TSU114 [STMICROELECTRONICS]

纳功率(900 nA)高精度(150 μV);
TSU114
型号: TSU114
厂家: ST    ST
描述:

纳功率(900 nA)高精度(150 μV)

文件: 总30页 (文件大小:1842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSU111  
Nanopower (900 nA), high accuracy (150 µV) 5 V CMOS  
operational amplifier  
Datasheet - production data  
Related products  
See TSU101, TSU102 and TSU104 for  
further power savings  
DFN6 1.2x1.3  
See TSZ121, TSZ122 and TSZ124 for  
increased accuracy  
Applications  
Gas sensors: CO, O2, and H2S  
Alarms: PIR sensors  
SC70-5  
Signal conditioning for energy harvesting  
and wearable products  
Ultra long-life battery-powered applications  
Battery current sensing  
Active RFID tags  
Features  
Submicro ampere current consumption:  
Icc = 900 nA typ at 25 °C  
Low offset voltage: 150 µV max at 25 °C,  
235 µV max over full temperature range  
(-40 to 85 °C)  
Low noise over 0.1 to 10 Hz bandwidth:  
3.6 µVpp  
Low supply voltage: 1.5 V - 5.5 V  
Rail-to-rail input and output  
Description  
The TSU111 operational amplifier (op amp)  
offers an ultra low-power consumption of 900 nA  
typical and 1.2 µA maximum when supplied by  
3.3 V. Combined with a supply voltage range of  
1.5 V to 5.5 V, these features allow the TSU111  
to be efficiently supplied by a coin type Lithium  
battery or a regulated voltage in low-power  
applications.  
Gain bandwidth product: 11.5 kHz typ  
Low input bias current: 10 pA max at 25 °C  
High tolerance to ESD: 4 kV HBM  
Benefits  
The high accuracy of 150 µV max and 11.5 kHz  
gain bandwidth make the TSU111 ideal for  
sensor signal conditioning, battery supplied, and  
portable applications.  
More than 25 years of typical equivalent  
lifetime supplied by a 220 mA.h CR2032  
coin type Lithium battery  
High accuracy without calibration  
Tolerance to power supply transient drops  
November 2016  
DocID029790 Rev 2  
1/30  
www.st.com  
This is information on a product in full production.  
 
 
 
Contents  
TSU111  
Contents  
1
2
3
4
5
Package pin connections................................................................3  
Absolute maximum ratings and operating conditions .................4  
Electrical characteristics ................................................................5  
Electrical characteristic curves....................................................11  
Application information ................................................................16  
5.1  
Nanopower applications..................................................................16  
5.1.1  
5.1.2  
Schematic optimization aiming for nanopower................................. 17  
PCB layout considerations ............................................................... 17  
5.2  
5.3  
5.4  
5.5  
Rail-to-rail input...............................................................................18  
Input offset voltage drift over temperature.......................................18  
Long term input offset voltage drift..................................................18  
Using the TSU111 with sensors......................................................20  
5.5.1  
Electrochemical gas sensors............................................................ 20  
5.6  
5.7  
5.8  
5.9  
Fast desaturation ............................................................................21  
Using the TSU111 in comparator mode..........................................21  
ESD structure of the TSU111..........................................................22  
EMI robustness of nanopower devices ...........................................22  
6
Package information .....................................................................23  
6.1  
6.2  
SC70-5 (or SOT323-5) package information...................................24  
DFN6 1.2x1.3 package information.................................................25  
7
8
Ordering information.....................................................................28  
Revision history ............................................................................29  
2/30  
DocID029790 Rev 2  
TSU111  
Package pin connections  
1
Package pin connections  
Figure 1: Pin connections for each package (top view)  
OUT
VCC+  
VCC-
IN-
NC  
IN+  
DFN6 1.2x1.3  
IN+  
VCC-  
IN-  
1
2
3
5
4
VCC+  
OUT  
SC70-5  
DocID029790 Rev 2  
3/30  
Absolute maximum ratings and operating  
TSU111  
conditions  
2
Absolute maximum ratings and operating conditions  
Table 1: Absolute maximum ratings (AMR)  
Symbol  
VCC  
Vid  
Parameter  
Value  
Unit  
Supply voltage (1)  
6
Differential input voltage (2)  
Input voltage (3)  
±VCC  
V
Vin  
(VCC-) - 0.2 to (VCC+) + 0.2  
Input current (4)  
10  
-65 to 150  
150  
mA  
°C  
Iin  
Tstg  
Tj  
Storage temperature  
Maximum junction temperature  
DFN6 1.2x1.3  
SC70-5  
232  
Thermal resistance  
junction-to-ambient (5) (6)  
Rthja  
°C/W  
205  
HBM: human body model (7)  
CDM: charged device model (8)  
Latch-up immunity (9)  
4000  
1500  
200  
ESD  
V
mA  
Notes:  
(1)All voltage values, except the differential voltage are with respect to the network ground terminal.  
(2)The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.  
(3)(VCC+) - Vin must not exceed 6 V, Vin - (VCC-) must not exceed 6 V.  
(4)The input current must be limited by a resistor in-series with the inputs.  
(5)  
R
th  
are typical values.  
(6)Short-circuits can cause excessive heating and destructive dissipation.  
(7)Related to ESDA/JEDEC JS-001 Apr. 2010  
(8)Related to JEDEC JESD22-C101-E Dec. 2009  
(9)Related to JEDEC JESD78C Sep. 2010  
Table 2: Operating conditions  
Symbol  
VCC  
Parameter  
Value  
1.5 to 5.5  
Unit  
V
Supply voltage  
Vicm  
Common-mode input voltage range  
Operating free-air temperature range  
(VCC-) - 0.1 to (VCC+) + 0.1  
-40 to 85  
Toper  
°C  
4/30  
DocID029790 Rev 2  
 
