TSU101RILT [STMICROELECTRONICS]

Nanopower, rail-to-rail input and output, 5 V CMOS operational amplifiers; 纳安级功耗,轨到轨输入和输出,5V CMOS运算放大器
TSU101RILT
型号: TSU101RILT
厂家: ST    ST
描述:

Nanopower, rail-to-rail input and output, 5 V CMOS operational amplifiers
纳安级功耗,轨到轨输入和输出,5V CMOS运算放大器

运算放大器
文件: 总33页 (文件大小:1102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSU101, TSU102, TSU104  
Nanopower, rail-to-rail input and output, 5 V CMOS  
operational amplifiers  
Datasheet - production data  
Application performances guaranteed over  
industrial temperature range  
Fast desaturation  
6&ꢉꢇꢂꢃꢄꢅ768ꢆꢇꢆꢈ  
627ꢀꢁꢂꢃꢄꢅ768ꢆꢇꢆꢈ  
Applications  
Ultra long life battery-powered applications  
Power metering  
')1ꢊꢄꢀ[ꢀꢄꢅ768ꢆꢇꢀꢈ  
0LQL62ꢊꢄꢅ768ꢆꢇꢀꢈ  
UV and photo sensors  
Electrochemical and gas sensors  
Pyroelectric passive infrared (PIR) detection  
Battery current sensing  
Medical instrumentation  
RFID readers  
Description  
4)1ꢆꢌꢄꢁ[ꢁꢄꢅ768ꢆꢇꢋꢈ  
76623ꢆꢋꢄꢅ768ꢆꢇꢋꢈ  
The TSU101, TSU102, and TSU104 operational  
amplifiers offer an ultra low-power consumption of  
580 nA typical and 750 nA maximum per channel  
when supplied by 1.8 V. Combined with a supply  
voltage range of 1.5 V to 5.5 V, these features  
allow the TSU10x series to be efficiently supplied  
by a coin type Lithium battery or a regulated  
voltage in low-power applications.  
Features  
Submicro ampere current consumption:  
580 nA typ per channel at 25 °C at VCC = 1.8 V  
Low supply voltage: 1.5 V - 5.5 V  
Unity gain stable  
Rail-to-rail input and output  
The 8 kHz gain bandwidth of these devices make  
them ideal for sensor signal conditioning, battery  
supplied, and portable applications.  
Gain bandwidth product: 8 kHz typ  
Low input bias current: 5 pA max at 25 °C  
High tolerance to ESD: 2 kV HBM  
Industrial temperature range: -40 °C to +85 °C  
Benefits  
42 years of typical equivalent lifetime (for  
TSU101) if supplied by a 220 mAh coin type  
Lithium battery  
Tolerance to power supply transient drops  
Accurate signal conditioning of high impedance  
sensors  
July 2013  
DocID024317 Rev 2  
1/33  
This is information on a product in full production.  
www.st.com  
Contents  
TSU101, TSU102, TSU104  
Contents  
1
2
3
4
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 17  
Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Schematic optimization aiming for nanopower . . . . . . . . . . . . . . . . . . . . . 19  
PCB layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Using the TSU10x series with sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Fast desaturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Using the TSU10x series in comparator mode . . . . . . . . . . . . . . . . . . . . . 22  
4.10 ESD structure of TSU10x series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
SC70-5 (or SOT323-5) package mechanical data . . . . . . . . . . . . . . . . . . 25  
SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
QFN16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Package pin connections  
1
Package pin connections  
Figure 1. Pin connections for each package (top view)  
,1ꢍ  
9&&ꢂ  
,1ꢂ  
9&&ꢍ  
287  
287  
9&&ꢍ  
,1ꢂ  
9&&ꢂ  
,1ꢍ  
SC70-5/SOT23-5 (TSU101)  
SC70-5/SOT23-5 (TSU101R)  
287ꢆ  
,1ꢆꢂ  
9&&ꢍ  
287ꢀ  
,1ꢀꢂ  
287ꢆ  
,1ꢆꢂ  
9&&ꢍ  
287ꢀ  
,1ꢆꢍ  
9&&ꢂ  
,1ꢆꢍ  
,1ꢀꢂ  
9&&ꢂ  
,1ꢀꢍ  
,1ꢀꢍ  
DFN8 2x2 (TSU102)  
MiniSO8 (TSU102)  
1
2
3
Out1  
In1-  
14 Out4  
13 In4-  
In1+  
Vcc+  
In2+  
In2-  
In4+  
11 Vcc-  
12  
4
5
6
7
10  
In3+  
In3-  
9
8
Out3  
Out2  
TSSOP14 (TSU104)  
QFN16 3x3 (TSU104)  
DocID024317 Rev 2  
3/33  
33  
Absolute maximum ratings and operating conditions  
TSU101, TSU102, TSU104  
2
Absolute maximum ratings and operating conditions  
Table 1. Absolute maximum ratings (AMR)  
Parameter  
Symbol  
Value  
Unit  
Vcc  
Vid  
Vin  
Iin  
Supply voltage(1)  
6
Differential input voltage(2)  
Input voltage(3)  
±Vcc  
Vcc- - 0.2 to Vcc+ + 0.2  
10  
V
Input current(4)  
mA  
°C  
Tstg  
Storage temperature  
-65 to +150  
Thermal resistance junction to ambient(5)(6)  
SC70-5  
205  
250  
117  
190  
45  
SOT23-5  
DFN8 2x2  
MiniSO8  
QFN16 3x3  
TSSOP14  
Rthja  
°C/W  
100  
Tj  
Maximum junction temperature  
HBM: human body model(7)  
MM: machine model(8)  
150  
2000  
200  
°C  
V
ESD  
CDM: charged device model(9)  
All other packages except SC70-5  
SC70-5  
1000  
900  
Latch-up immunity(10)  
200  
mA  
1. All voltage values, except the differential voltage are with respect to the network ground terminal.  
2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.  
3. (Vcc+ - Vin) must not exceed 6 V, (Vin - Vcc-) must not exceed 6 V.  
4. The input current must be limited by a resistor in series with the inputs.  
5. Short-circuits can cause excessive heating and destructive dissipation.  
6. Rth are typical values.  
7. Related to ESDA/JEDEC JS-001 Apr. 2010  
8. Related to JEDEC JESD22-A115C Nov.2010  
9. Related to JEDEC JESD22-C101-E Dec. 2009  
10. Related to JEDEC JESD78C Sept. 2010  
Table 2. Operating conditions  
Symbol  
Parameter  
Value  
Unit  
Vcc  
Vicm  
Toper  
Supply voltage  
1.5 to 5.5  
Vcc- - 0.1 to Vcc+ + 0.1  
-40 to +85  
V
Common mode input voltage range  
Operating free air temperature range  
°C  
4/33  
DocID024317 Rev 2  
 
