TSV631A [STMICROELECTRONICS]

微功耗(60uA)低偏移轨到轨输入/输出5V CMOS单路运算放大器,GBP = 880kHz;
TSV631A
型号: TSV631A
厂家: ST    ST
描述:

微功耗(60uA)低偏移轨到轨输入/输出5V CMOS单路运算放大器,GBP = 880kHz

放大器 运算放大器 放大器电路
文件: 总23页 (文件大小:815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSV630 - TSV631  
Rail-to-rail input/output 60 µA 880 kHz CMOS operational amplifier  
Features  
VCC  
SHDN  
Out  
In+  
1
2
3
6
Low offset voltage: 500 µV max (A version)  
Low power consumption: 60 µA typ at 5 V  
Low supply voltage: 1.5 V - 5.5 V  
Gain bandwidth product: 880 kHz typ  
Unity gain stability  
+
5
_
VDD  
In-  
4
TSV630ICT/ILT  
SC70-6/SOT23-6  
Low power shutdown mode: 5 nA typ  
VCC  
Out  
In+  
1
2
3
5
4
High output current: 63 mA at V = 5 V  
+
CC  
_
VDD  
In-  
Low input bias current: 1 pA typ  
Rail-to-rail input and output  
TSV631ICT/ILT  
SC70-5/SOT23-5  
Extended temperature range: -40°C to +125°C  
Applications  
The devices are internally adjusted to provide  
very narrow dispersion of AC and DC parameters,  
especially power consumption, product gain  
bandwidth and slew rate.  
Battery-powered applications  
Portable devices  
Signal conditioning  
Active filtering  
The TSV630 provides a shutdown function.  
Both the TSV630 and TSV631 have a high  
tolerance to ESD, sustaining 4 kV for the human  
body model.  
Medical instrumentation  
Description  
Additionally, they are offered in micropackages,  
SC70-6 and SOT23-6 for the TSV630 and  
SC70-5 and SOT23-5 for the TSV631. They are  
guaranteed for industrial temperature ranges from  
-40° C to +125° C.  
The TSV630 and TSV631 devices are single  
operational amplifiers offering low voltage, low  
power operation and rail-to-rail input and output.  
With a very low input bias current and low offset  
voltage (500 µV maximum for the A version), the  
TSV630 and TSV631 are ideal for applications  
that require precision. The devices can operate at  
power supplies ranging from 1.5 to 5.5 V, and are  
therefore ideal for battery-powered devices,  
extending battery life.  
All these features combined make the TSV630  
and TSV631 ideal for sensor interfaces,  
battery-supplied and portable applications, as  
well as active filtering.  
These products feature an excellent speed/power  
consumption ratio, offering a 880 kHz gain  
bandwidth while consuming only 60 µA at a 5-V  
supply voltage. These op-amps are unity gain  
stable for capacitive loads up to 100 pF.  
December 2008  
Rev 1  
1/23  
www.st.com  
23  
Absolute maximum ratings and operating conditions  
TSV630 - TSV631  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings (AMR)  
Parameter  
Value  
Unit  
VCC  
Vid  
Supply voltage(1)  
Differential input voltage (2)  
Input voltage (3)  
6
V
V
VCC  
Vin  
VDD-0.2 to VCC+0.2  
V
Iin  
Input current (4)  
Shutdown voltage(3)  
10  
6
mA  
V
SHDN  
Tstg  
Storage temperature  
-65 to +150  
°C  
Thermal resistance junction to ambient(5)(6)  
205  
250  
240  
232  
SC70-5  
SOT23-5  
SOT23-6  
SC70-6  
Rthja  
°C/W  
Tj  
Maximum junction temperature  
HBM: human body model(7)  
MM: machine model(8)  
150  
4
°C  
kV  
V
ESD  
300  
1.5  
200  
CDM: charged device model(9)  
kV  
mA  
Latch-up immunity  
1. All voltage values, except differential voltages, are with respect to network ground terminal.  
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.  
3. VCC-Vin must not exceed 6 V.  
4. Input current must be limited by a resistor in series with the inputs.  
5. Short-circuits can cause excessive heating and destructive dissipation.  
