TSV791 [STMICROELECTRONICS]

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp;
TSV791
型号: TSV791
厂家: ST    ST
描述:

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp

文件: 总36页 (文件大小:5802K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSV791, TSV792  
Datasheet  
High bandwidth (50 MHz) low offset (200 µV) rail-to-rail 5 V op-amp  
Features  
Gain bandwidth product 50 MHz, unity gain stable  
Slew rate 30 V/µs  
Low input offset voltage 50 µV typ., 200 µV max.  
Low input bias current: 2 pA typ.  
Low input voltage noise density 6.5 nV/√Hz @ 10 kHz  
Wide supply voltage range: 2.2 V to 5.5 V  
Rail-to-rail input and output  
Extended temperature range: - 40 °C to +125 °C  
Automotive grade version available  
Benefits:  
Accuracy of measurement virtually unaffected by noise or input bias current  
Signal conditioning for high frequencies  
Applications  
High bandwidth low-side and high-side current sensing  
Photodiode transimpedance amplification  
A/D converters input buffers  
Power management in solar-powered systems  
Power management in automotive applications  
Maturity status link  
Description  
TSV791, TSV792  
The TSV791 and TSV792 are single and dual 50 MHz-bandwidth unity-gain-stable  
amplifiers. The rail-to-rail input stage and the slew rate of 30 V/µs make the  
TSV791 and TSV792 ideal for low-side current measurement. The excellent accuracy  
provided by maximum input voltage of 200 µV allows amplifying accurately small-  
amplitude input signal. The TSV792 can operate from a 2.2 V to 5.5 V single supply;  
it can typically handle an output capacitor up to 1 nF and is fully specified on a load  
of 22 pF, therefore allowing easy usage as A/D converters input buffer.  
Related products  
TSZ181  
TSZ182  
Zero drift amplifiers with  
more power savings (3 MHz)  
36 V high-bandwidth  
amplifiers (6 MHz)  
TSB712  
36 V high-bandwidth  
amplifiers (20 MHz)  
TSB7192  
DS13480 - Rev 1 - November 2020  
For further information contact your local STMicroelectronics sales office.  
www.st.com  
TSV791, TSV792  
Pin description  
1
Pin description  
1.1  
TSV791 single operational amplifier  
Figure 1. Pin connections (top view)  
Table 1. Pin description  
Pin n°  
Pin name  
OUT  
Description  
1
2
3
4
5
Output channel  
VCC-  
IN+  
Negative supply voltage  
Non-inverting input channel  
Inverting input channel  
Positive supply voltage  
IN-  
VCC+  
DS13480 - Rev 1  
page 2/36  
 
 
TSV791, TSV792  
TSV792 dual operational amplifier  
1.2  
TSV792 dual operational amplifier  
Figure 2. Pin connections (top view)  
1.  
The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating.  
Table 2. Pin description  
Pin n°  
Pin name  
OUT1  
IN1-  
Description  
1
2
3
4
5
6
7
8
Output channel 1  
Inverting input channel 1  
Non-inverting input channel 1  
Negative supply voltage  
Non-inverting input channel 2  
Inverting input channel 2  
Output channel 2  
IN1+  
VCC-  
IN2+  
IN2-  
OUT2  
VCC+  
Positive supply voltage  
DS13480 - Rev 1  
page 3/36  
 
TSV791, TSV792  
Absolute maximum ratings and operating conditions  
2
Absolute maximum ratings and operating conditions  
Table 3. Absolute maximum ratings  
Parameter (1)  
Symbol  
Value  
Unit  
V
V
Supply voltage  
6
CC  
(2)  
V
±V  
Input voltage differential (V  
Input voltage  
- V )  
IN-  
V
id  
CC  
IN+  
V
(V ) - 0.2 to (V  
) + 0.2  
V
in  
CC-  
CC+  
I
Input current  
±10  
mA  
°C  
°C  
in  
T
Storage temperature  
-65 to +150  
150  
stg  
T
Maximum junction temperature  
j
Thermal resistance junction-to-ambient  
SOT23-5  
250  
57  
(3)  
R
DFN8 2x2  
°C / W  
th-ja  
MiniSO8  
127  
125  
SO8  
Thermal resistance junction-to-case  
SOT23-5  
TBD  
TBD  
51  
(4)  
R
DFN8 2x2  
°C / W  
th-jc  
MiniSO8  
SO8  
TBD  
4
HBM: human body model (industrial grade) (5)  
HBM: human body model (automotive grade) (6)  
CDM: charged device model (7)  
kV  
kV  
kV  
ESD  
4
1
1. All voltage values are with respect to the VCC- pin, unless otherwise specified.  
2. The maximum input voltage differential value may be extended to the condition that the input current is limited to ±10 mA.  
3.  
4.  
R
is a typical value, obtained with PCB according to JEDEC 2s2p without vias.  
is a typical value, obtained with PCB according to JEDEC 1s0p without vias.  
th-ja  
th-jc  
R
5. Human body model: HBM test according to the standard ESDA-JS-001-2017.  
6. Human body model: HBM test according to the standard AEC-Q100-002.  
7. Charged device model: the CDM test is done according to the standard AEC-Q100-011.  
Table 4. Operating conditions  
Symbol  
Parameter  
Value  
V
Supply voltage  
2.2 V to 5.5 V  
CC  
V
V
– 0.1 V to V  
+ 0.1 V  
Common mode input voltage range  
Operating free air temperature range  
icm  
CC-  
CC+  
T
-40 °C to +125 °C  
oper  
DS13480 - Rev 1  
page 4/36  
 
