TSDC02IJT [STMICROELECTRONICS]

MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL; MONO 1 W喇叭和立体声160毫瓦耳机BTL带数字音量控制驱动器
TSDC02IJT
型号: TSDC02IJT
厂家: ST    ST
描述:

MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL
MONO 1 W喇叭和立体声160毫瓦耳机BTL带数字音量控制驱动器

驱动器 音频控制集成电路 消费电路 商用集成电路
文件: 总28页 (文件大小:1227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4851  
Mono 1W Speaker and Stereo 160mW Headset  
BTL Drivers with Digital Volume Control  
Operating from VCC = 3V to 5.5V  
Pin Connections (top view)  
Rail to rail input/output  
Speaker driver with 1 W output @ Vcc = 5V,  
THD+N = 1%, F = 1kHz, 8load  
Headset drivers with 160 mW output @  
Vcc = 5V, THD+N = 1%, F = 1kHz, 32load  
Headset output is 30mW in stereo @  
Vcc = 3V  
THD+N < 0.5% Max @ 20mW into 32BTL,  
50Hz < Frequency < 20kHz  
32-step digital volume control from -  
34.5dB to +12dB  
TS485IJT - Flip-chip  
TS485EIJT - Lead free Flip-chip  
+6dB power up volume and full standby  
8 different output modes  
Pop & click reduction circuitry  
Low shutdown current (< 100nA)  
Thermal shutdown protection  
Flip-chip package 18 x 300µm bumps  
Pin Out (top view)  
Description  
The TS4851 is a low power audio amplifier that  
can drive either both a mono speaker or a stereo  
headset. To the speaker, it can deliver 400 mW  
(typ.) of continuous RMS output power into an 8Ω  
load with a 1% THD+N value. To the headset  
driver, the amplifier can deliver 30 mW (typ.) per  
channel of continuous average power into a  
stereo 32 bridged-tied load with 0.5% THD+N  
@ 3.3V.  
R
OUT<  
-
L
GND  
VCC  
OUT -  
R
L
OUT +  
OUT +  
R
IN  
DATA  
L
IN  
NC  
PHONE  
IN  
VCC  
GND  
ENB  
CLK  
SPKR  
OUT -  
SPKR  
OUT+  
BYPASS  
This device features a 32-step digital volume  
control and 8 different output selections. The  
digital volume and output modes are controlled  
through a three-digit SPI interface bus.  
Applications  
Mobile Phones  
Order Codes  
Part Number  
Temperature Range  
Package  
Packaging  
Marking  
TS4851IJT  
Flip-Chip  
A51  
A51  
-40, +85°C  
Tape & Reel  
TS4851EIJT  
Lead free Flip-Chip  
J = Flip Chip Package - only available in Tape & Reel (JT))  
March 2005  
Revision 5  
1/28  
TS4851  
Application Information  
1 Application Information  
Figure 1: Application information for a typical application  
Table 1. External component description  
Component  
Functional Description  
C
This is the input coupling capacitor. It blocks the DC voltage at, and couples the input signal to the  
amplifier’s input terminals. Cin also creates a highpass filter with the internal input impedance Zin at Fc  
in  
=1/ (2πi x Zin x Cin).  
This is the Supply Bypass capacitor. It provides power supply filtering.  
C
s
C
This is the Bypass pin capacitor. It provides half-supply filtering.  
B
2/28  
SPI Bus Interface  
TS4851  
2 SPI Bus Interface  
Table 2. Pin description  
Pin  
Functional Description  
DATA  
CLK  
ENB  
This is the serial data input pin.  
This is the clock input pin.  
This is the SPI enable pin active at high level.  
2.1 Description of SPI operation  
The serial data bits are organized into a field containing 8 bits of data as shown in Table 3. The DATA 0 to  
DATA 2 bits determine the output mode of the TS4851 as shown in Table 2. The DATA 3 to DATA 7 bits  
determine the gain level setting as illustrated by Table 3. For each SPI transfer, the data bits are written to  
the DATA pin with the least significant bit (LSB) first. All serial data are sampled at the rising edge of the  
CLK signal. Once all the data bits have been sampled, ENB transitions from logic-high to logic low to  
complete the SPI sequence. All 8 bits must be received before any data latch can occur. Any excess CLK  
and DATA transitions will be ignored after the height rising clock edge has occurred. For any data  
sequence longer than 8 bits, only the first 8 bits will get loaded into the shift register and the rest of the bits  
will be disregarded.  
Table 3. Bit allocation  
DATA  
MODES  
LSB  
DATA 0  
DATA 1  
DATA 2  
DATA 3  
DATA 4  
DATA 5  
DATA 6  
DATA 7  
Mode 1  
Mode 2  
Mode 3  
gain 1  
gain 2  
gain 3  
gain 4  
gain 5  
MSB  
Table 4. Output mode selection: G from -34.5dB to +12dB (by steps of 1.5dB)  
Output  
Mode #  
1
DATA 2  
DATA 1  
DATA 0  
Rout  
Lout  
SPKERout  
0
1
2
3
4
5
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
SD  
6dBxP  
SD  
Gx(R+L)  
SD  
SD  
SD  
0dBxP  
SD  
GxR  
SD  
SD  
SD  
0dBxP  
SD  
GxL  
SD  
Gx(R+L)  
+6dBxP  
SD  
6dBxP  
6
7
1
1
1
1
0
1
GxR+0dBxP  
GxR+0dBxP  
GxL+0dBxP  
GxL+0dBxP  
1)  
SD = Shutdown Mode, P = Phone in Input, R = Rin input and L = Lin input  
3/28  
TS4851  
SPI Bus Interface  
DATA 3  
Table 5. Volume control settings  
K : Gain (dB)  
DATA 7  
DATA 6  
DATA 5  
DATA 4  
-34.5  
-33.0  
-31.5  
-30.0  
-28.5  
-27.0  
-25.5  
-24.0  
-22.5  
-21.0  
-19.5  
-18.0  
-16.5  
-15.0  
-13.5  
-12.0  
-10.5  
-9.0  
-7.5  
-6.0  
-4.5  
-3.0  
-1.5  
0.0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5  
3.0  
4.5  
6
7.5  
9
10.5  
12  
4/28  
SPI Bus Interface  
TS4851  
Figure 2: SPI timing diagram  
5/28  
TS4851  
Absolute Maximum Ratings  
3 Absolute Maximum Ratings  
Table 6. Key parameters and their absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
1
VCC  
6
V
°C  
Supply voltage  
T