 
 
 
 
 
 
 
 
 
TSU111  
Electrical characteristics  
3
Electrical characteristics  
Table 3: Electrical characteristics at (VCC+) = 1.8 V with (VCC-) = 0 V, Vicm = VCC/2,  
Tamb = 25 °C, and RL = 1 MΩ connected to VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
DC performance  
T = 25 °C  
150  
235  
1.4  
Vio  
Input offset voltage  
µV  
-40 °C < T< 85 °C  
-40 °C < T< 85 °C  
ΔVio/ΔT Input offset voltage drift  
μV/°C  
Long-term input offset voltage  
drift  
ΔVio  
T = 25 °C (1)  
TBD  
µV/√month  
T = 25 °C  
1
1
10  
50  
10  
50  
Iio  
Input offset current (2)  
Input bias current (2)  
-40 °C < T< 85 °C  
T = 25 °C  
pA  
dB  
Iib  
-40 °C < T< 85 °C  
T = 25 °C  
Common mode rejection  
ratio, 20 log (ΔVicm/ΔVio),  
Vicm = 0 to 1.8 V  
76  
71  
107  
CMR  
-40 °C < T< 85 °C  
RL = 100 kΩ, T = 25 °C  
RL = 100 kΩ, -40 °C < T< 85 °C  
RL = 10 kΩ, T = 25 °C  
RL = 10 kΩ, -40 °C < T< 85 °C  
RL = 10 kΩ, T = 25°C  
RL = 10 kΩ, -40 °C < T< 85 °C  
T = 25 °C  
95  
90  
120  
10  
8
Large signal voltage gain,  
Vout = 0.2 V to (VCC+) - 0.2 V  
Avd  
VOH  
VOL  
25  
40  
25  
40  
High-level output voltage,  
(drop from VCC+)  
mV  
Low-level output voltage  
2.8  
1.5  
2
5
Output sink current,  
Vout = VCC , VΙD = -200 mV  
-40 °C < T< 85 °C  
Iout  
mA  
nA  
T = 25 °C  
4
Output source current,  
Vout = 0 V, VΙD = 200 mV  
-40 °C < T< 85 °C  
1.5  
T = 25 °C  
900 1200  
1480  
Supply current (per channel),  
no load, Vout = VCC/2  
ICC  
-40 °C < T< 85 °C  
AC performance  
GBP  
Fu  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
10  
8
kHz  
RL = 1 MΩ, CL = 60 pF  
Φm  
Gm  
60  
10  
degrees  
dB  
Gain margin  
RL = 1 MΩ, CL = 60 pF,  
Vout = 0.3 V to (VCC+) - 0.3 V  
SR  
en  
Slew rate (10 % to 90 %)  
2.5  
220  
3.8  
V/ms  
nV/√Hz  
µVpp  
Equivalent input noise voltage f = 100 Hz  
Low-frequency,  
ʃen  
Bandwidth: f = 0.1 to 10 Hz  
peak-to-peak input noise  
100 mV from rail in comparator,  
RL = 100 kΩ, VΙD = ±1 V,  
-40 °C < T< 85 °C  
trec  
Overload recovery time  
325  
µs  
DocID029790 Rev 2  
5/30  
 