 
 
 
 
 
 
 
TSV791, TSV792  
Electrical characteristics  
3
Electrical characteristics  
Table 5. Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, T = 25 °C, RL = 10 kΩ connected to VCC / 2 and  
CL = 22 pF (unless otherwise specified).  
Symbol  
Parameter  
Conditions  
DC performance  
T = 25 °C  
Min.  
Typ.  
Max.  
Unit  
± 200  
± 700  
± 5  
V
Input offset voltage  
µV  
io  
-40 °C ≤ T ≤ 125 °C  
-40 °C ≤ T ≤ 125 °C  
Input offset voltage temperature drift (1)  
Input offset voltage long-term drift  
∆V /∆T  
µV/°C  
io  
(2)  
∆V  
T = 25 °C  
750  
2
nV/√month  
io  
T = 25 °C  
(3)  
I
Input bias current  
Input offset current  
pA  
pA  
ib  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
75  
1
(3)  
I
io  
-40 °C ≤ T ≤ 125 °C  
20  
V
+ 200 mV ≤ V  
≤ V  
≤ V  
- 200  
- 200  
CC-  
OUT  
CC+  
CC+  
mV,  
T = 25 °C  
+ 200 mV ≤ V  
110  
90  
133  
113  
132  
V
CC-  
OUT  
mV,  
-40 °C ≤ T ≤ 125 °C  
R = 600 Ω, T = 25 °C  
A
Open loop gain  
dB  
VD  
L
105  
V
+ 300 mV ≤ V  
≤ V  
≤ V  
- 300  
CC-  
OUT  
CC+  
mV,  
R = 600 Ω,  
L
V
+ 300 mV ≤ V  
- 300 mV  
85  
CC-  
OUT  
CC+  
-40 °C ≤ T ≤ 125 °C  
V
V
≤ V  
≤ V  
≤ V  
≤ V  
- 2 V, T = 25°C  
- 2 V,  
100  
90  
120  
120  
100  
92  
CC-  
icm  
CC+  
CMR1  
CMR2  
dB  
dB  
CC-  
icm  
CC+  
Common-mode rejection ratio  
-40 °C ≤ T ≤ 125 °C  
20.log (∆V /∆V  
)
V
V
≤ V  
≤ V  
≤ V , T = 25 °C  
CC+  
io  
icm  
80  
CC-  
CC-  
icm  
icm  
≤ VCC+,  
76  
-40 °C ≤ T ≤ 125 °C  
2.2 V ≤ V ≤ 5.5 V, T = 25°C,  
CC  
90  
90  
109  
108  
V
= 0 V  
ICM  
Supply-voltage rejection ratio 20.log  
(∆V /∆  
SVR  
dB  
V
)
io CC CC  
2.2 V ≤ V ≤ 5.5 V,  
CC  
-40 °C ≤ T ≤ 125 °C, V  
= 0 V  
ICM  
High level output voltage drop  
(V = V - V  
T = 25°C  
20  
25  
10  
15  
V
mV  
OH  
)
OUT  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
OH  
CC+  
Low level output voltage drop  
V
mV  
mA  
OL  
(V = V  
OL  
)
OUT  
-40 °C ≤ T ≤ 125 °C  
OUT connected to V , T = 25 °C  
CC+  
60  
70  
I
I
OUT  
SINK  
DS13480 - Rev 1  
page 5/36  
 
 
TSV791, TSV792  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
35  
Typ.  
60  
Max.  
Unit  
OUT connected to V  
-40 °C ≤ T ≤ 125 °C  
,
CC+  
I
I
SINK  
I
mA  
OUT connected to V , T = 25°C  
OUT  
50  
CC-  
OUT connected to V  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
,
SOURCE  
CC-  
40  
5.5  
6
6
I
Supply current (by operational amplifier)  
mA  
CC  
-40 °C ≤ T ≤ 125 °C  
AC performance  
R = 10 kΩ, C = 22 pF  
GBP  
SR  
Gain bandwidth product  
Slew rate  
35  
50  
30  
MHz  
V/µs  
L
L
R = 10 kΩ, C = 22 pF, A = 1 V/V,  
L
L
V
10 % to 90 %  
V
A
= 4 V , R = 10 kΩ,  
pp L  
OUT  
CR  
Cross talk  
126  
dB  
= +101, f = 1 kHz  
V
R = 10 kΩ  
Φm  
Phase margin  
53  
140  
43  
degrees  
L
f = 10 Hz  
en  
Input voltage noise density  
f = 100 Hz  
nV/√Hz  
f = 10 kHz  
6.5  
9
µV  
en p-p  
Input noise voltage  
Input capacitance  
0.1 Hz ≤ f ≤ 10 Hz  
Differential  
pp  
6.3  
1.6  
C
in  
pF  
Common mode  
1. See Section 5.2 Input offset voltage drift overtemperature.  
2. See Section 5.3 Long term input offset voltage drift.  
3. Guaranteed by characterization.  
DS13480 - Rev 1  
page 6/36  
 
 
 