Operating Free Air Temperature Range  
Storage Temperature  
-40 to + 85  
-65 to +150  
150  
oper  
T
°C  
stg  
T
Maximum Junction Temperature  
°C  
j
2
R
200  
°C/W  
thja  
Flip Chip Thermal Resistance Junction to Ambient  
Power Dissipation  
Pd  
Internally Limited  
ESD  
ESD  
Human Body Model  
2
kV  
V
Machine Model  
100  
200  
Latch-up Immunity  
mA  
°C  
Lead Temperature (soldering, 10sec)  
Lead Temperature (soldering, 10sec) for Lead-Free version  
250  
260  
1) All voltages values are measured with respect to the ground pin.  
2) Device is protected in case of over temperature by a thermal shutdown active @ 150°C  
Table 7. Operating conditions  
Symbol  
Parameter  
Value  
Unit  
VCC  
Supply Voltage  
3 to 5.5  
V
V
V
Maximum Phone In Input Voltage  
Maximum Rin & Lin Input Voltage  
Thermal Shut Down Temperature  
G
G
to V  
to V  
phin  
ND  
ND  
CC  
CC  
VRin/VLin  
TSD  
V
150  
90  
°C  
°C/W  
1
R
thja  
Flip Chip Thermal Resistance Junction to Ambient  
1) Device is protected in case of over temperature by a thermal shutdown active @ 150°C  
6/28  
Electrical Characteristics  
TS4851  
4 Electrical Characteristics  
Table 8. Electrical characteristics at VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise  
specified)  
Symbol  
Parameter  
Min.  
Typ. Max.  
Unit  
ICC  
Supply Current  
mA  
Output Mode 7, Vin = 0V, no load  
All other output modes, Vin = 0V, no load  
8
4.5  
11  
6.5  
ISTANDBY Standby Current  
Output Mode 0  
µA  
0.1  
5
2
Voo  
Output Offset Voltage (differential)  
mV  
Vin = 0V  
50  
0.4  
5
Vil  
Vih  
Po  
“Logic low” input Voltage  
“Logic high” input Voltage  
Output Power  
0
1.4  
V
V
mW  
SPKERout, RL = 8Ω, THD = 1%, F = 1kHz  
Rout & Lout, RL = 32Ω, THD = 0.5%, F = 1kHz  
800  
80  
1000  
120  
THD + N Total Harmonic Distortion + Noise  
%
Rout & Lout, Po = 80mW, F = 1kHz, RL = 32Ω  
0.5  
1
SPKERout, Po = 800mW, F = 1kHz, RL = 8Ω  
Rout & Lout, Po = 50mW, 20Hz < F < 20kHz, RL = 32Ω  
SPKERout, Po = 40mW, 20Hz < F < 20kHz, RL = 8Ω  
0.5  
1
SNR  
PSRR  
Signal To Noise Ratio (A-Weighted)  
90  
dB  
dB  
1
Power Supply Rejection Ratio  
Vripple = 200mV Vpp, F = 217Hz, Input(s) Terminated 10Ω  
70  
70  
55  
57  
52  
56  
Ouput Mode 1  
Ouput Mode 2  
Ouput Mode 3 (G=+12dB)  
Ouput Mode 4 (G=+12dB)  
Ouput Mode 5 (G=+12dB)  
Ouput Mode 6, 7 (G=+12dB)  
G
Digital Gain Range - Rin & Lin  
no load  
dB  
-34.5  
+12  
Digital gain stepsize  
Stepsize  
1.5  
dB  
dB  
G -22.5dB  
G < -22.5dB  
-0.5  
-1  
+0.5  
+1  
Phone In Gain, no load  
dB  
BTL gain from Phone In to SPKERout  
BTL gain from Phone In to Rout & Lout  
6
0
Zin  
Zin  
tes  
teh  
tel  
Phone In Input Impedance  
Rin & Lin Input Impedance (all gain setting)  
Enable Stepup Time - ENB  
Enable Hold Time - ENB  
Enable Low Time - ENB  
15  
37.5  
20  
20  
30  
20  
50  
25  
62.5  
kΩ  
kΩ  
ns  
ns  
ns  
tds  
tdh  
tcs  
tch  
tcl  
Data Setup Time- DATA  
Data Hold Time - DATA  
Clock Setup time - CLK  
Clock Logic High Time - CLK  
Clock Logic Low Time - CLK  
Clock Frequency - CLK  
20  
20  
20  
50  
50  
DC  
ns  
ns  
ns  
ns  
ns  
MHz  
fclk  
10  
1) Dynamic measurements [20 x log(rms(Vout)/rms(Vripple)]. Vripple is the superimposed sinus signal to Vcc @ F = 217Hz  
7/28  
TS4851  
Electrical Characteristics  
Table 9. Electrical characteristics at VCC = +3V, GND = 0V, Tamb = 25°C (unless otherwise  
specified)  
Symbol  
Parameter  
Min.  
Typ. Max.  
Unit  
ICC  
Supply Current  
mA  
Output Mode 7, Vin = 0V,no load  
All other output modes, Vin = 0V,no load  
7.5  
4.5  
10  
6.5  
ISTANDBY Standby Current  
Output Mode 0  
µA  
0.1  
5
2
Voo  
Output Offset Voltage (differential)  
mV  
Vin = 0V  
50  
0.4  
5
Vil  
Vih  
Po  
“Logic low” input Voltage  
“Logic high” input Voltage  
Output Power  
0
1.4  
V
V
mW  
SPKERout, RL = 8Ω, THD = 1%, F = 1kHz  
Rout & Lout, RL = 32Ω, THD = 0.5%, F = 1kHz  
300  
20  
340  
30  
THD + N Total Harmonic Distortion + Noise  
%
Rout & Lout, Po = 20mW, F = 1kHz, RL = 32Ω  
0.5  
1
SPKERout, Po = 300mW, F = 1kHz, RL = 8Ω  
Rout & Lout, Po = 15mW, 20Hz < F < 20kHz, RL = 32Ω  
SPKERout, Po = 250mW, 20Hz < F < 20kHz, RL = 8Ω  
0.5  
1
SNR  
Signal To Noise Ratio (A-Weighted)  
86  
dB  
dB  
1
2
PSRR  
Power Supply Rejection Ratio  
Vripple = 200mV Vpp, F = 217Hz, Input(s) Terminated 10Ω  
65  
70  
54  
54  
51  
53  
Ouput Mode 1  
Ouput Mode 2  
Ouput Mode 3 (G=+12dB)  
Ouput Mode 4 (G=+12dB)  
Ouput Mode 5 (G=+12dB)  
Ouput Mode 6, 7 (G=+12dB)  
G
Digital Gain Range - Rin & Lin  
no load  
dB  
-34.5  
-
+12  
Digital gain stepsize  
1.5  
dB  
dB  
Stepsize error  
G -22.5dB  
G < -22.5dB  
-0.5  
-1  
+0.5  
+1  
Phone In Gain, no load  
dB  
BTL gain from Phone In to SPKERout  
BTL gain from Phone In to Rout & Lout  
6
0
1
Zin  
Zin  
15  
20  
25  
kΩ  
kΩ  
Phone In Input Impedance  
1
37.5  
50  
62.5  
Rin & Lin Input Impedance (All Gain Setting)  
tes  
teh  
tel  
tds  
tdh  
tcs  
tch  
tcl  
Enable Stepup Time - ENB  
Enable Hold Time - ENB  
Enable Low Time - ENB  
Data Setup Time- DATA  
Data Hold Time - DATA  
Clock Setup time - CLK  
Clock Logic High Time - CLK  
Clock Logic Low Time - CLK  
Clock Frequency - CLK  
20  
20  
30  
20  
20  
20  
50  
50  
DC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
fclk  
10  
1) All PSRR data limits are guaranted by evaluation desgin test.  