Electrical characteristics  
Notes:  
TSU111  
(1)Typical value is based on the Vio drift observed after 1000h at 85 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration  
(2)Guaranteed by design  
6/30  
DocID029790 Rev 2  
TSU111  
Electrical characteristics  
Table 4: Electrical characteristics at (VCC+) = 3.3 V with (VCC-) = 0 V, Vicm = VCC/2,  
Tamb = 25 °C, and RL = 1 MΩ connected to VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
DC performance  
T = 25 °C  
150  
235  
1.4  
Vio  
Input offset voltage  
µV  
-40 °C < T< 85 °C  
-40 °C < T< 85 °C  
ΔVio/ΔT Input offset voltage drift  
μV/°C  
Long-term input offset voltage  
drift  
ΔVio  
T = 25 °C (1)  
TBD  
µV/√month  
T = 25 °C  
1
1
10  
50  
10  
50  
Iio  
Input offset current (2)  
Input bias current (2)  
-40 °C < T< 85 °C  
T = 25 °C  
pA  
dB  
Iib  
-40 °C < T< 85 °C  
Common mode rejection ratio, T = 25 °C  
81  
76  
110  
CMR  
20 log (ΔVicm/ΔVio),  
-40 °C < T< 85 °C  
Vicm = 0 to 3.3 V  
RL = 100 kΩ, T = 25 °C  
RL = 100 kΩ, -40 °C < T< 85 °C  
RL = 10 kΩ, T = 25 °C  
RL = 10 kΩ, -40 °C < T< 85 °C  
RL = 10 kΩ, T = 25°C  
RL = 10 kΩ, -40 °C < T< 85 °C  
T = 25 °C  
105  
105  
130  
10  
7
Large signal voltage gain,  
Vout = 0.2 V to (VCC+) - 0.2 V  
Avd  
VOH  
VOL  
25  
40  
25  
40  
High-level output voltage,  
(drop from VCC+)  
mV  
Low-level output voltage  
12  
6
22  
18  
Output sink current,  
Vout = VCC , VΙD = -200 mV  
-40 °C < T< 85 °C  
Iout  
mA  
nA  
T = 25 °C  
9
Output source current,  
Vout = 0 V, VΙD = 200 mV  
-40 °C < T< 85 °C  
5
T = 25 °C  
900 1200  
1480  
Supply current (per channel),  
no load, Vout = VCC/2  
ICC  
-40 °C < T< 85 °C  
AC performance  
GBP  
Fu  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
11  
10  
60  
7
kHz  
RL = 1 MΩ, CL = 60 pF  
Φm  
Gm  
degrees  
dB  
Gain margin  
RL = 1 MΩ, CL = 60 pF,  
Vout = 0.3 V to (VCC+) - 0.3 V  
SR  
en  
Slew rate (10 % to 90 %)  
2.5  
220  
3.7  
V/ms  
nV/√Hz  
µVpp  
Equivalent input noise voltage  
f = 100 Hz  
Low-frequency,  
peak-to-peak input noise  
ʃen  
Bandwidth: f = 0.1 to 10 Hz  
100 mV from rail in comparator,  
RL = 100 kΩ, VΙD = ±1 V,  
-40 °C < T< 85 °C  
trec  
Overload recovery time  
630  
µs  
Notes:  
DocID029790 Rev 2  
7/30  
 
Electrical characteristics  
TSU111  
(1)Typical value is based on the Vio drift observed after 1000h at 85 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration  
(2)Guaranteed by design  
8/30  
DocID029790 Rev 2  
 