TSV791, TSV792  
Electrical characteristics  
Table 6. Electrical characteristics at VCC = 3.3 V, VICM = VOUT = VCC / 2, T = 25 °C, RL = 10 kΩ connected to VCC / 2 and  
CL = 22 pF (unless otherwise specified).  
Symbol  
Parameter  
Conditions  
DC performance  
T = 25 °C  
Min.  
Typ.  
Max.  
Unit  
± 200  
± 700  
± 5  
V
Input offset voltage  
µV  
µV/°C  
pA  
io  
-40 °C ≤ T ≤ 125 °C  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
∆V /∆T (1)  
Input offset voltage temperature drift  
Input bias current  
io  
1.5  
60  
1
(2)  
I
ib  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
(2)  
I
Input offset current  
pA  
io  
-40 °C ≤ T ≤ 125 °C  
20  
V
+ 200 mV ≤ V  
≤ V  
≤ V  
- 200 mV,  
- 200 mV,  
CC-  
OUT  
CC+  
CC+  
105  
90  
130  
113  
129  
T = 25 °C  
V
+ 200 mV ≤ V  
CC-  
OUT  
-40 °C ≤ T ≤ 125 °C  
R = 600 Ω, T = 25 °C  
L
A
Open loop gain  
dB  
VD  
100  
V
+ 300 mV ≤ V  
≤ V  
≤ V  
- 300 mV,  
- 300 mV  
CC-  
OUT  
CC+  
R = 600 Ω,  
L
V
+ 300 mV ≤ V  
85  
99  
CC-  
OUT  
CC+  
-40 °C ≤ T ≤ 125 °C  
V
V
≤ V  
≤ V  
≤ V  
≤ V  
- 2 V, T = 25°C  
- 2 V,  
95  
85  
77  
70  
116  
111  
97  
CC-  
icm  
CC+  
CMR1  
CMR2  
dB  
dB  
CC-  
icm  
CC+  
-40 °C ≤ T ≤ 125 °C  
Common-mode rejection ratio 20.log  
(∆V /∆V  
)
icm  
io  
V
V
≤ V  
≤ V  
≤ V , T = 25 °C  
CC+  
CC-  
icm  
icm  
≤ VCC+,  
CC-  
90  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
High level output voltage drop  
(V = V - V  
25  
40  
15  
30  
V
mV  
mV  
OH  
)
OUT  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
OH  
CC+  
Low level output voltage drop  
V
OL  
(V = V  
OL  
)
OUT  
-40 °C ≤ T ≤ 125 °C  
OUT connected to V  
, T = 25 °C  
,
55  
35  
50  
35  
63  
63  
CC+  
CC+  
I
OUT connected to V  
-40 °C ≤ T ≤ 125 °C  
SINK  
I
mA  
mA  
OUT  
OUT connected to V , T = 25 °C  
CC-  
I
OUT connected to V  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
,
SOURCE  
CC-  
5.3  
5.8  
5.8  
I
Supply current (by operational amplifier)  
CC  
-40 °C ≤ T ≤ 125 °C  
AC performance  
R = 10 kΩ, C = 22 pF  
GBP  
SR  
Gain bandwidth product  
Slew rate  
35  
50  
30  
MHz  
V/µs  
L
L
R = 10 kΩ, C = 22 pF, A = 1 V/V,  
L
L
V
DS13480 - Rev 1  
page 7/36  
TSV791, TSV792  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
10 % to 90 %  
= 4 V , R = 10 kΩ, A = +101,  
V
OUT  
pp  
L
V
CR  
Cross talk  
126  
dB  
f = 1 kHz  
R = 10 kΩ  
Φm  
Phase margin  
53  
140  
43  
degrees  
L
f = 10 Hz  
en  
Input voltage noise density  
Input capacitance  
f = 100 Hz  
f = 10 kHz  
Differential  
nV/√Hz  
pF  
6.5  
6.3  
1.6  
C
in  
Common mode  
1. See Section 5.2 Input offset voltage drift overtemperature.  
2. Guaranteed by characterization.  
DS13480 - Rev 1  
page 8/36  
 
