TSH72CD/CDT [STMICROELECTRONICS]

VIDEO AMPLIFIER;
TSH72CD/CDT
型号: TSH72CD/CDT
厂家: ST    ST
描述:

VIDEO AMPLIFIER

放大器
文件: 总36页 (文件大小:1117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSH70, TSH71, TSH72, TSH73,  
TSH74, TSH75  
Rail-to-rail, wide-band, low-power operational amplifiers  
Datasheet - production data  
Features  
TSH70 : SOT23-5/SO8  
3 V, 5 V, ±5 V specifications  
NC  
NC  
1
2
3
4
8
7
6
5
Output  
VCC - 2  
Non-Inv. In.  
1
5
VCC +  
_
+
3 dB bandwidth: 90 MHz  
Inv. In.  
Non-Inv. In.  
VCC -  
VCC +  
Output  
NC  
+ -  
Inv. In.  
3
4
Gain bandwidth product: 70 MHz  
Slew rate: 100 V/µs (typical for 5 V)  
Output current: up to 55 mA  
Input single supply voltage  
Output rail-to-rail  
TSH71 : SO8/TSSOP8  
NC  
1
2
3
4
8
7
6
5
STANDBY  
VCC +  
Output  
NC  
_
+
Inverting Input  
Non Inverting Input  
VCC -  
Specified for 150 Ω loads  
TSH72 : SO8/TSSOP8  
Low distortion, THD: 0.1 %  
SOT23-5, TSSOP, and SO packages  
Output1  
VCC +  
1
2
3
4
8
7
6
5
Inverting Input1  
Non Inverting Input1  
VCC -  
_
+
Output2  
Inverting Input2  
_
+
Non Inverting Input2  
Applications  
TSH73 : SO14/TSSOP14  
Video buffers  
ADC driver  
STANDBY1  
1
2
3
4
5
14  
Output3  
13 Inverting Input3  
12 Non Inverting Input3  
11 VCC -  
STANDBY2  
STANDBY3  
VCC +  
_
+
Hi-fi applications  
Non Inverting Input1  
10 Non Inverting Input2  
+
_
+
_
Inverting Input2  
Output2  
9
8
6
7
Inverting Input1  
Output1  
Description  
The TSH7x series offers single, dual, triple, and  
quad operational amplifiers featuring high video  
performances with large bandwidth, low  
TSH74 : SO14/TSSOP14  
1
2
3
4
5
14  
13  
12  
Output1  
Inverting Input1  
Non Inverting Input1  
VCC +  
Output4  
_
+
Inverting Input4  
Non Inverting Input4  
_
+
distortion, and excellent supply voltage rejection.  
Running with a single supply voltage from 3 V to  
12 V, these amplifiers feature a large output  
voltage swing and high output current capable of  
driving standard 150 Ω loads. A low operating  
voltage makes TSH7x amplifiers ideal for use in  
portable equipment. The TSH71, TSH73, and  
TSH75 also feature standby inputs, each of which  
allows the op-amp to be put into a standby mode  
with low-power consumption and high-output  
impedance. This function allows power saving or  
signal switching/multiplexing for high-speed  
applications and video applications. To  
11 VCC -  
Non Inverting Input2  
10 Non Inverting Input3  
+
_
+
_
Inverting Input3  
9
6
7
Inverting Input2  
Output2  
Output3  
8
TSH75 : SO16/TSSOP16  
1
2
3
4
5
16  
15  
14  
Output1  
Inverting Input1  
Non Inverting Input1  
VCC +  
Output4  
_
+
Inverting Input4  
Non Inverting Input4  
_
+
13 VCC -  
Non Inverting Input2  
12 Non Inverting Input3  
+
_
+
_
Inverting Input3  
11  
6
7
8
Inverting Input2  
Output2  
10 Output3  
STANDBY  
STANDBY  
9
economize both board space and weight, the  
TSH7x series is proposed in SOT23-5, SO, and  
TSSOP packages.  
December 2013  
DocID7502 Rev 4  
1/36  
This is information on a product in full production.  
www.st.com  
 
Contents  
TSH7x  
Contents  
1
2
3
Typical application: video driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1  
3.2  
3.3  
3.4  
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Characteristic curves for VCC = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Characteristic curves for VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Characteristic curves for VCC = 10 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4
5
Testing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.1  
4.2  
4.3  
4.4  
Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Maximum input level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Precautions when operating on an asymmetrical supply . . . . . . . . . . . . . 24  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SO14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SO16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
TSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6
7
Order information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
2/36  
DocID7502 Rev 4  
TSH7x  
Typical application: video driver  
1
Typical application: video driver  
A typical application for the TSH7x family is that of a video driver for driving STi7xxx DAC  
outputs on 75-ohm lines.  
Figure 1 show the benefits of the TSH7x family as single supply drivers.  
Figure 1. Benefits of TSH7x family: +3 V or +5 V single supply solution  
+5V  
Video DAC’s outputs:  
VOH=4.2Vmin.  
(Tested)  
Bottom of  
synchronization tip  
around 50mV  
+3V  
VOH=2.45Vmin.  
(Tested)  
2.1V  
Vcc=+5V  
Vcc=+3V  
2.1V  
1Vp-p  
GND  
+
Gain=2  
_
2Vp-p  
GND  
2Vp-p  
GND  
50mV  
VOL=30mVmax.  
(Tested)  
VOL=40mVmax.  
(Tested)  
GND  
100mV  
100mV  
1kΩ  
1kΩ  
-5V  
GND  
+5V  
Reconstruction  
Filtering  
Y,G  
Video  
DAC  
75Ω  
LPF  
75Ω Cable  
75Ω Cable  
75Ω Cable  
+
TV  
1Vpp  
_
75Ω  
2Vpp  
Pb,B Reconstruction  
Filtering  
Video  
DAC  
LPF  
75Ω  
+
_
0.7Vpp  
75Ω  
1.4Vpp  
Reconstruction  
Filtering  
Pr,R  
Video  
DAC  
75Ω  
LPF  
0.7Vpp  
+
_
75Ω  
1.4Vpp  
TSH73  
GND  
DocID7502 Rev 4  
3/36  
36  
 