TSU111  
Electrical characteristics  
Table 5: Electrical characteristics at (VCC+) = 5 V with (VCC-) = 0 V, Vicm = VCC/2,  
Tamb = 25 °C, and RL = 1 MΩ connected to VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
DC performance  
T = 25 °C  
150  
235  
1.4  
Vio  
Input offset voltage  
µV  
-40 °C < T< 85 °C  
-40 °C < T< 85 °C  
ΔVio/ΔT Input offset voltage drift  
μV/°C  
Long-term input offset voltage  
drift  
ΔVio  
T = 25 °C (1)  
TBD  
µV/√month  
T = 25 °C  
1
1
10  
50  
10  
50  
Iio  
Input offset current (2)  
Input bias current (2)  
-40 °C < T< 85 °C  
T = 25 °C  
pA  
Iib  
-40 °C < T< 85 °C  
T = 25 °C  
Common mode rejection ratio,  
20 log (ΔVicm/ΔVio),  
Vicm = 0 to 4.4 V  
90  
90  
85  
80  
121  
-40 °C < T< 85 °C  
T = 25 °C  
CMR  
Common mode rejection ratio,  
20 log (ΔVicm/ΔVio),  
Vicm = 0 to 5 V  
112  
-40 °C < T< 85 °C  
dB  
T = 25 °C  
92  
84  
116  
135  
10  
7
Supply voltage rejection ratio,  
VCC = 1.5 to 5.5 V, Vicm = 0 V  
SVR  
Avd  
-40 °C < T< 85 °C  
RL = 100 kΩ, T = 25 °C  
RL = 100 kΩ, -40 °C < T< 85 °C  
RL = 10 kΩ, T = 25 °C  
RL = 10 kΩ, -40 °C < T< 85 °C  
RL = 10 kΩ, T = 25°C  
RL = 10 kΩ, -40 °C < T< 85 °C  
T = 25 °C  
105  
101  
Large signal voltage gain,  
Vout = 0.2 V to (VCC+) - 0.2 V  
25  
40  
25  
40  
High-level output voltage,  
(drop from VCC+)  
VOH  
mV  
VOL  
Low-level output voltage  
30  
15  
25  
18  
45  
41  
Output sink current,  
Vout = VCC , VΙD = -200 mV  
-40 °C < T< 85 °C  
T = 25 °C  
Iout  
mA  
nA  
Output source current,  
Vout = 0 V, VΙD = 200 mV  
-40 °C < T< 85 °C  
T = 25 °C  
950 1350  
1620  
Supply current (per channel),  
no load, Vout = VCC/2  
ICC  
-40 °C < T< 85 °C  
AC performance  
GBP  
Fu  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
11.5  
10  
60  
7
kHz  
RL = 1 MΩ, CL = 60 pF  
Φm  
Gm  
degrees  
dB  
Gain margin  
RL = 1 MΩ, CL = 60 pF,  
Vout = 0.3 V to (VCC+) - 0.3 V  
SR  
en  
Slew rate (10 % to 90 %)  
2.7  
200  
3.6  
V/ms  
nV/√Hz  
µVpp  
Equivalent input noise voltage  
f = 100 Hz  
Low-frequency,  
peak-to-peak input noise  
ʃen  
Bandwidth: f = 0.1 to 10 Hz  
DocID029790 Rev 2  
9/30  
 
Electrical characteristics  
TSU111  
Unit  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
100 mV from rail in comparator,  
RL = 100 kΩ, VΙD = ±1 V,  
-40 °C < T< 85 °C  
trec  
Overload recovery time  
940  
µs  
Vin = -10 dBm, f = 400 MHz  
Vin = -10 dBm, f = 900 MHz  
Vin = -10 dBm, f = 1.8 GHz  
Vin = -10 dBm, f = 2.4 GHz  
54  
79  
65  
65  
Electromagnetic interference  
rejection ratio (3)  
EMIRR  
dB  
Notes:  
(1)Typical value is based on the Vio drift observed after 1000h at 85 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration  
(2)Guaranteed by design  
(3)Based on evaluations performed only in conductive mode  
10/30  
DocID029790 Rev 2  
 
