TSH110ILT [STMICROELECTRONICS]

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS; 宽频带,低噪声运算放大器
TSH110ILT
型号: TSH110ILT
厂家: ST    ST
描述:

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
宽频带,低噪声运算放大器

运算放大器
文件: 总19页 (文件大小:425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSH110-111-112-113-114  
WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS  
LOW NOISE: 3nV/Hz  
PIN CONNECTIONS (top view)  
LOW SUPPLY CURRENT: 3.2mA  
47mA OUTPUT CURRENT  
BANDWIDTH: 100MHz  
TSH110 : SOT23-5  
Output  
VCC - 2  
Non Inverting Input  
1
5
VCC +  
5V to 12V SUPPLY VOLTAGE  
SLEW-RATE: 450V/µs  
+ -  
Inverting Input  
3
4
SPECIFIED FOR 100Load  
VERY LOW DISTORTION  
TSH111 : SO8/TSSOP8  
NC  
1
2
3
4
8
7
6
5
STANDBY  
VCC +  
Output  
NC  
TINY: SOT23-5, TSSOP and SO PACKAGES  
_
+
Inverting Input  
Non Inverting Input  
VCC -  
DESCRIPTION  
The singles TSH110 and TSH111, the dual  
TSH112, the triple TSH113 and the quad TSH114  
are current feedback operational amplifiers featur-  
ing a very high slew rate of 450V/µs and a large  
bandwidth of 100MHz, with only a 3.2mA quies-  
cent supply current. The TSH111 and TSH113  
feature a Standby function for each operator. This  
function is a power down mode with a high output  
impedance.  
TSH112 : SO8/TSSOP8  
Output1  
VCC +  
1
2
3
4
8
7
6
5
Inverting Input1  
Non Inverting Input1  
VCC -  
Output2  
_
+
Inverting Input2  
Non Inverting Input2  
_
+
TSH113 : SO14/TSSOP14  
These devices operate from ±2.5V to ±6V dual  
supply voltage or from 5V to 12V single supply  
voltage. They are able to drive a 100load with a  
swing of 9V minimum (for a 12V power supply).  
STANDBY1  
1
2
3
4
5
14  
13  
Output3  
Inverting Input3  
STANDBY2  
STANDBY3  
VCC +  
_
+
12 Non Inverting Input3  
11 VCC -  
The harmonic and intermodulation distortions of  
these devices are very low, making this circuit a  
good choice for applications requiring wide band-  
width with multiple carriers.  
10  
9
Non Inverting Input1  
Non Inverting Input2  
Inverting Input2  
+
_
+
_
6
7
Inverting Input1  
Output1  
Output2  
8
For board space and weight saving, the TSH110  
comes in miniature SOT23-5 package, the  
TSH111 comes in SO8 and TSSOP8 packages,  
the TSH112 comes in SO8 and TSSOP8 packag-  
es, the TSH113 and TSH114 comes in SO14 and  
TSSOP14 packages.  
TSH114 : SO14/TSSOP14  
1
2
3
4
5
14  
13  
12  
Output1  
Inverting Input1  
Non Inverting Input1  
VCC +  
Output4  
_
+
Inverting Input4  
Non Inverting Input4  
_
+
11 VCC -  
APPLICATIONS  
10  
9
Non Inverting Input2  
Non Inverting Input3  
Inverting Input3  
+
_
+
_
High End Video Drivers  
Receiver for xDSL  
6
7
Inverting Input2  
Output2  
Output3  
8
A/D Converter Driver  
High End Audio Applications  
February 2002  
1/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
VCC  
Parameter  
Value  
Unit  
1)  
14  
V
Supply Voltage  
2)  
Vid  
±1  
V
Differential Input Voltage  
3)  
Vi  
Toper  
Tstg  
Tj  
±6  
V
Input Voltage  
Operating Free Air Temperature Range  
-40 to +85  
-65 to +150  
150  
°C  
°C  
°C  
Storage Temperature  
Maximum Junction Temperature  
Thermal resistance junction to case  
SOT23-5  
SO8  
80  
28  
22  
37  
32  
Rthjc  
°C/W  
SO14  
TSSOP8  
TSSOP14  
Thermal resistance junction to ambiante area  
SOT23-5  
SO8  
250  
157  
125  
130  
110  
2.0  
Rthja  
°C/W  
kV  
SO14  
TSSOP8  
TSSOP14  
Human Body Model  
Machine Model  
Charged Device Model  
ESD  
0.2  
1.5  
4)  
ouput short circuit duration  
1. All voltages values, except differential voltage are with respect to network ground terminal  
2. Differential voltages are non-inverting input terminal with respect to the inverting terminal  