6. Rth are typical values.  
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for  
all couples of pin combinations with other pins floating.  
8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between  
two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin  
combinations with other pins floating.  
9. Charged device model: all pins plus package are charged together to the specified voltage and then  
discharged directly to the ground.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
Vicm  
Toper  
Supply voltage  
1.5 to 5.5  
VDD -0.1 to VCC +0.1  
-40 to +125  
V
V
Common mode input voltage range  
Operating free air temperature range  
°C  
2/23  
TSV630 - TSV631  
Electrical characteristics  
2
Electrical characteristics  
Table 3.  
Electrical characteristics at V = +1.8 V with V = 0 V, V  
= V /2, T  
= 25° C and  
CC  
DD  
icm  
CC  
amb  
R connected to V /2 (unless otherwise specified)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
TSV630-TSV631  
3
mV  
TSV630A-TSV631A  
0.5  
Vio  
Offset voltage  
Tmin < Top < Tmax  
TSV630-TSV631  
TSV630A-TSV631A  
4.5  
2
DVio  
Iio  
Input offset voltage drift  
2
1
μV/°C  
10(1)  
100  
Input offset current  
(Vout = VCC/2)  
pA  
Tmin < Top < Tmax  
1
1
10(1)  
Input bias current  
(Vout = VCC/2)  
Iib  
pA  
dB  
T
min < Top < Tmax  
1
100  
0 V to 1.8 V, Vout = 0.9 V  
Tmin < Top < Tmax  
RL= 10 kΩ, Vout = 0.5 V to 1.3 V  
Tmin < Top < Tmax  
RL = 10 kΩ  
53  
51  
85  
80  
35  
50  
74  
Common mode rejection ratio  
20 log (ΔVic/ΔVio)  
CMR  
Avd  
95  
5
Large signal voltage gain  
High level output voltage  
Low level output voltage  
Isink  
dB  
VOH  
mV  
mV  
mA  
mA  
µA  
Tmin < Top < Tmax  
RL = 10 kΩ  
4
35  
50  
VOL  
Tmin < Top < Tmax  
Vo = 1.8 V  
6
4
12  
10  
50  
Tmin < Top < Tmax  
Vo = 0 V  
Iout  
6
Isource  
Tmin < Top < Tmax  
No load, Vout =VCC/2  
Tmin < Top < Tmax  
4
40  
60  
62  
Supply current  
SHDN = VCC  
ICC  
AC performance  
GBP  
φm  
Gain bandwidth product  
RL = 2 kΩ, CL=100 pF, f= 100 kHz 700  
RL = 2 kΩ, CL = 100 pF  
790  
48  
kHz  
Degrees  
dB  
Phase margin  
Gain margin  
Slew rate  
Gm  
SR  
RL = 2 kΩ, CL = 100 pF  
11  
RL = 2 kΩ, CL = 100 pF, Av = 1  
0.2  
0.27  
V/μs  
f = 1 kHz  
65  
35  
nV  
-----------  
en  
Equivalent input noise voltage  
Hz  
f = 10 kHz  
1. Guaranteed by design.  
3/23  
Electrical characteristics  
TSV630 - TSV631  
Table 4.  
Symbol  
Shutdown characteristics V = 1.8 V  
CC  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
SHDN < VIL  
2.5  
50  
200  
1.5  
nA  
nA  
µA  
Supply current in shutdown  
mode  
ICC  
Tmin < Top < 85° C  
Tmin < Top < 125° C  
(all operators)  
RL = 2 k, Vout = VDD + 0.2 to  
VCC - 0.2  
ton  
toff  
Amplifier turn-on time  
Amplifier turn-off time  
300  
20  
ns  
ns  
RL = 2 k, Vout = VDD + 0.2 to  
VCC - 0.2  
VIH  
VIL  
IIH  
SHDN logic high  
SHDN logic low  
1.3  
V
0.5  
V
SHDN current high  
SHDN current low  
SHDN = VCC  
10  
10  
50  
1
pA  
pA  
pA  
nA  
IIL  
SHDN = VDD  
SHDN = VDD  
Output leakage in shutdown  
mode  
IOLeak  
Tmin < Top < 125° C  
4/23  
TSV630 - TSV631  
Electrical characteristics  
Table 5.  
Symbol  
V
= +3.3 V, V = 0 V, V  
= V /2, T  
= 25° C, R connected to V /2  
CC  
DD  
icm  
CC  
amb L CC  
(unless otherwise specified)  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
TSV630-TSV631  
3
mV  
TSV630A-TSV631A  
0.5  
Vio  
Offset voltage  
Tmin < Top < Tmax  
TSV630-TSV631  
TSV630A-TSV631A  
4.5  
2
DVio  
Iio  
Input offset voltage drift  
Input offset current  
