure 60. Split supply  
The great advantage of this configuration, is that the TSC2011 can be used in bidirectional mode with an output  
common mode voltage set at the middle of scale, with an accuracy of 0.1%, without any added external  
component or power supply. This configuration creates a midscale offset ratiometric to the power supply.  
DS13057 - Rev 4  
page 29/54  
 
TSC2010, TSC2011, TSC2012  
RSENSE selection  
External  
Figure 61. External supply  
In this configuration, Vref1 pin and Vref2 pin are connected together to a reference voltage. The output common  
mode voltage is then automatically set to this reference voltage value when no current flows through the Rshunt  
resistance. This configuration adjusts the output offset as needed by the application. A DAC for calibration of the  
analog chain could also be used.  
5.4  
R
SENSE  
selection  
The selection of the shunt resistor is a tradeoff between the dynamic range and power dissipation.  
Generally, in high current sensing application, the main focus is to reduce as much as possible the power  
dissipation (I²R) by choosing the smallest value of shunt. It could be quite easy if a full scale current to measure is  
small.  
In low current applications the Rsense value could be higher, to minimize the impact of the offset voltage on the  
circuit. Due to input bias current of several µA, the TSC2011 cannot measure the current in the same range, when  
the common mode voltage overpasses the power supply voltage (refer to section about theory of operation).  
The tradeoff is mainly when a dynamic range of current to measure is large, meaning ability to measure with the  
same shunt value from low current to high current. Generally, the current full scale (Imax-Imin) defines the shunt  
value thanks to the full output voltage range, the gain of the TSC2011. The TSC2011 can work with a full scale  
∆Vout = 100 mV to Vcc - 100 mV with maximum gain accuracy of 0.3%.  
At first order, the full current range to measure through Rsense can be defined by equation 2, just by taking the  
gain error and input offset voltage as inaccuracy parameters:  
Vcc − 200mV  
TSC_Gain 1 + Eg  
Isense_full_scale*Rsense =  
2 Vio  
(2)  
The Vsense parameter is defined in the electrical characteristics following the equation 2.  
Its purpose is to highlight that the product Rsense*TSC_gain is determined by the application, and that once one of  
these two parameters is selected, the maximum value of the second one can be calculated.  
If power dissipation in the shunt is the key point, RSense should be chosen as follows:  
Pmax  
Rsense ≤  
Imax²  
and then choosing the right gain. For example, for high current to sense, the TSC2012 can offer a gain of  
100, in this manner a smaller shunt can be used and so limited power losses. However accuracy can be  
lower.  
Or choosing the product available on the shelf, and then size the shunt resistor value accordingly.  
DS13057 - Rev 4  
page 30/54  
 
 
TSC2010, TSC2011, TSC2012  
Input offset voltage drift overtemperature  
5.5  
Input offset voltage drift overtemperature  
The maximum input offset voltage drift overtemperature is defined as the offset variation related to the offset value  
measured at 25 °C. The signal chain accuracy at 25 °C can be compensated during production at application  
level. The maximum input voltage drift overtemperature enables the system designer to anticipate the effect of  
temperature variations.  
The maximum input voltage drift over temperature is computed using equation 3:  
ΔV  
io  
ΔT  
V
T
− V 25°C  
io  
io  
= max  
(3)  
T − 25°C  
Where T = -40 °C and 125 °C.  
The TSC2011 datasheet maximum value is guaranteed by measurements on a representative sample size  
ensuring a Cpk (process capability index) greater than 1.3.  
DS13057 - Rev 4  
page 31/54  
 