3. The magnitude of input and output must never exceed V +0.3V  
CC  
4. Short-circuits can cause excessive heating. Destructive dissipation can result.  
OPERATING CONDITIONS  
Symbol  
VCC  
Parameter  
Value  
Unit  
Supply Voltage  
Common Mode Input Voltage Range  
5 to 12  
V
V
V
CC-+1.5 to VCC+-1.5  
Vicm  
ORDER CODES  
Type  
Temperature  
Package  
TSH110ILT (code K302)  
TSH111ID  
SOT23-5  
SO8  
TSH111IDT  
TSH111IPT  
TSH112ID  
SO8  
TSSOP8  
SO8  
TSH112IDT  
TSH112IPT  
TSH113ID  
SO8  
-40° to +85°C  
TSSOP8  
SO14  
TSH113IDT  
TSH113IPT  
TSH114ID  
SO14  
TSSOP14  
SO14  
TSH114IDT  
TSH114IPT  
SO14  
TSSOP14  
D = Small Outline Package (SO) - also available in Tape & Reel (DT)  
P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT)  
L = Tiny Package (SOT23-5) - only available in Tape & Reel (LT)  
2/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
ELECTRICAL CHARACTERISTICS (pages 3 and 4)  
Dual Supply Voltage, VCC= ±2.5Volts, R*fb = 680, Tamb = 25 C (unless otherwise specified)  
°
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
DC PERFORMANCE  
Tamb  
Tmin. < Tamb < Tmax.  
min. < Tamb < Tmax.  
-1.5  
0.3  
1
2.0  
mV  
mV  
µV/°C  
µA  
Vio  
Vio  
Iib+  
Input Offset Voltage  
T
Input Offset Voltage Drift vs. Temperature  
5
Tamb  
-10  
-3  
1.4  
2.5  
1.9  
2.5  
750  
3.2  
3.5  
13  
7
Non Inverting Input Bias Current  
Tmin. < Tamb < Tmax.  
Tamb  
µA  
µA  
Iib-  
ROL  
ICC  
Inverting Input Bias Current  
Transimpedance  
Tmin. < Tamb < Tmax.  
RL=100Ω  
µA  
500  
kΩ  
Tamb  
4
mA  
mA  
Supply Current per Operator  
Tmin. < Tamb < Tmax.  
Common Mode Rejection Ratio  
(Vic/Vio)  
CMR  
SVR  
PSR  
56  
70  
60  
80  
48  
dB  
dB  
dB  
Supply Voltage Rejection Ratio  
(VCC/Vio)  
Power Supply Rejection Ratio  
(VCC/Vout)  
Gain=1, Rload=3.9kΩ  
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTICS  
Tamb  
RL = 100Ω  
1.4  
2
V
V
V
V
Voh  
High Level Output Voltage  
Low Level Output Voltage  
T
min. < Tamb < Tmax.  
1.9  
-1.8  
-1.7  
RL = 100GND  
Tamb  
RL = 100Ω  
-1.3  
Vol  
T
min. < Tamb < Tmax.  
RL = 100Ω  
| Isink  
|
Tmin. < Tamb < Tmax.  
Output Sink current  
20  
18  
mA  
mA  
Isource  
Tmin. < Tamb < Tmax.  
Output Source current  
Vout=1Vpk, Rfb*=820//2pF  
Load=100Ω  
BW  
-3dB Bandwidth  
Slew Rate  
AVCL=+2  
81  
MHz  
AVCL=+2, 2V step  
SR  
160  
230  
V/µs  
Load=100Ω  
Tr  
Tf  
Rise Time  
9
9
ns  
ns  
%
ns  
%
°
for 200mV step  
Fall Time  
A
VCL=+2, Rfb*=820//2pF  
Ov  
St  
Overshoot  
16  
Load=100Ω  
Settling Time @ 0.05%  
Differential gain  
Differential phase  
60  
G  
∆φ  
0.05  
0.05  
AVCL=+2, RL=100Ω  
F=4.5MHz, Vout=1Vpeak  
3/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
NOISE AND HARMONIC PERFORMANCE  
en  
in  
Equivalent Input Voltage Noise  
Equivalent Input Current Noise  
3
nV/Hz  
pA/Hz  
Frequency : 1MHz  
VCL=+2, F=2MHz  
8.5  
A
RL=100Ω  
THD  
Total Harmonic Distortion  
64.4  
dB  
Vout=2Vpeak  
AVCL=+2, Vout=2Vpp  
RL=100Ω  
F1=1MHz, F2=1.1MHz  
@900kHz  
@1.2MHz  
@3.1MHz  
@3.2MHz  
90  
90  
86  
83  
IM3  
Third order inter modulation product  
dBc  
MATCHING CHARACTERISTICS  
Gf Gain Flatness  
Vo1/Vo2 Channel Separation  
F=(DC) to 6MHz  
0.1  
65  
dB  
dB  
AVCL=+2, Vout=2Vpp  
F=1MHz to 10MHz  
(*) Rfb is the feedback resistance between the output and the inverting input of the amplifier.  
4/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
ELECTRICAL CHARACTERISTICS (pages 5 and 6)  
Dual Supply Voltage, VCC=±6Volts, R*fb = 680, Tamb = 25 C (unless otherwise specified)  
°
Symbol  
Parameter  
TestCondition  
Min.  
Typ.  
Max.  
Unit  
DC PERFORMANCE  
Tamb  