2
1
μV/°C  
10(1)  
100  
pA  
Tmin < Top < Tmax  
1
1
10(1)  
Iib  
Input bias current  
pA  
dB  
Tmin < Top < Tmax  
1
100  
0 V to 3.3 V, Vout = 1.75 V  
57  
53  
88  
83  
35  
50  
79  
Common mode rejection  
ratio 20 log (ΔVic/ΔVio)  
CMR  
Avd  
T
min < Top < Tmax  
RL = 10 kΩ, Vout = 0.5 V to 2.8 V  
Tmin < Top < Tmax  
RL = 10 kΩ  
98  
6
Large signal voltage gain  
High level output voltage  
Low level output voltage  
Isink  
dB  
VOH  
mV  
mV  
mA  
mA  
Tmin. < Top < Tmax  
RL = 10 kΩ  
7
35  
50  
VOL  
Tmin < Top < Tmax  
Vo = 3.3 V  
30  
25  
30  
25  
43  
45  
42  
38  
Tmin < Top < Tmax  
Vo = 0 V  
Iout  
Isource  
Tmin < Top < Tmax  
No load, Vout = 1.75 V  
55  
64  
66  
µA  
µA  
Supply current  
SHDN = VCC  
ICC  
T
min < Top < Tmax  
AC performance  
GBP  
φm  
Gain bandwidth product  
RL = 2 kΩ, CL = 100 pF, f = 100 kHz 710  
RL = 2 kΩ, CL = 100 pF  
860  
50  
kHz  
Degrees  
dB  
Phase margin  
Gain margin  
Slew rate  
Gm  
SR  
RL = 2 kΩ, CL= 100 pF  
11  
RL = 2 kΩ, CL = 100 pF, Av = 1  
0.22  
0.29  
V/μs  
nV  
Equivalent input noise  
voltage  
-----------  
en  
f = 1 kHz  
65  
Hz  
1. Guaranteed by design.  
5/23  
Electrical characteristics  
TSV630 - TSV631  
Table 6.  
Symbol  
Electrical characteristics at V = +5 V with V = 0 V, V  
= V /2, T  
= 25° C and  
CC  
DD  
icm  
CC  
amb  
R connected to V /2 (unless otherwise specified)  
L
CC  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
TSV630-TSV631  
3
mV  
mV  
TSV630A-TSV631A  
0.5  
Vio  
Offset voltage  
Tmin < Top < Tmax  
TSV630-TSV631  
TSV630A-TSV631A  
4.5  
2
DVio  
Iio  
Input offset voltage drift  
2
1
μV/°C  
10(1)  
100  
Input offset current  
(Vout = VCC/2)  
pA  
Tmin < Top < Tmax  
1
1
10(1)  
Input bias current  
(Vout = VCC/2)  
Iib  
pA  
dB  
dB  
dB  
mV  
mV  
Tmin < Top < Tmax  
1
100  
0 V to 5 V, Vout = 2.5 V  
60  
55  
75  
80  
Common mode rejection ratio  
20 log (ΔVic/ΔVio)  
CMR  
SVR  
Avd  
T
min < Top < Tmax  
CC = 1.8 to 5 V  
V
102  
98  
7
Supply voltage rejection ratio  
20 log (ΔVCC/ΔVio)  
Tmin < Top < Tmax  
RL= 10 kΩ, Vout= 0.5 V to 4.5 V  
Tmin < Top < Tmax  
RL = 10 kΩ  
89  
84  
35  
50  
Large signal voltage gain  
High level output voltage  
Low level output voltage  
Isink  
VOH  
Tmin < Top < Tmax  
RL = 10 kΩ  
6
35  
50  
VOL  
Tmin < Top < Tmax  
Vo = 5 V  
40  
35  
40  
36  
50  
69  
65  
74  
68  
60  
mA  
mA  
Tmin < Top < Tmax  
Vo = 0 V  
Iout  
Isource  
T
min < Top < Tmax  
No load, Vout=VCC/2  
Tmin < Top < Tmax  
69  
72  
Supply current  
SHDN = VCC  
ICC  
µA  
AC performance  
RL = 2 kΩ, CL= 100 pF,  
f = 100 kHz  
GBP  
Gain bandwidth product  
730  
880  
kHz  
Fu  
φm  
Gm  
SR  
Unity gain frequency  
Phase margin  
Gain margin  
RL = 2 kΩ, CL = 100 pF,  
RL = 2 kΩ, CL = 100 pF  
RL = 2 kΩ, CL = 100 pF  
RL = 2 kΩ, CL = 100 pF, Av = 1  
830  
50  
kHz  
Degrees  
dB  
12  
Slew rate  
0.25  
0.34  
V/μs  
6/23  
TSV630 - TSV631  
Electrical characteristics  
= V /2, T = 25° C and  
Table 6.  
Electrical characteristics at V = +5 V with V = 0 V, V  
CC DD icm  
CC  
amb  
R connected to V /2 (unless otherwise specified) (continued)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
f = 1 kHz  
65  
35  
nV  
-----------  
en  
Equivalent input noise voltage  
Hz  
f = 10 kHz  
f = 1 kHz, AV = 1, RL = 100 kΩ,  
Vicm = VCC/2, Vout = 2 VPP  
THD+en Total harmonic distortion  
1. Guaranteed by design.  
0.0017  
%
Table 7.  
Symbol  
Shutdown characteristics V = 5 V  
CC  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