TSC2010, TSC2011, TSC2012  
Error calculation  
5.6  
Error calculation  
The principal source of error, such as: input offset voltage, gain error, common mode rejection ration, are  
described separately in the electrical characteristics. This chapter summarizes the most important error to take  
into account during a design phase.  
Input offset voltage error  
The equation 2 depicts a first order error calculation just by taking into account the input offset voltage. In a  
temperature environment, the deviation of the Vio and the error linked to the input offset on the output voltage can  
be written as equation 4:  
Vio Error = ± Vio ± Dvio/Dt *Gain  
(4)  
Gain error and shunt resistance accuracy  
Gain error = Gain 1 + εgain  
(5)  
(6)  
Rsense error = Gain 1 + εRsense  
Where εgain is the gain error 0.3% max for the TSC2011.  
Where εRsense is the shunt resistance error. Shunt resistors from 5 mΩ to 100 mΩ are available with 1%  
accuracy or better.  
CMR error  
In the electrical characteristics, CMR is specified at one input common mode voltage. So in order to take into  
consideration the variation of the input voltage offset depending the Vicm, the calculus must be done till this known  
point. Let us get the Vicm = 12 V as reference point.  
So the error on Vout due to a common mode voltage variation can be written as the equation 7:  
Vicm − 12V  
CMR error = ±  
*Gain  
(7)  
CMR  
Output common mode error (Vocm)  
This error can be taken into account when the output common mode voltage is set like suggested in the  
Figure 62. Schematic for Vocm error, and so by using the internal divider bridge. Otherwise it is important to take  
into consideration the error linked to the voltage source applied on the VRef1 pin and Vref2 pin.  
Figure 62. Schematic for Vocm error  
The divider bridge is made by two resistances of 50 kΩ given an output common mode voltage of:  
Vref1 + Vref2  
2
DS13057 - Rev 4  
page 32/54  
 
 
TSC2010, TSC2011, TSC2012  
Error calculation  
Due to a small mismatch of the internal resistance the error, on the output common mode voltage, can be  
described as equation 8:  
Vref1 + Vref2  
Vocm =  
. 1 + εAcc  
(8)  
2
Where εAcc is the accuracy referred to the output with a typical value of 0.1%.  
Noise  
The Section 4.1 expresses the noise referred to the input of the TSC2011. This device shows a 1/f noise until 10  
kHz frequency. Above this limit the white noise density is 29 nV/ Hz , until the bandwidth of the TSC2011.  
The noise can be then expressed as two terms, the former related to the 1/f noise and the latter due to the white  
noise. If we consider that there is no additional filter on the TSC2011 and it is only bandwidth limited, it can be  
considered that over the 750 kHz, there is an attenuation of the noise with a first order filtering. So the equivalent  
π
noise bandwidth is 750kHz .  
.
2
The RMS value of the output noise is the integration of the spectral noise over the bandwidth of interest and can  
be expressed as equation 9:  
2
π
2
9  
750000 .  
2
10000 29 . 10  
9  
29 . 10  
enRMS =  
df + ∫  
df *Gain  
(9)  
0.1  
0.1  
f
3
10 . 10  
Total error  
The maximum total error expected on the output of the device can be described as the sum of the different source  
described just above. The total output accuracy can be written as equation 10.  
Vicm − 12V  
Vout  
err  
= Gain*Rsense* Iload εgain + εRsense + Gain . Vio + Gain .  
+
(10)  
CMR  
Vocm εAcc + noise  
Iload is described in Figure 63. Input current and the output noise is described by the equation 9.  
Note that the input bias currents are not taken into account in this section, as they are already integrated in the  
Vsense. The Figure 63. Input current below depicts the current flowing from the source to the load when the input  
common mode voltage is higher than the supply voltage.  
Figure 63. Input current  
From a calculation approach, when Vicm voltage is beyond Vcc, Iload must be considered as the sum of Isource and  
Input bias current (Iib). Note that the input bias current on the pin – is largely lower and can be neglected.  
The Figure 63. Input current also expresses that the TSC2011 cannot measure the current in the same order as  
input bias current (several hundreds of µA).  
DS13057 - Rev 4  
page 33/54  
 