TSU111  
Electrical characteristic curves  
4
Electrical characteristic curves  
Figure 2: Supply current vs. supply voltage  
Figure 3: Supply current vs. input  
common-mode voltage  
Figure 4: Input offset voltage distribution  
Figure 5: Input offset voltage vs. temperature at  
3.3 V supply voltage  
Figure 6: Input offset voltage temperature coefficient  
distribution from -40 °C to 25 °C  
Figure 7: Input offset voltage temperature coefficient  
distribution from 25 °C to 85 °C  
DocID029790 Rev 2  
11/30  
 
Electrical characteristic curves  
TSU111  
Figure 8: Input bias current vs. temperature at mid VICM Figure 9: Input bias current vs. temperature at low VICM  
Figure 10: Input bias current vs. temperature at  
high VICM  
Figure 11: Output characteristics at 1.8 V supply voltage  
Figure 12: Output characteristics at 3.3 V supply voltage  
Figure 13: Output characteristics at 5 V supply voltage  
12/30  
DocID029790 Rev 2  
 
 
 
TSU111  
Figure 14: Output saturation with a sine wave  
Electrical characteristic curves  
Figure 15: Output saturation with a square wave  
on the input  
on the input  
Figure 16: Phase reversal free  
Figure 17: Slew rate vs. supply voltage  
Figure 18: Output swing vs. input signal frequency  
Figure 19: Triangulation of a sine wave  
DocID029790 Rev 2  
13/30  
 
Electrical characteristic curves  
Figure 20: Large signal response at  
TSU111  
Figure 21: Small signal response at 3.3 V supply voltage  
3.3 V supply voltage  
Figure 22: Overshoot vs. capacitive load at  
3.3 V supply voltage  
Figure 23: Open loop output impedance vs. frequency  
Figure 24: Bode diagram at 1.8 V supply voltage  
Figure 25: Bode diagram at 3.3 V supply voltage  
14/30  
DocID029790 Rev 2  
TSU111  
Figure 26: Bode diagram at 5 V supply voltage  
Electrical characteristic curves  
Figure 27: Gain bandwidth product vs. input  
common-mode voltage  
Figure 28: In-series resistor (Riso) vs. capacitive load  
Figure 29: Noise vs. frequency for different power  
supply voltages  
Figure 30: Noise vs. frequency for different  
common-mode input voltages  
Figure 31: Noise amplitude on a 0.1 Hz to 10 Hz  
frequency range  
DocID029790 Rev 2  
15/30  
Application information  
TSU111  
5
Application information  
5.1  
Nanopower applications  
The TSU111 can operate from 1.5 V to 5.5 V. The parameters are fully specified at 1.8 V,  
3.3 V, and 5 V supply voltages and are very stable in the full VCC range. Additionally, the  
main specifications are guaranteed on the industrial temperature range from -40 to 85 °C.  
The estimated lifetime of the TSU111 exceeds 25 years if supplied by a CR2032 battery  
(see Figure 32: "CR2032 battery").  
Figure 32: CR2032 battery  
16/30  
DocID029790 Rev 2  
 
TSU111  
Application information  
5.1.1  
Schematic optimization aiming for nanopower  
To benefit from the full performance of the TSU111, the impedances must be maximized so  
that current consumption is not lost where it is not required.  
For example, an aluminum electrolytic capacitance can have significantly high leakage.  
This leakage may be greater than the current consumption of the op amp. For this reason,  
ceramic type capacitors are preferred.  
For the same reason, big resistor values should be used in the feedback loop. However,  
there are two main limitations to be considered when choosing a resistor.  
1. Noise generated: a 100 kΩ resistor generates 40 nV/√Hz, a bigger resistor value  
generates even more noise.  
2. Leakage on the PCB: leakage can be generated by moisture. This can be improved by  
using a specific coating process on the PCB.  
5.1.2  
PCB layout considerations  
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible  
to the power supply pins.  
Minimizing the leakage from sensitive high impedance nodes on the inputs of the TSU111  
can be performed with a guarding technique. The technique consists of surrounding high  
impedance tracks by a low impedance track (the ring). The ring is at the same electrical  
potential as the high impedance node.  
Therefore, even if some parasitic impedance exists between the tracks, no leakage current  
can flow through them as they are at the same potential (see Figure 33: "Guarding on the  
PCB").  
Figure 33: Guarding on the PCB  
DocID029790 Rev 2  
17/30  
 