Tmin. < Tamb < Tmax.  
min. < Tamb < Tmax.  
-1.0  
0.9  
1.3  
5
3.0  
mV  
mV  
µV/°C  
µA  
Vio  
Vio  
Iib+  
Input Offset Voltage  
T
Input Offset Voltage Drift vs Temperature  
Tamb  
-12  
-4  
1
14  
10  
Non Inverting Input Bias Current  
Tmin. < Tamb < Tmax.  
Tamb  
1.7  
3
µA  
µA  
Iib -  
ROL  
ICC  
Inverting Input Bias Current  
Transimpedance  
Tmin. < Tamb < Tmax.  
RL=100Ω  
3.4  
900  
4
µA  
600  
kΩ  
Tamb  
5
mA  
mA  
Supply Current per Operator  
Tmin. < Tamb < Tmax.  
4.1  
Common Mode Rejection Ratio  
(Vic/Vio)  
CMR  
SVR  
PSR  
58  
72  
63  
80  
49  
dB  
dB  
dB  
Supply Voltage Rejection Ratio  
(Vcc/Vio)  
Power Supply Rejection Ratio  
(Vcc/Vout)  
Gain=1, Rload=3.9kΩ  
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTICS  
Tamb  
RL = 100Ω  
4.5  
4.7  
4.6  
V
V
V
V
Voh  
High Level Output Voltage  
Low Level Output Voltage  
T
min. < Tamb < Tmax.  
RL = 100Ω  
Tamb  
RL = 100Ω  
-4.7  
-4.6  
-4.3  
Vol  
T
min. < Tamb < Tmax.  
RL = 100Ω  
| Isink  
|
Tmin. < Tamb < Tmax.  
Output Sink current  
47  
46  
mA  
mA  
Isource  
Tmin. < Tamb < Tmax.  
Output Source current  
Vout=1Vpk, Rfb*=680//2pF  
Load=100Ω  
Bw  
-3dB Bandwidth  
Slew Rate  
AVCL=+2  
100  
450  
MHz  
AVCL=+2, 6V step  
SR  
240  
V/µs  
Load=100Ω  
Tr  
Tf  
Rise Time  
10.4  
12.2  
17  
ns  
ns  
%
ns  
%
°
for 200mV step  
Fall Time  
A
VCL=+2, Rfb*=680//2pF  
Ov  
St  
Overshoot  
Load=100Ω  
Settling Time @ 0.05%  
Differential gain  
Differential phase  
40  
G  
∆φ  
0.05  
0.05  
AVCL=+2, RL=100Ω  
F=4.5MHz, Vout=2Vpeak  
5/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
Symbol  
Parameter  
TestCondition  
Min.  
Typ.  
Max.  
Unit  
NOISE AND HARMONIC PERFORMANCE  
en  
in  
Equivalent Input Voltage Noise  
Equivalent Input Current Noise  
3
nV/Hz  
pA/Hz  
Frequency : 1MHz  
VCL=+2, F=2MHz  
8.6  
A
RL=100Ω  
THD  
Total Harmonic Distortion  
67.7  
dB  
Vout=4Vpp  
AVCL=+2, Vout=4Vpp  
RL=100Ω  
F1=1MHz, F2=1.1MHz  
@900kHz  
@1.2MHz  
@3.1MHz  
@3.2MHz  
82  
84  
77  
73  
IM3  
Third order inter modulation product  
dBc  
MATCHING CHARACTERISTICS  
Gf Gain Flatness  
Vo1/Vo2 Channel Separation  
F=(DC) to 6MHz  
0.1  
65  
dB  
dB  
AVCL=+2, Vout=4Vpp  
F=1MHz to 10MHz  
(*) Rfb is the feedback resistance between the output and the inverting input of the amplifier.  
6/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
STANDBY MODE  
amb = 25°C (unless otherwise specified), VCC=±6Volts  
T
Symbol  
Parameter  
Standby Low Level  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
-
(VCC  
-
Vlow  
V
VCC  
+0.8)  
-
+
Vhigh  
ICC SBY  
Isol  
Standby High Level  
V
(VCC +2)  
(VCC  
40  
)
Current Consumption per Operator in  
Standby mode  
26  
µA  
dB  
Input/Output Isolation  
F=1MHz  
-90  
Rout  
Cout  
31  
25  
MΩ  
pF  
Zout  
Output Impedance (Rout // Cout)  
Time from Standby Mode to Active  
Mode  
Ton  
Toff  
2
µs  
µs  
Time from Active Mode to Standby  
Mode  
Down to ICC SBY = 40µA  
13  
TSH111 STANDBY CONTROL pin 8 (SBY)  
OPERATOR STATUS  
Vlow  
Standby  
Active  
Vhigh  
TSH113 STANDBY CONTROL  
OPERATOR STATUS  
pin 1  
(SBY OP1)  
pin 2  
(SBY OP2)  
pin 3  
(SBY OP)  
OP1  
OP1  
OP3  
Vlow  
x
x
x
x
x
Standby  
x
x
x
x
x
Vhigh  
Active  
x
Vlow  
Vhigh  
x
x
x
x
x
x
x
x
x
Standby  
Active  
Vlow  
x
x
Standby  
Active  
Vhigh  
x
7/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
(fig.1) Closed Loop Gain vs. Frequency  
(fig.2) Closed Loop Gain vs. Frequency  
A =+1, R =2.2k, C =2pF, R =100, V =100mVp  
A =-1, R =2.2k, C =2pF, R =100, V =100mVp  
V
fb  
fb  
L
in  
V
fb  
fb  
L
in  
2
0
-140  
-160  
-180  
-200  
-220  
-240  
-260  
-280  
-300  
2