2) Dynamic measurements [20 x log(rms(Vout)/rms(Vripple)]. Vripple is the superimposed sinus signal to Vcc @ F = 217Hz  
8/28  
Electrical Characteristics  
TS4851  
Table 10. Index of graphics  
Description  
Figure  
Page  
THD + N vs. Output Power  
THD + N vs. Frequency  
Output Power vs. Power Supply Voltage  
PSRR vs. Frequency  
Frequency Response  
Signal to Noise Ratio vs. Power Supply Voltage  
Crosstalk vs. Frequency  
-3 dB Lower Cut Off Frequency vs. Input Capacitor  
Current Consumption vs. Power Supply Voltage  
Power Dissipation vs. Output Power  
Power Derating Curves  
Figures 3 to 12  
Figures 13 to 22  
Figures 23 to 30  
Figures 31 to 40  
Figures 41 to 44  
Figures 45 to 48  
Figures 49 to 50  
Figures 51 to 52  
Figure 53  
page 10 to page 11  
page 11 to page 13  
page 13 to page 14  
page 14 to page 16  
page 16  
page 17  
page 18  
page 18  
page 18  
Figures 54 to 57  
Figure 58  
page 18 to page 19  
page 19  
-3 dB Lower Cut Off Frequency vs. Gain Setting  
Figure 59  
page 19  
Note: In the graphs that follow, the abbreviations Spkout = Speaker Output, and HDout = Headphone Output are used.  
All measurements made with Cin = 220nF, Cb = Cs = 1µF except in PSRR condition where Cs = 0.  
9/28  
TS4851  
Electrical Characteristics  
Figure 3: Spkout THD+N vs. output power  
(output modes 1, 7)  
Figure 6: HDout THD+N vs. output power  
(output mode 2)  
10  
10  
RL = 4  
Output mode 1, 7  
BW < 125 kHz  
RL = 16  
Output mode 2  
BW < 125 kHz  
Vcc=5V  
F=20kHz  
Vcc=5V  
F=20kHz  
Tamb = 25°C  
Tamb = 25°C  
Vcc=3V  
F=20kHz  
1
0.1  
1
0.1  
Vcc=3V  
F=20kHz  
Vcc=3V  
F=1kHz  
Vcc=5V  
F=1kHz  
Vcc=3V  
F=1kHz  
Vcc=5V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
0.1  
Output power (W)  
1
1E-3  
0.01  
Output power (W)  
0.1  
Figure 4: Spkout THD+N vs. output power  
(output modes 1, 7)  
Figure 7: HDout THD+N vs. output power  
(output mode 2)  
10  
10  
RL = 8  
Output mode 1, 7  
BW < 125 kHz  
Vcc=5V  
F=20kHz  
RL = 32  
Output mode 2  
BW < 125 kHz  
Vcc=5V  
F=20kHz  
Tamb = 25°C  
Tamb = 25°C  
Vcc=3V  
F=20kHz  
1
0.1  
1
0.1  
Vcc=3V  
F=20kHz  
Vcc=3V  
F=1kHz  
Vcc=5V  
F=1kHz  
Vcc=3V  
F=1kHz  
Vcc=5V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
Output power (W)  
Output power (W)  
Figure 5: Spkout THD+N vs. output power  
(output modes 1, 7)  
Figure 8: Spkout THD+N vs. output power  
(output mode 3, G=+12dB)  
10  
10  
RL = 16  
Output mode 1, 7  
BW < 125 kHz  
RL = 4  
Out. mode 3; G = +12dB  
BW < 125 kHz  
Tamb = 25°C  
Vcc=5V  
F=20kHz  
Vcc=5V  
F=20kHz  
Tamb = 25°C  
Vcc=3V  
F=20kHz  
1
0.1  
Vcc=3V  
F=20kHz  
1
Vcc=3V  
F=1kHz  
Vcc=5V  
F=1kHz  
Vcc=3V  
F=1kHz  
0.1  
Vcc=5V  
F=1kHz  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
Output power (W)  
1
Output power (W)  
10/28  
Electrical Characteristics  
TS4851  
Figure 9: Spkout THD+N vs. output power  
(output mode 3, G=+12dB)  
Figure 12: HDout THD+N vs. output power  
(output mode 4, G=+12dB)  
10  
10  
RL = 8  
Out. mode 3; G = +12dB  
BW < 125 kHz  
Vcc=5V  
F=20kHz  
RL = 32  
Output mode 4  
G = +12dB  
Vcc=5V  
F=20kHz  
Tamb = 25  
°C  
Vcc=3V  
F=20kHz  
BW < 125 kHz  
Tamb = 25°C  
Vcc=3V  
F=20kHz  
1
1
0.1  
0.01  
Vcc=3V  
F=1kHz  
Vcc=5V  
F=1kHz  
0.1  
Vcc=5V  
F=1kHz  
Vcc=3V  
F=1kHz  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
Output power (W)  
Output power (W)  
Figure 10: Spkout THD+N vs. output power  
(output mode 3, G=+12dB)  
Figure 13: Spkout THD+N vs. frequency  
(output modes 1, 7)  
10  
10  
RL = 4  
Output mode 1, 7  
BW < 125kHz  
Vcc=5V  
F=20kHz  
RL = 16  
Output mode 3  
G = +12dB  
BW < 125 kHz  
Tamb = 25°C  
Tamb = 25°C  
Vcc=3V  
F=20kHz  
1
0.1  
1
0.1  
Vcc=3V  
P=400mW  
Vcc=5V  
P=1.1W  
Vcc=3V  
F=1kHz  
Vcc=5V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
0.1  
1
100  
1000  
10000  
Output power (W)  
Frequency (Hz)  
Figure 11: HDout THD+N vs. output power  
(output mode 4, G=+12dB)  
Figure 14: Spkout THD+N vs. frequency  
(output modes 1, 7)  
10  
10  
RL = 8  
Output mode 1, 7  
BW < 125kHz  
RL = 16  
Output mode 4  
G = +12dB  
BW < 125 kHz  
Tamb = 25°C  
Vcc=5V  
F=20kHz  
Tamb = 25°C  
Vcc=3V  
F=20kHz  
1
0.1  
1
0.1  
Vcc=3V  
P=320mW  
Vcc=5V  
P=800mW  
Vcc=3V  
F=1kHz  
Vcc=5V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
Output power (W)  
0.1  
100  
1000  
10000  
Frequency (Hz)  
11/28  
TS4851  
Electrical Characteristics  
Figure 15: Spkout THD+N vs. frequency  
(output modes 1, 7)  
Figure 18: Spkout THD+N vs.frequency  
(output mode 3, G = +12 dB)  
10  
10  
RL = 16  
RL = 4  
Output mode 3  
G = +12dB  
BW < 125kHz  
Output mode 1, 7  
BW < 125kHz  
Tamb = 25°C  
1
0.1  
Vcc=5V  
P=1.1W  
Tamb = 25  
°C  
Vcc=3V  
P=150mW  
Vcc=5V  
P=550mW  
1
Vcc=3V  
P=400mW  
0.1  
0.01  
100  
1000  
10000  
100  
1000  
Frequency (Hz)  
10000  
Frequency (Hz)  
Figure 16: HDout THD+N vs. frequency  
(output mode 2)  
Figure 19: Spkout THD+N vs. frequency  
(output mode 3, G = +12 dB)  
10  
10  
RL = 16  
Output mode 2  
BW < 125kHz  
RL = 8  
Output mode 3  
G = +12dB  
BW < 125kHz  
Tamb = 25°C  
1
0.1  
Tamb = 25°C  
1
Vcc=5V  
P=220mW  
Vcc=3V  
P=40mW  
Vcc=3V  
P=320mW  
Vcc=5V  
P=800mW  
0.1  
0.01  
100  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 17: HDout THD+N vs. frequency  