TSC2010, TSC2011, TSC2012  
Shutdown mode  
The linearity is not taken into account in the error calculus as it represents 0.03% of error only and it is negligible.  
Nevertheless, as the gain error has been calculated thanks to the best fit line approach, it gives the information  
that the gain error can be relatively constant throughout the linear input range of the TSC2011.  
The equation 10 has been described for a temperature of 25 °C. For sure with a temperature variation, Dvio/DT  
error term must be added. And if the power supply is susceptible to change, the SVR parameter must also be  
taken into account.  
Example  
Let us consider that the maximum total error can happen on the output of the TSC2011.  
Use case:  
Vcc = 5 V  
Vicm = 24 V  
Vocm = 2.5 V  
Temperature = 25 °C  
Iload = 5 A  
Shunt 5 mΩ with 1% accuracy  
Theoretically the expected output voltage should be Vout = Rshunt * Iload *60 + Vocm = 4 V.  
From the equations above, all the error terms are detailed by using the maximum value of the electrical  
characteristics (when available), in order to express as much as possible, the worst case condition. The % error  
on output of the following table is expressed in reference of Vout – Vref, so in this typical example: 1.5 V.  
Table 6. Gain error  
% error on  
Error source  
Gain error  
Calculus  
Output voltage error  
output  
0.3%  
2%  
3  
4.5 mV  
30 mV  
60*5 . 10 *5*0.3%  
V
error  
60*500µV  
io  
24V − 12V  
60*  
CMRR error  
error  
22.7 mV  
2.5 mV  
1.5%  
90  
10  
20  
V
2.5*0.1%  
0.2%  
ocm  
29nV  
π
2
0.4% (1)  
1.98 mV  
Noise  
60*  
10kHz* ln 10k − ln 0.1 + 750kHz* 0.1Hz  
RMS  
Hz  
60 mV  
Total  
4.4%  
+1.98 mV  
RMS  
1. The percentage is based on voltage peak value, which is 3 times RMS value.  
So the maximum output voltage in the worst case condition at ambient temperature is 4.060 V + 1.98 mVRMS  
instead of 4 V expected. This represents an error on the current reading about 4.4%. 1% more must be added  
due to the shunt accuracy.  
This calculus comes from all the maximum values and all the error terms which have been added to each other,  
meaning that the chance to get 4.4% precision in the use case above is extremely low and on the whole  
population, the error is largely smaller.  
5.7  
Shutdown mode  
If the SHDN pin is driven between 0.7 x Vcc and Vcc the TSC2011 enters low power shutdown mode, drawing less  
than 20 µA, over the Vcc and Vicm range. In SHDN mode the output is in HiZ state.  
DS13057 - Rev 4  
page 34/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Stability  
Although there is an internal current source of 500 nA on the SHDN pin, keeping a low state allowing the  
TSC2011 to work without any voltage applied on the SHDN pin, it is strongly recommended to apply the dedicated  
voltage on the SHDN pin to ensure the full functionality of the TSC2011, especially when fast common mode  
variation appears.  
The figure below depicts the architecture of the SHDN pin.  
Figure 64. SHDN pin  
With GND applied to SHDN pin the TSC2011 is in active mode  
With Vcc applied to SHDN pin the TSC2011 is in shutdown mode  
5.8  
Stability  
Driving switched capacitive loads  
Some ADCs get their signal thanks to a sample and hold capacitor. If before a sampling this capacitance is fully  
discharged, a fast current load can appear on the output of the TSC2011 during the sampling phase.  
The scope probe in the figure below shows the output voltage of the TSC2011 excited by a 40 pF capacitor with a  
3.3 Vpp signal at 50 kHz to simulate the sample and hold circuit of the ADC120.  
Figure 65. Capacitive load response at Vcc = 3.3 V  
8
7
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
5
4
Sample and hold  
3
2
1
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
Vout  
Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp  
T=25°C,  
50kHz square signal of 3.3V amplitude  
injected in the output through 40pF  
-4µ  
0
4µ  
8µ  
12µ  
Time (s)  
The ADC120 has a conversion rate of 50 ksps, which is perfect to sample and hold the output of the TSC2011  
without any error.  
The graph shows the behavior of the output of the TSC2011 under the worst case condition, as for example,  
when there is an ADC120 channel change between two measurements.  
DS13057 - Rev 4  
page 35/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Stability  
If a single channel is used, for sure the change on the sample and hold capacitance are very small, and so the  
recovery time is extremely low as described by the figure below.  
Figure 66. Capacitive load response at Vcc = 3.3 V with a step of 100 mV  
100  
80  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
60  
Sample and hold  
40  
20  
Vout  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-20  
-40  
-60  
-80  
-100  
Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp  
T=25°C,  
50kHz square signal of 100mV amplitude  
injected in the output through 40pF  
-4µ  
0
4µ  
8µ  
12µ  
Time (s)  
The effect of the ADC sampling and hold can be easily smoothed thanks to an RC filter. As suggested on the  
schematic below. The capacitor of the external filter must be chosen much higher than the internal ADC capacitor,  
in order to easily absorb the sudden voltage variation on the output due to the sampling and hold of the ADC. The  
resistance must be chosen accordingly to the application speed of the system in order not to impact the whole  
application. The main advantage of using an RC filter is to have an antialiasing system. For sure the used ADC  
must have sample and hold conversion in accordance with the RC filter value, in order to let the output recover  
before sampling.  
Figure 67. RC filter when driving ADC  
In the figure Figure 68. Capacitive load response at Vcc = 3.3 V with 720 kHz RC filter an Rs = 470 Ω resistance  
and a Ct = 470 pF capacitance have been set. Given a low-pass filter of 720 kHz and a response time of roughly  
660 ns.  
In the figure Figure 69. Capacitive load response at Vcc = 3.3 V with 194 kHz RC filter an Rs = 820 Ω resistance  
and a Ct = 1 nF capacitance have been set. Given a low-pass filter of 194 kHz and a response time of roughly 2.5  
µs.  
DS13057 - Rev 4  
page 36/54  
 