TSU101, TSU102, TSU104  
Electrical characteristics  
3
Electrical characteristics  
Table 3. Electrical characteristics at V  
= 1.8 V with V = 0 V, V  
= V /2, T  
= 25 ° C, and  
cc+  
cc-  
icm  
cc  
amb  
R = 1 Mconnected to V /2 (unless otherwise specified)  
L
cc  
Symbol  
DC performance  
Vio Input offset voltage  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
-3  
0.1  
3
3.4  
5
mV  
-40 °C < T< 85 °C  
-40 °C < T< 85 °C  
-3.4  
ΔVio/ΔT Input offset voltage drift  
μV/°C  
μV  
month  
Long-term input offset  
voltage drift  
--------------------------  
ΔVio  
T = 25 °C(1)  
0.18  
1
5
30  
5
Iio  
Input offset current (2)  
Input bias current (2)  
-40 °C < T< 85 °C  
-40 °C < T< 85 °C  
pA  
1
Iib  
30  
V
icm = 0 to 0.6 V, Vout = VCC/2  
65  
65  
55  
55  
85  
74  
-40 °C < T< 85 °C  
Common mode rejection  
ratio 20 log (ΔVicm/ΔVio)  
CMR  
Vicm = 0 to 1.8 V, Vout = VCC/2  
-40°C < T< 85 °C  
dB  
Vout = 0.3 V to (VCC+ - 0.3 V)  
RL = 100 kΩ  
95  
95  
115  
Avd  
Large signal voltage gain  
-40 °C < T< 85 °C  
RL = 100 kΩ  
40  
40  
40  
40  
High level output voltage  
(drop from VCC+)  
VOH  
-40 °C < T< 85 °C  
RL = 100 kΩ  
mV  
VOL  
Low level output voltage  
Output sink current  
-40 °C < T< 85 °C  
V
out = VCC , VID = -200 mV  
-40 °C < T< 85 °C  
out = 0 V, VID = + 200 mV  
4
4
4
4
5
5
Iout  
mA  
nA  
V
Output source current  
-40 °C < T< 85 °C  
No load, Vout = VCC/2  
-40 °C < T< 85 °C  
580  
750  
800  
Supply current  
(per channel)  
ICC  
AC performance  
GBP  
Fu  
Gain bandwidth product  
8
8
kHz  
Unity gain frequency  
Phase margin  
RL = 1 MΩ, CL = 60 pF  
Φm  
60  
10  
degrees  
dB  
Gm  
Gain margin  
DocID024317 Rev 2  
5/33  
33  
Electrical characteristics  
TSU101, TSU102, TSU104  
Table 3. Electrical characteristics at V  
= 1.8 V with V = 0 V, V  
= V /2, T  
= 25 ° C, and  
cc+  
cc-  
icm  
cc  
amb  
R = 1 Mconnected to V /2 (unless otherwise specified) (continued)  
L
cc  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
RL = 1 MΩ, CL = 60 pF  
Vout = 0.3 V to (VCC+ - 0.3 V)  
SR  
Slew rate (10 % to 90 %)  
3
V/ms  
f = 100 Hz  
f = 1 kHz  
265  
265  
nV  
Equivalent input noise  
voltage  
-----------  
en  
en  
in  
Hz  
Low-frequency peak-to-  
peak input noise  
Bandwidth: f = 0.1 to 10 Hz  
9
µVpp  
f = 100 Hz  
f = 1 kHz  
0.64  
4.4  
Equivalent input noise  
current  
fA  
-----------  
Hz  
100 mV from rail in comparator  
RL = 100 kΩ, VID = ±VCC  
-40 °C < T< 85 °C  
trec  
Overload recovery time  
30  
µs  
1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.  
2. Guaranteed by design.  
6/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Electrical characteristics  
Table 4. Electrical characteristics at V  
= 3.3 V with V = 0 V, V  
= V /2, T  
= 25 ° C, and  
cc+  
cc-  
icm  
cc  
amb  
R = 1 Mconnected to V /2 (unless otherwise specified)  
L
cc  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
-3  
0.1  
3
3.4  
5
Vio  
Input offset voltage  
mV  
-40 °C < T< 85 °C  
-40 °C < T< 85 °C  
-3.4  
ΔVio/ΔT Input offset voltage drift  
μV/°C  
μV  
month  
Long-term input offset  
voltage drift  
--------------------------  
ΔVio  
T = 25 °C(1)  
0.36  
1
5
30  
5
Iio  
Input offset current(2)  
Input bias current(2)  
-40 °C < T< 85 °C  
-40 °C < T< 85 °C  
pA  
1
Iib  
30  
V
icm = 0 to 2.1 V, Vout = VCC/2  
-40 °C < T< 85 °C  
icm = 0 to 3.3 V, Vout = VCC/2  
70  
70  
60  
60  
92  
77  
Common mode rejection  
ratio 20 log (ΔVicm/ΔVio)  
CMR  
V
dB  
-40 °C < T< 85 °C  
Vout = 0.3 V to (VCC+ - 0.3 V)  
RL= 100 kΩ  
105  
105  
120  
Avd  
Large signal voltage gain  
-40 °C < T< 85 °C  
RL = 100 kΩ  
40  
40  
40  
40  
High level output voltage  
(drop from VCC+)  
VOH  
-40 °C < T< 85 °C  
RL = 100 kΩ  
mV  
VOL  
Low level output voltage  
Output sink current  
-40 °C < T< 85 °C  
Vout = VCC , VID= -200 mV  
-40 °C < T< 85 °C  
6
6
8
8
9
Iout  
mA  
nA  
Vout = 0 V, VID = + 200 mV  
11  
Output source current  
-40 °C < T< 85 °C  
No load, Vout = VCC/2  
-40 °C < T< 85 °C  
600  
800  
850  
Supply current  
(per channel)  
ICC  
AC performance  
GBP  
Fu  
Gain bandwidth product  
8
8
kHz  
Unity gain frequency  
Phase margin  
RL = 1 MΩ, CL = 60 pF  
Φm  
60  
11  
degrees  
dB  
Gm  
Gain margin  
RL = 1 MΩ, CL = 60 pF,  
Vout = 0.3 V to (VCC+ - 0.3 V)  
SR  
Slew rate (10 % to 90 %)  
3
V/ms  
DocID024317 Rev 2  
7/33  
33  
Electrical characteristics  
TSU101, TSU102, TSU104  
Table 4. Electrical characteristics at V  
= 3.3 V with V = 0 V, V  
= V /2, T  
= 25 ° C, and  
cc+  
cc-  
icm  
cc  
amb  
R = 1 Mconnected to V /2 (unless otherwise specified) (continued)  
L
cc  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
260  
255  
Max.  
Unit  
f = 100 Hz  
f = 1 kHz  
Equivalent input noise  
voltage  
nV  
-----------  
en  
Hz  
Low-frequency peak-to-  
peak input noise  
en  
Bandwidth: f = 0.1 to 10 Hz  
8.6  
µVpp  
f = 100 Hz  
f = 1 kHz  
0.55  
3.8  
Equivalent input noise  
current  
fA  
Hz  
-----------  
in  
100 mV from rail in comparator  
RL = 100 kΩ, VID= ±VCC  
-40 °C < T< 85 °C  
trec  
Overload recovery time  
30  
µs  
1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.  
2. Guaranteed by design.  
8/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Electrical characteristics  
Table 5. Electrical characteristics at V  
= 5 V with V = 0 V, V  
= V /2, T  
= 25 ° C, and  
cc+  
cc-  
icm  
cc  
amb  
R = 1 Mconnected to V /2 (unless otherwise specified)  
L
cc  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
-3  
0.1  
3
3.4  
5
Vio  
Input offset voltage  
mV  
-40 °C < T< 85 °C  
-40 °C < T< 85 °C  
-3.4  
ΔVio/ΔT Input offset voltage drift  
μV/°C  
μV  
month  
Long-term input offset  
voltage drift  
--------------------------  
ΔVio  
T = 25 °C(1)  
1.1  
1
5
30  
5
Iio  
Input offset current(2)  
Input bias current (2)  
-40 °C < T< 85 °C  
-40 °C < T< 85 °C  
pA  
1
Iib  
30  
V
icm = 0 to 3.8 V, Vout = VCC/2  
70  
70  
65  
65  
70  
70  
90  
82  
90  
-40 °C < T< 85 °C  
Common mode rejection  
ratio 20 log (ΔVicm/ΔVio)  
CMR  
Vicm = 0 to 5 V, Vout = VCC/2  
-40 °C < T< 85 °C  
dB  
VCC = 1.5 to 5.5 V, Vicm = 0 V  
-40 °C < T< 85 °C  
Supply voltage rejection  
ratio  
SVR  
Avd  
Vout = 0.3 V to (Vcc+ - 0.3 V)  
RL= 100 kΩ  
110  
110  
130  
Large signal voltage gain  
-40°C < T< 85 °C  
RL = 100 kΩ  
40  
40  
40  
40  
High level output voltage  
(drop from VCC+)  
VOH  
-40 °C < T< 85 °C  
RL = 100 kΩ  
mV  
VOL  
Low level output voltage  
Output sink current  
-40 °C < T< 85 °C  
V
out = VCC , VID = -200 mV  
-40 °C < T< 85 °C  
out = 0 V, VID = + 200 mV  
6
6
8
8
9
Iout  
mA  
nA  
V
11  
Output source current  
-40 °C < T< 85 °C  
No load, Vout = VCC/2  
-40 °C < T< 85 °C  
650  
850  
950  
Supply current  
(per channel)  
ICC  
AC performance  
GBP  
Fu  
Gain bandwidth product  
9
kHz  
Unity gain frequency  
Phase margin  
8.6  
60  
12  
RL = 1 MΩ, CL = 60 pF  
Φm  
degrees  
dB  
Gm  
Gain margin  
DocID024317 Rev 2  
9/33  
33  
Electrical characteristics  
TSU101, TSU102, TSU104  
Table 5. Electrical characteristics at V  
= 5 V with V = 0 V, V  
= V /2, T  
= 25 ° C, and  
cc+  
cc-  
icm  
cc  
amb  
R = 1 Mconnected to V /2 (unless otherwise specified) (continued)  
L
cc  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
RL = 1 MΩ, CL = 60 pF,  
Vout = 0.3 V to (VCC+ - 0.3 V)  
SR  
Slew rate (10 % to 90 %)  
3
V/ms  
f = 100 Hz  
f = 1 kHz  
240  
225  
nV  
Equivalent input noise  
voltage  
-----------  
en  
en  
in  
Hz  
Low-frequency  
peak-to-peak input noise  
Bandwidth: f = 0.1 to 10 Hz  
8.1  
µVpp  
f = 100 Hz  
f = 1 kHz  
0.18  
3.5  
Equivalent input noise  
current  
fA  
-----------  
Hz  
100 mV from rail in comparator  
RL = 100 kΩ, VID= ±VCC  
-40 °C < T< 85 °C  
trec  
Overload recovery time  
30  
µs  
Vin = -10 dBm, f = 400 MHz  
73  
88  
80  
80  
V
in = -10 dBm, f = 900 MHz  
Vin = -10 dBm, f = 1.8 GHz  
in = -10 dBm, f = 2.4 GHz  
Electromagnetic  
EMIRR  
dB  
interference rejection ratio(3)  
V
1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.  
2. Guaranteed by design.  
3. Based on evaluations performed only in conductive mode.  
10/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Electrical characteristics  
Figure 2. Supply current vs. supply voltage  
Figure 3. Supply current vs. input common  
mode voltage  
1.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Vicm=Vout=Vcc/2  
0.9  
T=85°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
T=85°C  
T=25°C  
T=25°C  
T=-40°C  
T=-40°C  
Vcc=3.3V, Vout=Vcc/2  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
Supply voltage (V)  
Input common mode voltage (V)  
Figure 4. Supply current in saturation mode  
Figure 5. Input offset voltage distribution  
1.0  
50  
Vio distribution at T=25°C  
Vcc=3.3V, Vicm=1.65V  
0.9  
45  
Temperature  
85°C/65°C/45°C/25°C/-5°C/-40°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
40  
35  
30  
25  
20  
15  
10  
5
Vcc=3.3V  
Follower configuration  
0
-3  
-2  
-1  
0
1
2
3
Input offset voltage (mV)  
Input voltage (mV)  
Figure 6. Input offset voltage vs. common mode Figure 7. Input offset voltage vs. temperature at  
voltage 3.3 V supply voltage  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5
4
3
2
Limit for TSU10x  
T=25°C  
Vcc=3.3V  
1
0
-1  
-2  
-3  
-4  
-5  
T=85°C  
Vcc=3.3V, Vicm=1.65V  
T=-40°C  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Common mode voltage (V)  
Temperature (°C)  
DocID024317 Rev 2  
11/33  
33  
 