Absolute maximum ratings and operating conditions  
TSH7x  
2
Absolute maximum ratings and operating conditions  
Table 1. Absolute maximum ratings (AMR)  
Parameter  
Symbol  
Value  
Unit  
VCC  
Vid  
Supply Voltage (1)  
14  
Differential Input Voltage (2)  
Input Voltage (3)  
2
6
V
Vi  
Toper  
Tstg  
Tj  
Operating Free Air Temperature Range  
Storage Temperature  
0 to +70  
-65 to +150  
150  
°C  
Maximum Junction Temperature  
Thermal resistance junction to case (4)  
SOT23-5  
SO8  
TSSOPO8  
SO14  
TSSOP14  
SO16  
TSSOP16  
80  
28  
37  
22  
32  
35  
35  
Rthjc  
°C/W  
Thermal resistance junction to ambient area  
SOT23-5  
SO8  
TSSOPO8  
SO14  
TSSOP14  
SO16  
TSSOP16  
250  
157  
130  
125  
110  
110  
110  
Rthja  
ESD  
Human body model  
2
kV  
1. All voltages values, except differential voltage are with respect to the network ground terminal  
2. Differential voltages are the non-inverting input terminal with respect to the inverting terminal  
3. The magnitude of the input and output must never exceed VCC +0.3V  
4. Short-circuits can cause excessive heating  
Table 2. Operating conditions  
Symbol  
Parameter  
Value  
Unit  
VCC  
VIC  
Supply voltage  
Common mode input voltage range  
3 to 12  
VCC- to (VCC+ -1.1)  
V
-
+
Standby  
(VCC ) to (VCC )  
4/36  
DocID7502 Rev 4  
TSH7x  
Electrical characteristics  
3
Electrical characteristics  
+
-
Table 3. V  
= 3 V, V  
= GND, V = 1.5 V, T  
= 25 °C (unless otherwise specified)  
CC  
CC  
IC  
amb  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
Tmin. < Tamb < Tmax.  
1.2  
10  
12  
|Vio|  
ΔVio  
Iio  
Input offset voltage  
mV  
Input offset voltage drift vs. temp.  
Input offset current  
4
μV/°C  
T
amb = 25 °C  
0.1  
3.5  
5
Tmin. < Tamb < Tmax.  
μA  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
6
15  
20  
Iib  
Input bias current  
Cin  
ICC  
Input capacitance  
0.2  
7.2  
pF  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
9.8  
11  
Supply current per operator  
mA  
+0.1 < VIC <+1.9 V and Vout = 1.5 V  
Tamb = 25 °C  
Common mode rejection ratio  
(δVIC/δVio)  
CMRR  
65  
64  
90  
74  
T
min. < Tamb < Tmax.  
Supply voltage rejection ratio  
(δVCC/δVio)  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
66  
65  
SVRR  
PSRR  
dB  
Power supply rejection ratio  
Positive and negative rail  
75  
81  
(δVCC/δVout  
)
RL = 150 Ωto 1.5 V, Vout = 1 V to 2 V  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
Avd  
Large signal voltage gain  
70  
65  
Tamb=25 °C,  
Vid = +1, Vout to 1.5 V,  
Vid = -1, Vout to 1.5 V  
|
|
30  
20  
43  
33  
Source  
Sink  
Io  
Output short circuit current source  
mA  
Tmin. < Tamb < Tmax.  
Vid = +1, Vout to 1.5 V  
Vid = -1, Vout to 1.5 V  
22  
19  
|
|
Source  
Sink  
Tamb = 25 °C  
RL = 150 Ω to GND  
RL = 600 Ω to GND  
RL = 2 kΩto GND  
RL = 10 kΩ to GND  
2.45 2.60  
2.87  
2.91  
2.93  
RL = 150 Ω to 1.5 V  
RL = 600 Ω to 1.5 V  
RL = 2 kΩto 1.5 V  
RL = 10 kΩ to 1.5 V  
2.65 2.77  
2.90  
VOH  
High level output voltage  
V
2.92  
2.93  
Tmin. < Tamb < Tmax.  
2.4  
2.6  
RL = 150 Ω to GND  
RL = 150 Ω to 1.5V  
DocID7502 Rev 4  
5/36  
36  
Electrical characteristics  
TSH7x  
+
-
Table 3. V  
Symbol  
= 3 V, V  
= GND, V = 1.5 V, T = 25 °C (unless otherwise specified) (continued)  
amb  
CC  
CC  
IC  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
Tamb = 25 °C  
RL = 150 Ω to GND  
RL = 600 Ω to GND  
RL = 2 kΩto GND  
RL = 10 kΩ to GND  
10  
11  
11  
11  
30  
RL = 150 Ω to 1.5 V  
RL = 600 Ω to 1.5 V  
RL = 2 kΩto 1.5 V  
RL = 10 kΩ to 1.5 V  
140 300  
VOL  
Low level output voltage  
mV  
90  
68  
57  
Tmin. < Tamb < Tmax.  
RL = 150 Ω to GND  
RL = 150 Ω to 1.5 V  
40  
350  
F = 10 MHz  
GBP Gain bandwidth product  
AVCL = +11  
AVCL = -10  
65  
55  
MHz  
Bw  
SR  
Bandwidth @-3dB  
Slew rate  
AVCL=+1, RL=150 Ωto 1.5 V  
87  
AVCL=+2, RL=150 Ω// CL to 1.5 V  
CL = 5 pF  
CL = 30 pF  
V/μs  
80  
85  
45  
φm  
Phase margin  
RL=150 Ω // 30 pF to 1.5 V  
40  
11  
°
en  
Equivalent input noise voltage  
F=100 kHz  
nV/Hz  
A
VCL = +2, F = 4 MHz, RL=150 Ω //  
30pF to 1.5 V  
THD  
IM2  
Total harmonic distortion  
dB  
Vout = 1 Vpp  
Vout = 2 Vpp  
-61  
-54  
AVCL = +2, Vout = 2 Vpp  
RL = 150 Ω to 1.5 V  
Fin1 = 180 kHz, Fin2 = 280 kHz  
spurious measurements @100 kHz  
Second order intermodulation  
product  
-76  
-68  
dBc  
AVCL = +2, Vout = 2 Vpp  
RL = 150 Ω to 1.5 V  
Fin1 = 180kHz, Fin2 = 280 kHz  
spurious measurements @400 kHz  
IM3  
Third order inter modulation product  
Differential gain  
AVCL=+2, RL = 150 Ωto 1.5 V  
F = 4.5 MHz, Vout = 2 Vpp  
ΔG  
0.5  
0.5  
%
°
AVCL = +2, RL = 150 Ω to 1.5 V  
F = 4.5 MHz, Vout = 2 Vpp  
Df  
Gf  
Differential phase  
Gain flatness  
F = DC to 6 MHz, AVCL = +2  
F = 1 MHz to 10 MHz  
0.2  
65  
dB  
Vo1/Vo2 Channel separation  