SHDN<VIL  
5
50  
200  
1.5  
nA  
nA  
µA  
Supply current in shutdown  
mode (all operators)  
ICC  
Tmin < Top < 85° C  
Tmin < Top < 125° C  
RL = 2 k, Vout = VDD + 0.2 to  
VCC - 0.2  
ton  
toff  
Amplifier turn-on time  
Amplifier turn-off time  
300  
30  
ns  
ns  
RL = 2 k, Vout = VDD + 0.2 to  
VCC - 0.2  
VIH  
VIL  
IIH  
SHDN logic high  
SHDN logic low  
4.5  
V
0.5  
V
SHDN current high  
SHDN current low  
SHDN = VCC  
SHDN = VDD  
SHDN = VDD  
10  
10  
50  
1
pA  
pA  
pA  
nA  
IIL  
Output leakage in shutdown  
mode  
IOLeak  
T
min < Top < 125° C  
7/23  
Electrical characteristics  
TSV630 - TSV631  
Figure 1.  
Figure 3.  
Figure 5.  
Supply current vs. supply voltage Figure 2.  
at V = V /2  
Output current vs. output voltage at  
V = 1.5 V  
icm  
CC  
CC  
Output current vs. output voltage at Figure 4.  
= 5 V  
Voltage gain and phase vs.  
V
frequency at V = 1.5 V  
CC  
CC  
Voltage gain and phase vs.  
frequency at V = 5 V  
Figure 6.  
Phase margin vs. output current at  
V
= 5 V  
CC  
CC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Cl=100pF  
Cl=330pF  
Vcc=5V, Vicm=2.5V  
Rl=2kohms, T=25 C  
-1.5  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
8/23  
TSV630 - TSV631  
Electrical characteristics  
Figure 7.  
Positive slew rate vs. time  
Figure 8.  
Negative slew rate vs. time  
Time (µs)  
Time (µs)  
Figure 9.  
Positive slew rate vs. supply  
voltage  
Figure 10. Negative slew rate vs. supply  
voltage  
0.0  
0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 11. Distortion + noise vs. output  
Figure 12. Distortion + noise vs. output  
voltage (R = 2 kΩ)  
voltage (R = 100 kΩ)  
L
L
Vcc=1.8V  
f=1kHz, Av=1  
Rl=2kOhms to Vcc/2  
Vicm=(Vcc-0.7)/2  
BW=22kHz  
f=1kHz, Av=1  
Vcc=3.3V  
Rl=100kOhms to Vcc/2  
Vicm=(Vcc-0.7)/2  
BW=22kHz  
Vcc=1.5V  
Vcc=1.5V  
Vcc=5.5V  
Vcc=5V  
Output Voltage (Vpp)  
Output Voltage (Vpp)  
9/23  
Electrical characteristics  
TSV630 - TSV631  
Figure 13. Distortion + noise vs. frequency  
Figure 14. Distortion + noise vs. frequency  
Ω
0.1  
0.1  
Vcc=5.5V  
Rl=100k  
Ω
Ω
Vcc=5.5V  
Rl=2k  
0.01  
Ω
Vin=3Vpp  
0.01  
1E-3  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Figure 15. Noise vs. frequency  
300  
250  
Vicm=2.5V  
200  
150  
100  
50  
Vicm=4.5V  
Vcc=5V  
Tamb=25 C  
10  
100  
1000  
10000  
10/23  
TSV630 - TSV631  
Application information  
3
Application information  
3.1  
Operating voltages  
The TSV630 and TSV631 can operate from 1.5 to 5.5 V. Their parameters are fully specified  
for 1.8-, 3.3- and 5-V power supplies. However, the parameters are very stable in the full  
V
range and several characterization curves show the TSV63x characteristics at 1.5 V.  
CC  
Additionally, the main specifications are guaranteed in extended temperature ranges from  
-40° C to +125° C.  
3.2  
Rail-to-rail input  
The TSV630 and TSV631 are built with two complementary PMOS and NMOS input  
differential pairs. The devices have a rail-to-rail input, and the input common mode range is  
extended from V -0.1 V to V +0.1 V. The transition between the two pairs appears at  
DD  
CC  
V
-0.7 V. In the transition region, the performance of CMRR, PSRR, V and THD is  
CC  
io  
slightly degraded (as shown in Figure 16 and Figure 17 for V vs. V ).  
io  
icm  
Figure 16. Input offset voltage vs input  
Figure 17. Input offset voltage vs input  
common mode at V = 5 V  
common mode at V = 1.5 V  
CC  
CC  
0.5  
0.4  
0.4  
0.2  
0.3  
0.2  
0.1  
0.0  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.4  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