0
40  
Vcc=±2.5V  
Vcc=±6V  
gain  
20  
Vcc=±6V  
0
Vcc=±2.5V  
-2  
-2  
-20  
-40  
-60  
-80  
-100  
-120  
phase  
Vcc=±2.5V  
Vcc=±6V  
-4  
-4  
Vcc=±2.5V  
Vcc=±6V  
-6  
-6  
-8  
-8  
-10  
-10  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
(fig.3) Closed Loop Gain vs. Frequency  
(fig.4) Closed Loop Gain vs. Frequency  
A =+2, R =680, C =2pF, R =100, V =100mVp  
A =-2, R =680k, C =2pF, R =100, V =100mVp  
V
fb  
fb  
L
in  
V fb fb L in  
-140  
-160  
-180  
-200  
-220  
-240  
-260  
-280  
-300  
40  
Vcc=±2.5V  
6
4
6
4
gain  
Vcc=±6V  
gain  
20  
Vcc=±2.5V  
Vcc=±6V  
0
phase  
phase  
-20  
-40  
-60  
-80  
-100  
-120  
2
2
Vcc=±2.5V  
Vcc=±6V  
Vcc=±2.5V  
Vcc=±6V  
0
0
-2  
-4  
-2  
-4  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
(fig.5) Closed Loop Gain vs. Frequency  
(fig.6) Closed Loop Gain vs. Frequency  
A =+10, R =510, R =100, V =30mVp  
A =-10, R =510, R =100, V =30mVp  
V
fb  
L
in  
V fb L in  
22  
20  
18  
16  
14  
12  
10  
-140  
-160  
-180  
-200  
-220  
-240  
-260  
-280  
-300  
22  
20  
18  
16  
14  
12  
10  
40  
20  
gain  
gain  
0
Vcc=±6V  
Vcc=±2.5V  
Vcc=±2.5V  
Vcc=±6V  
phase  
-20  
-40  
-60  
-80  
phase  
Vcc=±2.5V  
Vcc=±6V  
Vcc=±2.5V  
Vcc=±6V  
-100  
-120  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
8/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
(fig.8): Negative Slew Rate  
(fig.7): Positive Slew Rate  
A =+2, R =680, C =2pF, R =100, Vcc=±6V  
A =+2, R =680, C =2pF, R =100, Vcc=±6V  
V
fb  
fb  
L
V fb fb L  
0V  
0V  
5ns /div.  
5ns /div.  
(fig.9): Positive Slew Rate  
(fig.10): Negative Slew Rate  
A =+2, R =680, C =2pF, R =100, Vcc=±2.5V  
A =+2, R =680, C =2pF, R =100, Vcc=±2.5V  
V
fb  
fb  
L
V fb fb L  
0V  
0V  
5ns /div.  
5ns /div.  
(fig.11): Input Voltage Noise Level  
(fig.12): Vio vs. Power Supply  
A =+100, R =1k, Input+ connected to Gnd via 10Ω  
Open loop, no load  
V
fb  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
10  
9
8
7
6
5
4
3
2
1
0
5
6
7
8
9
10  
11  
12  
100  
1k  
10k  
100k  
1M  
Vcc (V)  
Frequency (Hz)  
9/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
(fig.13): Icc(-) vs. Power Supply  
(fig.14): Icc(+) vs. Power Supply  
Open loop, no load  
Open loop, no load  
-3.3  
-3.4  
-3.5  
-3.6  
-3.7  
-3.8  
-3.9  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
5
6
7
8
9
10  
10  
10  
11  
11  
11  
12  
12  
12  
5
6
7
8
9
10  
11  
12  
Vcc (V)  
Vcc (V)  
(fig.15): Iib(-) vs. Power Supply  
Open loop, no load  
(fig.16): Iib(+) vs. Power Supply  
Open loop, no load  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
5
6
7
8
9
10  
11  
12  
5
6
7
8
9
Vcc (V)  
Vcc (V)  
(fig.17): Vol vs. Power Supply  
Open loop, R =100Ω  
(fig.18): Voh vs. Power Supply  
Open loop, R =100Ω  
L
L
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
5
6
7
8
9
5
6
7
8
9
10  
11  
12  
Vcc (V)  
Vcc (V)  
10/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
(fig.19): Icc vs. Temperature  
(fig.20): Icc (Standby) vs. Temperaure  
Open loop, no load  
Open loop, no load  
5
4
30  
20  
10  
0
Icc(+) for Vcc=±6V  
3
Icc(+) for Vcc=±2.5V  
2
1
0
-1  
-2  
-3  
-4  
-5  
-10  
-20  
-30  
Icc(-) for Vcc=±2.5V  
Icc(-) for Vcc=±6V  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperature (°C)  
(fig.21): ROL vs. Temperature  
(fig.22): CMR vs. Temperature  
Open loop, no load  
Open loop, no load  
68  
66  
1000  
950  
900  
850  
800  
Vcc=±6V  
Vcc=±6V  
64  
62  
Vcc=±2.5V  
60  
58  
Vcc=±2.5V  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperature (°C)  
(fig.23): VOH & VOL vs. Temperature  
(fig.24): Slew Rate vs. Temperature  
Open loop, R =100Ω  