Electrical characteristics  
TSU101, TSU102, TSU104  
Figure 8. Input offset voltage temperature  
Figure 9. Input bias current vs. temperature at  
coefficient distribution  
mid V  
ICM  
30  
20  
15  
10  
5
Δ
Vio/ΔT distribution  
between T=-40°C and 85°C  
for Vcc=3.3V, Vicm=1.65V  
25  
20  
15  
10  
5
Vcc=3.3V  
Vcc=1.8V  
Vcc=5V  
0
-5  
Vicm=Vcc/2  
-10  
-15  
-20  
0
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-40  
-20  
0
20  
40  
60  
80  
Δ
Vio/ΔT (µV/°C)  
Temperature (°C)  
Figure 10. Input bias current vs. temperature at Figure 11. Input bias current vs. temperature at  
low V  
high V  
ICM  
ICM  
20  
15  
10  
5
20  
15  
10  
5
Vcc=3.3V  
Vcc=5V  
Vicm=0V  
Vcc=1.8V  
0
0
-5  
-5  
Vcc=1.8V  
Vicm=Vcc  
Vcc=3.3V  
Vcc=5V  
-10  
-15  
-20  
-10  
-15  
-20  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature (°C)  
Temperature (°C)  
Figure 12. Output characteristics at 1.8 V  
supply voltage  
Figure 13. Output characteristics at 3.3 V  
supply voltage  
3.3  
3.0  
1.8  
1.6  
Source  
2.7  
Source  
Vid=0.2V  
Vid=0.2V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.4  
T=25°C  
2.1  
Vcc=3.3V  
T=85°C  
Vicm=0.1V  
Vcc=1.8V  
Vicm=0.1V  
T=25°C  
1.8  
1.5  
1.2  
T=85°C  
0.9  
Sink  
Vid=-0.2V  
Sink  
Vid=-0.2V  
0.6  
0.3  
0.0  
T=-40°C  
T=-40°C  
8
0
1
2
3
4
5
6
7
9
10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Output Current (mA)  
Output Current (mA)  
12/33  
DocID024317 Rev 2  
 