Input Common Mode Voltage (V)  
Input Common Mode Voltage (V)  
The device is guaranteed without phase reversal.  
3.3  
Rail-to-rail output  
The operational amplifiers’ output levels can go close to the rails: 35 mV maximum above  
and below the rail when connected to a 10 kΩ resistive load to V /2.  
CC  
11/23  
Application information  
TSV630 - TSV631  
3.4  
Shutdown function (TSV630)  
The operational amplifier is enabled when the SHDN pin is pulled high. To disable the  
amplifier, the SHDN must be pulled down to V . When in shutdown mode, the amplifier  
DD  
output is in a high impedance state. The SHDN pin must never be left floating, but tied to  
V
or V  
.
CC  
DD  
The turn-on and turn-off time are calculated for an output variation of 200 mV (Figure 18  
and Figure 19 show the test configurations).  
Figure 18. Test configuration for turn-on time Figure 19. Test configuration for turn-off time  
(Vout pulled down)  
(Vout pulled down)  
+Vcc  
+Vcc  
GND  
GND  
+
+
Vcc-0.5V  
Vcc-0.5V  
DUT  
DUT  
-
-
GND  
GND  
Figure 20. Turn-on time, V = 5 V,  
Figure 21. Turn-off time, V = 5 V,  
CC  
CC  
Vout pulled down, T = 25° C  
Vout pulled down, T = 25° C  
Shutdown pulse  
Shutdown pulse  
Vcc = 5V  
T = 25°C  
Vout  
Vout  
Vcc = 5V  
T = 25°C  
Time( s)  
Time( s)  
12/23  
TSV630 - TSV631  
Application information  
3.5  
Optimization of DC and AC parameters  
These devices use an innovative approach to reduce the spread of the main DC and AC  
parameters. An internal adjustment achieves a very narrow spread of the current  
consumption (60 µA typical, min/max at 17 %). Parameters linked to the current  
consumption value, such as GBP, SR and AVd, benefit from this narrow dispersion. All parts  
present a similar speed and the same behavior in terms of stability. In addition, the minimum  
values of GBP and SR are guaranteed (GBP = 730 kHz minimum and SR = 0.25 V/µs  
minimum).  
3.6  
Driving resistive and capacitive loads  
These products are micro-power, low-voltage operational amplifiers optimized to drive rather  
large resistive loads, above 2 kΩ. For lower resistive loads, the THD level may significantly  
increase.  
In a follower configuration, these operational amplifiers can drive capacitive loads up to  
100 pF with no oscillations. When driving larger capacitive loads, adding an in-series  
resistor at the output can improve the stability of the devices (see Figure 22 for  
recommended in-series resistor values). Once the in-series resistor value has been  
selected, the stability of the circuit should be tested on bench and simulated with the  
simulation model.  
Figure 22. In-series resistor vs. capacitive load  
3.7  
PCB layouts  
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible  
to the power supply pins.  
13/23  
Application information  
TSV630 - TSV631  
3.8  
Macromodel  
An accurate macromodel of the TSV630 and TSV631 is available on STMicroelectronics’  
web site at www.st.com. This model is a trade-off between accuracy and complexity (that is,  
time simulation) of the TSV63x operational amplifiers. It emulates the nominal performances  
of a typical device within the specified operating conditions mentioned in the datasheet. It  
also helps to validate a design approach and to select the right operational amplifier, but it  
does not replace on-board measurements.  
14/23  
TSV630 - TSV631  
Package information  
4
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
15/23  
Package information  