 
TSC2010, TSC2011, TSC2012  
Stability  
Figure 68. Capacitive load response at Vcc = 3.3 V with  
720 kHz RC filter  
Figure 69. Capacitive load response at Vcc = 3.3 V with  
194 kHz RC filter  
8
7
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
8
7
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
6
5
5
4
4
Sampleandhold  
Sampleandhold  
3
3
2
2
1
1
0
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
Vout  
Vout  
Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp  
T=25°C,  
Rs=820Ω,Ct=1nF  
50kHzsquaresignal of 3.3Vamplitude  
injectedintheoutputthrough40pF  
Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp  
T=25°C,  
Rs=470,Ct=470pF  
50kHz squaresignal of 3.3Vamplitude  
injectedintheoutput through40pF  
-4µ  
0
4µ  
8µ  
12µ  
-4µ  
0
4µ  
8µ  
12µ  
Time(s)  
Time(s)  
The value of the added external capacitor must be taken into account. Indeed, if this one is chosen with an  
excessive value and the serial resistance with a too small value, the risk of instability on the output of the  
TSC2011 is high.  
Driving large capacitive Cload  
Increasing the load capacitance produces gain peaking in the frequency response, with an overshoot and ringing  
in the step response.  
The figure below, shows the serial resistors that must be added to the output, to make a system stable. The  
chosen criteria ensures the stability of the system and it is an overshoot lower than 24%.  
Figure 70. Stability criteria with a serial resistor at VCC = 5 V  
500  
Vcc=5V, Vicm=0V,  
Vref=Vcc/2,  
T=25°C,  
400  
300  
200  
100  
0
Stable  
Unstable  
1
0.1  
10  
CapacitiveLoad(nF)  
100  
DS13057 - Rev 4  
page 37/54  
 
 
TSC2010, TSC2011, TSC2012  
Power supply recommendation  
5.9  
Power supply recommendation  
In order to decouple correctly the TSC2011, a 100 nF bypass capacitor can be placed between Vcc and Gnd. This  
capacitor must be placed as closer as possible to the supply pins. The figure below shows a start-up time with a  
decoupling capacitance of 100 nF.  
Figure 71. Start-up time with a decoupling capacitance of 100 nF  
6
5
4
Vcc  
3
Vout  
2
1
0
Vref=0V  
Vsense=20mV,  
Vcc=5V, Vicm=12V,  
RI=10k , Cl=10pF connected to Vcc-,  
T=25°C  
-1  
-2  
-3  
-200µ  
0
200µ  
400µ  
600µ  
800µ  
Time (s)  
Vref pin is used to fix the output common mode voltage and it is driven by a low impedance voltage source and  
can be decoupled thanks to a 10 nF bypass capacitor.  
A greater bypass capacitor added on Vcc pin and Vref pin helps to enhance CMRR and PSRR performance.  
5.10  
PCB layout recommendations  
The layout of the PCB tracks connected to the current sensing, load and power supply is very important. It is a  
good practice to use short and wide PCB traces to minimize voltage drops and parasitic inductance.  
When a shunt resistance, lower than 1 Ω, is used, a 4-wire connection technique should be used to sense the  
current as described in the schematic below. This technique separates pairs of current carrying and voltage-  
sensing electrodes to make more accurate measurements by eliminating the lead and contact resistance from the  
measurement.  
The track connected to the input pin of the TSC2011 has to be considered as a differential pair, it must have the  
same length and width, and ideally placed on the same PCB plane, and above all must be routed as far as  
possible from noisy source. As this track carries the input bias current, in a range of hundreds of µA, it can be  
designed small but always by taking care of its resistivity. Any via in these input tracks are non-recommended to  
avoid any parasitic resistance in this path.  
To minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top  
layer ground planes together in many locations is often used.  
A ground plane generally helps to reduce EMI, that is why a multilayer PCB use is suggested as well as the  
ground planes as a shield to protect the internal track. In this case, the digital from the analog ground must be  
separated and any ground loop must be avoided. Loop area or antenna must be reduced to minimize EMI impact.  
The Figure 72. Recommended layout suggests a possible routing for the TSC2011, in order to minimum parasitic  
effect.  
DS13057 - Rev 4  
page 38/54  
 