(output mode 2)  
Figure 20: Spkout THD+N vs. frequency  
(output mode 3, G = +12 dB)  
10  
10  
RL = 32  
Output mode 2  
BW < 125kHz  
RL = 16  
Output mode 3  
G = +12dB  
Tamb = 25°C  
BW < 125kHz  
Tamb = 25°C  
Vcc=3V  
P=180mW  
1
0.1  
1
0.1  
Vcc=5V  
P=140mW  
Vcc=3V  
P=20mW  
Vcc=5V  
P=550mW  
0.01  
0.01  
100  
1000  
10000  
100  
1000  
Frequency (Hz)  
10000  
Frequency (Hz)  
12/28  
Electrical Characteristics  
TS4851  
Figure 21: HDout THD+N vs. frequency  
(output mode 4, G = +12 dB)  
Figure 24: Speaker output power vs. power  
supply voltage (output mode 1, 7)  
10  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
F = 1kHz  
Output mode 1, 7  
BW < 125kHz  
RL = 16  
Output mode 4  
G = +12dB  
BW < 125kHz  
Tamb = 25°C  
Tamb = 25°C  
Vcc=3V  
P=40mW  
4
1
0.1  
8
16  
Vcc=5V  
P=220mW  
32  
0.01  
100  
1000  
Frequency (Hz)  
10000  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Vcc (V)  
Figure 22: HDout THD+N vs. frequency  
(output mode 4, G = +12 dB)  
Figure 25: Headphone output power vs. load  
resistor (output mode 2)  
10  
0.35  
F = 1kHz  
Output mode 2  
BW < 125kHz  
Tamb = 25°C  
RL = 32  
Output mode 4  
G = +12dB  
BW < 125kHz  
0.30  
16  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Vcc=3V  
P=20mW  
1
0.1  
Tamb = 25°C  
32  
Vcc=5V  
P=140mW  
64  
0.01  
100  
1000  
Frequency (Hz)  
10000  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Vcc (V)  
Figure 23: Speaker output power vs. power  
supply voltage (output mode 1, 7)  
Figure 26: Headphone output power vs. load  
resistor (output mode 2)  
2.0  
0.40  
F = 1kHz  
Output mode 1, 7  
F = 1kHz  
Output mode 2  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
16  
BW < 125kHz  
Tamb = 25°C  
BW < 125kHz  
Tamb = 25  
1.6  
°C  
4
32  
1.2  
0.8  
0.4  
0.0  
8
16  
64  
32  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Vcc (V)  
Vcc (V)  
13/28  
TS4851  
Electrical Characteristics  
Figure 27: Speaker output power vs. power  
supply voltage (output mode 3)  
Figure 30: Headphone output power vs. load  
resistance (output mode 2)  
2.0  
0.40  
F = 1kHz  
Output mode 3  
F = 1kHz  
Output mode 4  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
16  
BW < 125kHz  
BW < 125kHz  
Tamb = 25  
1.6  
Tamb = 25  
°C  
°C  
4
32  
1.2  
0.8  
0.4  
0.0  
8
16  
32  
64  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Vcc (V)  
Vcc (V)  
Figure 28: Speaker output power vs. power  
supply voltage (output mode 3)  
Figure 31: Spkout PSRR vs. frequency  
(output modes 1, 7, input grounded)  
2.4  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
F = 1kHz  
Output mode 3  
Output mode 1, 7  
RL = 8  
Vripple = 0.2Vpp  
Tamb = 25  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
BW < 125kHz  
Tamb = 25  
°C  
4
°C  
8
Vcc=3V  
16  
Vcc=5V  
32  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
100  
1000  
10000  
100000  
Frequency (Hz)  
Vcc (V)  
Figure 29: Headphone output power vs. load  
resistor (output mode 4)  
Figure 32: HDout PSRR vs. frequency  
(output mode 2, input grounded)  
0.35  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
F = 1kHz  
Output mode 4  
Output mode 2  
16  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
RL = 32  
Vripple = 0.2Vpp  
Tamb = 25  
BW < 125kHz  
Tamb = 25  
°C  
°C  
32  
Vcc = 3V & 5V  
64  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
100  
1000  
10000  
100000  
Frequency (Hz)  
Vcc (V)  
14/28  
Electrical Characteristics  
TS4851  
Figure 33: Spkout PSRR vs. frequency  
(output mode 3, inputs grounded)  
Figure 36: HDout PSRR vs. frequency  
(output mode 4, inputs grounded)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
Output mode 4  
Vcc = +3V  
-10  
RL = 32  
Vripple=0.2Vpp  
Tamb = 25  
G=+12dB  
G=+6dB  
G=+9dB  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
G=+6dB  
G=+12dB  
G=+9dB  
G=-12dB  
°C  
Output mode 3  
Vcc = +5V  
G=-12dB  
G=0dB  
RL = 8  
Vripple = 0.2Vpp  
Tamb = 25  
G=0dB  
G=-34.5dB  
10000 100000  
°
G=-34.5dB  
1000  
Frequency (Hz)  
100  
1000  
Frequency (Hz)  
100  
10000  
100000  
Figure 34: Spkout PSRR vs. frequency  
Figure 37: Spkout PSRR vs. frequency  
(output mode 3, inputs grounded)  
(output mode 5, inputs grounded)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Output mode 5  
Vcc = +5V  
Output mode 3  
Vcc = +3V  
G=+6dB  
G=+12dB  
RL = 8  
RL = 8  
Vripple=0.2Vpp  
Tamb = 25  
Vripple=0.2Vpp  
Tamb = 25  
G=+12dB  
G=+9dB  
G=-12dB  
°C  
°C  
G=+6dB  
G=+9dB  
G=0dB  
G=-34.5dB  
G=-34.5dB  
G=-12dB  
10000  
G=0dB  
1000  
100  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Figure 35: HDout PSRR vs. frequency  
Figure 38: Spkout PSRR vs. frequency  
(output mode 4, inputs grounded)  
(output mode 5, inputs grounded)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Output mode 4  
Vcc = +5V  
Output mode 5  
Vcc = +3V  
RL = 8  
Vripple=0.2Vpp  
Tamb = 25  
G=+6dB  
G=+12dB  
G=+9dB  
G=-12dB  
RL = 32  
Vripple=0.2Vpp  
Tamb = 25  
G=+12dB  
G=+6dB  
G=+9dB  
G=-12dB  
°C  
°C  
G=0dB  
G=0dB  
G=-34.5dB  
10000  
G=-34.5dB  
100  
1000  
Frequency (Hz)  
100000  
100  
1000 10000  
Frequency (Hz)  
100000  
15/28  
TS4851  
Electrical Characteristics  
Figure 39: HDout PSRR vs. frequency (output  
modes 6, 7, inputs grounded)  
Figure 42: HDout frequency response  