Application information  
TSU111  
5.2  
5.3  
Rail-to-rail input  
The TSU111 is built with two complementary PMOS and NMOS input differential pairs.  
Thus, the device has a rail-to-rail input, and the input common mode range is extended  
from (VCC-) - 0.1 V to (VCC+) + 0.1 V.  
The TSU111 has been designed to prevent phase reversal behavior.  
Input offset voltage drift over temperature  
The maximum input voltage drift variation over temperature is defined as the offset  
variation related to the offset value measured at 25 °C. The operational amplifier is one of  
the main circuits of the signal conditioning chain, and the amplifier input offset is a major  
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated  
during production at application level. The maximum input voltage drift over temperature  
enables the system designer to anticipate the effect of temperature variations.  
The maximum input voltage drift over temperature is computed using Equation 1.  
Equation 1  
Vio  
T  
°C  
Vio Vio
T 25°C  
= max  
Where T = -40 °C and 85 °C.  
The TSU111 datasheet maximum values are guaranteed by measurements on a  
representative sample size ensuring a Cpk (process capability index) greater than 1.3.  
5.4  
Long term input offset voltage drift  
To evaluate product reliability, two types of stress acceleration are used:  
Voltage acceleration, by changing the applied voltage  
Temperature acceleration, by changing the die temperature (below the maximum  
junction temperature allowed by the technology) with the ambient temperature.  
The voltage acceleration has been defined based on JEDEC results, and is defined using  
Equation 2.  
Equation 2  
AFV = eβ .
Where:  
AFV is the voltage acceleration factor  
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)  
VS is the stress voltage used for the accelerated test  
VU is the voltage used for the application  
The temperature acceleration is driven by the Arrhenius model, and is defined in  
Equation 3.  
18/30  
DocID029790 Rev 2  
 
 
TSU111  
Application information  
Equation 3  
Ea  
1
1
.
------  
AFT = e k  
TU TS  
Where:  
AFT is the temperature acceleration factor  
Ea is the activation energy of the technology based on the failure rate  
k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)  
TU is the temperature of the die when VU is used (°K)  
TS is the temperature of the die under temperature stress (°K)  
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and  
the temperature acceleration factor (Equation 4).  
Equation 4  
AF = AFT × AFV  
AF is calculated using the temperature and voltage defined in the mission profile of the  
product. The AF value can then be used in Equation 5 to calculate the number of months of  
use equivalent to 1000 hours of reliable stress duration.  
Equation 5  
/
Months = AF × 1000 h × 12 months 
To evaluate the op amp reliability, a follower stress condition is used where VCC is defined  
as a function of the maximum operating voltage and the absolute maximum rating  
(as recommended by JEDEC rules).  
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at  
different measurement conditions (see Equation 6).  
Equation 6  
VCC = maxVop with Vicm = VCC  
The long term drift parameter (ΔVio), estimating the reliability performance of the product,  
is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of  
the calculated number of months (Equation 7).  
Equation 7  
Viodrift  
Vio  
=
Where Vio drift is the measured drift value in the specified test conditions after 1000 h  
stress duration.  
DocID029790 Rev 2  
19/30  
 
 
 