6/36  
DocID7502 Rev 4  
TSH7x  
Electrical characteristics  
+
-
Table 4. V  
= 5 V, V  
= GND, V = 2.5 V, T  
= 25 °C (unless otherwise specified)  
CC  
CC  
IC  
amb  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
T
amb = 25 °C  
1.1  
10  
12  
|Vio|  
ΔVio  
Iio  
Input offset voltage  
mV  
Tmin. < Tamb < Tmax.  
Input offset voltage drift vs. temp.  
Input offset current  
Tmin. < Tamb < Tmax.  
3
μV/°C  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
0.1  
3.5  
5
μA  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
6
15  
20  
Iib  
Input bias current  
Cin  
ICC  
Input capacitance  
0.3  
pF  
T
amb = 25 °C  
8.2 10.5  
11.5  
Supply current per operator  
mA  
Tmin. < Tamb < Tmax.  
+0.1 < VIC < 3.9 V and Vout = 2.5 V  
Common mode rejection ratio  
(δVIC/δVio)  
CMRR  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
72  
71  
97  
75  
Supply voltage rejection ratio  
(δVCC/δVio)  
T
amb = 25°C  
68  
67  
SVRR  
PSRR  
Tmin. < Tamb < Tmax.  
dB  
Power supply rejection ratio  
Positive and negative rail  
75  
84  
(δVCC/δVout  
)
RL = 150 Ωto 1.5 V,  
Vout = 1 V to 4 V  
Avd  
Large signal voltage gain  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
75  
70  
Tamb = 25 °C,  
Vid = +1, Vout to 1.5 V,  
Vid = -1, Vout to 1.5 V  
|
|
35  
33  
55  
55  
Source  
Sink  
Io  
Output short circuit current source  
mA  
Tmin. < Tamb < Tmax.  
Vid = +1, Vout to 1.5 V  
Vid = -1, Vout to 1.5 V  
34  
32  
|
|
Source  
Sink  
Tamb = 25 °C  
RL = 150 Ωto GND  
RL = 600 Ωto GND  
RL = 2 kΩ to GND  
RL = 10 kΩ to GND  
4.2 4.36  
4.85  
4.90  
4.93  
RL = 150 Ωto 2.5 V  
RL = 600 Ωto 2.5 V  
RL = 2 kΩ to 2.5 V  
RL = 10 kΩ to 2.5 V  
4.5 4.66  
4.90  
VOH  
High level output voltage  
V
4.92  
4.93  
Tmin. < Tamb < Tmax.  
RL = 150 Ωto GND  
RL = 150 Ωto 2.5 V  
4.1  
4.4  
DocID7502 Rev 4  
7/36  
36  
Electrical characteristics  
TSH7x  
+
-
Table 4. V  
Symbol  
= 5 V, V  
= GND, V = 2.5 V, T = 25 °C (unless otherwise specified) (continued)  
amb  
CC  
CC  
IC  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
Tamb=25 °C  
RL = 150 Ωto GND  
RL = 600 Ωto GND  
RL = 2 kΩ to GND  
RL = 10 kΩ to GND  
20  
23  
23  
23  
40  
RL = 150 Ωto 2.5 V  
RL = 600 Ωto 2.5 V  
RL = 2 kΩ to 2.5 V  
RL = 10 kΩ to 2.5 V  
220 400  
105  
76  
VOL  
Low level output voltage  
mV  
61  
Tmin. < Tamb < Tmax.  
RL = 150 Ωto GND  
RL = 150 Ωto 2.5 V  
60  
450  
F = 10 MHz  
GBP Gain bandwidth product  
AVCL = +11  
AVCL = -10  
65  
55  
MHz  
Bw  
SR  
Bandwidth @-3 dB  
Slew rate  
AVCL = +1, RL = 150 Ω to 2.5 V  
87  
AVCL = +2,  
RL = 150Ω // CL to 2.5 V  
CL = 5 pF  
CL = 30 pF  
V/μs  
104  
105  
60  
φm  
Phase margin  
RL = 150 Ω// 30 pF to 2.5 V  
40  
11  
°
en  
Equivalent input noise voltage  
F = 100 kHz  
nV/Hz  
AVCL = +2, F = 4 MHz  
RL = 150 Ω// 30 pF to 2.5 V  
Vout = 1 Vpp  
Vout = 2 Vpp  
THD  
IM2  
Total harmonic distortion  
dB  
-61  
-54  
AVCL = +2, Vout = 2Vpp  
RL = 150 Ωto 2.5 V  
Fin1 = 180 kHz, Fin2 = 280 kHz  
spurious measurements @100 kHz  
Second order intermodulation  
product  
-76  
-68  
dBc  
AVCL = +2, Vout = 2 Vpp  
RL = 150 Ωto 2.5 V  
Fin1 = 180 kHz, Fin2 = 280 kHz  
spurious measurements @400 kHz  
IM3  
Third order inter modulation product  
Differential gain  
AVCL = +2, RL = 150 Ω to 2.5 V  
F = 4.5 MHz, Vout = 2 Vpp  
ΔG  
0.5  
0.5  
%
°
AVCL = +2, RL = 150 Ω to 2.5 V  
F = 4.5 MHz, Vout = 2 Vpp  
Df  
Gf  
Differential phase  
Gain flatness  
F = DC to 6 MHz, AVCL = +2  
F = 1 MHz to 10 MHz  
0.2  
65  
dB  
Vo1/Vo2 Channel separation  
8/36  
DocID7502 Rev 4  
TSH7x  
Electrical characteristics  
+
-
Table 5. V  
= 5 V, V  
= -5V, V = GND, T  
= 25 °C (unless otherwise specified)  
CC  
CC  
IC  
amb  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
T
amb = 25 °C  
0.8  
10  
12  
|Vio|  
ΔVio  
Iio  
Input offset voltage  
mV  
Tmin. < Tamb < Tmax.  
Input offset voltage drift vs. temp.  
Input offset current  
Tmin. < Tamb < Tmax.  
2
μV/°C  
Tamb = 25°C  
Tmin. < Tamb < Tmax.  
0.1  
3.5  
5
μA  
Tamb = 25°C  
Tmin. < Tamb < Tmax.  
6
15  
20  
Iib  
Input bias current  
Cin  
ICC  
Input capacitance  
0.7  
pF  
T
amb = 25°C  
9.8 12.3  
13.4  
Supply current per operator  
mA  
Tmin. < Tamb < Tmax.  
-4.9 < VIC < 3.9 V and Vout = GND  
Common mode rejection ratio  
(δVIC/δVio)  
CMRR  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
81  
80  
106  
77  
Supply voltage rejection ratio  
(δVCC/δVio)  
T
amb = 25 °C  
71  
70  
SVRR  
PSRR  
Tmin. < Tamb < Tmax.  
dB  
Power supply rejection ratio  
Positive and negative rail  
75  
86  
(δVCC/δVout  
)
RL = 150 Ω to GND  
Vout = -4 to +4  
Avd  
Large signal voltage gain  
Tamb = 25 °C  
Tmin. < Tamb < Tmax.  
75  
70  
Tamb = 25 °C  
Vid = +1, Vout to 1.5 V  
Vid = -1, Vout to 1.5 V  
|
|
35  
30  
55  
55  