A =+2, R =100Ω  
L
V L  
6
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
VOH for Vcc=±6V  
pos. SR for Vcc=±6V  
5
4
3
2
VOH for Vcc=±2.5V  
1
0
neg. SR for Vcc=±6V  
-1  
-2  
-3  
-4  
-5  
-6  
VOL for Vcc=±2.5V  
VOL for Vcc=±6V  
pos. SR for Vcc=±2.5V  
neg. SR for Vcc=±2.5V  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperature (°C)  
11/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
(fig.25): Group Delay  
(fig.26): Gain Flatness  
A =+2, R =680, C =2pF, R =100Ω  
A =+2, R =680, C =2pF, R =100Ω  
V
fb  
fb  
L
V fb fb L  
6.30  
6.25  
6.20  
6.15  
6.10  
6.05  
6.00  
5.95  
5.90  
8
7
6
5
4
3
2
Vcc=±2.5V  
Vcc=±2.5V  
Vcc=±6V  
Vcc=±6V  
1k  
10k  
100k  
1M  
10M  
100M  
0.1  
1
10  
100  
Frequency (Hz)  
Frequency (MHz)  
(fig.27): Frequency Response vs. Load  
(fig.28): Frequency Response vs. Load  
A =+2, R =680, C =2pF, V =±2.5V, (fig.29)  
A =+2, R =680, C =2pF, V =±6V, (fig.29)  
V
fb  
fb  
CC  
V fb fb CC  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
C=30pF Rs=30  
C=30pF Rs=39  
C=100pF Rs=12  
C=1nF Rs=6  
C=100pF Rs=12  
C=1nF Rs=5  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
(fig.29): Capacitive Load Schematic.  
measurements on (fig.27) and (fig.28)  
+
OUT  
TSH11x  
Rs()  
_
C
1kΩ  
Rfb, 680Ω  
RG  
680Ω  
Cfb 2pF  
12/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
Intermodulation Distortion  
A non-ideal output of the amplifier can be de-  
scribed by the following development :  
The following graphs show the IM3 of the amplifier  
in two cases as a function of the output amplitude.  
The two-tones input signal is achieved by the mul-  
tisource generator Marconi 2026. Each tone has  
the same amplitude. The measurement is  
achieved by the spectrum analyser HP 3585A.  
Both instruments are phase locked to enhance  
measurement precision.  
V
=C0+C1(Vin)+C2(Vin)2+C3(Vin)3+...+Cn(Vin)n  
out  
due to a non-linearity in the input-output amplitude  
transfert. In the case of V =Asinωt, C is the DC  
in  
O
n
component, C (V ) is the fundamental, C A is  
1
in  
n
rd  
(fig.30): 3 Order Intermodulation (180kHz &  
the amplitude of the harmonics.  
280kHz)  
A one-frequency or one-tone input signal contrib-  
utes to a harmonic distortion. A two-tones input  
signal contributes to a harmonic distortion and in-  
termodulation product.  
A =+4, R =680, no C , R =100, Vcc=±6V  
V
fb  
fb  
L
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
This intermodulation product or intermodulation  
distortion of a two-tones input signal is the first  
step of the amplifier study for driving capability in  
the case of a multitone signal.  
In this case V =Asinω t+Bsinω t, and :  
in  
1
2
740kHz  
380kHz  
Vout=  
CO+C1(Asinω1t+Bsinω2t)  
+
80kHz  
C2(Asinω1t+Bsinω2t)2+C3(Asinω1t+Bsinω2t)3  
640kHz  
+
...Cn(Vin)n  
0
1
2
3
4
5
Output Amplitude (Vpeak  
)
Vout=  
CO+C1(Asinω1t+Bsinω2t)  
+
rd  
(fig.31): 3  
1.1MHz)  
Order Intermodulation (1MHz &  
C2(A2+B2)/2-(C2/2)(A2cos2ω1t+B2cos2ω2t)  
+
A =+2, R =680, C =2pF, R =100, Vcc=±2.5V  
V
fb  
fb  
L
2C2AB(cos(ω1-ω2)t-cos(ω12)t)  
+
(3C3/4)  
(A3sinω1t+B3sinω2t+2A2Bsinω2t+2B2Asinω1t)  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
+
(C3A3sin3ω1t+B3sin2t)  
+
(3C3A2B/2)(sin(2ω1-ω2)t-1/2sin(2ω12)t)  
3.2MHz  
+
3.1MHz  
1.2MHz  
(3C3B2A/2)(sin(−ω1+2ω2)t-1/2sin(ω1+2ω2)t)  
+
...Cn(Vin)n  
900kHz  
In this expression, we can recognize the second  
order intermodulation IM2 by the frequencies  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Amplitude (Vpeak  
)
(ω -ω ) and (ω +ω ) and the third order intermod-  
1
2
1
2
ulation IM3 by the frequencies (2ω -ω ), (2ω +ω ),  
1
2
1
2
(−ω +2ω ) and (ω +2ω ).  