 
 
TSU101, TSU102, TSU104  
Electrical characteristics  
Figure 14. Output characteristics at 5 V supply  
Figure 15. Output voltage vs. input voltage  
close to the rails  
voltage  
5.0  
3300  
3275  
3250  
4.5  
Temperature  
85°C/65°C/45°C/25°C/-5°C/-40°C  
Source  
Vid=0.2V  
3225  
4.0  
3200  
3175  
3150  
3125  
3100  
T=25°C  
T=85°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Vcc=5V  
Vicm=0.1V  
175  
150  
125  
Vcc=3.3V  
100  
Follower configuration  
75  
T=-40°C  
Sink  
Vid=-0.2V  
50  
25  
0
0
1
2
3
4
5
6
7
8
9
10  
Output Current (mA)  
Input voltage (mV)  
Figure 16. Output saturation with a sine wave  
on input  
Figure 17. Desaturation time  
3.300  
3
3.275  
3.250  
Gain=+11, 100kΩ/1MΩ, Vin=3Vpp, T=25°C  
Vin  
2
1
Vout  
3.225  
3.200  
Follower configuration, T=25°C  
3.175  
Vcc=3.3V, Vin from rail to 300mV from rail  
3.150  
0
Vrl=Vrail, f=10Hz, Rl=10M  
Ω, Cl=16pF  
0.125  
0.100  
0.075  
0.050  
0.025  
0.000  
-1  
-2  
-3  
Vout  
Vcc=3.3V, Vicm=Vrl=1.65V  
Rl=10M  
Ω
, Cl=16pF  
Vin  
-5  
0
5
10 15 20 25 30 35 40 45 50 55 60  
0
1
2
3
4
5
Time (ms)  
Time (ms)  
Figure 18. Phase reversal free  
Figure 19. Slew rate vs. supply voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
2
1
T=-40°C  
Vicm=Vrl=Vcc/2  
Rl=1M , Cl=60pF  
Vin from 0.5V to Vcc-0.5V  
1.0  
0.5  
0.0  
Follower configuration, T=25°C  
Vcc=3.3V, Vicm=Vrl=1.65V  
Ω
0
Rl=10M  
Ω
, Cl=16pF  
SR calculated from 10% to 90%  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
T=25°C  
-1  
-2  
T=85°C  
4.5  
0
25  
50  
75  
100  
125  
150  
1.5  
2.0  
2.5  
3.0  
3.5  
Vcc (V)  
4.0  
5.0  
5.5  
Time (ms)  
DocID024317 Rev 2  
13/33  
33  
 
 
 