Source  
Sink  
Io  
Output short circuit current source  
mA  
Tmin. < Tamb < Tmax.  
Vid = +1, Vout to 1.5 V  
Vid = -1, Vout to 1.5 V  
|
|
34  
29  
Source  
Sink  
Tamb = 25 °C  
RL = 150 Ω to GND  
RL = 600 Ω to GND  
RL = 2 kΩ to GND  
RL = 10 kΩto GND  
4.2 4.36  
4.85  
4.9  
4.93  
VOH  
High level output voltage  
V
V
Tmin. < Tamb < Tmax.  
RL = 150 Ω to GND  
4.1  
Tamb = 25 °C  
RL = 150 Ω to GND  
RL = 600 Ω to GND  
RL = 2 kΩ to GND  
RL = 10 kΩto GND  
-4.63 -4.4  
-4.86  
-4.9  
VOL  
Low level output voltage  
-4.93  
Tmin. < Tamb < Tmax.  
RL = 150 Ω to GND  
-4.3  
DocID7502 Rev 4  
9/36  
36  
Electrical characteristics  
TSH7x  
+
-
Table 5. V  
Symbol  
= 5 V, V  
= -5V, V = GND, T = 25 °C (unless otherwise specified) (continued)  
amb  
CC  
CC  
IC  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
F = 10 MHz  
GBP  
Bw  
Gain bandwidth product  
Bandwidth @-3dB  
MHz  
AVCL = +11  
AVCL = -10  
65  
55  
AVCL = +1  
RL = 150 Ω // 30 pF to GND  
100  
MHz  
AVCL = +2,  
RL = 150 Ω // CL to GND  
CL = 5 pF  
SR  
Slew rate  
V/μs  
117  
CL = 30 pF  
68  
118  
40  
φm  
Phase margin  
RL = 150 Ω to GND  
°
en  
Equivalent input noise voltage  
F = 100 kHz  
11  
nV/Hz  
AVCL = +2, F = 4 MHz  
RL = 150 Ω // 30 pF to GND  
Vout = 1 Vpp  
Vout = 2 Vpp  
THD  
IM2  
Total harmonic distortion  
dB  
-61  
-54  
AVCL = +2, Vout = 2 Vpp  
RL = 150 Ω to GND  
Fin1 = 180 kHz, Fin2 = 280 kHz  
spurious measurements @100 kHz  
Second order intermodulation product  
-76  
-68  
dBc  
AVCL = +2, Vout = 2 Vpp  
RL = 150 Ω to GND  
Fin1 = 180 kHz, Fin2 = 280 kHz  
spurious measurements @400 kHz  
IM3  
Third order intermodulation product  
Differential gain  
AVCL = +2, RL = 150 Ω to GND  
F = 4.5 MHz, Vout = 2 Vpp  
ΔG  
0.5  
0.5  
%
°
AVCL = +2, RL = 150 Ω to GND  
F = 4.5 MHz, Vout = 2 Vpp  
Df  
Gf  
Differential phase  
Gain flatness  
F = DC to 6 MHz, AVCL = +2  
F = 1 MHz to 10 MHz  
0.2  
65  
dB  
Vo1/Vo2 Channel separation  
10/36  
DocID7502 Rev 4  
TSH7x  
Electrical characteristics  
3.1  
Standby mode  
+
-
Table 6. V  
, V , T  
= 25 °C (unless otherwise specified)  
CC  
CC  
amb  
Symbol  
Parameter  
Standby low level  
Standby high level  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
-
(VCC  
+0.8)  
-
Vlow  
VCC  
V
+
Vhigh  
(VCC- +2)  
(VCC  
)
-
Pin 8 (TSH71) to VCC  
-
Pin 1, 2 or 3 (TSH73) to VCC  
Current consumption per operator  
when STANDBY is active  
ICC STBY  
20  
55  
μA  
+
Pin 8 (TSH75) to VCC  
-
Pin 9 (TSH75) to VCC  
Rout  
Cout  
10  
17  
MΩ  
Zout  
Ton  
Toff  
Output impedance (Rout//Cout)  
pF  
Time from standby mode to active  
mode  
2
μs  
Time from active mode to standby  
mode  
Down to ICC STBY = 10 μA  
10  
Table 7. TSH71 standby function table  
TSH71 standby control pin 8 (STBY)  
Operator status  
Vlow  
Standby  
Active  
Vhigh  
Table 8. TSH73 standby function table  
TSH73 standby control  
Operator status  
Pin 1  
(STBY OP1)  
Pin 2  
(STBY OP2)  
Pin 3  
(STBY OP3)  
OP1  
OP1  
OP3  
Vlow  
x
x
x
x
x
Standby  
x
x
Vhigh  
Active  
x
x
x
x
x
x
Vlow  
Vhigh  
x
x
x
x
x
Standby  
x
x
Active  
Vlow  
x
x
Standby  
Active  
x
Vhigh  
DocID7502 Rev 4  
11/36  
36  
Electrical characteristics  
TSH75 standby control  
TSH7x  
Table 9. TSH75 standby function table  
Operator status  
Pin 8  
(STBY OP2)  
Pin 9  
(STBY OP3)  
OP1  
OP2  
Standby  
Active  
OP3  
OP4  
Vhigh  
Vhigh  
Vlow  
Vlow  
Vlow  
Vhigh  
Vlow  
Standby  
Active  
Active  
Active  
Standby  
Active  
Vhigh  
3.2  
Characteristic curves for VCC = 3 V  
Figure 2. Closed loop gain and phase vs.  
Figure 3. Overshoot function of output  
frequency (gain = +2, V = ±1.5 V, R = 150 Ω,  
capacitance (gain = +2, V = ±1.5 V,  
CC  
= 25 °C)  
L
CC  
T
T
= 25 °C)  
amb  
amb  
10  
5
200  
100  
10  
150 //33pF  
Ω
150 //22pF  
Ω
Gain  
150Ω//10pF  
0
5
0
150  
Ω
-5  
0
Phase  
-10  
-15  
-20  
-100  
-5  
-200  
1E+6  
1E+7  
1E+8  
1E+9  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Figure 4. Closed loop gain and phase vs.  
Figure 5. Closed loop gain and phase vs.  
frequency (gain = -10, V = 1.5 V, R = 150 Ω, frequency (gain = +11, V = 1.5 V, R = 150 Ω,  
CC  
L
CC  
L
T
= 25 °C)  
T
= 25 °C)  
amb  
amb  
30  
20  
10  
0
200  
150  
100  
50  
30  
20  
10  
0
0
Phase  
Phase  
-50  
-100  
-150  
Gain  
Gain  
0
-50  
-10  
-100  
-10  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
12/36  
DocID7502 Rev 4  
TSH7x  
Electrical characteristics  
Figure 6. Large signal measurement -  
Figure 7. Large signal measurement - negative  
positive slew rate (gain = 2, V = ±1.5 V,  
slew rate (gain = 2, V = ±1.5 V,  
CC  
CC  
Z = 150 Ω // 5.6 pF  
Z = 150 Ω // 5.6 pF)  
L
L
1
0.5  
0
1
0.5  
0
-0.5  
-1  
-0.5  
-1  
0
10  
20  
30  
50  
0
10  
20  
30  
40  
50  
60  
40  
Time (ns)  
Time (ns)  