 
TSV791, TSV792  
Electrical characteristics  
Table 7. Electrical characteristics at VCC = 2.2 V, VICM = VOUT = VCC / 2, T = 25 °C, RL = 10 kΩ connected to VCC / 2 and  
CL = 22 pF (unless otherwise specified).  
Symbol  
Parameter  
Conditions  
DC performance  
T = 25 °C  
Min.  
Typ.  
Max.  
Unit  
± 50  
± 200  
± 700  
± 5  
V
Input offset voltage  
µV  
µV/°C  
pA  
io  
-40 °C ≤ T ≤ 125 °C  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
∆V /∆T (1)  
Input offset voltage temperature drift  
Input bias current  
io  
1
45  
1
(2)  
I
ib  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
(2)  
I
Input offset current  
pA  
io  
-40 °C ≤ T ≤ 125 °C  
13  
V
+ 200 mV ≤ V  
≤ V  
≤ V  
- 200 mV,  
- 200 mV,  
CC-  
OUT  
CC+  
CC+  
95  
85  
120  
107  
T = 25 °C  
V
+ 200 mV ≤ V  
CC-  
OUT  
-40 °C ≤ T ≤ 125 °C  
R = 600 Ω,  
L
A
Open loop gain  
dB  
VD  
90  
80  
119  
99  
V
+ 300 mV ≤ V  
≤ V  
≤ V  
- 300 mV,  
- 300 mV  
CC-  
OUT  
CC+  
T = 25 °C  
R = 600 Ω,  
L
V
+ 300 mV ≤ V  
CC-  
OUT  
CC+  
-40 °C ≤ T ≤ 125 °C  
V
V
≤ V  
≤ V  
≤ V  
≤ V  
- 2 V, T = 25 °C  
- 2 V,  
73  
67  
94  
85  
CC-  
icm  
CC+  
Common-mode rejection ratio 20.log  
CMR  
dB  
CC-  
icm  
CC+  
(∆V /∆V  
)
icm  
io  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
High level output voltage drop  
(V = V - V  
25  
40  
15  
30  
V
mV  
mV  
OH  
)
OUT  
-40 °C ≤ T ≤ 125 °C  
T = 25 °C  
OH  
CC+  
Low level output voltage drop  
V
OL  
(V = V  
OL  
)
OUT  
-40 °C ≤ T ≤ 125 °C  
OUT connected to V  
, T = 25 °C  
55  
35  
50  
35  
62  
62  
5
CC+  
I
OUT connected to V  
-40 °C ≤ T ≤ 125 °C  
,
SINK  
CC+  
I
mA  
mA  
OUT  
OUT connected to V , T = 25 °C  
CC-  
I
OUT connected to V  
-40 °C ≤ T ≤ 125 °C  
,
SOURCE  
CC-  
V
= 0 V, T = 25 °C  
5.5  
5.5  
ICM  
ICM  
I
Supply current (by operational amplifier)  
CC  
V
= 0 V, -40 °C ≤ T ≤ 125 °C  
AC performance  
R = 10 kΩ  
GBP  
SR  
Gain bandwidth product  
Slew rate  
35  
50  
30  
MHz  
V/µs  
L
R = 10 kΩ, A = 1 V/V, 10 % to 90 %  
L
V
V
= 4 V , R = 10 kΩ, A = +101,  
pp L V  
OUT  
CR  
Cross talk  
126  
dB  
f = 1 kHz  
DS13480 - Rev 1  
page 9/36  
 
TSV791, TSV792  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
69  
Max.  
Unit  
R = 10 kΩ  
L
Φm  
Phase margin  
degrees  
f = 10 Hz  
250  
94  
en  
Input voltage noise density  
Input capacitance  
f = 100 Hz  
f = 10 kHz  
Differential  
Common mode  
nV/√Hz  
pF  
15  
6.3  
1.6  
C
in  
1. See Section 5.2 Input offset voltage drift overtemperature.  
2. Guaranteed by characterization.  
DS13480 - Rev 1  
page 10/36  
 
 
TSV791, TSV792  
Typical performance characteristics  
4
Typical performance characteristics  
RL = 10 kΩ connected to VCC / 2 and CL = 22 pF, unless otherwise specified.  
Figure 4. Input offset voltage distribution at  
VCC = 5 V  
Figure 3. Supply current vs. supply voltage  
Figure 6. Input offset voltage vs. temperature at  
VCC = 5 V  
Figure 5. Input offset voltage distribution at  
VCC = 2.2 V  
DS13480 - Rev 1  
page 11/36  
 
TSV791, TSV792  
Typical performance characteristics  
Figure 7. Input offset voltage vs. temperature at  
VCC = 2.2 V  
Figure 8. Input offset voltage thermal coefficient  
distribution at VCC = 5 V  
Figure 9. Input offset voltage thermal coefficient at  
VCC = 2.2 V  
Figure 10. Input offset voltage vs. supply voltage  
Figure 11. Input offset voltage vs. common mode  
voltage at VCC = 5 V  
Figure 12. Input offset voltage vs. common mode  
voltage at VCC = 2.2 V  
DS13480 - Rev 1  
page 12/36  
TSV791, TSV792  
Typical performance characteristics  
Figure 13. Input bias current vs. temperature at  
VICM = VCC / 2  
Figure 14. Input bias current vs. common mode  
voltage at VCC = 5 V  
Figure 15. Output current vs. output voltage at VCC Figure 16. Output current vs. output voltage at VCC  
= 5 V  
= 2.2 V  
Figure 17. Output saturation voltage (VOL) vs.  
supply voltage  
Figure 18. Output saturation voltage (VOH) vs.  
supply voltage  
DS13480 - Rev 1  
page 13/36  
TSV791, TSV792  
Typical performance characteristics  
Figure 19. Positive slew rate at VCC = 5 V  
Figure 20. Negative slew rate at VCC = 5 V  
Figure 22. Open loop bode diagram at VCC = 5 V  
Figure 24. Closed loop bode diagram at VCC = 5 V  
Figure 21. Slew rate vs. VCC  
Figure 23. Open loop bode diagram at VCC = 2.2 V  
DS13480 - Rev 1  
page 14/36  
TSV791, TSV792  
Typical performance characteristics  
Figure 26. Phase margin vs. common mode voltage  
and load current at VCC = 5 V  
Figure 25. Closed loop bode diagram at VCC = 2.2 V  
Figure 28. Small step response at VCC = 5 V  
Figure 27. Phase margin vs. capacitive load  
Figure 29. Small step response at VCC = 2.2 V  
Figure 30. Desaturation from low rail at VCC = 5 V  
DS13480 - Rev 1  
page 15/36  
TSV791, TSV792  
Typical performance characteristics  
Figure 32. Settling time output high to low at  
VCC = 5 V  
Figure 31. Desaturation from high rail at VCC = 5 V  
Figure 33. Settling time output low to high at  
VCC = 5 V  
Figure 34. Settling time output high to low at  
VCC = 2.2 V  
Figure 36. Small step overshoot vs. load  
capacitance  
Figure 35. Settling time output low to high at  
VCC = 2.2 V  
DS13480 - Rev 1  
page 16/36  
 