 
 
TSC2010, TSC2011, TSC2012  
EMI rejection ration (EMIRR)  
Figure 72. Recommended layout  
5.11  
EMI rejection ration (EMIRR)  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of current sensing  
device. An adverse effect that is common to many current sensing is a change in the offset voltage as a result of  
RF signal rectification. A first order internal low pass filter is included on the input of the TSC2011 to minimize  
susceptibility to EMIRR. Figure 73 shows the EMIRR on pin IN+, Figure 74 shows the EMIRR on pin IN- of the  
TSC2011 measured from 400 MHz up to 2.4 GHz.  
Figure 73. EMIRR on pin+  
Figure 74. EMIRR on pin-  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
Vcc=5V, T=25°C  
Prf=-10dBm  
Vcc=5V, T=25°C  
Prf=-10dBm  
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400  
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400  
Frequency (MHz)  
Frequency (MHz)  
Figure 75 shows the EMIRR on pin IN+, Figure 76 shows the EMIRR on pin IN- of the TSC2010 measured from  
10 MHz up to 2.4 GHz.  
DS13057 - Rev 4  
page 39/54  
 
 
 
TSC2010, TSC2011, TSC2012  
EMI rejection ration (EMIRR)  
Figure 75. EMIRR on pin+ (TSC2010)  
Figure 76. EMIRR on pin- (TSC2010)  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
Vcc = 5 V, T = 25°C  
Prf = 10 dBm  
Vcc = 5 V, T = 25°C  
Prf = 10 dBm  
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400  
Frequency (MHz)  
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400  
Frequency (MHz)  
DS13057 - Rev 4  
page 40/54  
 