Figure 8. Small signal measurement - rise time Figure 9. Small signal measurement - fall time  
(gain = 2, V = ±1.5 V, Z = 150 Ω)  
(gain = 2, V = ±1.5 V, Z = 150 Ω)  
CC  
L
CC  
L
0.06  
0.04  
0.02  
0
0.06  
0.04  
0.02  
0
Vout  
Vin  
Vout  
Vin  
-0.02  
-0.04  
-0.06  
-0.02  
-0.04  
-0.06  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Time (ns)  
Time (ns)  
Figure 10. Channel separation (Xtalk) vs.  
frequency (measurement configuration: Xtalk =  
20 log (V0/V1))  
Figure 11. Channel separation (Xtalk) vs.  
frequency (gain = +11, V = 1.5 V,  
CC  
Z = 150 Ω // 27 pF)  
L
-20  
-30  
-40  
VIN  
+
49.9  
Ω
-
V1  
4/1output  
-50  
3/1output  
150  
Ω
1k  
Ω
100  
Ω
-60  
-70  
-80  
2/1output  
+
-90  
-100  
-110  
49.9  
Ω
-
VO  
150  
Ω
1k  
Ω
100  
Ω
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
DocID7502 Rev 4  
13/36  
36  
Electrical characteristics  
TSH7x  
Figure 12. Equivalent noise voltage  
Figure 13. Maximum output swing  
(gain = 100, V = ±1.5 V, No load)  
(gain = 11, V = ±5 V, R = 150 Ω  
CC  
CC  
L
30  
25  
20  
15  
10  
5
5
4
+
_
Vout  
3
10k  
100  
2
1
Vin  
0
-1  
-2  
-3  
-4  
-5  
0.0E+0  
5.0E-2  
1.0E-1  
1.5E-1  
2.0E-1  
0.1  
1
10  
100  
1000  
Time (ms)  
Frequency (kHz)  
Figure 14. Standby mode - T , T  
Figure 15. Group delay gain = 2 (V = 1.5 V,  
CC  
on off  
(V = 1.5 V, open loop)  
Z = 150 Ω // 27 pF, T  
= 25 °C)  
CC  
L
amb  
2
1
Vin  
Gain  
0
Vout  
-1  
-2  
Group  
Delay  
5.87ns  
Standby  
Ton  
Toff  
0
2E-6  
4E-6  
6E-6  
8E-6  
1E-5  
Time (s)  
Figure 16. Third order intermodulation (gain = 2, V = 1.5 V, Z = 150 Ω // 27 pF, T = 25 °C)  
amb  
CC  
L
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
80kHz  
740kHz  
380kHz  
640kHz  
0
1
2
3
4
Vout peak(V)  
1. Note on intermodulation products:  
The IFR2026 synthesizer generates a two tone signal (F1 = 180 kHz, F2 = 280 kHz); each tone has the same amplitude  
level.  
The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and  
the spectrum analyzer are phase locked for precision considerations.  
14/36  
DocID7502 Rev 4  
TSH7x  
Electrical characteristics  
3.3  
Characteristic curves for VCC = 5 V  
Figure 17. Closed loop gain and phase vs.  
Figure 18. Overshoot function of output  
frequency (gain = +2, V = 2.5 V, R = 150 Ω,  
capacitance (gain = +2, V = 2.5 V,  
CC  
= 25 °C)  
L
CC  
T
T
= 25 °C)  
amb  
amb  
10  
10  
5
200  
150 //33pF  
Ω
Gain  
100  
0
150 //22pF  
Ω
5
150Ω//10pF  
0
150Ω  
-5  
Phase  
0
-100  
-200  
-10  
-15  
-5  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Figure 19. Closed loop gain and phase vs.  
Figure 20. Closed loop gain and phase vs.  
frequency (gain = -10, V = 2.5 V, R = 150 Ω, frequency (gain = +11, V = 2.5 V, R = 150 Ω,  
CC  
L
CC  
L
T
= 25 °C)  
T
= 25 °C)  
amb  
amb  
30  
20  
10  
0
200  
30  
20  
10  
0
0
Phase  
150  
100  
50  
Phase  
-50  
Gain  
Gain  
0
-100  
-50  
-10  
-150  
-100  
-10  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Figure 21. Large signal measurement - positive Figure 22. Large signal measurement - negative  
slew rate (gain = 2, V = ±2.5 V, Z = 150 Ω //  
slew rate (gain = 2, V = ±2.5 V, Z = 150 Ω //  
CC  
5.6 pF)  
L
CC L  
5.6 pF)  
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
Time (ns)  
Time (ns)  
DocID7502 Rev 4  
15/36  
36  
Electrical characteristics  
TSH7x  
Figure 23. Small signal measurement - rise time Figure 24. Small signal measurement - fall time  
(gain = 2, V = ±2.5 V, Z = 150 Ω)  
(gain = 2, V = ±2.5 V, Z = 150 Ω)  
CC  
L
CC  
L
0.06  
0.04  
0.02  
0
0.06  
0.04  
0.02  
0
Vout  
Vin  
Vout  
Vin  
-0.02  
-0.04  
-0.06  
-0.02  
-0.04  
-0.06  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Time (ns)  
Time (ns)  
Figure 25. Channel separation (Xtalk) vs.  
frequency (measurement configuration:  
Xtalk = 20 log (V0/V1))  
Figure 26. Channel separation (Xtalk) vs.  
frequency (gain = +11, V = 2.5 V,  
CC  
Z = 150 Ω // 27 pF)  
L
-20  
-30  
-40  
VIN  
+
49.9  
Ω
-
V1  
4/1output  
-50  
150  
3/1output  
Ω
1k  
Ω
100  
Ω
-60  
-70  
-80  
2/1output  
+
-90  
-100  
-110  
49.9  
Ω
-
VO  
150  
Ω
1k  
Ω
100  
Ω
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Figure 27. Equivalent noise voltage  
Figure 28. Maximum output swing  
(gain = 100, V = ±2.5 V, no load)  
(gain = 11, V = ±2.5 V, R = 150 Ω)  
CC  
CC  
L
30  
3
+
_
2
25  
20  
15  
10  
5
Vout  
10k  
100  
1
Vin  
0
-1  
-2  
-3  
0.0E+0  
5.0E-2  
1.0E-1  
1.5E-1  
2.0E-1  
0.1  
1
10  
100  
1000  
Time (ms)  
Frequency (kHz)  
16/36  
DocID7502 Rev 4  
TSH7x  
Electrical characteristics  
Figure 29. Standby mode - T , T  
Figure 30. Group delay (gain = 2, V = 2.5 V,  
CC  
on off  
(V = 2.5 V, open loop)  
Z = 150 Ω // 27 pF, T  
= 25 °C)  
CC  
L
amb  
Vin  
3
2
Gain  
1
0
Vout  
-1  
-2  
-3  
Group  
Delay  
5.32ns  
Standby  
