TSM1052 [STMICROELECTRONICS]

Constant voltage and constant current controller for battery chargers and adapters; 恒压电池充电器和适配器恒流控制器
TSM1052
型号: TSM1052
厂家: ST    ST
描述:

Constant voltage and constant current controller for battery chargers and adapters
恒压电池充电器和适配器恒流控制器

电源电路 电池 电源管理电路 光电二极管 控制器 PC
文件: 总15页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSM1052  
Constant voltage and constant current controller  
for battery chargers and adapters  
Features  
Secondary-side constant voltage and constant  
current control  
Very low voltage operation  
Very low quiescent consumption  
High-accuracy internal reference  
Low external component count  
Wired-or open-drain output stage  
Easy frequency compensation  
SOT23-6L micro package  
SOT23-6L  
Applications  
The external components needed to complete the  
two control loops are:  
Battery chargers  
AC-DC adapters  
A resistor divider that senses the output of the  
power supply (adapter, battery charger) and  
fixes the voltage regulation set point at the  
specified value;  
Description  
The TSM1052 is a highly integrated solution for  
SMPS applications requiring a dual control loop to  
perform CV (constant voltage) and CC (constant  
current) regulation.  
A sense resistor that feeds the current sensing  
circuit with a voltage proportional to the dc  
output current; this resistor determines the  
current regulation set point and must be  
The TSM1052 integrates a voltage reference, two  
Op-Amps (with OR-ed open-drain outputs), and a  
low-side current sensing circuit.  
adequately rated in terms of power dissipation;  
Frequency compensation components  
(R-C networks) for both loops.  
The voltage reference, along with one Op-Amp, is  
the core of the voltage control loop; the current  
sensing circuit and the other Op-Amp make up  
the current control loop.  
The TSM1052, housed in one of the smallest  
package available, is ideal for space-shrunk  
applications such as adapters and chargers.  
Table 1.  
Device summary  
Part number  
Package  
SOT23-6L  
Packaging  
TSM1052  
Tape and reel  
February 2007  
Rev 1  
1/15  
www.st.com  
15  
Contents  
TSM1052  
Contents  
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1  
1.2  
1.3  
1.4  
1.5  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
3
4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.1  
4.2  
Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Voltage and current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.2.1  
4.2.2  
Voltage control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.3  
4.4  
Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Start up and short circuit conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5
6
Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2/15  
TSM1052  
Description  
1
Description  
1.1  
Pin connection  
Figure 1. Pin Connection (top view)  
6
Vctrl  
GND  
OUT  
1
Vcc  
Vsense  
Ictrl  
5
4
2
3
1.2  
Pin description  
Table 2.  
N.  
Pin description  
Name  
Function  
Inverting input of the voltage loop Op-Amp. The pin will be tied to the mid-  
point of a resistor divider that senses the output voltage.  
1
Vctrl  
Ground. Return of the bias current of the device. 0 V reference for all  
voltages. The pin should be tied as close to the ground output terminal of the  
converter as possible to minimize load current effect on the voltage regulation  
set point.  
2
GND  
OUT  
Common open-drain output of the two internal Op-Amps. The pin, able to  
sink current only, will be connected to the branch of the optocoupler’s  
photodiode to transmit the error signal to the primary side.  
3
Non-inverting input of the current loop Op-Amp. It will be tied directly to the  
hot (negative) end of the current sense resistor  
4
5
Ictrl  
Inverting input of the current loop Op-Amp. The pin will be tied to the cold end  
of the current sense resistor through a decoupling resistor.  
Vsense  
Supply Voltage of the device. A small bypass capacitor (0.1 µF typ.) to GND,  
located as close to IC’s pins as possible, might be useful to get a clean  
supply voltage.  
6
Vcc  
3/15  
Description  
TSM1052  
1.3  
Internal schematic  
Figure 2. Internal schematic  
Vcc  
6
1.21 V  
+
-
3
OUT  
+
1
2
Vctrl  
GND  
200 mV  
+
-
4
5
Ictrl  
Vsense  
1.4  
Absolute maximum ratings  
Table 3.  
Symbol  
Absolute maximum ratings  
Pin  
Parameter  
DC supply voltage  
Value  
Unit  
VCC  
VOUT  
IOUT  
V
6
-0.3 to 20  
-0.3 to VCC  
100  
V
V
3
3
Open-drain voltage  
Max sink current  
Analog inputs  
mA  
V
1, 4, 5  
-0.3 to 3.3  
1.5  
Thermal data  
Table 4.  
Symbol  
Thermal data  
Parameter  
Value  
Unit  
RthJA  
TOP  
Thermal resistance, junction-to-ambient  
Junction temperature operating range  
Maximum junction temperature  
Storage temperature  
250  
-10 to 85  
150  
°C/W  
Tjmax  
TSTG  
°C  
-55 to 150  
4/15  
TSM1052  
Electrical characteristics  
2
Electrical characteristics  
T = 25°C and V = 5V, unless otherwise specified  
J
CC  
Table 5.  