 
 
TSV791, TSV792  
Typical performance characteristics  
Figure 38. Noise vs. frequency  
Figure 37. Linearity vs. load resistance at VCC = 5 V  
Figure 39. Noise vs. time at VCC = 5 V  
Figure 40. THD+N vs. frequency  
Figure 41. THD+N vs. output voltage  
Figure 42. CMRR vs. frequency at VCC = 5 V  
DS13480 - Rev 1  
page 17/36  
TSV791, TSV792  
Typical performance characteristics  
Figure 43. PSRR vs. frequency at VCC = 5 V  
Figure 44. Crosstalk vs. frequency at VCC = 5 V  
DS13480 - Rev 1  
page 18/36  
TSV791, TSV792  
Application information  
5
Application information  
5.1  
Operating voltages  
The TSV79x devices can operate from 2.2 to 5.5 V. The parameters are fully specified at 2.2 V, 3.3 V and 5 V  
power supplies. However, the parameters are very stable over the full VCC range and several characterization  
curves show the TSV79x device characteristics over the full operating range. Additionally, the main specifications  
are guaranteed in extended temperature range from - 40 to 125 °C.  
The TSV79X devices are rail-to-rail input and output, and feature two input transistor pairs, allowing the op-amp  
to operate over all the common mode range, from Vcc- - 0.1 V, to Vcc+ + 0.1 V. The input pair transition typically  
occurs at Vcc+ - 1.4 V, as seen in figures 11 and 12. The precision and dynamic performances are particularly  
optimized on the low pair, from Vcc- - 0.1 V to Vcc+ - 2 V, and operating in this Vicm range is advised for best  
performance whenever possible. Also, operating near the pair transition should be avoided when precision is a  
concern, as CMRR can be lower in these conditions.  
5.2  
Input offset voltage drift overtemperature  
The maximum input voltage drift variation overtemperature is defined as the offset variation related to the offset  
value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and  
the amplifier input offset (Vio) is a major contributor to the chain accuracy.  
The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum  
input voltage drift overtemperature enables the system designer to anticipate the effect of temperature variations.  
The maximum input voltage drift overtemperature is computed using Equation 1.  
∆ V  
io  
∆ T  
V
T − V 25°C  
io  
io  
= max  
(1)  
T − 25°C  
T = 40°C and T = 125°C  
The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk  
(process capability index) greater than 1.3.  
5.3  
Long term input offset voltage drift  
To evaluate product reliability, two types of stress acceleration are used:  
Voltage acceleration, by changing the applied voltage  
Temperature acceleration, by changing the die temperature (below the maximum junction temperature  
allowed by the technology) with the ambient temperature.  
The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2  
β . V − V  
S
U
A
= e  
(2)  
FV  
Where:  
AFV is the voltage acceleration factor  
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)  
VS is the stress voltage used for the accelerated test  
VU is the voltage used for the application  
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.  
E
a
1
1
.
A
= e  
(3)  
k
T
T
FT  
U
S
Where:  
AFT is the temperature acceleration factor  
Ea is the activation energy of the technology based on the failure rate  
k is the Boltzmann constant (8.6173 x 10-5 eV . K-1)  
TU is the temperature of the die when VU is used (K)  
TS is the temperature of the die under temperature stress (K)  
DS13480 - Rev 1  
page 19/36  
 
 
 
 
TSV791, TSV792  
Unused channel  
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature  
acceleration factor (Equation 4).  
A
= A . A  
FT FV  
(4)  
F
AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can  
then be used in Equation x to calculate the number of months of use equivalent to 1000 hours of reliable stress  
duration.  
Months = AF × 1000 h × 12 months / (24 h × 365.25 days)  
To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the  
maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift  
(in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see  
Equation 5).  
V
cc  
V
= max V  
op  
witV  
icm  
=
(5)  
CC  
2
The long term drift parameter ΔVio (in µV.month-1/2), estimating the reliability performance of the product, is  
obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of  
months (Equation 6).  
V
drift  
io  
∆ V  
io  
=
(6)  
(7)  
monts  
Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration.  
The Vio final drift, in µV, to be measured on the device in real operation conditions can be computed from  
Equation 7.  
E
a
1
297  
1
β . V − V  
CC CC nom  
.
V
t
, T , V  
= ∆ V  
io  
.
t
. e  
. e  
k
T
io final drift op op CC  
op  
op  
Where:  
ΔVio is the long term drift parameter in µV.√month  
top is the operating time seen by the device, in months  
Top is the operating temperature  
VCC is the power supply during operating time  
VCC nom is the nominal VCC at which the ΔVio is computed (5 V for TSV79x)  
Ea is the activation energy of the technology (here 0.7 eV).  
5.4  
Unused channel  
When one of the two channels of the TSV792 is not used, it must be properly connected in order to avoid  
internal oscillations that can negatively impact the signal integrity on the other channel, as well as the current  
consumption. Two different configurations can be used:  
Gain configuration: the channel can be set in gain, the input can be set to any voltage within the Vicm operating  
range.  
Comparator configuration: the channel can be set to a comparator configuration (without negative feedback). In  
this case, positive and negative inputs can be set to any value provided these values are significantly different  
(100 mV or more, to avoid oscillation between positive and negative state).  
5.5  
EMI rejection  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many op-amps is a change in the offset voltage as a result of RF  
signal rectification. EMIRR is defined in Equation 8:  
V
in pp  
EMIRR = 20 . log  
(8)  
∆ V  
io  
DS13480 - Rev 1  
page 20/36  
 