Electrical characteristics  
TSU101, TSU102, TSU104  
Figure 20. Output swing vs. input signal  
Figure 21. Triangulation of a sine wave  
frequency  
4.0  
3
Follower configuration, Vin=3Vpp, F=1kHz  
2
3.5  
3.0  
2.5  
1
0
2.0  
Follower configuration  
Vcc=3.3V, Vin=3.3Vpp  
Vicm=Vrl=1.65V  
1.5  
-1  
Rl=10MΩ, Cl=16pF  
1.0  
0.5  
0.0  
T=25°C  
-2  
-3  
Vcc=3.3V, Vicm=Vrl=1.65V  
Rl=10M , Cl=16pF, T=25°C  
Ω
10  
100  
1000  
10000  
0
1
2
3
4
Frequency (Hz)  
Time (ms)  
Figure 22. Large signal response at 3.3 V  
supply voltage  
Figure 23. Small signal response at 3.3 V supply  
voltage  
35  
30  
25  
20  
15  
10  
5
Follower configuration, T=25°C  
2
1
Follower configuration, T=25°C  
0
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-1  
-2  
Vcc=3.3V  
Vicm=Vrl=1.65V  
Vcc=3.3V  
Vicm=Vrl=1.65V  
Rl=10M , Cl=16pF  
Rl=10M  
Ω
, Cl=16pF  
Ω
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
Time (ms)  
Figure 24. Overshoot vs. capacitive load at  
3.3 V supply voltage  
Figure 25. Phase margin vs. capacitive load at  
3.3 V supply voltage  
30  
70  
65  
60  
55  
50  
45  
40  
35  
30  
28  
25  
23  
20  
18  
15  
13  
10  
8
Vcc=3.3V, Vicm=Vrl=1.65V  
Follower configuration  
50mVpp step  
Rl=10MΩ, T=25°C  
Vcc=3.3V, Vicm=Vrl=1.65V  
25  
Gain 101 : Rg=10kΩ, Rf=1MΩ  
20  
15  
10  
5
Rl=10M  
Ω
T=25°C  
5
3
0
0
0
50  
100  
Capacitive load (pF)  
150  
200  
0
50  
100  
150  
200  
250  
Capacitive load (pF)  
14/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Electrical characteristics  
Figure 26. Bode diagram for different feedback Figure 27. Bode diagram at 1.8 V supply voltage  
values  
20  
15  
10  
5
45  
180  
150  
120  
90  
Feedback : 1M  
Ω
Gain  
30  
T=-40°C  
Vcc=3.3V, Vicm=1.65V, T=25°C  
Gain=1  
Rl=10MΩ, Cl=16pF, Vrl=Vcc/2  
15  
60  
30  
0
0
0
T=85°C  
-30  
-60  
-90  
-120  
-150  
-180  
Phase  
-5  
Feedback : 1M  
Ω
//47pF  
Feedback : 100k  
-15  
-30  
-45  
T=25°C  
-10  
-15  
-20  
Ω
Vcc=1.8V, Vicm=0.9V  
G=101 (10k /1M  
Rl=10M , Cl=60pF, Vrl=Vcc/2  
Ω
Ω)  
Ω
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 28. Bode diagram at 3.3 V supply voltage Figure 29. Bode diagram at 5 V supply voltage  
45  
180  
150  
120  
90  
45  
180  
150  
120  
90  
Gain  
Gain  
30  
30  
T=-40°C  
T=-40°C  
15  
60  
15  
60  
30  
30  
0
0
T=85°C  
0
0
T=85°C  
-30  
-60  
-90  
-120  
-150  
-180  
-30  
-60  
-90  
-120  
-150  
-180  
Phase  
Phase  
-15  
-30  
-45  
T=25°C  
-15  
-30  
-45  
T=25°C  
Vcc=5V, Vicm=2.5V  
G=101 (10kΩ/1MΩ)  
Rl=10MΩ, Cl=60pF, Vrl=Vcc/2  
Vcc=3.3V, Vicm=1.65V  
G=101 (10k /1M  
Rl=10M , Cl=60pF, Vrl=Vcc/2  
Ω
Ω)  
Ω
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 30. Gain bandwidth product vs. input Figure 31. Gain vs. input common mode voltage  
common mode voltage  
10  
9
8
7
6
5
4
3
2
1
0
100  
Vcc=3.3V, Vicm=Vrl  
Gain 101 : Rg=10kΩ, Rf=1MΩ  
Rl=10MΩ, Cl=60pF  
T=25°C  
Recommended resistor to  
place between the output  
of the op-amp and the  
capacitive load  
Vcc=3.3V, Vicm=1.65V  
Follower configuration  
Measured at 20dB  
10  
10-2  
10-1  
100  
Capacitive load (nF)  
101  
102  
103  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Vicm (V)  
DocID024317 Rev 2  
15/33  
33  
Electrical characteristics  
TSU101, TSU102, TSU104  
Figure 32. Noise at 1.8 V supply voltage in  
follower configuration  
Figure 33. Noise at 3.3 V supply voltage in  
follower configuration  
10000  
10000  
Vcc=1.8V  
Follower configuration  
T=25°C  
Vcc=3.3V  
Follower configuration  
T=25°C  
1000  
1000  
Vicm=1.65V  
Vicm=0.9V  
100  
100  
Vicm=3V  
Vicm=1.5V  
10  
10  
10  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
100  
1000  
Frequency (Hz)  
10000  
100000  
Figure 34. Noise at 5 V supply voltage in  
follower configuration  
Figure 35. Noise amplitude on 0.1 to 10 Hz  
frequency range  
20  
10000  
15  
10  
5
Vcc=5V  
Follower configuration  
T=25°C  
1000  
Vicm=2.5V  
0
-5  
100  
Vicm=4.7V  
-10  
-15  
-20  
Vcc=3V, Vicm=1.65V  
Bandpass filter : 0.1Hz to 10Hz  
T=25°C  
10  
10  
0
1
2
3
4
5
6
7
8
9
10  
100  
1000  
10000  
100000  
Time (s)  
Frequency (Hz)  
Figure 36. Channel separation on TSU102  
Figure 37. Channel separation on TSU104  
140  
140  
Ch1 - Ch2  
120  
100  
80  
Ch1 - Ch3  
Ch1 - Ch4  
120  
100  
80  
60  
60  
Vcc=5V  
40  
Vcc=5V  
40  
V
icm=2.5V  
Vicm=2.5V  
Vin=2Vpp  
Vin=2Vpp  
T=25°C  
20  
0
20  
0
T=25°C  
10  
100  
Frequency (Hz)  
1k  
10k  
10  
100  
Frequency (Hz)  
1k  
10k  
16/33  
DocID024317 Rev 2  
 