 
Application information  
TSU111  
5.5  
Using the TSU111 with sensors  
The TSU111 has MOS inputs, thus input bias currents can be guaranteed down to 10 pA  
maximum at ambient temperature. This is an important parameter when the operational  
amplifier is used in combination with high impedance sensors.  
The TSU111 is perfectly suited for trans-impedance configuration. This configuration allows  
a current to be converted into a voltage value with a gain set by the user. It is an ideal  
choice for portable electrochemical gas sensing or photo/UV sensing applications. The  
TSU111, using trans-impedance configuration, is able to provide a voltage value based on  
the physical parameter sensed by the sensor.  
5.5.1  
Electrochemical gas sensors  
The output current of electrochemical gas sensors is generally in the range of tens of nA to  
hundreds of µA. As the input bias current of the TSU111 is very low (see Figure 8,  
Figure 9, and Figure 10) compared to these current values, the TSU111 is well adapted for  
use with the electrochemical sensors of two or three electrodes. Figure 35: "Potentiostat  
schematic using the TSU111" shows a potentiostat (electronic hardware required to control  
a three electrode cell) schematic using the TSU111. In such a configuration, the devices  
minimize leakage in the reference electrode compared to the current being measured on  
the working electrode.  
Another great advantage of TSU111 versus the competition is its low noise for low  
frequencies (3.6 µVpp over 0.1 to 10Hz), and low input offset voltage of 150µV max. These  
improved parameters for the same power consumption allow a better accuracy.  
Figure 34: Trans-impedance amplifier schematic  
R
I
-
V
+ RI  
TSU111  
ref  
Sensor:  
electrochemical  
photodiode/UV  
+
V
ref  
20/30  
DocID029790 Rev 2  
TSU111  
Application information  
Figure 35: Potentiostat schematic using the TSU111  
-
TSU111  
-
TSU111  
+
+
V
ref1  
V
ref2  
5.6  
5.7  
Fast desaturation  
When the TSU111 goes into saturation mode, it takes a short period of time to recover,  
typically 630 µs. When recovering after saturation, the TSU111 does not exhibit any  
voltage peaks that could generate issues (such as false alarms) in the application  
(see Figure 14).  
We can observe that this circuit still exhibits good gain even close to the rails i.e. Avd  
greater than 105 dB for Vcc = 3.3 V with Vout varying from 200 mV up to a supply voltage  
minus 200 mV. With a trans-impedance schematic, a voltage reference can be used to  
keep the signal away from the supply rails.  
Using the TSU111 in comparator mode  
The TSU111 can be used as a comparator. In this case, the output stage of the device  
always operates in saturation mode. In addition, Figure 3 shows that the current  
consumption is not higher and even decreases smoothly close to the rails. The TSU111 is  
obviously an operational amplifier and is therefore optimized for use in linear mode. We  
recommend using the TS88 series of nanopower comparators if the primary function is to  
perform a signal comparison only.  
DocID029790 Rev 2  
21/30  
Application information  
TSU111  
5.8  
ESD structure of the TSU111  
The TSU111 is protected against electrostatic discharge (ESD) with dedicated diodes  
(see Figure 36: "ESD structure"). These diodes must be considered at application level  
especially when signals applied on the input pins go beyond the power supply rails (VCC+  
or (VCC-).  
)
Figure 36: ESD structure  
-
TSU111  
+
Current through the diodes must be limited to a maximum of 10 mA as stated in Table 1:  
"Absolute maximum ratings (AMR)". A serial resistor on the inputs can be used to limit this  
current.  
5.9  
EMI robustness of nanopower devices  
Nanopower devices exhibit higher impedance nodes and consequently they are more  
sensitive to EMI. To improve the natural robustness of the TSU111 device, we recommend  
to add three capacitors of around 22 pF each between the two inputs, and between each  
input and ground. These capacitors will lower the impedance of the input at high  
frequencies and therefore reduce the impact of the radiation.  
22/30  
DocID029790 Rev 2  
 