 
TSV791, TSV792  
Maximum power dissipation  
The TSV79x has been specially designed to minimize susceptibility to EMIRR and shows a low sensitivity. As  
seen in Figure 45, EMI rejection ratio has been measured on both inputs and output, from 400 MHz to 2.4 GHz.  
Figure 45. EMIRR on IN+ and IN- pins  
EMIRR performances might be improved by adding small capacitances (in the pF range) on the inputs, power  
supply and output pins. These capacitances help to minimize the impedance of these nodes at high frequencies.  
5.6  
Maximum power dissipation  
The usable output load current drive is limited by the maximum power dissipation allowed by the device package.  
The absolute maximum junction temperature for the TSV79x is 150 °C. The junction temperature can be  
estimated as follows:  
T
= P × θ + T  
JA A  
(9)  
J
D
TJ is the die junction temperature  
PD is the power dissipated in the package  
θJA is the junction to ambient thermal resistance of the package.  
TA is the ambient temperature.  
The power dissipated in the package PD is the sum of the quiescent power dissipated and the power dissipated  
by the output stage transistor. It is calculated as follows:  
P
P
= V × I  
+ V  
+ V  
− V  
× ILoad when the op-amp is sourcing the current.  
× ILoad when the op-amp is sinking the current.  
D
CC  
CC  
CC +  
OUT  
= V × I  
− V  
CC −  
D
CC  
CC  
OUT  
Do not exceed the 150 °C maximum junction temperature for the device. Exceeding the junction temperature limit  
can cause degradation in the parametric performance or even destroy the device.  
5.7  
Capacitive load and stability  
Stability analysis must be performed for large capacitive loads over 22 pF. Increasing the load capacitance to high  
values produces gain peaking in the frequency response, with overshoot and ringing in the step response.  
DS13480 - Rev 1  
page 21/36  
 
 
TSV791, TSV792  
Resistor values for high speed op-amp design  
Generally, unity gain configuration is the worst situation for stability and the ability to drive large capacitive loads.  
For additional capacitive load drive capability in unity-gain configuration, stability can be improved by inserting a  
small resistor RISO (10 Ω to 22 Ω) in series with the output (see Figure 36). This resistor significantly reduces  
ringing while maintaining DC performance for purely capacitive loads. However, if there is a resistive load in  
parallel with the capacitive load, a voltage divider is created introducing a gain error at the output and slightly  
reducing the output swing. The error introduced is proportional to the ratio RISO / RL. RISO modifies the maximum  
capacitive load acceptable from a stability point-of-view as described in the figure below:  
Figure 46. Test configuration for RISO  
Please note that RISO = 22 Ω is sufficient to make the TSV79x stable whatever the capacitive load.  
5.8  
Resistor values for high speed op-amp design  
Due to its high gain bandwidth product (GBP), this op-amp is particularly sensitive to parasitic impedances. Board  
parasitics should be taken into account in any sensitive design. Indeed, excessive parasitics (both capacitive  
and inductive) in the op-amp frequency range can alter performances and stability. These issues can often be  
mitigated by lowering the resistive impedances.  
More specifically, the RC network created by the schematic resistors (Rf and Rg) and the parasitic capacitances  
of both the op-amp (as documented in Table 5 to Table 7 and illustrated in Figure 46) and the PCB can generate  
a pole below or in the same order of magnitude than the closed-loop bandwidth of the circuit. In this case, the  
feedback circuit is not able to fully play its role at high frequency, and the application can be unstable. This issue  
can happen when the schematic gain is low (typically < 5), or the device is used in follower mode with a resistor in  
the feedback. In these cases, it is advised to use a low value feedback resistor (Rf), typically 600 Ω.  
Figure 47. Inverting amplifier configuration with parasitic input capacitances  
DS13480 - Rev 1  
page 22/36  
 
 
TSV791, TSV792  
Settling time  
Also, some designs use an input resistor on the positive input, generally of the same value than the input on the  
negative resistor. This resistor can be useful to balance the input currents on the positive and negative inputs,  
and reduce the impact of those input currents on precision. However, this is not useful on TSV79x as the input  
currents are very low. Furthermore, this resistor can also interact with the input capacitances to generate a pole.  
The frequency of this pole should be kept higher than the closed-loop bandwidth frequency.  
The macromodel provided takes into account the circuit parasitic capacitors. Thus, a transient SPICE simulation  
(100 mV step) is an easy way to evaluate the stability of the application. However, this cannot replace hardware  
evaluation of the application circuit.  
5.9  
Settling time  
Settling time in an application can be defined as the amount of time between the input changes, and the output  
reaching its final value. It is usually defined with a given tolerance, so the output stability is reached when the  
output stays within the given range around the final value.  
In Figure 32 to Figure 35, the settling time is measured in an inverting configuration, using the so-called “false  
summing node” circuit.  
Figure 48. Settling time measurement configuration  
This circuit is used with a step input voltage from a positive or negative value, to 0 V. The measurement point  
being (Vin - Vout) / 2, and Vout being in an ideal circuit equal to -Vin, the measurement point gives half of the error  
on Vout, comparatively to Vin. This error is compared to the tolerance, 0.1% for this circuit, to deduce the settling  
time.  
This characteristic is particularly useful when driving an ADC. It is related to the slew rate, GBP and stability of the  
circuit. It also varies with the circuit gain, the circuit load, and the input voltage step value. However, computing  
the value of the settling time in a given configuration is not straightforward. The macromodel can give a good  
estimation, but prototyping can be needed for fine circuit optimization.  
5.10  
PCB layout recommendations  
Particular attention must be paid to the layout of the PCB tracks connected to the amplifier, load, and power  
supply. The power and ground traces are critical as they must provide adequate energy and grounding for  
all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic  
inductance. In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that  
connects the bottom and top layer ground planes together in many locations is often used. The copper traces that  
connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance.  
DS13480 - Rev 1  
page 23/36  
 