TSC2010, TSC2011, TSC2012  
Overload recovery  
5.12  
Overload recovery  
Overload recovery is defined as the time required for the current sensing output to recover from a saturated state  
to a linear state.  
The saturation state occurs when the output voltage gets very close to rails in the application. It results from an  
excessive input voltage.  
When the output of the TSC2011 enters saturation state, less than 1 µs is needed to get back to a linear state as  
shown by Figure 77 and Figure 78.  
Figure 47 and Figure 48 show the overvoltage recovery for a VCC = 2.7 V.  
Figure 78. Positive overvoltage recovery VCC = ± 2.5 V  
Figure 77. Negative overvoltage recovery VCC = ± 2.5 V  
DS13057 - Rev 4  
page 41/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Application examples  
5.13  
Application examples  
5.13.1  
Half-bridge motor control  
The half-bridge topology is very popular in motor control, DC-DC converters, LED lighting control and other  
bidirectional loads from a single supply potential.  
The TSC2011 provides a feedback control system about current but also detects overload conditions.  
The Figure 79. Half-bridge application describes a typical schematic using the TSC2011 in a motor control  
application. A 20 mΩ shunt resistance in series with the motor monitors a measurable voltage drop representing  
the load current, and the TSC2011 amplifies the Vsense in order to give some information about the current flowing  
into the motor in real time. These information are then digitalizing by the 12-bit ADC (ADC120).  
Figure 79. Half-bridge application  
General overview:  
To make the motor rotation occur, the NMOS H1, H2, L1, L2 are driven by a half-bridge quad power MOSFET  
driver. We have to consider that the current flows from the 12 V to the GND, through H1 NMOS and L2 NMOS. A  
PWM is applied on the NMOS L2 in order to control the current and thus the speed of the motor.  
By PWM, the average voltage applied on the motor is controlled. H1 remains always ON and the PWM is applied  
on L2. When L2 is turned off, H2 must be turned ON, for freewheeling, allowing the discharge of the motor  
inductance current. This phenomenon generates a fast input common mode voltage transition on the TSC2011,  
from 0 V to 12 V.  
Thanks to a good recovery time due to fast input common mode change, the TSC2011 follows the current flowing  
into the motor as depicted by the scope probe in Figure 80. TSC2011 H Bridge application.  
The black curve represents the fast Vicm variation step of 12 V in 500 ns when the freewheeling is activated. The  
blue curve represents the current flowing into the motor measured with a current probe.  
The red curve represents the output voltage - 1.35 V (Vref voltage) of the TSC2011 probe after the RC filter.  
The RC filter, used to drive the ADC120, smooths a bit the output signal and adds a small constant time, in the  
range of 1 µs.  
DS13057 - Rev 4  
page 42/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Application examples  
Figure 80. TSC2011 H Bridge application  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
1.20  
0.96  
0.72  
0.48  
0.24  
0.00  
-0.24  
-0.48  
Vicm variation from 0V to 12V  
Vout  
Current flowing into the motor  
-50µ -40µ -30µ -20µ -10µ  
0
10µ  
20µ  
30µ  
40µ  
50µ  
Time(s)  
After a fast variation of the input common mode, the TSC2011 needs less than 5 µs to recover its normal  
behavior.  
5.13.2  
Solenoid valve  
In automotive applications, the automatic transmission relies on bands and clutches to change gears, and the  
only way they can be applied is by fluid pressure. The transmission solenoid is responsible for opening or closing  
valves in the valve body to allow transmission fluid to enter, at which point the fluid can pressurize the clutches  
and bands. Solenoids consist of a spring loaded plunger wrapped with a coil of wire, and it is generally driven  
thanks to a MOS transistor.  
In the schematic below the TSC2011 is used in mono directional mode. When the MOS is ON, the current can  
flow through the solenoid and actuate this one. The input common mode is high in this case.  
When the MOS is turned OFF, as the current stored into the solenoid cannot stop instantaneously, the diode turns  
ON allowing a freewheeling to discharge the solenoid resulting in a common mode one diode voltage drop below  
ground.  
Thanks to its large input common mode range, the TSC2011 can be used for such applications depicted in figure  
below.  
In order not to saturate the output when no current is flowing into Rsense, a small voltage on Vref has to be applied.  
DS13057 - Rev 4  
page 43/54  
 
 
TSC2010, TSC2011, TSC2012  
Application examples  
Figure 81. Solenoid valve application  
DS13057 - Rev 4  
page 44/54  
 
TSC2010, TSC2011, TSC2012  
Package information  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
DS13057 - Rev 4  
page 45/54  
 
TSC2010, TSC2011, TSC2012  
SO8 package information  
6.1  
SO8 package information  
Figure 82. SO8 package outline  
Table 7. SO-8 mechanical data  
Inches  
mm  
Dim.  
Min.  
Typ.  
Max.  
1.75  
0.25  
Min.  
Typ.  
Max.  
0.069  
0.01  
A
A1  
A2  
b
0.1  
1.25  
0.28  
0.17  
4.8  
0.004  
0.049  
0.011  
0.007  
0.189  
0.228  
0.15  
0.48  
0.23  
5
0.019  
0.01  
c
D
4.9  
6
0.193  
0.236  
0.154  
0.05  
0.197  
0.244  
0.157  
E
5.8  
6.2  
4
E1  
e
3.8  
3.9  
1.27  
h
0.25  
0.4  
0.5  
0.01  
0.02  
0.05  
L
1.27  
0.016  
L1  
k
1.04  
0.04  
0
8 °  
1 °  
8 °  
ccc  
0.1  
0.004  
DS13057 - Rev 4  
page 46/54  
 
 
 