TSV630 - TSV631  
4.1  
SOT23-5 package mechanical data  
Figure 23. SOT23-5L package mechanical drawing  
Table 8.  
Ref.  
SOT23-5L package mechanical data  
Dimensions  
Millimeters  
Inches  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
B
0.90  
1.20  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
0.035  
0.047  
0.057  
0.006  
0.051  
0.019  
0.008  
0.118  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.35  
0.035  
0.013  
0.003  
0.110  
0.041  
0.015  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.013  
C
D
D1  
e
E
2.60  
1.50  
3.00  
1.75  
0.102  
0.059  
0.004  
0.118  
0.069  
0.023  
F
L
0.10  
0.60  
K
0 degrees  
10 degrees  
16/23  
TSV630 - TSV631  
Package information  
4.2  
SOT23-6 package mechanical data  
Figure 24. SOT23-6L package mechanical drawing  
Table 9.  
Ref.  
SOT23-6L package mechanical data  
Dimensions  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
0.90  
1.45  
0.10  
1.30  
0.50  
0.20  
3.05  
1.75  
0.035  
0.057  
0.004  
0.051  
0.019  
0.008  
0.120  
0.069  
0.90  
0.35  
0.09  
2.80  
1.50  
0.035  
0.013  
0.003  
0.110  
0.060  
c
D
E
e
0.95  
0.037  
H
L
2.60  
0.10  
0
3.00  
0.60  
10°  
0.102  
0.004  
0.118  
0.024  
°
17/23  
Package information  
TSV630 - TSV631  
4.3  
SC70-6 (or SOT323-6) package mechanical data  
Figure 25. SC70-6 (or SOT323-6) package mechanical drawing  
Table 10. SC70-6 (or SOT323-6) package mechanical data  
Dimensions  
Ref  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
0.80  
1.10  
0.10  
1.00  
0.30  
0.18  
2.20  
1.35  
0.031  
0.043  
0.004  
0.039  
0.012  
0.007  
0.086  
0.053  
0.80  
0.15  
0.10  
1.80  
1.15  
0.031  
0.006  
0.004  
0.071  
0.045  
c
D
E
e
0.65  
0.026  
HE  
L
1.80  
0.10  
0.10  
2.40  
0.40  
0.40  
0.071  
0.004  
0.004  
0.094  
0.016  
0.016  
Q1  
18/23  
TSV630 - TSV631  
Figure 26. SC70-6 (or SOT323-6) package footprint  
Package information  
19/23  
Package information  
TSV630 - TSV631  
4.4  
SC70-5 (or SOT323-5) package mechanical data  
Figure 27. SC70-5 (or SOT323-5) package mechanical drawing  
SIDE VIEW  
DIMENSIONS IN MM  
GAUGE PLANE  
COPLANAR LEADS  
SEATING PLANE  
TOP VIEW  
Table 11. SC70-5 (or SOT323-5) package mechanical data  
Dimensions  
Ref  
Millimeters  
Typ  
Inches  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
0.80  
1.10  
0.10  
1.00  
0.30  
0.22  
2.20  
2.40  
1.35  
0.315  
0.043  
0.004  
0.039  
0.012  
0.009  
0.087  
0.094  
0.053  
0.80  
0.15  
0.10  
1.80  
1.80  
1.15  
0.90  
0.315  
0.006  
0.004  
0.071  
0.071  
0.045  
0.035  
c
D
2.00  
2.10  
1.25  
0.65  
1.30  
0.36  
0.079  
0.083  
0.049  
0.025  
0.051  
0.014  
E
E1  
e
e1  
L
0.26  
0°  
0.46  
8°  
0.010  
0.018  
<
20/23  
TSV630 - TSV631  
Ordering information  
5
Ordering information  
Table 12. Order codes  
Temperature  
Part number  
Package  
Packing  
Marking  
range  
TSV630ILT  
TSV630ICT  
TSV631ILT  
TSV631ICT  
TSV630AILT  
TSV630AICT  
TSV631AILT  
TSV631AICT  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
SOT23-6  
SC70-6  
SOT23-5  
SC70-5  
SOT23-6  
SC70-6  
SOT23-5  
SC70-5  
Tape & reel  
Tape & reel  
Tape & reel  
Tape & reel  
Tape & reel  
Tape & reel  
Tape & reel  
Tape & reel  
K108  
K18  
K109  
K19  
K141  
K41  
K142  
K42  
21/23  
Revision history  
TSV630 - TSV631  
6
Revision history  
Table 13. Document revision history  
Date  
Revision  
Changes  
19-Dec-2008  
1
Initial release.  
22/23  
TSV630 - TSV631  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
23/23  