 
 
TSV791, TSV792  
Decoupling capacitor  
5.11  
5.12  
Decoupling capacitor  
In order to ensure op-amp full functionality, it is mandatory to place a decoupling capacitor of at least 22 nF as  
close as possible to the op-amp supply pins. A good decoupling helps to reduce electromagnetic interference  
impact.  
Macro model  
Accurate macro models of the TSV79x device are available on the STMicroelectronics’ website at: www.st.com.  
These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSV79x  
operational amplifier. They emulate the nominal performance of a typical device at 25 °C within the specified  
operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the  
right operational amplifier, but they do not replace onboard measurements.  
DS13480 - Rev 1  
page 24/36  
 
 
TSV791, TSV792  
Typical applications  
6
Typical applications  
6.1  
Low-side current sensing  
Power management mechanisms are found in most electronic systems. Current sensing is useful for protecting  
applications. The low-side current sensing method consists of placing a sense resistor between the load and the  
circuit ground. The resulting voltage drop is amplified using the TSV79x (see Figure 48).  
Figure 49. Low-side current sensing schematic  
Vout can be expressed as follows:  
R
R
R
R
. R  
R
R
g2  
+ R  
f1  
g2 f2  
f1  
V
= R  
. I 1 −  
. 1 +  
+ I  
.
. 1 +  
− I . R  
f1  
(10)  
(11)  
Out  
sunt  
p
n
R
R
+ R  
g2  
f2  
g1  
g2  
f2  
g1  
R
f1  
− V . 1 +  
io  
R
g1  
Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, Equation 10 can be simplified as follows:  
R
R
R
R
f
f
V
= R  
sunt  
. I .  
− V . 1 +  
io  
+ R . I  
io  
Out  
f
g
g
The main advantage of using the TSV79x for a low-side current sensing relies on its low Vio, compared to general  
purpose operational amplifiers. For the same current and targeted accuracy, the shunt resistor can be chosen  
with a lower value, resulting in lower power dissipation, lower drop in the ground path, and lower cost. Particular  
attention must be paid to the matching and precision of Rg1, Rg2, Rf1, and Rf2, to maximize the accuracy of the  
measurement.  
6.2  
Photodiode transimpedance amplification  
The TSV79x, with high bandwidth and slew rate, is well suited for photodiode signal conditioning in a  
transimpedance amplifier circuit. This application is useful in high performance UV sensors, smoke detectors  
or particle sensors.  
DS13480 - Rev 1  
page 25/36  
 
 
 
TSV791, TSV792  
Photodiode transimpedance amplification  
Figure 50. Photodiode transimpedance amplifier circuit  
The transimpedance amplifier circuit converts the small photodiode output current in the nA range, into a voltage  
signal readable by an ADC following Equation 12:  
V
= R . I  
potodiode  
(12)  
Out  
f
The feedback resistance is usually in the MΩ range, in order to get a large enough voltage output range.  
However, together with the diode parasitic capacitance, the op-amp input capacitances and the PCB stray  
capacitance, this feedback network creates a pole that makes the circuit oscillate. Using a small (few pF)  
capacitor in parallel with the feedback resistor is mandatory to stabilize the circuit. The value of this capacitor can  
be tuned to optimize the application settling time with a spice simulation using the op-amp macromodel, or by  
prototyping.  
For more details on tuning this circuit, please read the application note AN4451.  
DS13480 - Rev 1  
page 26/36  
TSV791, TSV792  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
DS13480 - Rev 1  
page 27/36  
 
TSV791, TSV792  
SOT23-5 package information  
7.1  
SOT23-5 package information  
Figure 51. SOT23-5 package outline  
Table 8. SOT23-5 package mechanical data  
Dimensions  
Millimeters  
Ref.  
Inches  
Min.  
Typ.  
Max.  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
Min.  
Typ.  
Max.  
0.057  
0.006  
0.051  
0.020  
0.020  
0.118  
A
A1  
A2  
B
0.90  
1.20  
0.035  
0.047  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.35  
0.035  
0.014  
0.004  
0.110  
0.041  
0.016  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.014  
C
D
D1  
e
E
2.60  
1.50  
0.10  
0°  
3.00  
1.75  
0.60  
10°  
0.102  
0.059  
0.004  
0°  
0.118  
0.069  
0.024  
10°  
F
L
K
DS13480 - Rev 1  
page 28/36  
 