Ton  
2E-6  
Toff  
0
4E-6  
6E-6  
8E-6  
1E-5  
Time (s)  
Figure 31. Third order intermodulation (gain = 2, V = 2.5 V, Z = 150 Ω // 27 pF, T = 25 °C)  
amb  
CC  
L
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
740kHz  
80kHz  
380kHz  
640kHz  
2
0
1
3
4
Vout peak(V)  
1. Note on intermodulation products:  
The IFR2026 synthesizer generates a two tone signal (F1 = 180 kHz, F2 = 280 kHz); each tone has the same amplitude  
level.  
The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and  
the spectrum analyzer are phase locked for precision considerations.  
DocID7502 Rev 4  
17/36  
36  
Electrical characteristics  
TSH7x  
3.4  
Characteristic curves for VCC = 10 V  
Figure 32. Closed loop gain and phase vs.  
frequency (gain = +2, V = 5 V,  
Figure 33. Overshoot function  
of output capacitance (gain = +2, V = 5 V,  
CC  
CC  
R = 150 Ω, T  
= 25 °C)  
T
= 25 °C)  
L
amb  
amb  
10  
200  
100  
0
10  
150 //33pF  
Ω
5
Gain  
150Ω//22pF  
150Ω//10pF  
5
0
150Ω  
-5  
0
Phase  
1E+7  
-100  
-10  
-15  
-5  
-200  
1E+6  
1E+7  
1E+8  
1E+9  
1E+4  
1E+5  
1E+6  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Figure 34. Closed loop gain and phase vs.  
Figure 35. Closed loop gain and phase vs.  
frequency (gain = -10, V = 5 V,  
frequency (gain = +11, V = 5 V, R = 150 Ω,  
CC  
CC  
L
R = 150 Ω, T  
= 25 °C)  
T = 25 °C)  
L
amb  
amb  
30  
20  
10  
0
0
30  
20  
10  
0
200  
150  
100  
50  
Phase  
Phase  
-50  
-100  
-150  
Gain  
Gain  
0
-10  
-50  
-10  
1E+4  
1E+5  
1E+6  
1E+9  
1E+7  
1E+8  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Figure 36. Large signal measurement - positive Figure 37. Large signal measurement - negative  
slew rate (gain = 2,V = ±5 V,  
slew rate (gain = 2  
CC  
Z = 150 Ω // 5.6 pF)  
V
= ±5 V, Z = 150 Ω // 5.6 pF)  
L
CC  
L
5
4
5
4
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Time (ns)  
Time (ns)  
18/36  
DocID7502 Rev 4  
TSH7x  
Electrical characteristics  
Figure 38. Small signal measurement - rise time Figure 39. Small signal measurement - fall time  
(gain = 2, V = ±5 V, Z = 150 Ω)  
(gain = 2, V = ±5 V, Z = 150 Ω)  
CC  
L
CC L  
0.06  
0.04  
0.02  
0
0.06  
0.04  
0.02  
0
Vout  
Vin  
Vout  
Vin  
-0.02  
-0.04  
-0.06  
-0.02  
-0.04  
-0.06  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Time (ns)  
Time (ns)  
Figure 40. Channel separation (Xtalk) vs.  
frequency (measurement configuration:  
Xtalk = 20 log(V0/V1))  
Figure 41. Channel separation (Xtalk) vs.  
frequency (gain = +11, V = 5 V,  
CC  
Z = 150 Ω // 27 pF)  
L
-20  
VIN  
-30  
-40  
+
49.9  
Ω
-
V1  
4/1output  
-50  
3/1output  
150  
Ω
1k  
Ω
100  
Ω
-60  
-70  
-80  
2/1output  
+
-90  
49.9  
Ω
-
VO  
-100  
-110  
150  
Ω
1k  
Ω
100  
Ω
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Figure 42. Equivalent noise voltage  
Figure 43. Maximum output swing  
(gain = 100, V = ±5 V, no load)  
(gain = 11, V = ±5 V, R = 150 Ω)  
CC  
CC  
L
30  
5
4
Vout  
25  
20  
15  
10  
5
+
_
3
2
10k  
100  
1
Vin  
0
-1  
-2  
-3  
-4  
-5  
0.0E+0  
5.0E-2  
1.0E-1  
1.5E-1  
2.0E-1  
0.1  
1
10  
100  
1000  
Time (ms)  
Frequency (kHz)  
DocID7502 Rev 4  
19/36  
36  
Electrical characteristics  
TSH7x  
Figure 44. Standby mode - T , T  
Figure 45. Group delay (gain = 2, V = 5 V  
CC  
on off  
(V = 5 V, open loop)  
Z = 150 Ω // 27 pF, T  
= 25 °C)  
CC  
L
amb  
Vin  
5
0
Gain  
Vout  
Group  
Delay  
5.1ns  
-5  
Standby  
Ton  
Toff  
0
2E-6  
4E-6  
6E-6  
8E-6  
Time (s)  
Figure 46. Third order intermodulation (gain = 2, V = 5 V, Z = 150 Ω // 27 pF, T  
= 25 °C  
CC  
L
amb  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
80kHz  
740kHz  
380kHz  
640kHz  
0
1
2
3
4
Vout peak(V)  
1. Note on intermodulation products:  
The IFR2026 synthesizer generates a two tone signal (F1 = 180 kHz, F2 = 280 kHz); each tone has the same amplitude  
level.  
The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and  
the spectrum analyzer are phase locked for precision considerations.  
20/36  
DocID7502 Rev 4  
TSH7x  
Testing conditions  
4
Testing conditions  
4.1  
Layout precautions  
To use the TSH7X circuits in the best manner at high frequencies, some precautions have to  
be taken for power supplies:  
First of all, the implementation of a proper ground plane on both sides of the PCB is  
mandatory for high-speed circuit applications to provide low inductance and low  
resistance common return.  
Power supply bypass capacitors (4.7 µF and ceramic 100 pF) should be placed as  
close as possible to the IC pins in order to improve high frequency bypassing and  
reduce harmonic distortion. The power supply capacitors must be incorporated for both  
the negative and the positive pins.  
Proper termination of all inputs and outputs must be in accordance with output  