Symbol  
Electrical characteristics  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Device supply  
VCC Voltage operating range  
1.7  
18  
V
Quiescent current  
150  
ICC  
µA  
(Ictrl = Vsense = Vctr = 0,  
OUT = open)  
(1)  
300  
Voltage control loop Op-Amp  
1
3.5  
2.5  
Transconductance  
Gmv  
S
V
(sink current only) (2)  
(1)  
(1)  
(1)  
1.198 1.21 1.222  
Vref  
Voltage reference (3)  
1.186  
1.234  
50  
Ibias  
Inverting input bias current  
nA  
100  
Current control loop  
1.5  
7
Transconductance  
Gmi  
Vsense  
Ibias  
S
(sink current only) (4)  
(1)  
(1)  
(1)  
Current loop reference (5)  
@ I(Iout) = 1 mA  
196  
192  
200  
204  
208  
mV  
µA  
20  
40  
Non-inverting input source current @  
V(Ictrl) = -200 mV  
Output stage  
100  
VOUTlow Low output level @ 2 mA sink current  
1. Specification referred to -10 °C < TA < 85 °C  
mV  
(1)  
200  
2. If the voltage on Vctrl (the negative input of the amplifier) is higher than the positive amplifier input  
(Vref = 1.21 V), and it is increased by 1mV, the sinking current at the output OUT will be increased by  
3.5mA.  
3. The internal Voltage Reference is set at 1.21 V (bandgap reference). The voltage control loop precision  
takes into account the cumulative effects of the internal voltage reference deviation as well as the input  
offset voltage of the transconductance operational amplifier. The internal Voltage Reference is fixed by  
bandgap, and trimmed to 0.5% accuracy at room temperature.  
4. When the positive input at Ictrl is lower than -200mV, and the voltage is decreased by 1mV, the sinking  
current at the output Out will be increased by 7mA.  
5. The internal current sense threshold is set at -200mV. The current control loop precision takes into account  
the cumulative effects of the internal voltage reference deviation as well as the input offset voltage of the  
transconductance operational amplifier.  
5/15  
Typical characteristics  
TSM1052  
3
Typical characteristics  
Figure 3.  
V
vs. ambient temperature  
Figure 4.  
V
vs. ambient temperature  
ref  
SENSE  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
1.230  
1.220  
1.210  
1.200  
1.190  
208  
206  
204  
202  
200  
198  
196  
194  
192  
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
Temp ( °C )  
Temp ( °C )  
Figure 5.  
V
pin input bias current vs.  
Figure 6.  
I
pin input bias current vs.  
SENSE  
CTRL  
ambient temperature  
ambient temperature  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
50  
40  
30  
20  
10  
15  
14  
13  
12  
11  
0
10  
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
Temp ( °C )  
Temp ( °C )  
Figure 7. Tranconductance (sink current only) Figure 8. Tranconductance (sink current only)  
of voltage control loop Op-Amp vs.  
ambient temperature  
of current control loop Op-Amp vs.  
ambient temperature  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
20  
15  
10  
5
18  
16  
14  
12  
10  
8
6
4
2
0
0
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
Temp ( °C )  
Temp ( °C )  
6/15  
TSM1052  
Typical characteristics  
Figure 9. Low output level of voltage control Figure 10. Low output level of current control  
loop Op-Amp vs. ambient  
loop Op-Amp vs. ambient  
temperature (2mA sink current)  
temperature (2mA sink current)  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
60  
40  
20  
0
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
Temp ( °C )  
Temp ( °C )  
Figure 11. Output short circuit current of  
voltage control loop Op-Amp vs.  
ambient temperature  
Figure 12. Output short circuit current of  
current control loop Op-Amp vs.  
ambient temperature  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
Temp ( °C )  
Temp ( °C )  
Figure 13. Supply current vs. ambient  
temperature  
Figure 14. Low output level vs. sink current  
Vcc=18V  
Vcc=5V  
Vcc=1.7V  
2.5  
2
0.350  
0.300  
0.250  
0.200  
0.150  
0.100  
0.050  
0.000  
1.5  
1
0.5  
0
1
6
11  
16  
21  
26  
31  
-20  
0
20  
40  
60  
80  
100  
Isink (mA)  
Temp ( °C )  
7/15  
Application information  
TSM1052  
4
Application information  
4.1  
Typical application schematic  
Figure 15. Typical adapter or battery charger application using the device  
Vcc  
TSM1052  
R1  
6
Rled  
Cvc1  
1.210 V  
+
+
-
3
OUT  
Rvc1  
1
2
Vctrl  
GND  
Vout  
+
-
200 mV  
Cic1  
R2  
Ric1  
4
5
Ictrl  
Vsense  
Ric2  
Rsense  
Iout  
In the above application schematic, the device is used on the secondary side of a flyback  
adapter (or battery charger) to provide an accurate control of voltage and current. The  
above feedback loop is made with an optocoupler.  
4.2  
Voltage and current control  
4.2.1  
Voltage control  
The voltage loop is controlled via a first transconductance operational amplifier, the voltage  
divider R , R , and the optocoupler which is directly connected to the output. Its possible to  
1
2
choose the values of R1 and R2 resistors using Equation 1:  
Equation 1  
(R1 + R2 )  
a)  
b)  
Vout = V  
R1 = R2 ⋅  
ref  