 
TSU101, TSU102, TSU104  
Application information  
4
Application information  
4.1  
Operating voltages  
The TSU101, TSU102, and TSU104 series of amplifiers can operate from 1.5 V to 5.5 V.  
Their parameters are fully specified at 1.8 V, 3.3 V, and 5 V supply voltages and are very  
stable in the full V range. Additionally, main specifications are guaranteed on the  
CC  
industrial temperature range from -40 to +85 ° C.  
4.2  
4.3  
Rail-to-rail input  
The TSU101, TSU102, and TSU104 series is built with two complementary PMOS and  
NMOS input differential pairs. Thus, these devices have a rail-to-rail input, and the input  
common mode range is extended from V  
- 0.1 V to V  
+ 0.1 V.  
CC-  
CC+  
The devices have been designed to prevent phase reversal behavior.  
Input offset voltage drift over temperature  
The maximum input voltage drift over the temperature variation is defined as the offset  
variation related to the offset value measured at 25 °C. The operational amplifier is one of  
the main circuits of the signal conditioning chain, and the amplifier input offset is a major  
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated  
during production at application level. The maximum input voltage drift over temperature  
enables the system designer to anticipate the effects of temperature variations.  
The maximum input voltage drift over temperature is computed in Equation 1.  
Equation 1  
ΔVio  
Vio(T) Vio(25° C)  
----------- = max  
ΔT  
--------------------------------------------------  
T 25° C  
with T = -40 °C and 85 °C.  
The datasheet maximum value is guaranteed by measurements on a representative sample  
size ensuring a C (process capability index) greater than 2.  
pk  
DocID024317 Rev 2  
17/33  
33  
 
Application information  
TSU101, TSU102, TSU104  
4.4  
Long term input offset voltage drift  
To evaluate product reliability, two types of stress acceleration are used:  
Voltage acceleration, by changing the applied voltage  
Temperature acceleration, by changing the die temperature (below the maximum  
junction temperature allowed by the technology) with the ambient temperature.  
The voltage acceleration has been defined based on JEDEC results, and is defined using  
Equation 2.  
Equation 2  
(VS VU)  
AFV = eβ ⋅  
Where:  
A
is the voltage acceleration factor  
FV  
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)  
V is the stress voltage used for the accelerated test  
S
V is the voltage used for the application  
U
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.  
Equation 3  
Ea  
------ ------ – ------  
1
1
AFT = e k  
TU TS  
Where:  
A
is the temperature acceleration factor  
FT  
E is the activation energy of the technology based on the failure rate  
a
-5  
-1  
k is the Boltzmann constant (8.6173 x 10 eVk )  
T is the temperature of the die when V is used (°K)  
U
U
T is the temperature of the die under temperature stress (°K)  
S
The final acceleration factor, A , is the multiplication of the voltage acceleration factor and  
F
the temperature acceleration factor (Equation 4).  
Equation 4  
AF = AFT × AFV  
A is calculated using the temperature and voltage defined in the mission profile of the  
F
product. The A value can then be used in Equation 5 to calculate the number of months of  
F
use equivalent to 1000 hours of reliable stress duration.  
18/33  
DocID024317 Rev 2  
 
 
 
TSU101, TSU102, TSU104  
Equation 5  
Application information  
Months = AF × 1000 h × 12 months ⁄ (24 h × 365.25 days)  
To evaluate the op-amp reliability, a follower stress condition is used where V is defined  
CC  
as a function of the maximum operating voltage and the absolute maximum rating (as  
recommended by JEDEC rules).  
The V drift (in µV) of the product after 1000 h of stress is tracked with parameters at  
io  
different measurement conditions (see Equation 6).  
Equation 6  
VCC = maxVop with Vicm = VCC 2  
The long term drift parameter (ΔV ), estimating the reliability performance of the product, is  
io  
obtained using the ratio of the V (input offset voltage value) drift over the square root of the  
io  
calculated number of months (Equation 7).  
Equation 7  
Viodrift  
ΔVio = -----------------------------  
(months)  
where V drift is the measured drift value in the specified test conditions after 1000 h stress  
io  
duration.  
4.5  
Schematic optimization aiming for nanopower  
To benefit from the full performance of the TSU10 series, the impedances must be  
maximized so that current consumption is not lost where it is not required.  
For example, an aluminum electrolytic capacitance can have significantly high leakage. This  
leakage may be greater than the current consumption of the op-amp. For this reason,  
ceramic type capacitors are preferred.  
For the same reason, big resistor values should be used in the feedback loop. However,  
there are three main limitations to be considered when choosing a resistor.  
1. When the TSU10x series is used with a sensor: the resistance connected between the  
sensor and the input must remain much higher than the impedance of the sensor itself.  
nV  
-----------  
2. Noise generated: a100 kΩresistor generates 40  
, a bigger resistor value generates  
Hz  
even more noise.  
3. Leakage on the PCB: leakage can be generated by moisture. This can be improved by  
using a specific coating process on the PCB.  
DocID024317 Rev 2  
19/33  
33  
 
 
Application information  
TSU101, TSU102, TSU104  
4.6  
PCB layout considerations  
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible  
to the power supply pins.  
Minimizing the leakage from sensitive high impedance nodes on the inputs of the TSU10x  
series can be performed with a guarding technique. The technique consists of surrounding  
high impedance tracks by a low impedance track (the ring). The ring is at the same electrical  
potential as the high impedance node.  
Therefore, even if some parasitic impedance exists between the tracks, no leakage current  
can flow through them as they are at the same potential (see Figure 38).  
Figure 38. Guarding on the PCB  
20/33  
DocID024317 Rev 2  
 