1
2
1
2
13/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
Printed Circuit Board Layout Considerations  
In this range of frequency, printed circuit board  
parasitics can affect the closed-loop performance.  
The implementation of a proper ground plane in  
both sides of the PCB is mandatory to provide low  
inductance and low resistance common return.  
Most important for controlling the gain flatness  
and the bandwidth are stray capacitances at the  
output and inverting input. For minimizing the cou-  
pling, the space between signal lines and ground  
plane will be increased. Connections of the feed-  
back components must be as short as possible on  
order to decrease the associated inductance  
which affect high frequency gain errors. It is very  
important to choose external components as small  
as possible such as surface mounted devices,  
SMD, in order to minimize the size of all the dc and  
ac connections.  
Nevertheless, the PCB layout has also an effect  
on the crosstalk level. Capacitive coupling be-  
tween signal wires, distance between critical sig-  
nal nodes, power supply bypassing, are the most  
significant points.  
(fig.33): Crosstalk vs. Frequency.  
A =+2, R =680, C =2pF, R =100, Vcc=±6V, ±2.5V  
V
fb  
fb  
L
0
-20  
-40  
-60  
-80  
Power Supply Bypassing  
A proper power supply bypassing comes very im-  
portant for optimizing the performance in high fre-  
quency range. Bypass capacitors must be placed  
as close as possible to the IC pins to improve high  
frequency bypassing. A capacitor greater than  
1µF is necessary to minimize the distortion. For a  
better quality bypassing a capacitor of 0.1µF will  
be added following the same condition of imple-  
mentation. These bypass capacitors must be in-  
corporated for the negative and the positive sup-  
plies.  
-100  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Single Power Supply  
The TSH11x operates from 12V down to 5V power  
supplies. This is achieved with a dual power sup-  
ply of ±6V and ±2.5V or a single power supply of  
12V and 5V referenced to the ground. In the case  
of this asymmetrical supplying, a biasing is neces-  
sary to assume a positive output dynamic range  
between 0V and +Vcc supply rails. Considering  
the values of VOH and VOL, the amplifier will pro-  
vide an ouput dynamic from +1.35V to 10.75V for  
a 12V supplying, from 0.6V to 4.5V for a 5V sup-  
plying.  
(fig.32): Circuit for power supply bypassing.  
+VCC  
1µF  
0.1µF  
The following figure show the case of a 5V single  
power supply configuration.  
+
TSH11x  
(fig.34): Circuit for +5V single supply.  
_
0.1µF  
+5V  
1µF  
10µF  
+
IN  
+5V  
R1  
100µF  
OUT  
50Ω  
Rin  
1kΩ  
TSH11x  
-VCC  
50Ω  
_
5kΩ  
Channel Separation or Crosstalk  
Rfb, 680Ω  
RG  
680Ω  
The following figure show the crosstalk from an  
amplifier to a second amplifier. This phenomenon,  
accented in high frequencies, is unavoidable and  
intrinsic of the circuit.  
10nF  
+
1µF  
R1  
5kΩ  
+
Cfb  
2pF  
CG  
14/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
The amplifier must be biased with a mid supply  
(nominaly +Vcc/2), in order to maintain the DC  
component of the signal at this value. Several op-  
tions are possible to provide this bias supply (such  
as a virtual ground using an operational amplifier),  
or a two-resistance divider which is the cheapest  
solution. A high resistance value is required to lim-  
it the current consumption. On the other hand, the  
current must be high enough to bias the non-in-  
verting input of the amplifier. If we consider this  
bias current (5µA) as the 1% of the current  