(output mode 2)  
0
-2  
-4  
-6  
0
Output mode 6, 7  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Vcc = +5V  
RL = 32  
Vripple=0.2Vpp  
Tamb = 25  
G=+6dB  
Vcc=3V  
Vcc=5V  
°C  
G=+12dB  
G=+9dB  
G=-12dB  
Output mode 2  
RL = 32  
Cin = 220 nF  
G=0dB  
G=-34.5dB  
10000  
BW < 125 kHz  
Tamb = 25  
°C  
100  
1000  
Frequency (Hz)  
100000  
20  
100  
1000  
Frequency (Hz)  
10000  
Figure 40: HDout PSRR vs. freq., (output  
modes 6, 7, inputs grounded)  
Figure 43: Spkout frequency response  
(output mode 3)  
12  
10  
0
Output mode 6, 7  
-10  
Vcc = +3V  
G=+6dB  
Vcc=5V  
Vcc=3V  
RL = 32  
Vripple=0.2Vpp  
Tamb = 25  
-20  
-30  
-40  
-50  
-60  
-70  
G=+12dB  
8
6
4
2
0
°C  
G=+9dB  
G=-12dB  
Output mode 3  
RL = 8  
G = +12dB  
Cin = 220 nF  
BW < 125 kHz  
G=0dB  
G=-34.5dB  
10000 100000  
Tamb = 25  
°C  
100  
1000  
Frequency (Hz)  
20  
100  
1000  
Frequency (Hz)  
10000  
Figure 41: Spkout frequency response  
(output mode 1, 7)  
Figure 44: HDout frequency response  
(output mode 4)  
6
12  
10  
Vcc=5V  
Vcc=3V  
Vcc=3V  
4
2
0
Vcc=5V  
8
6
4
2
0
Output mode 4  
RL = 32  
Output mode 1, 7  
RL = 8  
Cin = 220 nF  
BW < 125 kHz  
Tamb = 25  
G = +12dB  
Cin = 220 nF  
BW < 125 kHz  
Tamb = 25  
°C  
°C  
20  
20  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
10000  
Frequency (Hz)  
16/28  
Electrical Characteristics  
TS4851  
Figure 45: Spkout SNR vs. power supply  
voltage, unweighted filter,  
Figure 47: HDout SNR vs. power supply  
voltage, unweighted filter,  
BW = 20 Hz to 20 kHz  
BW = 20 Hz to 20 kHz  
100  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
Vcc=3V  
Vcc=3V  
Vcc=5V  
98  
Vcc=5V  
96  
RL = 8  
RL = 32  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
Unweighted filter (20Hz to 20kHz)  
THD + N < 0.7%  
Tamb = 25°C  
Unweighted filter (20Hz to 20kHz)  
THD + N < 0.7%  
Tamb = 25°C  
G=+12dB  
G=+12dB  
1
2
3
4
5
6
7
1
2
3
4
Output mode  
5
6
7
Output mode  
Figure 46: Spkout SNR vs. power supply  
voltage, weighted filter A,  
Figure 48: HDout SNR vs. power supply  
voltage, weighted filter A,  
BW = 20 Hz to 20 kHz  
BW = 20 Hz to 20 kHz  
104  
104  
Vcc=3V  
Vcc=3V  
Vcc=5V  
Vcc=5V  
RL = 32  
Weighted filter type A  
THD + N < 0.7%  
102  
102  
100  
98  
RL = 8  
100  
98  
96  
94  
92  
90  
88  
86  
Weighted filter type A  
THD + N < 0.7%  
Tamb = 25°C  
Tamb = 25°C  
96  
94  
92  
G=+12dB  
90  
G=+12dB  
88  
86  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
Output mode  
Output mode  
17/28  
TS4851  
Electrical Characteristics  
Figure 49: Crosstalk vs. frequency  
(output mode 4)  
Figure 52: -3 dB lower cut off frequency vs.  
input capacitance  
0
Rin & Lin Inputs  
All gain setting  
Tamb=25°C  
Output mode 4  
Vcc = 5V  
RL = 32  
-20  
-40  
-60  
-80  
G = +12dB  
Pout = 100mW  
BW < 125kHz  
10  
Typical Input  
Impedance  
Tamb = 25°C  
Minimum Input  
Impedance  
Lout -> Rout  
Rout -> Lout  
Maximum Input  
Impedance  
1
0.1  
1
20  
100  
1000  
10000  
Input Capacitor (µF)  
Frequency (Hz)  
Figure 50: Crosstalk vs. frequency  
(output mode 4)  
Figure 53: Current consumption vs.  
power supply voltage  
0
10  
No loads  
Tamb = 25°C  
Output mode 4  
Vcc = 3V  
9
8
7
6
5
4
3
2
1
0
Mode 7  
RL = 32  
-20  
-40  
-60  
-80  
G = +12dB  
Pout = 20mW  
BW < 125kHz  
Mode 2, 4, 6  
Tamb = 25°C  
Lout -> Rout  
Rout -> Lout  
Reset state  
Mode 1, 3, 5  
100  
1000  
10000  
0
1
2
3
4
5
Frequency (Hz)  
Vcc (V)  
Figure 51: -3 dB lower cut off frequency vs.  
input capacitor  
Figure 54: Power dissipation vs. output power  
(speaker output)  
100  
1.4  
Phone In Input  
Vcc=5V  
Tamb=25°C  
F=1kHz  
THD+N<1%  
1.2  
RL=4Ω  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Typical Input  
Impedance  
Minimum Input  
Impedance  
RL=8  
10  
Maximum Input  
Impedance  
RL=16  
0.1  
1
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
Output Power (W)  
Input Capacitor ( F)  
18/28  
Electrical Characteristics  
TS4851  
Figure 55: Power dissipation vs. output power  
(speaker output)  
Figure 58: Power derating curves  
0.5  
100  
Rin & Lin Inputs  
Vcc=3V  
Input Impedance is Nominal  
Tamb=25°C  
F=1kHz  
THD+N<1%  
Cin=100nF  
Cin=220nF  
RL=4Ω  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
RL=8  
RL=16  
Cin=1  
µF  
Cin=470nF  
0
1
-34.5  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
-20  
12  
Gain Setting (dB)  
Output Power (W)  
Figure 56: Power dissipation vs. output power  
(headphone output, one channel)  
Figure 59: -3 dB lower cut off frequency vs. gain  
setting (output modes 3, 4, 5, 6, 7)  
1.4  
0.4  
Vcc=5V  
F=1kHz  
THD+N<1%  
0.3  
Heat sink surface = 125mm2  
1.2  
1.0  
0.8  
0.6  
0.4  
RL=16Ω  
0.2  
0.1  
0.0  
RL=32Ω  
No Heat sink  
0.2  
0.0  
0
25  
50  
75  
100  
125  
150  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
Output Power (W)  
Ambiant Temperature ( C)  
Figure 57: Power dissipation vs. output power  
(headphone output one channel)  
Table 11. Output noise (all inputs grounded)  
Outp  
ut  
Mode  
Unweighted  
Filter from 3V  
to 5V  
Weighted Filter  
(A) from 3V to  
5V  
120  
Vcc=3V  
F=1kHz  
THD+N<1%  
100  
1
2
3
4
5
6
23µVrms  
20µVrms  
70µVrms  
53µVrms  
79µVrms  
60µVrms  
20µVrms  
17µVrms  
60µVrms  
45µVrms  
67µVrms  
51µVrms  
80  
60  
40  
20  
0
RL=16  
RL=32  
0