R2  
(Vout + V )  
ref  
V
ref  
where Vout is the desired output voltage.  
As an example, with R1 = 100Kand R2 = 27KΩ, V  
= 5.7V  
OUT  
8/15  
TSM1052  
Application information  
4.2.2  
Current control  
The current loop is controlled via the second trans-conductance operational amplifier, the  
sense resistor Rsense, and the optocoupler. The control equation verifies:  
Equation 2  
a)  
b)  
Rsense Ilim = Vsense  
Vsense  
Rsense  
=
Ilim  
where Ilim is the desired limited current, and VSENSE is the threshold voltage for the current  
control loop.  
As an example, with Ilim = 1A, VSENSE = 200mV, then RSENSE = 200m.  
Note:  
The Rsense resistor should be chosen taking into account the maximum dissipation (P  
through it during full load operation.  
)
lim  
Equation 3  
P
= Vsense Ilim  
lim  
As an example, with Ilim = 1A, and Vsense = 200mV, Plim = 200mW.  
Therefore, for most adapter and battery charger applications, a quarter-watt, or half-watt  
resistor is sufficient. VSENSE threshold is made internally by a voltage divider tied to the Vref  
voltage reference. Its middle point is tied to the positive input of the current control  
operational amplifier, and its foot is to be connected to lower potential point of the sense  
resistor as shown in Figure 15 on page 8. The resistors of this voltage divider are matched  
to provide the best possible accuracy. The current sinking outputs of the two  
transconductance operational amplifiers are common (to the output of the IC). This makes  
an ORing function which ensures either the voltage control or the current control, driving the  
optocoupler's photodiode to transmit the feedback to the primary side.  
The relation between the controlled current and the controlled output voltage can be  
described with a square characteristic as shown in the following V/I output-power diagram.  
(with the power supply of the device indipendent of the output voltage)  
9/15  
Application information  
TSM1052  
Figure 16. Output voltage versus output current  
Vout  
Voltage regulation  
Current regulation  
(Vcc of the device independent of output voltage)  
Iout  
4.3  
Compensation  
The voltage control transconductance operational amplifier can be fully compensated. Both  
of its output and negative input are directly accessible for external compensation  
components.  
An example of a suitable compensation network is shown in Figure 15. It consists of a  
capacitor CVC1 = 2.2nF and a resistor RCV1 = 470Kin series.  
The current-control transconductance operational amplifier can be fully compensated. Both  
its output and negative input are directly accessible for external compensation components.  
An example of a suitable compensation network is shown in Figure 15. It consists of a  
capacitor CIC1 = 2.2nF and a resistor RIC1 = 22Kin series. In order to increase the stability  
of the application it is suggested to add a resistor in series with the optocoupler. An example  
of a suitable RLED value could be 330in series with the optocoupler.  
4.4  
Start up and short circuit conditions  
Under start-up or short-circuit conditions if the device is supplied from SMPS output and the  
output voltage is lower than Vcc minimum the current regulation is not guaranteed.  
Therefore, the current limitation can only be ensured by the primary PWM module, which  
should be chosen accordingly.  
If the primary current limitation is considered not to be precise enough for the application,  
then a sufficient supply for the device has to be ensured under any condition. It would then  
be necessary to add some circuitry to supply the chip with a separate power line. This can  
be achieved in numerous ways, including an additional winding on the transformer.  
The following schematic shows how to realize a low-cost power supply for the device (with  
no additional windings).  
10/15  
TSM1052  
Application information  
Figure 17. Application circuit able to supply the device even with V  
= 0  
OUT  
Vcc  
TSM1052  
R1  
6
Rled  
Cvc1  
1.210 V  
+
+
-
3
OUT  
Rs  
Ds  
Rvc1  
1
2
Vctrl  
GND  
Vout  
200 mV  
+
-
Cic1  
Cs  
R2  
Ric1  
4
5
Ictrl  
Vsense  
Ric2  
Rsense  
Iout  
11/15  
Mechanical data  
TSM1052  
5
Mechanical data  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
12/15  
TSM1052  
Mechanical data  
Table 6.  
Ref.  
SOT23-6L mechanical data  
mm.  
inch  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
B
1.35  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
0.053  
0.004  
0.043  
0.013  
0.007  
0.189  
0.150  
0.069  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
C
D
E
e
1.27  
0.050  
H
h
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
0.228  
0.010  
0.016  
0.244  
0.020  
0.050  
L
k
8° (max.)  
Figure 18. Package dimensions  
13/15  
Revision history  
TSM1052  
6
Revision history  
Table 7.  
Date  
20-Feb-2007  
Revision history  
Revision  
Changes  
1
Initial release.  
14/15  
TSM1052  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
15/15  