through the resistance divider (500µA) to keep a  
stable mid supply, two 5kresistances can be  
used.  
Assuming a low level active onto the disable pins  
(1,2,3) as described on page 7 of the datasheet,  
any operator can be disable/enable independent-  
ly. The two disabled operators will be in standby  
mode featuring a high ouput impedance with a  
high input/output isolation and a low quiescent  
current.  
(fig.36): Typical output response in standby mode on/off  
Enabled  
Output  
The input provides a high pass filter with a break  
frequency below 10Hz which is necessary to re-  
move the original 0 volt DC component of the input  
signal, and to hold it at 2.5V.  
Disabled  
Output  
Video Multiplexing using the TSH113  
+2.4V  
(fig.35): Circuit for switching 3 video signals with the tri-  
ple TSH113.  
Standby  
Signal  
-2.4V  
100ns /div.  
+
IN1  
(fig.37): Typical output response in standby mode off/on  
TSH113  
_
Enabled  
Output  
ENABLE1  
Rfb, 680Ω  
RG  
680Ω  
Cfb, 2pF  
+
Disabled  
Output  
Common  
OUT  
IN2  
75Ω  
75Ω  
cable  
TSH113  
_
+2.4V  
75Ω  
Standby  
Signal  
-2.4V  
ENABLE2  
Rfb, 680Ω  
RG  
680Ω  
10µs /div.  
Cfb, 2pF  
+
_
IN3  
TSH113  
ENABLE3  
Rfb, 680Ω  
RG  
680Ω  
Cfb, 2pF  
15/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
(fig.38): Input / Output Isolation vs. Frequency..  
(tab.1): Closed-loop Gain and Feedback Components.  
0.1dB  
Bw  
(MHz)  
-3dB  
Bw  
Rfb  
Cfb  
VCC  
(V)  
Gain  
0
-20  
-40  
-60  
-80  
()  
(pF)  
(MHz)  
+10  
-10  
+2  
-2  
510  
510  
680  
680  
2.2k  
2.2k  
510  
510  
680  
680  
2.2k  
2.2k  
-
46  
42  
14  
13  
50  
40  
30  
20  
13  
12  
25  
30  
50  
18  
-
2
2
2
2
-
105  
90  
±6  
Standby mode  
+1  
-1  
170  
110  
37  
-100  
-120  
+10  
-10  
+2  
-2  
0.01  
0.1  
1
10  
100  
Frequency (MHz)  
-
36  
2
2
2
2
93  
±2.5  
86  
Choice of the Feedback Circuit  
The TSH11x is a serie of current feedback  
amplifiers. For a current feedback structure the  
bandwidth depends on the value of the feedback  
components and the value of supply voltage.  
+1  
-1  
130  
100  
A good choice of these components is necessary  
to achieve the gain flatness and the stability.  
Inverting Amplifier Biasing  
In this case a resistance (R on fig.40) is necessary  
to achieve a good input biasing.  
The following table shows the typical -3dB  
bandwidth and 0.1dB bandwidth assuming  
different gains and power supply on 100load.  
Please see also the Closed Loop Gain vs.  
Frequency curves on page 8 of the datasheet.  
This resistance is calculated by assuming the  
negative and positive input bias current. The aim  
is to make the compensation of the offset bias  
current which could affect the input offset voltage  
and the output DC component.  
(fig.39): Non-inverting and Inverting Implementation..  
Assuming Ib-, Ib+, Rin, Rfb and a zero volt output,  
the resistance R comes : R = Rin // Rfb .  
Non-Inverting  
Gain = 1+ Rfb / RG  
Input  
+
(fig.40): Compensation of the Input Bias Current..  
Output  
_
49.9Ω  
50Ω  
Rfb  
Rfb  
RG  
Cfb  
Rfb  
Ib-  
Rin  
Vcc+  
Vcc-  
_
Output  
Inverting  
+
Gain = - Rfb / Rin  
Rin  
Load  
Input  
Cfb  
_
Ib+  
Output  
49.9Ω  
50Ω  
R
+
R
16/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
PACKAGE MECHANICAL DATA  
8 PINS - PLASTIC MICROPACKAGE (SO)  
PACKAGE MECHANICAL DATA  
8 PINS - THIN SHRINK SMALL OUTLINE  
PACKAGE (TSSOP)  
k
0,25 mm  
.010 inch  
c
GAGE PLANE  
A
E
A2  
A1  
PIN 1 IDENTIFICATION  
Millimeters  
Typ.  
Inches  
Typ.  
Millimeters  
Typ.  
Inches  
Typ.  
Dim.  
Dim.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
A
a1  
a2  
a3  
b
1.75  
0.069  
0.010  
0.065  