10  
20  
30  
40  
50  
60  
70  
Output Power (mW)  
19/28  
TS4851  
Application Information  
5 Application Information  
5.1 BTL configuration principles  
The TS4851 integrates 3 monolithic power amplifier having BTL output. BTL (Bridge Tied Load) means  
that each end of the load is connected to two single-ended output amplifiers. Thus, we have:  
Single ended output 1 = Vout1 = Vout (V)  
Single ended output 2 = Vout2 = -Vout (V)  
and  
Vout1 - Vout2 = 2Vout (V)  
The output power is:  
2
(2 Vout RMS  
RL  
)
Pout =  
(W)  
For the same power supply voltage, the output power in BTL configuration is four times higher than the  
output power in single ended configuration.  
5.2 Power dissipation and efficiency  
Hypotheses:  
Voltage and current in the load are sinusoidal (Vout and Iout).  
Supply voltage is a pure DC source (Vcc).  
Regarding the load we have:  
VOUT = VPEAK sinωt (V)  
and  
VOUT  
IOUT = ---------------- (A)  
RL  
and  
2
VPEAK  
POUT = ---------------------- ( W )  
2RL  
Then, the average current delivered by the supply voltage is:  
VPEAK  
πRL  
ICC  
= 2------------------- (A)  
AVG  
The power delivered by the supply voltage is:  
Psupply = Vcc Icc  
(W)  
AVG  
Then, the power dissipated by each amplifier is  
Pdiss = Psupply - Pout (W)  
2 2 VCC  
P
=
POUT POUT (W)  
diss  
π RL  
20/28  
Application Information  
TS4851  
and the maximum value is obtained when:  
Pdiss  
--------------------- = 0  
POUT  
and its value is:  
2Vcc2  
π2RL  
Pdissmax =  
(W)  
Note: This maximum value is depends only on power supply voltage and load values.  
The efficiency is the ratio between the output power and the power supply:  
POUT  
πVPEAK  
η = ----------------------- =-----------------------  
Psupply  
4VCC  
The maximum theoretical value is reached when Vpeak = Vcc, so:  
π
---- = 78.5%  
4
The TS4851 has three independent power amplifiers. Each amplifier produces heat due to its power  
dissipation. Therefore, the maximum die temperature is the sum of each amplifier’s maximum power  
dissipation. It is calculated as follows:  
P
P
= Power dissipation due to the speaker power amplifier.  
diss speaker  
= Power dissipation due to the Headphone power amplifier  
diss head  
Total P  
= P  
+ P  
+ P (W)  
diss head2  
diss  
diss speaker  
diss head1  
In most cases, P  
= P  
, giving:  
diss head1  
diss head2  
Total P  
= P  
+ 2P  
(W)  
diss  
diss speaker  
diss head  
POUT SPEAKER  
POUT HEAD  
2 2 VCC  
TotalPdiss  
=
+ 2  
π
RL SPEAKER  
RLHEAD  
[POUT SPEAKER + 2POUT HEAD  
]
(W)  
The following graph (Figure 60) shows an example of the previous formula, with Vcc set to +5V,  
set to 8and R set to 16.  
R
load speaker  
load headphone  
Figure 60: Example of total power dissipation vs. speaker and headphone output power  
21/28  
TS4851  
Application Information  
5.3 Low frequency response  
In low frequency region, the effect of Cin starts. Cin with Zin forms a high pass filter with a -3dB cut off  
frequency.  
1
2 π Zin Cin  
FCL  
=
(Hz)  
Zin is the input impedance of the corresponding input:  
20kfor Phone In IHF input  
50kfor the 3 other inputs  
Note: For all inputs, the impedance value remains constant for all gain settings. This means that the lower cut-off  
frequency doesn’t change with gain setting. Note also that 20kand 50kare typical values and there are  
tolerances around these values (see Electrical Characteristics on page 7).  
In Figures 39 to 41, you could easily establish the Cin value for a -3dB cut-off frequency required.  
5.4 Decoupling of the circuit  
Two capacitors are needed to bypass properly the TS4851, a power supply bypass capacitor Cs and a  
bias voltage bypass capacitor Cb.  
Cs has especially an influence on the THD+N in high frequency (above 7kHz) and indirectly on the power  
supply disturbances.  
With 1µF, you could expect similar THD+N performances like shown in the datasheet.  
If Cs is lower than 1µF, THD+N increases in high frequency and disturbances on the power supply rail are  
less filtered.  
To the contrary, if Cs is higher than 1µF, those disturbances on the power supply rail are more filtered.  
Cb has an influence on THD+N in lower frequency, but its value is critical on the final result of PSRR with  
input grounded in lower frequency:  
If Cb is lower than 1µF, THD+N increases at lower frequencies and the PSRR worsens upwards.  
If Cb is higher than 1µF, the benefit on THD+N and PSRR in the lower frequency range is small.  
5.5 Startup time  
When the TS4851 is controlled to switch from the full standby mode (output mode 0) to another output  
mode, a delay is necessary to stabilize the DC bias. This delay depends on the Cb value and can be  
calculated by the following formulas.  
Typical startup time = 0.0175 x Cb (s)  
Max. startup time = 0.025 x Cb (s)  
(Cb is in µF in these formulas)  
These formulas assume that the Cb voltage is equal to 0V. If the Cb voltage is not equal to 0V, the startup  
time will be always lower.  
The startup time is the delay between the negative edge of Enable input (see Description of SPI operation  
on page 3) and the power ON of the output amplifiers.  
Note: When the TS4851 is set in full standby mode, Cb is discharged through an internal switch.. The time to reach 0V  
of Cb voltage is about ms.  
22/28  
Application Information  