TSC2010, TSC2011, TSC2012  
MiniSO8 package information  
6.2  
MiniSO8 package information  
Figure 83. MiniSO8 package outline  
Table 8. MiniSO8 mechanical data  
Inches  
Dim.  
Millimeters  
Min.  
Typ.  
Max.  
1.1  
Min.  
Typ.  
Max.  
0.043  
0.006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
A
A1  
A2  
b
0
0.15  
0.95  
0.4  
0
0.75  
0.22  
0.08  
2.8  
0.85  
0.03  
0.009  
0.003  
0.11  
0.033  
c
0.23  
3.2  
D
3
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.01  
E
4.65  
2.8  
4.9  
3
5.15  
3.1  
0.183  
0.11  
E1  
e
0.65  
0.6  
0.95  
0.25  
L
0.4  
0°  
0.8  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.1  
0.004  
DS13057 - Rev 4  
page 47/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Ordering information  
7
Ordering information  
Table 9. Order codes  
Package  
Order code  
TSC2010IDT  
Gain (V/V)  
Packaging  
Marking  
TSC2010  
TSC2010Y  
TSC2011  
TSC2011Y  
TSC2012  
TSC2012Y  
O117  
20  
60  
TSC2010IYDT (1)  
TSC2011IDT  
SO8  
TSC2011IYDT (1)  
TSC2012IDT  
100  
20  
TSC2012IYDT (1)  
TSC2010IST  
Tape and reel  
TSC2010IYST (1)  
TSC2011IST  
O120  
O118  
60  
MiniSO8  
TSC2011IYST (1)  
TSC2012IST  
O121  
O119  
100  
TSC2012IYST (1)  
O122  
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 &  
Q002 or equivalent.  
DS13057 - Rev 4  
page 48/54  
 
 
 
TSC2010, TSC2011, TSC2012  
Revision history  
Table 10. Document revision history  
Date  
Revision  
Changes  
11-Sep-2019  
1
Initial release.  
Added new part number TSC2012, Figure 25. Gain vs. frequency (V = 5 V),  
CC  
Figure 27. Gain vs. different capacitive load (TSC2012), Figure 29. Bandwidth vs.  
input common mode (TSC2012) and Figure 32. Small signal response with V = 5 V  
CC  
(TSC2012).  
30-Jan-2020  
2
Updated description on the cover page, Figure 30. Overshoot vs. capacitive load,  
Figure 42. Overvoltage recovery vs. V , V = 5 V, Table 4. Electrical characteristics  
icm  
CC  
V
= 2.7 V, V  
= 12 V, T = 25 °C (unless otherwise specified)., Table 5. Electrical  
icm  
CC  
characteristics (V = 5 V, V  
= 12 V, T = 25 °C unless otherwise specified) and  
CC  
icm  
Table 9. Order codes.  
Added new part number TSC2010, Figure 75 and Figure 76.  
Updated:  
- Features and description on the cover page  
- |Vsense|, G, BW and SR conditions in Table 4 and Table 5.  
- Section 4.1 Typical characteristics.  
- Table 9. Order codes.  
10-Apr-2020  
05-Aug-2020  
3
4
Updated Figure 77 and Figure 78.  
DS13057 - Rev 4  
page 49/54  
 