相关型号:

TSM1052_08

Constant voltage and constant current controller for battery chargers and adapters
STMICROELECTR

TSM105CD

CONSTANT VOLTAGE AND CONSTANT CURRENT CONTROLLER FOR BATTERY CHARGERS AND ADAPTORS
STMICROELECTR

TSM105CDT

Analog IC
ETC

TSM105CLT

CONSTANT VOLTAGE AND CONSTANT CURRENT CONTROLLER FOR BATTERY CHARGERS AND ADAPTORS
STMICROELECTR

TSM105D

CONSTANT VOLTAGE AND CONSTANT CURRENT CONTROLLER FOR BATTERY CHARGERS AND ADAPTORS
STMICROELECTR

TSM105L

CONSTANT VOLTAGE AND CONSTANT CURRENT CONTROLLER FOR BATTERY CHARGERS AND ADAPTORS
STMICROELECTR

TSM106

Dual Operational Amplifier and Voltage Reference
STMICROELECTR

TSM106ID

Dual Operational Amplifier and Voltage Reference
STMICROELECTR

TSM106IDT

Dual Operational Amplifier and Voltage Reference
STMICROELECTR

TSM107

Triple Operational Amplifier and Voltage Reference
STMICROELECTR

TSM107ID

Triple Operational Amplifier and Voltage Reference
STMICROELECTR

TSM107IDT

Triple Operational Amplifier and Voltage Reference
STMICROELECTR