termination resistors. In this way, the amplifier load is resistive only, and the stability of  
the amplifier is improved.  
All leads must be wide and as short as possible (especially for op-amp inputs and  
outputs) in order to decrease parasitic capacitance and inductance.  
For lower gain applications, care should be taken to avoid large feedback resistance  
(> 1 kΩ) in order to reduce the time constant of parasitic capacitances.  
Choose component sizes as small as possible (SMD)  
Finally, on output, the load capacitance must be negligible to maintain good stability.  
You can put a serial resistance as close as possible to the output pin to minimize  
capacitance.  
DocID7502 Rev 4  
21/36  
36  
Testing conditions  
TSH7x  
4.2  
Maximum input level  
Figure 47. CCIR330 video line  
The input level must not exceed the following values:  
Negative peak: must be greater than -V +400 mV  
CC  
Positive peak value: must be lower than +V -400 mV  
CC  
The electrical characteristics show the influence of the load on this parameter.  
4.3  
Video capabilities  
To characterize the differential phase and differential gain, a CCIR330 video line is used.  
The video line contains five (flat) levels of luma on which is superimposed a chroma signal.  
The first level contains no luma. The luma gives various amplitudes which define the  
saturation of the signal. The chrominance gives various phases which define the color of the  
signal.  
Differential phase (respectively differential gain) distortion is present if a signal chrominance  
phase (gain) is affected by luminance level. They represent the ability to uniformly process  
the high frequency information at all luminance levels.  
When differential gain is present, color saturation is not correctly reproduced.  
The input generator is the Rohde and Schwarz CCVS. The output measurement was made  
by the Rohde and Schwarz VSA.  
22/36  
DocID7502 Rev 4  
TSH7x  
Testing conditions  
Figure 48. Measurement on Rohde and Schwarz VSA  
Table 10. Video results  
Value  
CC = 2.5 V  
Value  
VCC = 5 V  
Parameter  
Unit  
V
Lum NL  
0.1  
100  
100  
99.9  
99.9  
99.9  
0
0.3  
100  
99.9  
99.8  
99.9  
99.7  
0
Lum NL step 1  
Lum NL step 2  
Lum NL step 3  
Lum NL step 4  
Lum NL step 5  
Diff gain pos  
%
Diff gain neg  
-0.7  
0.7  
-0.6  
0.6  
Diff gain pp  
Diff gain step1  
Diff gain step2  
Diff gain step3  
Diff gain step4  
Diff gain step5  
Diff phase pos  
Diff phase neg  
Diff phase pp  
Diff phase step1  
Diff phase step2  
Diff phase step3  
Diff phase step4  
Diff phase step5  
-0.5  
-0.7  
-0.3  
-0.1  
-0.4  
0
-0.3  
-0.6  
-0.5  
-0.3  
-0.5  
0.1  
-0.2  
0.2  
-0.4  
0.5  
-0.2  
-0.1  
-0.1  
0
-0.4  
-0.4  
-0.3  
0.1  
deg  
-0.2  
-0.1  
DocID7502 Rev 4  
23/36  
36  
Testing conditions  
TSH7x  
4.4  
Precautions when operating on an asymmetrical supply  
The TSH7X can be used with either a dual or a single supply. If a single supply is used, the  
inputs are biased to the mid-supply voltage (+V /2). This bias network must be carefully  
CC  
designed, in order to reject any noise present on the supply rail.  
As the bias current is 15 µA, you must carefully choose the resistance R1 so as not to  
introduce an offset mismatch at the amplifier inputs.  
Figure 49. Schematic of asymmetrical (single) supply  
Cin  
IN  
Cout  
OUT  
R
+
-
Vcc+  
R1  
L
R5  
Cf  
R2  
R3  
C3  
C2  
C1  
R4  
R1 = 10 kΩ is a typical and convenient value. C1, C2, C3 are bypass capacitors that filter  
perturbations on V , as well as for the input and output signals. We choose C1 = 100 nF  
CC  
and C2 = C3 = 100 µF.  
R2, R3 are such that the current through them must be greater than 100 times the bias  
current. Therefore, we set R2 = R3 = 4.7 kΩ.  
C , as C , is chosen to filter the DC signal by the low-pass filters (R1,C and R , C ).  
in  
out  
in  
out  
out  
By taking R1 = 10 kΩ, R = 150 Ω, and C = 2 µF, C = 220 µF we provide a cut-off  
L
in  
out  
frequency below 10 Hz.  
Figure 50. Use of the TSH7x in gain = -1 configuration  
Cf  
1k  
Cin  
R1  
IN  
1k  
Cout  
-
OUT  
RL  
Vcc+  
+
R2  
C3  
R3 C1 C2  
Some precautions must be taken, especially for low-power supply applications.  
24/36  
DocID7502 Rev 4  
TSH7x  
Testing conditions  
A feedback capacitance, C , should be added for better stability. Table 11 summarizes the  
f
impact of the capacitance C on the phase margin of the circuit.  
f
Table 11. Impact capacitance C  
f
Parameter  
Cf (pF)  
VCC = 1.5 V  
VCC = 2.5 V  
VCC = 5 V  
Unit  
Phase margin  
f-3 dB  
28  
40  
43  
39.3  
43  
56  
38.3  
56  
deg  
MHz  
deg  
0
Phase margin  
f-3 dB  
30  
5.6  
22  
33  
40  
39.3  
52  
38.3  
67  
MHz  
deg  
Phase margin  
f-3 dB  
37  
37  
34  
32  
MHz  
deg  
Phase margin  
f-3 dB  
48  
65  
78  
33.7  
30.7  
27.6  
MHz  
DocID7502 Rev 4  
25/36  
36  
 