TS4851  
5.6 Pop and Click performance  
The TS4851 has internal Pop and Click reduction circuitry. The performance of this circuitry is closely  
linked with the value of the input capacitor Cin and the bias voltage bypass capacitor Cb.  
The value of Cin is due to the lower cut-off frequency value requested. The value of Cb is due to THD+N  
and PSRR requested always in lower frequency.  
The TS4851 is optimized to have a low pop and click in the typical schematic configuration (see page 2).  
Note: The value of Cs is not an important consideration as regards pop and click.  
5.7 Notes on PSRR measurement  
What is the PSRR?  
The PSRR is the Power Supply Rejection Ratio. The PSRR of a device, is the ratio between a power  
supply disturbance and the result on the output. We can say that the PSRR is the ability of a device to  
minimize the impact of power supply disturbances to the output.  
How we measure the PSRR?  
The PSSR was measured according to the schematic shown in Figure 61.  
Figure 61: PSRR measurement schematic  
Principles of operation  
The DC voltage supply (Vcc) is fixed.  
The AC sinusoidal ripple voltage (Vripple) is fixed.  
No bypass capacitor Cs is used.  
The PSRR value for each frequency is:  
PSRR = 20 × Log  
RMS  
RMS  
(Output  
( Vripple  
)
)
(dB )  
RMS is a rms selective measurement.  
5.8 Power-On Reset  
When Power is applied to Vdd, an internal Power On Reset holds the TS4851 in a reset state until the  
Supply Voltage reached its nominal value.  
The Power On reset has a typical threshold at 1.8V.  
23/28  
TS4851  
Package Information  
6 Package Information  
Flip-chip - 18 bumps: TS4851JT  
Pin out (top view)  
R
OUT-  
L
7
6
5
GND  
OUT -  
L
R
OUT +  
OUT +  
R
IN  
VCC  
VCC  
DATA  
ENB  
L
IN  
4
3
NC  
PHONE  
IN  
SPKR  
OUT +  
SPKR  
OUT -  
2
1
BYPASS  
GND  
CLK  
A
B
C
D
E
Note: The solder bumps are on the underside.  
Marking (top view):  
The following markings are present on the topside of the flip-chip:  
The ST logo.  
The part number: A51.  
A 3-digit date code: YWW.  
A dot marking the location of Pin1A.  
E
Symbol for  
Lead-Free  
A51  
YWW  
24/28  
Package Information  
TS4851  
TS4851 Footprint recommendation  
866µm  
75µm Min  
100µm max.  
Φ=250µm  
Φ=400µm  
433µm  
Track  
150µm min.  
Non Solder mask opening  
Pad in Cu 18µm thickness with Flash NiAu (6µm, 0.15µm)  
Package mechanical data  
Symmetry axis  
2440um  
Die size: 2170µm x 2440µm 30µm  
Die height (including bumps): 600µm 30µm  
Bumps diameter: 315µm 50µm  
Bumps height: 250µm 40µm  
Pitch: 500µm 10µm  
Symmetry axis  
866um  
354um  
866um  
600um  
25/28  
TS4851  
Daisy Chain Samples  
7 Daisy Chain Samples  
A daisy chain sample is a “dummy” silicon chip that can be used to test your flip-chip soldering process  
and connection continuity. The daisy chain sample features paired connections between bumps, as  
shown in the schematic below. On your PCB layout, you should design the bump connections such that  
they are complementary to the above schema (meaning that different pairs of bumps are connected on  
the PCB side). In this way, by simply connecting an ohmmeter between pin 1A and pin 5A, you can test  
the continuity of your soldering process.  
The order code for daisy chain samples is given below.  
Figure 62: Daisy chain sample mechanical data  
2.44 mm  
R
OUT-  
L
7
6
5
GND  
OUT -  
L
R
OUT +  
OUT +  
R
IN  
VCC  
VCC  
DATA  
ENB  
L
IN  
2.17 mm  
4
3
NC  
PHONE  
IN  
SPKR  
OUT +  
SPKR  
OUT -  
2
1
BYPASS  
GND  
CLK  
A
B
C
D
E
Order code for daisy chain samples  
Package  
Part Number  
TSDC02IJT  
Temperature Range  
Marking  
J
-40, +85°C  
DC2  
26/28  
Tape & Reel Specification  
TS4851  
8 Tape & Reel Specification  
Figure 63: Top view of tape and reel  
1
1
A
A
User direction of feed  
Device orientation  
The devices are oriented in the carrier pocket with pin number 1A adjacent to the sprocket holes.  
27/28  
TS4851  
Revision History  
9 Revision History  
Date  
Revision  
Description of Changes  
01 July 2002  
01 April 2003  
01 April 2004  
01 Jan. 2005  
01 March 2005  
1
2
3
4
5
First Release  
Curves inserted in the document  
Curves updated in the document  
Leadfree codification added in the document  
Realignment of curve data in the document  
Informatio n fu rnish ed is bel ieve d to b e accurate a nd rel iab le. H owe ver, STMicro ele ctro nics assu mes no resp onsi bil ity for th e consequences  
of useofsuchi nformationnor for any infringement of patents or other rights of third parti es which may result from its use. No licenseis granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specificationsmentioned in this publication are subject  
to change without notice. This publication supersedes and replacesall information previously supplied. STMicroelectronics produ cts are no t  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectroni cs.  
The ST logo is a registered trademark of STMicroelectronics  
Al l other na mes are the pro perty of the ir respe cti ve own ers  
© 2005 STMicroelectronics - All rights reserved  
STMi croelectronics group of companies  
Australia - Belgium - Brazil -Canada - China - Czech Republic - Finland - France - Germany - Hong Kong -India - Israel - Italy - J ap an -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
28/28  