0.033  
0.019  
0.010  
0.020  
A
A1  
A2  
b
1.20  
0.15  
0.05  
0.1  
0.25 0.004  
1.65  
0.05  
0.80  
0.19  
0.09  
2.90  
0.01  
0.006  
1.00  
1.05 0.031 0.039 0.041  
0.65  
0.35  
0.19  
0.25  
0.85 0.026  
0.48 0.014  
0.25 0.007  
0.30 0.007  
0.20 0.003  
0.15  
c
0.012  
b1  
C
D
E
3.00  
6.40  
4.40  
0.65  
3.10  
0.114 0.118 0.122  
0.252  
0.5  
0.010  
c1  
D
45° (typ.)  
E1  
e
4.30  
4.50 0.169 0.173 0.177  
0.025  
4.8  
5.8  
5.0  
6.2  
0.189  
0.228  
0.197  
0.244  
E
k
0°  
8°  
0°  
8°  
e
1.27  
3.81  
0.050  
0.150  
l
0.50  
0.60  
0.75  
0.09 0.0236 0.030  
e3  
F
3.8  
0.4  
4.0  
0.150  
0.157  
0.050  
0.024  
L
1.27 0.016  
0.6  
M
S
8° (max.)  
17/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
PACKAGE MECHANICAL DATA  
14 PINS - PLASTIC MICROPACKAGE (SO)  
PACKAGE MECHANICAL DATA  
14 PINS - THIN SHRINK SMALL OUTLINE  
PACKAGE (TSSOP)  
k
c
0,25 mm  
.010 inch  
GAGE PLANE  
L
G
c1  
b
e
s
e3  
D
E
A
E
M
A2  
A1  
14  
1
8
7
8
7
14  
1
PIN 1 IDENTIFICATION  
Millimeters  
Typ.  
Inches  
Typ.  
Millimeters  
Typ.  
Inches  
Typ.  
Dim.  
Dim.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
0.05  
0.006  
A
a1  
a2  
b
1.75  
0.2  
0.069  
0.008  
0.063  
0.018  
0.010  
A
A1  
A2  
b
1.20  
0.15  
0.1  
0.004  
0.05  
0.80  
0.19  
0.09  
4.90  
0.01  
1.6  
1.00  
1.05 0.031 0.039 0.041  
0.35  
0.19  
0.46 0.014  
0.25 0.007  
0.30 0.007  
0.20 0.003  
0.15  
b1  
C
c
0.012  
0.5  
0.020  
D
E
5.00  
6.40  
4.40  
0.65  
5.10 0.192 0.196 0.20  
c1  
45° (typ.)  
0.252  
4.50 0.169 0.173 0.177  
0.025  
D (1) 8.55  
8.75 0.336  
0.344  
0.244  
E1  
e
4.30  
E
e
5.8  
6.2  
0.228  
1.27  
7.62  
0.050  
0.300  
k
0°  
8°  
0°  
8°  
e3  
F (1)  
G
l
0.50  
0.60  
0.75  
0.09 0.0236 0.030  
3.8  
4.6  
0.5  
4.0  
5.3  
0.150  
0.181  
0.157  
0.208  
0.050  
0.027  
L
1.27 0.020  
0.68  
M
S
8° (max.)  
Note : (1) D and F do not include mold flash or protrusions - Mold flash  
or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA  
BOOK.  
18/19  
TSH110-TSH111-TSH112-TSH113-TSH114  
PACKAGE MECHANICAL DATA  
2
5 PINS - TINY PACKAGE (SOT23)  
A
E
A2  
D
b
A1  
L
C
E1  
Millimeters  
Inches  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
B
0.90  
0
1.20  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
0.035  
0.047  
0.057  
0.006  
0.051  
0.020  
0.008  
0.118  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.5  
0.035  
0.014  
0.004  
0.110  
0.041  
0.016  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.014  
C
D
D1  
e
E
2.60  
1.50  
0.10  
0d  
3.00  
1.75  
0.60  
10d  
0.102  
0.059  
0.004  
0d  
0.0118  
0.069  
0.024  
10d  
F
L
K
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
© The ST logo is a registered trademark of STMicroelectronics  
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
© http://www.st.com  
19/19  

相关型号:

TSH110IYLT

Wide band low noise operational amplifiers
STMICROELECTR

TSH110_07

Wide band low noise operational amplifiers
STMICROELECTR

TSH111

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR

TSH111ID

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR

TSH111IDT

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR

TSH111IPT

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR

TSH112

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR

TSH112ID

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR

TSH112IDT

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR

TSH112IPT

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR

TSH113

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR

TSH113ID

WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
STMICROELECTR