TSU101, TSU102, TSU104  
Application information  
4.7  
Using the TSU10x series with sensors  
The TSU10x series has MOS inputs, thus input bias currents can be guaranteed down to  
5 pA maximum at ambient temperature. This is an important parameter when the  
operational amplifier is used in combination with high impedance sensors.  
The TSU101, TSU102, and TSU104 series is perfectly suited for trans-impedance  
configuration as shown in Figure 39. This configuration allows a current to be converted into  
a voltage value with a gain set by the user. It is an ideal choice for portable electrochemical  
gas sensing or photo/UV sensing applications. The TSU10x series, using trans-impedance  
configuration, is able to provide a voltage value based on the physical parameter sensed by  
the sensor.  
Electrochemical gas sensors  
The output current of electrochemical gas sensors is generally in the range of tens of nA to  
hundreds of μA. As the input bias current of the TSU101, TSU102, and TSU104 is very low  
(see Figure 9, Figure 10, and Figure 11) compared to these current values, the TSU10x  
series is well adapted for use with the electrochemical sensors of two or three electrodes.  
Figure 40 shows a potentiostat (electronic hardware required to control a three electrode  
cell) schematic using the TSU101, TSU102, and TSU104. In such a configuration, the  
devices minimize leakage in the reference electrode compared to the current being  
measured on the working electrode.  
Figure 39. Trans-impedance amplifier schematic  
5
,
9
ꢍꢄ5,  
768ꢆꢇꢆ  
UHI  
6HQVRUꢎ  
HOHFWURFKHPLFDO  
SKRWRGLRGHꢏ89  
9
UHI  
*$06ꢇꢃꢇꢁꢆꢁꢆꢃꢁꢇ&%  
DocID024317 Rev 2  
21/33  
33  
 
Application information  
TSU101, TSU102, TSU104  
Figure 40. Potentiostat schematic using the TSU101 (or TSU102)  
768ꢆꢇꢆ  
768ꢆꢇꢆ  
9
UHIꢆ  
9
UHIꢀ  
*$06ꢇꢃꢇꢁꢆꢁꢆꢋꢁꢇ&%  
4.8  
Fast desaturation  
When the TSU101, TSU102, and TSU104 operational amplifiers go into saturation mode,  
they take a short period of time to recover, typically thirty microseconds. When recovering  
after saturation, the TSU10x series does not exhibit any voltage peaks that could generate  
issues (such as false alarms) in the application (see Figure 17). This is because the internal  
gain of the amplifier decreases smoothly when the output signal gets close to the V  
or  
CC+  
V
supply rails (see Figure 15 and Figure 16).  
CC-  
Thus, to maintain signal integrity, the user should take care that the output signal stays at  
100 mV from the supply rails.  
With a trans-impedance schematic, a voltage reference can be used to keep the signal  
away from the supply rails.  
4.9  
Using the TSU10x series in comparator mode  
The TSU10x series can be used as a comparator. In this case, the output stage of the  
device always operates in saturation mode. In addition, Figure 4 shows the current  
consumption is not bigger and even decreases smoothly close to the rails. The TSU101,  
TSU102, and TSU104 are obviously operational amplifiers and are therefore optimized to  
be used in linear mode. We recommend to use the TS88 series of nanopower comparators  
if the primary function is to perform a signal comparison only.  
22/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Application information  
4.10  
ESD structure of TSU10x series  
The TSU101, TSU102, and TSU104 are protected against electrostatic discharge (ESD)  
with dedicated diodes (see Figure 41). These diodes must be considered at application level  
especially when signals applied on the input pins go beyond the power supply rails (V  
or  
CC+  
V
).  
CC-  
Figure 41. ESD structure  
768ꢆꢇꢆ  
*$06ꢇꢃꢇꢁꢆꢁꢆꢉꢁꢇ&%  
Current through the diodes must be limited to a maximum of 10 mA as stated in Table 1. A  
serial resistor or a Schottky diode can be used on the inputs to improve protection but the  
10 mA limit of input current must be strictly observed.  
DocID024317 Rev 2  
23/33  
33  
 