相关型号:

TSDC05EIJT

1.2 W audio power amplifier with active low standby mode
STMICROELECTR

TSDC05IJT

1.2 W audio power amplifier with active low standby mode
STMICROELECTR

TSDC4872IJT

RAIL TO RAIL INPUT/OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE
STMICROELECTR

TSDF-02-D-S

Board Connector, 4 Contact(s), 2 Row(s), Female, 0.05 inch Pitch, Crimp Terminal, Locking, Black Insulator
SAMTEC

TSDF-04-D-S

Board Connector, 8 Contact(s), 2 Row(s), 0.05 inch Pitch, Wire Terminal, Locking, Black Insulator, ROHS COMPLIANT
SAMTEC

TSDF-05-D-S

Board Connector, 10 Contact(s), 2 Row(s), Female, 0.05 inch Pitch, Wire Terminal, Locking, Black Insulator, ROHS COMPLIANT
SAMTEC

TSDF-05-S-S

Board Connector, 5 Contact(s), 1 Row(s), Female, 0.05 inch Pitch, Wire Terminal, Locking, Black Insulator, ROHS COMPLIANT
SAMTEC

TSDF-06-S-S

Board Connector, 6 Contact(s), 1 Row(s), Female, 0.05 inch Pitch, Crimp Terminal, Locking, Black Insulator
SAMTEC

TSDF-07-D-S

Board Connector, 14 Contact(s), 2 Row(s), Female, 0.05 inch Pitch, Wire Terminal, Locking, Black Insulator, ROHS COMPLIANT
SAMTEC

TSDF-10-D-S

Board Connector, 20 Contact(s), 2 Row(s), Female, Straight, 0.05 inch Pitch, Wire Terminal, Locking, Black Insulator, ROHS COMPLIANT
SAMTEC

TSDF-19-D-S

Board Connector, 38 Contact(s), 2 Row(s), Female, 0.05 inch Pitch, Crimp Terminal, Locking, Black Insulator
SAMTEC

TSDF-20-D-S

Board Connector, 40 Contact(s), 2 Row(s), Female, Straight, 0.05 inch Pitch, Wire Terminal, Locking, Black Insulator, ROHS COMPLIANT
SAMTEC