 
TSU111  
Package information  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
DocID029790 Rev 2  
23/30  
Package information  
TSU111  
6.1  
SC70-5 (or SOT323-5) package information  
Figure 37: SC70-5 (or SOT323-5) package outline  
SIDE VIEW  
DIMENSIONS IN MM  
GAUGE PLANE  
COPLANAR LEADS  
SEATING PLANE  
TOP VIEW  
Table 6: SC70-5 (or SOT323-5) mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
1.10  
0.10  
1.00  
0.30  
0.22  
2.20  
2.40  
1.35  
Min.  
Typ.  
Max.  
0.043  
0.004  
0.039  
0.012  
0.009  
0.087  
0.094  
0.053  
A
A1  
A2  
b
0.80  
0.032  
0.80  
0.15  
0.10  
1.80  
1.80  
1.15  
0.90  
0.032  
0.006  
0.004  
0.071  
0.071  
0.045  
0.035  
c
D
2.00  
2.10  
1.25  
0.65  
1.30  
0.36  
0.079  
0.083  
0.049  
0.025  
0.051  
0.014  
E
E1  
e
e1  
L
0.26  
0°  
0.46  
8°  
0.010  
0°  
0.018  
8°  
<
24/30  
DocID029790 Rev 2  
TSU111  
Package information  
6.2  
DFN6 1.2x1.3 package information  
Figure 38: DFN6 1.2x1.3 package outline  
BOTTOM VIEW  
e
b
PIN#1 ID  
L3  
L
SIDE VIEW  
C
SEATING  
PLANE  
A1  
A
8
0.05 C  
TOP VIEW  
D
E
PIN 1  
DocID029790 Rev 2  
25/30  
Package information  
TSU111  
Table 7: DFN6 1.2x1.3 mechanical data  
Dimensions  
Ref  
Millimeters  
Inches  
Min.  
0.31  
0.00  
0.15  
Typ.  
0.38  
0.02  
0.18  
0.05  
1.20  
1.30  
0.40  
0.525  
0.425  
Max.  
0.40  
0.05  
0.25  
Min.  
0.012  
0.000  
0.006  
Typ.  
Max.  
0.016  
0.002  
0.010  
A
A1  
b
0.015  
0.001  
0.007  
0.002  
0.047  
0.051  
0.016  
0.021  
0.017  
c
D
E
e
L
0.475  
0.375  
0.575  
0.475  
0.019  
0.015  
0.023  
0.019  
L3  
26/30  
DocID029790 Rev 2  
TSU111  
Package information  
Figure 39: DFN6 1.2x1.3 recommended footprint  
0.40  
0.25  
3
1
1.20  
0.475  
4
6
Table 8: DFN6 1.2x1.3 recommended footprint data  
Dimensions  
Ref  
A
Millimeters  
Inches  
4.00  
0.158  
B
C
0.50  
0.30  
1.00  
0.70  
0.66  
0.020  
0.012  
0.039  
0.028  
0.026  
D
E
F
G
DocID029790 Rev 2  
27/30  
Ordering information  
TSU111  
7
Ordering information  
Table 9: Order codes  
Order code  
TSU111IQ1T  
Temperature range  
Package (1)  
DFΝ6 1.2x1.3  
SC70-5  
Marking  
K8  
-40 °C to 85 °C  
TSU111ICT  
Notes:  
(1)All devices are delivered in tape and reel packing  
28/30  
DocID029790 Rev 2  
 
TSU111  
Revision history  
8
Revision history  
Table 10: Document revision history  
Changes  
Date  
Revision  
17-Oct-2016  
1
Initial release  
Features: added "rail-to-rail input and output".  
Description: updated the maximum ultra low-power consumption of  
TSU111 op amp.  
14-Nov-2016  
2
Applications: updated  
Table 5: added EMIRR typ values  
Added Section 5.9: "EMI robustness of nanopower devices"  
DocID029790 Rev 2  
29/30  
TSU111  
IMPORTANT NOTICE PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST  
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the  
design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics All rights reserved  
30/30  
DocID029790 Rev 2  

相关型号:

TSU16AK

SXGA LCD Controller with Analog Interface and Dual LVDS Transmitter
ETC

TSU27-E03DT

Analog IC
ETC

TSU2N60M

600V N-Channel MOSFET
ETC

TSU37

2nd RF Units for BS Digital Broadcasting Receiver
MITSUMI

TSU5511

SP3T SWITCH WITH IMPEDANCE DETECTION MICRO-USB SWITCH TO SUPPORT USB, UART, AUDIO, AND CHARGER
TI

TSU5511YZPR

SP3T SWITCH WITH IMPEDANCE DETECTION MICRO-USB SWITCH TO SUPPORT USB, UART, AUDIO, AND CHARGER
TI

TSU5611

DP3T SWITCH WITH IMPEDANCE DETECTION MICRO-USB SWITCH TO SUPPORT USB, UART, AUDIO, AND CHARGER DETECTION
TI

TSU5611YZPR

DP3T SWITCH WITH IMPEDANCE DETECTION MICRO-USB SWITCH TO SUPPORT USB, UART, AUDIO, AND CHARGER DETECTION
TI

TSU6111

SP2T Switch with Impedance Detection Micro-USB Switch to Support USB, UART
TI

TSU6111A

USB Port SP2T Switch Supports USB & UART
TI

TSU6111ARSVR

USB Port SP2T Switch Supports USB & UART
TI

TSU6111RSVR

USB Port SP2T Switch Supports USB & UART
TI