Package information  
TSU101, TSU102, TSU104  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
24/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Package information  
5.1  
SC70-5 (or SOT323-5) package mechanical data  
Figure 42. SC70-5 (or SOT323-5) package mechanical drawing  
SIDE VIEW  
DIMENSIONS IN MM  
GAUGE PLANE  
COPLANAR LEADS  
SEATING PLANE  
TOP VIEW  
Table 6. SC70-5 (or SOT323-5) package mechanical data  
Dimensions  
Ref  
Millimeters  
Typ  
Inches  
Typ  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
0.80  
1.10  
0.10  
1.00  
0.30  
0.22  
2.20  
2.40  
1.35  
0.315  
0.043  
0.004  
0.039  
0.012  
0.009  
0.087  
0.094  
0.053  
0.80  
0.15  
0.10  
1.80  
1.80  
1.15  
0.90  
0.315  
0.006  
0.004  
0.071  
0.071  
0.045  
0.035  
c
D
2.00  
2.10  
1.25  
0.65  
1.30  
0.36  
0.079  
0.083  
0.049  
0.025  
0.051  
0.014  
E
E1  
e
e1  
L
0.26  
0 °  
0.46  
8 °  
0.010  
0 °  
0.018  
8 °  
<
DocID024317 Rev 2  
25/33  
33  
Package information  
TSU101, TSU102, TSU104  
5.2  
SOT23-5 package mechanical data  
Figure 43. SOT23-5 package mechanical drawing  
Table 7. SOT23-5 package mechanical data  
Dimensions  
Ref  
Millimeters  
Inches  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
B
0.90  
1.20  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
0.035  
0.047  
0.057  
0.006  
0.051  
0.019  
0.008  
0.118  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.35  
0.035  
0.013  
0.003  
0.110  
0.041  
0.015  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.013  
C
D
D1  
e
E
2.60  
1.50  
0.10  
0 °  
3.00  
1.75  
0.60  
10 °  
0.102  
0.059  
0.004  
0 °  
0.118  
0.069  
0.023  
10 °  
F
L
K
26/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Package information  
5.3  
DFN8 2x2 package information  
Figure 44. DFN8 2x2 package mechanical drawing  
'
%
3,1ꢄꢆꢄ,1'(;ꢄ$5($  
ꢇꢑꢆꢇ  
& ꢀ[  
723ꢄ9,(:  
ꢇꢑꢆꢇ  
&
&
6($7,1*  
3/$1(  
6,'(ꢄ9,(:  
H
ꢇꢑꢇꢊ  
&
EꢄꢅꢊꢄSOFVꢈ  
ꢇꢑꢆꢇ  
3,1ꢄꢆꢄ,1'(;ꢄ$5($  
&
$ %  
3LQꢐꢆꢄ,'  
%27720ꢄ9,(:  
*$06ꢀꢀꢇꢀꢆꢁꢆꢌꢁꢃ&%  
Table 8. DFN8 2x2 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
b
0.70  
0.00  
0.15  
0.75  
0.02  
0.20  
2.00  
2.00  
0.50  
0.55  
0.80  
0.05  
0.25  
0.028  
0.000  
0.006  
0.030  
0.001  
0.008  
0.079  
0.079  
0.020  
0.022  
0.031  
0.002  
0.010  
D
E
e
L
0.045  
0.65  
0.018  
0.026  
N
8
DocID024317 Rev 2  
27/33  
33  
Package information  
TSU101, TSU102, TSU104  
5.4  
MiniSO8 package information  
Figure 45. MiniSO8 package mechanical drawing  
Table 9.  
Ref.  
MiniSO8 package mechanical data  
Dimensions  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.1  
0.043  
0.006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
0
0.15  
0.95  
0.40  
0.23  
3.20  
5.15  
3.10  
0
0.75  
0.22  
0.08  
2.80  
4.65  
2.80  
0.85  
0.030  
0.009  
0.003  
0.11  
0.033  
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
0.183  
0.11  
E1  
e
L
0.40  
0 °  
0.80  
0.016  
0 °  
0.031  
L1  
L2  
k
8 °  
8 °  
ccc  
0.10  
0.004  
28/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Package information  
5.5  
QFN16 package information  
Figure 46. QFN16 package mechanical drawing  
Table 10. QFN16 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A3  
b
0.80  
0.90  
0.02  
0.2  
1.00  
0.05  
0.032  
0.035  
0.001  
0.008  
0.009  
0.118  
0.045  
0.118  
0.045  
0.02  
0.039  
0.002  
0.18  
1.00  
1.00  
0.23  
3.00  
1.15  
3.00  
1.15  
0.5  
0.30  
1.25  
1.25  
0.007  
0.039  
0.039  
0.012  
0.049  
0.049  
D
D2  
E
E2  
e
K
0.2  
0.008  
0.016  
L
0.30  
0.09  
0.40  
0.50  
0.012  
0.006  
0.020  
r
DocID024317 Rev 2  
29/33  
33  
Package information  
TSU101, TSU102, TSU104  
Figure 47. QFN16 3x3 footprint recommendation  
Table 11.  
Footprint data  
Ref  
Millimeters  
Inches  
A
B
C
D
E
F
4.00  
0.158  
0.50  
0.30  
1.00  
0.70  
0.66  
0.020  
0.012  
0.039  
0.028  
0.026  
G
30/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Package information  
5.6  
TSSOP14 package information  
Figure 48. TSSOP14 package mechanical drawing  
Table 12. TSSOP14 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
6.60  
4.50  
0.047  
0.006  
0.041  
0.012  
0.0089  
0.201  
0.260  
0.176  
0.05  
0.80  
0.19  
0.09  
4.90  
6.20  
4.30  
0.002  
0.031  
0.007  
0.004  
0.193  
0.244  
0.169  
0.004  
0.039  
1.00  
c
D
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
0.197  
0.252  
0.173  
0.0256  
0.024  
0.039  
E
E1  
e
L
0.45  
0 °  
0.75  
0.018  
0 °  
0.030  
L1  
k
8 °  
8 °  
aaa  
0.10  
0.004  
DocID024317 Rev 2  
31/33  
33  
Ordering information  
TSU101, TSU102, TSU104  
6
Ordering information  
Table 13. Order codes  
Order code  
TSU101ICT  
Temperature range  
Package  
Packing  
Marking  
SC70-5  
SOT23-5  
SC70-5  
K22  
K160  
K24  
TSU101ILT  
TSU101RICT  
TSU101RILT  
TSU102IQ2T  
TSU102IST  
TSU104IQ4T  
TSU104IPT  
SOT23-5  
DFN8 2x2  
MiniSO8  
QFN16 3x3  
TSSOP14  
K169  
K24  
-40 ° C to +85 ° C  
Tape and reel  
K160  
K160  
TSU104I  
7
Revision history  
Table 14. Document revision history  
Date  
Revision  
Changes  
16-Apr-2013  
1
Initial release  
Added the TSU102 and TSU104 devices and updated  
the datasheet accordingly.  
Added the silhouettes, pin connections, and package  
information for DFN8 2x2, MiniSO8, QFN16 3x3, and  
TSSOP14.  
02-Jul-2013  
2
Added Figure 36 and Figure 37.  
32/33  
DocID024317 Rev 2  
TSU101, TSU102, TSU104  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE  
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH  
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR  
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED  
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,  
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.  
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE  
CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
DocID024317 Rev 2  
33/33  
33  

相关型号:

TSU102

Nanopower, rail-to-rail input and output, 5 V CMOS operational amplifiers
STMICROELECTR

TSU102IQ2T

Nanopower, rail-to-rail input and output, 5 V CMOS operational amplifiers
STMICROELECTR

TSU102IST

Nanopower, rail-to-rail input and output, 5 V CMOS operational amplifiers
STMICROELECTR

TSU104

Nanopower, rail-to-rail input and output, 5 V CMOS operational amplifiers
STMICROELECTR

TSU104IPT

Nanopower, rail-to-rail input and output, 5 V CMOS operational amplifiers
STMICROELECTR

TSU104IQ4T

Nanopower, rail-to-rail input and output, 5 V CMOS operational amplifiers
STMICROELECTR

TSU10A60

FRD - For Power Factor Improvement High Frequency Rectification
NIEC

TSU10B60

FRD - For Power Factor Improvement High Frequency Rectification
NIEC

TSU111

Nanopower (900 nA), high accuracy (150 uV) 5 V CMOS operational amplifier
STMICROELECTR

TSU111ICT

Nanopower (900 nA), high accuracy (150 uV) 5 V CMOS operational amplifier
STMICROELECTR

TSU111IQ1T

Nanopower (900 nA), high accuracy (150 uV) 5 V CMOS operational amplifier
STMICROELECTR

TSU112

纳功率(900 nA)高精度(150 μV)5V CMOS运算放大器
STMICROELECTR