 
TSC2010, TSC2011, TSC2012  
Contents  
Contents  
1
2
3
4
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
4.1  
Typical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5
Application information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Theory of operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Unidirectionnal / bidirectionnal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
R
SENSE  
selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Input offset voltage drift overtemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Error calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Power supply recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
5.10 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
5.11 EMI rejection ration (EMIRR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
5.12 Overload recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
5.13 Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
5.13.1 Half-bridge motor control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5.13.2 Solenoid valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
6
7
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
6.1  
6.2  
SOT23-3L package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
DS13057 - Rev 4  
page 50/54  
TSC2010, TSC2011, TSC2012  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical characteristics Vcc = 2.7 V, Vicm = 12 V, T = 25 °C (unless otherwise specified). . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics (Vcc = 5 V, Vicm = 12 V, T = 25 °C unless otherwise specified). . . . . . . . . . . . . . . . . . . . 8  
Gain error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
MiniSO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 10. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DS13057 - Rev 4  
page 51/54  
TSC2010, TSC2011, TSC2012  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Supply current vs. input common mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Supply current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Supply current vs. input common mode with active shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input bias current vs. input common mode with shutdown active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input bias current vs. temperature VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input bias current vs. temperature with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input offset voltage vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input offset voltage vs. input common mode with VCC = 2.7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Input offset voltage vs. input common mode with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output current vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output current vs. temperature with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output current vs. temperature with VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Voh and Vol vs. input common mode voltage with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
(Output voltage + Vref) vs. Vsense unidirectionnal with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
(Output voltage + Vref) vs. Vsense bidirectionnal with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output rail linearity vs. load with VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Linearity vs. Vsense with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Linearity vs. Vsense and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Gain error vs. input common mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Gain error vs. input common mode and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Load regulation with VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Gain vs. frequency VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Gain vs. frequency different capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Gain vs. frequency different capacitive load (TSC2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Gain vs. frequency different capacitive load (TSC2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Bandwidth vs. input common mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Bandwidth vs. input common mode (TSC2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Bandwidth vs. input common mode (TSC2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Overshoot vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Small signal response with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Small signal response with VCC = 5 V (TSC2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Small signal response with VCC = 5 V (TSC2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Small signal response with VCC= 2.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Large signal response with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Large signal response with VCC = 5 V (TSC2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Large signal response with VCC = 5 V (TSC2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Large signal response with VCC = 2.7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
12 V common mode step response recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
50 V common mode step response recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
CMRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Positive overvoltage recovery VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Negative overvoltage recovery VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Overvoltage recovery vs. Vicm VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
Figure 45.  
Figure 46.  
Figure 47.  
Figure 48.  
Figure 49.  
DS13057 - Rev 4  
page 52/54  
TSC2010, TSC2011, TSC2012  
List of figures  
Figure 50.  
Figure 51.  
Figure 52.  
Figure 53.  
Figure 54.  
Figure 55.  
Figure 56.  
Figure 57.  
Figure 58.  
Figure 59.  
Figure 60.  
Figure 61.  
Figure 62.  
Figure 63.  
Figure 64.  
Figure 65.  
Figure 66.  
Figure 67.  
Figure 68.  
Figure 69.  
Figure 70.  
Figure 71.  
Figure 72.  
Figure 73.  
Figure 74.  
Figure 75.  
Figure 76.  
Figure 77.  
Figure 78.  
Figure 79.  
Figure 80.  
Figure 81.  
Figure 82.  
Figure 83.  
Noise vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
ON/OFF delay for shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output voltage vs. Vsense beyond the sense operating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power up time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power supply when Vicm > Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Input bias current vs. common mode voltage Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Power supply when Vicm < Gnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Vref powered by an external voltage source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Output reference to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Output reference to Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Split supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
External supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Schematic for Vocm error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SHDN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Capacitive load response at Vcc = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Capacitive load response at Vcc = 3.3 V with a step of 100 mV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
RC filter when driving ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Capacitive load response at Vcc = 3.3 V with 720 kHz RC filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Capacitive load response at Vcc = 3.3 V with 194 kHz RC filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Stability criteria with a serial resistor at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Start-up time with a decoupling capacitance of 100 nF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Recommended layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
EMIRR on pin+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
EMIRR on pin- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
EMIRR on pin+ (TSC2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
EMIRR on pin- (TSC2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Negative overvoltage recovery VCC = ± 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Positive overvoltage recovery VCC = ± 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Half-bridge application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
TSC2011 H Bridge application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Solenoid valve application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
SO8 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
DS13057 - Rev 4  
page 53/54  
TSC2010, TSC2011, TSC2012  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS13057 - Rev 4  
page 54/54  

相关型号:

TSC2011IRTJR

Nanopower, 4-Wire Resistive Touch and Haptic Controller with I2C™ Serial Interface
TI

TSC2011IRTJT

Nanopower, 4-Wire Resistive Touch and Haptic Controller with I2C™ Serial Interface
TI

TSC2011IST

High voltage, precision, bidirectional current sense amplifiers
STMICROELECTR

TSC2011IYDT

High voltage, precision, bidirectional current sense amplifiers
STMICROELECTR

TSC2011IYST

High voltage, precision, bidirectional current sense amplifiers
STMICROELECTR

TSC2011IYZKR

Nanopower, 4-Wire Resistive Touch and Haptic Controller with I2C™ Serial Interface
TI

TSC2011IYZKT

Nanopower, 4-Wire Resistive Touch and Haptic Controller with I2C™ Serial Interface
TI

TSC2012

High voltage, precision, bidirectional current sense amplifiers
STMICROELECTR

TSC2012IDT

High voltage, precision, bidirectional current sense amplifiers
STMICROELECTR

TSC2012IST

High voltage, precision, bidirectional current sense amplifiers
STMICROELECTR

TSC2012IYDT

High voltage, precision, bidirectional current sense amplifiers
STMICROELECTR

TSC2012IYST

High voltage, precision, bidirectional current sense amplifiers
STMICROELECTR