相关型号:

TSV631AICT

Rail-to-rail input/output 60 μA 880 kHz CMOS operational amplifier
STMICROELECTR

TSV631AILT

Rail-to-rail input/output 60 μA 880 kHz CMOS operational amplifier
STMICROELECTR

TSV631ICT

Rail-to-rail input/output 60 μA 880 kHz CMOS operational amplifier
STMICROELECTR

TSV631ILT

Rail-to-rail input/output 60 μA 880 kHz CMOS operational amplifier
STMICROELECTR

TSV632

Rail-to-rail input/output 60 μA 880 kHz operational amplifiers
STMICROELECTR

TSV632-3-4-5

Micropower, wide bandwidth CMOS operational amplifiers
STMICROELECTR

TSV632A

Dual and quad, rail-to-rail input/output, 60 μA, 880 kHz operational amplifiers
STMICROELECTR

TSV632AID

Micro-power CMOS op-amp
STMICROELECTR

TSV632AID/DT

Rail-to-rail input/output 60 μA 880 kHz operational amplifiers
STMICROELECTR

TSV632AILT

Rail-to-rail input/output 5V CMOS Op-Amps, micro-power (60uA), GBP=880kHz, small offset, dual
STMICROELECTR

TSV632AIST

Rail-to-rail input/output 60 μA 880 kHz operational amplifiers
STMICROELECTR

TSV632ID

Micro-power CMOS op-amp
STMICROELECTR