TSV791, TSV792  
DFN8 2x2 package information  
7.2  
DFN8 2x2 package information  
Figure 52. DFN8 2x2 package outline  
Table 9. DFN8 2x2 package mechanical data  
Dimensions  
Millimeters  
Ref.  
Inches  
Min.  
Typ.  
Max.  
0.60  
0.05  
Min.  
Typ.  
Max.  
0.024  
0.002  
A
A1  
A3  
b
0.51  
0.55  
0.020  
0.022  
0.15  
0.25  
2.00  
1.60  
2.00  
0.90  
0.50  
0.325  
0.006  
0.010  
0.079  
0.063  
0.079  
0.035  
0.020  
0.013  
0.18  
1.85  
1.45  
1.85  
0.75  
0.30  
2.15  
1.70  
2.15  
1.00  
0.007  
0.073  
0.057  
0.073  
0.030  
0.012  
0.085  
0.067  
0.085  
0.039  
D
D2  
E
E2  
e
L
0.225  
0.425  
0.08  
0.009  
0.017  
0.003  
ddd  
DS13480 - Rev 1  
page 29/36  
 
TSV791, TSV792  
DFN8 2x2 package information  
Figure 53. DFN8 2x2 recommended footprint  
Note:  
The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating.  
DS13480 - Rev 1  
page 30/36  
TSV791, TSV792  
MiniSO8 package information  
7.3  
MiniSO8 package information  
Figure 54. MiniSO8 package outline  
Table 10. MiniSO8 package mechanical data  
Dimensions  
Millimeters  
Ref.  
Inches  
Min.  
Typ.  
Max.  
1.1  
Min.  
Typ.  
Max.  
0.043  
0.0006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
A
A1  
A2  
b
0
0.15  
0.95  
0.40  
0.23  
3.20  
5.15  
3.10  
0
0.75  
0.22  
0.08  
2.80  
4.65  
2.80  
0.85  
0.030  
0.009  
0.003  
0.11  
0.033  
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
0.183  
0.11  
E1  
e
L
0.40  
0°  
0.80  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.10  
0.004  
DS13480 - Rev 1  
page 31/36  
 
TSV791, TSV792  
SO-8 package information  
7.4  
SO-8 package information  
Figure 55. SO-8 package outline  
0016023_So-807_fig2_Rev10  
Table 11. SO-8 mechanical data  
mm  
Dim.  
Min.  
Typ.  
Max.  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.28  
0.10  
0.10  
4.80  
5.80  
3.80  
0.51  
0.48  
0.25  
0.23  
5.00  
6.20  
4.00  
b1  
c
c1  
D
4.90  
6.00  
3.90  
1.27  
E
E1  
e
h
0.25  
0.40  
0.50  
1.27  
L
L1  
L2  
k
1.04  
0.25  
0°  
8°  
ccc  
0.10  
DS13480 - Rev 1  
page 32/36  
 
TSV791, TSV792  
Ordering information  
8
Ordering information  
Table 12. Order code  
Temperature range  
Order code  
Channel  
Package  
SOT23-5  
DFN8 2x2  
MiniSO8  
SO8  
Marking  
K2B  
TSV791ILT  
TSV792IQ2T  
TSV792IST  
TSV792IDT  
TSV791IYLT  
TSV792IYST  
TSV792IYDT  
1
1
2
2
2
2
2
K2B  
-40 °C to 125 °C  
K2B  
TSV792I  
K227  
SOT23-5  
MiniSO8  
SO8  
-40 °C to 125 °C  
K227  
automotive grade (1)  
TSV792Y  
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening  
according to AEC Q001 & Q 002 or equivalent are on-going.  
DS13480 - Rev 1  
page 33/36  
 
 
TSV791, TSV792  
Revision history  
Table 13. Document revision history  
Date  
09-Nov-2020  
Revision  
Changes  
1
Initial release.  
DS13480 - Rev 1  
page 34/36  
 
TSV791, TSV792  
Contents  
Contents  
1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
1.1  
1.2  
TSV791 single operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
TSV792 dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2
3
4
5
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Application information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Input offset voltage drift over the temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Unused channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
EMI rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Maximum power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Capacitive load and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Resistor values for high speed op-amp design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Settling time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.10 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.11 Decoupling capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.12 Macro model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6
7
6.1  
6.2  
Low-side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Photodiode transimpedance amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
7.1  
7.2  
7.3  
7.4  
DFN8 2x2 mm package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
DFN8 2x2 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
DS13480 - Rev 1  
page 35/36  
TSV791, TSV792  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS13480 - Rev 1  
page 36/36  

相关型号:

TSV791ILT

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp
STMICROELECTR

TSV791IYLT

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp
STMICROELECTR

TSV792

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp
STMICROELECTR

TSV792IDT

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp
STMICROELECTR

TSV792IQ2T

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp
STMICROELECTR

TSV792IST

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp
STMICROELECTR

TSV792IYDT

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp
STMICROELECTR

TSV792IYST

High bandwidth (50 MHz) low offset (200 μV) rail-to-rail 5 V op-amp
STMICROELECTR

TSV850

Low-power, high-accuracy, general-purpose operational amplifier
STMICROELECTR

TSV850A

Low-power, high-accuracy, general-purpose operational amplifier
STMICROELECTR

TSV850AILT

Low-power, high-accuracy, general-purpose operational amplifier
ETC

TSV850ILT

Low-power, high-accuracy, general-purpose operational amplifier
ETC