Package information  
TSH7x  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
26/36  
DocID7502 Rev 4  
TSH7x  
Package information  
5.1  
SOT23-5 package information  
Figure 51. SOT23-5 package mechanical drawing  
Table 12. SOT23-5 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Typ  
Inches  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
0.90  
0.00  
0.90  
0.35  
0.09  
2.80  
2.60  
1.50  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
3.00  
1.75  
0.035  
0.000  
0.035  
0.014  
0.004  
0.110  
0.102  
0.059  
0.057  
0.006  
0.051  
0.020  
0.008  
0.118  
0.118  
0.069  
C
D
E
E1  
e
0.95  
1.9  
0.037  
0.075  
e1  
L
0.35  
0.55  
0.014  
0.022  
DocID7502 Rev 4  
27/36  
36  
 
Package information  
TSH7x  
5.2  
SO8 package information  
Figure 52. SO8 package mechanical drawing  
0016023/C  
Table 13. SO8 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Typ  
Inches  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
B
1.35  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
0.053  
0.004  
0.043  
0.013  
0.007  
0.189  
0.150  
0.069  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
C
D
E
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
8 °  
0.228  
0.010  
0.016  
0.244  
0.020  
0.050  
8 °  
h
L
k
ddd  
0.1  
0.004  
28/36  
DocID7502 Rev 4  
TSH7x  
Package information  
5.3  
TSSOP8 package information  
Figure 53. TSSOP8 package mechanical drawing  
0079397/D  
Table 14. TSSOP8 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Typ  
Inches  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.2  
0.047  
0.006  
0.041  
0.012  
0.008  
0.122  
0.260  
0.177  
0.05  
0.80  
0.19  
0.09  
2.90  
6.20  
4.30  
0.15  
1.05  
0.30  
0.20  
3.10  
6.60  
4.50  
0.002  
0.031  
0.007  
0.004  
0.114  
0.244  
0.169  
1.00  
0.039  
c
D
3.00  
6.40  
4.40  
0.65  
0.118  
0.252  
0.173  
0.0256  
E
E1  
e
K
0 °  
8 °  
0 °  
8 °  
L
0.45  
0.60  
1
0.75  
0.018  
0.024  
0.039  
0.030  
L1  
DocID7502 Rev 4  
29/36  
36  
Package information  
TSH7x  
5.4  
SO14 package information  
Figure 54. SO14 package mechanical drawing  
PO13G  
Table 15. SO14 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Typ  
Inches  
Min  
Max  
Min  
Typ  
Max  
A
a1  
a2  
b
1.75  
0.2  
0.068  
0.007  
0.064  
0.018  
0.010  
0.1  
0.003  
1.65  
0.46  
0.25  
0.35  
0.19  
0.013  
0.007  
b1  
C
0.5  
0.019  
c1  
D
45 °  
45 °  
8.55  
5.8  
8.75  
6.2  
0.336  
0.228  
0.344  
0.244  
E
e
1.27  
7.62  
0.050  
0.300  
e3  
F
3.8  
4.6  
0.5  
4.0  
5.3  
0.149  
0.181  
0.019  
0.157  
0.208  
0.050  
0.026  
8 °  
G
L
1.27  
0.68  
8 °  
M
S
30/36  
DocID7502 Rev 4  
TSH7x  
Package information  
5.5  
TSSOP14 package information  
Figure 55. TSSOP14 package mechanical drawing  
A2  
A
K
L
b
e
A1  
c
E
D
E1  
PIN 1 IDENTIFICATION  
1
0080337D  
Table 16. TSSOP14 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Inches  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.2  
0.15  
1.05  
0.30  
0.20  
5.1  
0.047  
0.006  
0.041  
0.012  
0.0089  
0.201  
0.260  
0.176  
0.05  
0.8  
0.002  
0.031  
0.007  
0.004  
0.193  
0.244  
0.169  
0.004  
0.039  
1
0.19  
0.09  
4.9  
c
D
5
0.197  
0.252  
0.173  
0.0256  
E
6.2  
6.4  
4.4  
0.65  
6.6  
E1  
e
4.3  
4.48  
K
0 °  
8 °  
0 °  
8 °  
L
0.45  
0.60  
0.75  
0.018  
0.024  
0.030  
DocID7502 Rev 4  
31/36  
36  
Package information  
TSH7x  
5.6  
SO16 package information  
Figure 56. SO16 package mechanical drawing  
PO13H  
Table 17. SO16 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Typ  
Inches  
Min  
Max  
Min  
Typ  
Max  
A
a1  
a2  
b
1.75  
0.2  
0.068  
0.008  
0.064  
0.018  
0.010  
0.1  
0.004  
1.65  
0.46  
0.25  
0.35  
0.19  
0.013  
0.007  
b1  
C
0.5  
0.019  
c1  
D
45 °  
45 °  
9.8  
5.8  
0.385  
0.228  
0.393  
0.244  
E
10  
e
1.27  
8.89  
6.2  
0.050  
0.350  
e3  
F
3.8  
4.6  
0.5  
4.0  
5.3  
0.149  
0.181  
0.019  
0.157  
0.208  
0.050  
0.024  
8 °  
G
L
1.27  
0.62  
8 °  
M
S
32/36  
DocID7502 Rev 4  
TSH7x  
Package information  
5.7  
TSSOP16 package information  
Figure 57. TSSOP16 package mechanical drawing  
A2  
A
K
L
b
e
A1  
c
E
D
E1  
PIN 1 IDENTIFICATION  
1
0080338D  
Table 18. TSSOP16 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Inches  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.2  
0.15  
1.05  
0.30  
0.20  
5.1  
0.047  
0.006  
0.041  
0.012  
0.0079  
0.201  
0.260  
0.176  
0.05  
0.8  
0.002  
0.031  
0.007  
0.004  
0.193  
0.244  
0.169  
1
0.039  
0.19  
0.09  
4.9  
c
D
5
0.197  
0.252  
0.173  
0.0256  
E
6.2  
6.4  
4.4  
0.65  
6.6  
E1  
e
4.3  
4.48  
K
0 °  
8 °  
0 °  
8 °  
L
0.45  
0.60  
0.75  
0.018  
0.024  
0.030  
DocID7502 Rev 4  
33/36  
36  
Order information  
TSH7x  
6
Order information  
Table 19. Order codes  
Package  
Temperature  
range  
Part number  
Packing  
Marking  
TSH70CLT  
SOT23-5  
SO8  
Tape and reel  
K301  
70C  
TSH70CD/CDT  
TSH71CD/CDT  
TSH71CPT  
Tube or tape and reel  
71C  
72C  
73C  
74C  
75C  
TSSOP8  
SO8  
Tape and reel  
Tube or tape and reel  
Tape and reel  
TSH72CD/CDT  
TSH72CPT  
TSSOP8  
SO14  
0 °C to 70 °C  
TSH73CD/CDT  
TSH73CPT  
Tube or tape and reel  
Tape and reel  
TSSOP14  
SO14  
TSH74CD/CDT  
TSH74CPT  
Tube or tape and reel  
Tape and reel  
TSSOP14  
SO16  
TSH75CD/CDT  
TSH75CPT  
Tube or tape and reel  
Tape and reel  
TSSOP16  
34/36  
DocID7502 Rev 4  
TSH7x  
Revision history  
7
Revision history  
Table 20. Document revision history  
Date  
Revision  
Changes  
Nov. 2000  
1
First Release.  
Limit min. of I  
supply).  
Reason: yield improvement.  
from 24mA to 20mA (only on 3V power  
sink  
Aug. 2002  
May 2006  
2
3
4
Improvement of VOL max. at 3V and 5V power supply on 150-  
ohm load connected to GND (pages 6 and 8).  
Reason: TSH7x can drive video signals from DACs to lines in  
single supply (3V or 5V) without any DC level change of the  
video signals.  
Grammatical and typographical changes throughout.  
Package mechanical data updated.  
Updated slew rate in Features  
05-Dec-2013  
Table 12: SOT23-5 package mechanical data: added  
information for inches.  
DocID7502 Rev 4  
35/36  
36  
TSH7x  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
36/36  
DocID7502 Rev 4  

相关型号:

TSH72CDT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH72CPT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH73

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH73CD

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH73CD/CDT

VIDEO AMPLIFIER
STMICROELECTR

TSH73CDT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH73CPT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH74

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH74CD

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH74CD/CDT

VIDEO AMPLIFIER
STMICROELECTR

TSH74CDT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH74CPT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR