TSX56X [STMICROELECTRONICS]

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers;
TSX56X
型号: TSX56X
厂家: ST    ST
描述:

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers

文件: 总28页 (文件大小:1410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSX56x, TSX56xA  
Micropower, wide bandwidth (900 kHz), 16 V CMOS operational  
amplifiers  
Datasheet - production data  
Easy interfacing with high impedance  
sensors  
Related topics  
SOT23-5 (single)  
DFN8 2x2 (dual)  
See TSX63x series for reduced power  
consumption (45 mA, 200 kHz)  
See TSX92x series for higher gain  
bandwidth products (10 MHz)  
MiniSO8 (dual)  
Applications  
Industrial and automotive signal conditioning  
Active filtering  
Medical instrumentation  
High impedance sensors  
Description  
The TSX56x, TSX56xA series of operational  
amplifiers benefit from STMicroelectronics® 16 V  
CMOS technology to offer state-of-the-art  
QFN16 3x3 (quad)  
TSSOP14 (quad)  
accuracy and performance in the smallest  
industrial packages. The TSX56x, TSX56xA have  
pinouts compatible with industrial standards and  
offer an outstanding speed/power consumption  
ratio, 900 kHz gain bandwidth product while  
consuming only 250 µA at 16 V. Such features  
make the TSX56x, TSX56xA ideal for sensor  
interfaces and industrial signal conditioning. The  
wide temperature range and high ESD tolerance  
ease use in harsh automotive applications.  
Features  
Low power consumption: 235 µA typ. at 5 V  
Supply voltage: 3 V to 16 V  
Gain bandwidth product: 900 kHz typ.  
Low offset voltage  
“A” version: 600 µV max.  
Standard version: 1 mV max.  
Low input bias current: 1 pA typ.  
High tolerance to ESD: 4 kV  
Table 1: Device summary  
Wide temperature range: -40 to 125 °C  
Automotive qualification  
Tiny packages available: SOT23-5,  
DFN8 2 mm x 2 mm, MiniSO8,  
QFN16 3 mm x 3 mm, and TSSOP14  
Standard VIO  
TSX561  
Enhanced VIO  
TSX561A  
Version  
Single  
Dual  
TSX562  
TSX562A  
TSX564  
TSX564A  
Quad  
Benefits  
Power savings in power-conscious  
applications  
February 2017  
DocID023274 Rev 5  
1/28  
www.st.com  
This is information on a product in full production.  
Contents  
TSX56x, TSX56xA  
Contents  
1
2
3
4
5
Pinout information...........................................................................3  
Absolute maximum ratings and operating conditions .................4  
Electrical characteristics ................................................................6  
Electrical characteristic curves....................................................12  
Application information ................................................................16  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
Operating voltages..........................................................................16  
Rail-to-rail input...............................................................................16  
Input offset voltage drift over temperature.......................................16  
Long term input offset voltage drift..................................................17  
PCB layouts ....................................................................................18  
Macromodel ....................................................................................18  
6
Package information .....................................................................19  
6.1  
6.2  
6.3  
6.4  
6.5  
SOT23-5 package information ........................................................20  
DFN8 2x2 package information.......................................................21  
MiniSO8 package information .........................................................22  
QFN16 3x3 package information.....................................................23  
TSSOP14 package information.......................................................25  
7
8
Ordering information.....................................................................26  
Revision history ............................................................................27  
2/28  
DocID023274 Rev 5  
TSX56x, TSX56xA  
Pinout information  
1
Pinout information  
Figure 1: Pin connections for each package (top view)  
Single  
SOT23-5 (TSX561)  
Dual  
DFN8 2x2 (TSX562)  
MiniSO8 (TSX562)  
Quad  
QFN16 3x3 (TSX564)  
TSSOP14 (TSX564)  
DocID023274 Rev 5  
3/28  
Absolute maximum ratings and operating  
TSX56x, TSX56xA  
conditions  
2
Absolute maximum ratings and operating conditions  
Table 2: Absolute maximum ratings (AMR)  
Symbol  
VCC  
Vid  
Parameter  
Value  
Unit  
Supply voltage (1)  
18  
Differential input voltage (2)  
Input voltage (3)  
±VCC  
V
Vin  
(VCC-) - 0.2 to (VCC+) + 0.2  
Iin  
Input current (4)  
10  
-65 to 150  
150  
250  
120  
190  
80  
mA  
°C  
Tstg  
Tj  
Storage temperature  
Maximum junction temperature  
SOT23-5  
DFN8 2x2  
MiniSO8  
Thermal resistance  
Rthja  
junction-to-ambient (5) (6)  
QFN16 3x3  
TSSOP14  
DFN8 2x2  
QFN16 3x3  
°C/W  
100  
33  
Thermal resistance  
junction-to-case  
Rthjc  
30  
HBM: human body model (7)  
4
kV  
V
MM: machine model for TSX561 (8)  
200  
100  
1.5  
ESD  
MM: machine model for TSX562 and TSX564 (8)  
CDM: charged device model (9)  
Latch-up immunity  
kV  
200  
mA  
Notes:  
(1)All voltage values, except the differential voltage are with respect to the network ground terminal.  
(2)The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.  
(3)  
V
- Vin must not exceed 18 V, Vin must not exceed 18 V  
cc  
(4)Input current must be limited by a resistor in series with the inputs.  
(5)  
R
th  
are typical values.  
(6)Short-circuits can cause excessive heating and destructive dissipation.  
(7)Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all  
couples of pin combinations with other pins floating.  
(8)Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of  
the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with  
other pins floating.  
(9)Charged device model: all pins plus package are charged together to the specified voltage and then discharged  
directly to ground.  
4/28  
DocID023274 Rev 5  
 
 
 
 
 
 
 
 
 
 
TSX56x, TSX56xA  
Absolute maximum ratings and operating  
conditions  
Table 3: Operating conditions  
Parameter  
Symbol  
Value  
3 to 16  
Unit  
V
VCC  
Vicm  
Toper  
Supply voltage  
Common-mode input voltage range  
Operating free-air temperature range  
(VCC-) - 0.1 to (VCC+) + 0.1  
-40 to 125  
°C  
DocID023274 Rev 5  
5/28  
Electrical characteristics  
TSX56x, TSX56xA  
3
Electrical characteristics  
Table 4: Electrical characteristics at VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and  
RL = 10 kΩ connected to VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
DC performance  
TSX56xA, T = 25 °C  
TSX56xA, -40 °C < T < 125 °C  
TSX56x, T = 25 °C  
TSX56x, -40 °C < T < 125 °C  
-40 °C < T < 125 °C (1)  
T = 25 °C  
Min.  
Typ.  
Max.  
Unit  
600  
1800  
1
μV  
Vio  
Offset voltage  
mV  
2.2  
ΔVio/ΔT  
Input offset voltage drift  
2
1
12  
µV/°C  
100 (2)  
200 (2)  
100 (2)  
200 (2)  
Input bias current,  
Vout = VCC/2  
Iib  
-40 °C < T < 125 °C  
T = 25 °C  
1
pA  
1
Input offset current,  
Vout = VCC/2  
Iio  
-40 °C < T < 125 °C  
T = 25 °C  
1
Common mode rejection  
ratio, CMR = 20 log  
(ΔVic/ΔVio), Vic = -0.1 V to  
VCC - 1.5 V, Vout = VCC/2,  
RL > 1 MΩ  
63  
59  
47  
45  
80  
CMR1  
-40 °C < T < 125 °C  
T = 25 °C  
Common mode rejection  
ratio, CMR = 20 log  
(ΔVic/ΔVio), Vic = -0.1 V to  
VCC + 0.1 V, Vout = VCC/2,  
RL > 1 MΩ  
66  
dB  
CMR2  
Avd  
-40 °C < T < 125 °C  
Large signal voltage gain,  
Vout = 0.5 V to (VCC - 0.5 V),  
RL > 1 MΩ  
T = 25 °C  
85  
83  
-40 °C < T < 125 °C  
T = 25 °C  
-40 °C < T < 125 °C  
T = 25 °C  
70  
100  
70  
High-level output voltage,  
VOH = VCC - Vout  
VOH  
mV  
VOL  
Low-level output voltage  
Isink, Vout = VCC  
-40 °C < T < 125 °C  
T = 25 °C  
100  
4.3  
2.5  
3.3  
2.5  
5.3  
4.3  
-40 °C < T < 125 °C  
T = 25 °C  
Iout  
mA  
μA  
Isource, Vout = 0 V  
-40 °C < T < 125 °C  
T = 25 °C  
Supply current, per  
channel, Vout = VCC/2,  
RL > 1 MΩ  
220  
300  
350  
ICC  
-40 °C < T < 125 °C  
AC performance  
GBP  
Fu  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
600  
800  
690  
55  
kHz  
RL = 10 kΩ, CL = 100 pF  
ɸm  
Gm  
Degrees  
dB  
Gain margin  
9
6/28  
DocID023274 Rev 5  
 
TSX56x, TSX56xA  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
RL = 10 kΩ, CL = 100 pF,  
Vout = 0.5 V to VCC - 0.5 V  
SR  
Slew rate  
1
V/μs  
f = 1 kHz  
55  
29  
Equivalent input noise  
voltage density  
en  
nV/√Hz  
f = 10 kHz  
Low-frequency peak-to-  
peak input noise  
∫en  
Bandwidth, f = 0.1 to 10 Hz  
16  
µVpp  
Follower configuration, fin = 1 kHz,  
RL = 100 kΩ, Vicm = (VCC -1.5 V)/2,  
BW = 22 kHz, Vout = 1 Vpp  
Total harmonic distortion +  
noise  
THD+N  
0.004  
%
Notes:  
(1)See Section 5.3: "Input offset voltage drift over temperature"  
(2)Guaranteed by design  
DocID023274 Rev 5  
7/28  
Electrical characteristics  
TSX56x, TSX56xA  
Table 5: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and  
RL = 10 kΩ connected to VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
DC performance  
Min.  
Typ.  
Max.  
Unit  
TSX56xA, T = 25 °C  
600  
1800  
1
μV  
TSX56xA, -40 °C < T < 125 °C  
TSX56x, T = 25 °C  
Vio  
Offset voltage  
mV  
TSX56x, -40 °C < T < 125 °C  
-40 °C < T < 125 °C (1)  
2.2  
12  
ΔVio/ΔT  
ΔVio  
Input offset voltage drift  
2
5
µV/°C  
Long-term input offset  
voltage drift  
nV/  
√month  
T = 25 °C (2)  
T = 25 °C  
-40 °C < T < 125 °C  
T = 25 °C  
1
1
100 (3)  
200 (3)  
100 (3)  
200 (3)  
Input bias current,  
Vout = VCC/2  
Iib  
pA  
1
Input offset current,  
Vout = VCC/2  
Iio  
-40 °C < T < 125 °C  
T = 25 °C  
1
Common mode rejection  
ratio, CMR = 20 log  
(ΔVic/ΔVio), Vic = -0.1 V to  
VCC - 1.5 V, Vout = VCC/2,  
RL > 1 MΩ  
66  
63  
50  
47  
84  
CMR1  
-40 °C < T < 125 °C  
T = 25 °C  
Common mode rejection  
ratio, CMR = 20 log  
(ΔVic/ΔVio), Vic = -0.1 V to  
VCC + 0.1 V, Vout = VCC/2,  
RL > 1 MΩ  
69  
dB  
CMR2  
Avd  
-40 °C < T < 125 °C  
Large signal voltage gain,  
Vout = 0.5 V to (VCC - 0.5 V),  
RL > 1 MΩ  
T = 25 °C  
85  
83  
-40 °C < T < 125 °C  
RL = 10 kΩ, T = 25 °C  
RL = 10 kΩ, -40 °C < T < 125 °C  
RL = 10 kΩ, T = 25 °C  
70  
100  
70  
High-level output voltage,  
VOH = VCC - Vout  
VOH  
mV  
VOL  
Low-level output voltage  
RL = 10 kΩ, -40 °C < T < 125 °C  
Vout = VCC, T = 25 °C  
100  
11  
8
14  
12  
Isink  
Vout = VCC, -40 °C < T < 125 °C  
Vout = 0 V, T = 25 °C  
Iout  
mA  
μA  
9
Isource  
Vout = 0 V, -40 °C < T < 125 °C  
T = 25 °C  
7
Supply current, per  
channel, Vout = VCC/2,  
RL > 1 MΩ  
235  
350  
400  
ICC  
-40 °C < T < 125 °C  
AC performance  
GBP  
Fu  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
700  
850  
730  
55  
kHz  
RL = 10 kΩ, CL = 100 pF  
ɸm  
Gm  
Degrees  
dB  
Gain margin  
9
8/28  
DocID023274 Rev 5  
 
TSX56x, TSX56xA  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
RL = 10 kΩ, CL = 100 pF,  
Vout = 0.5 V to VCC - 0.5 V  
SR  
Slew rate  
1.1  
V/μs  
f = 1 kHz  
55  
29  
Equivalent input noise  
voltage density  
en  
nV/√Hz  
f = 10 kHz  
Low-frequency peak-to-  
peak input noise  
∫en  
Bandwidth, f = 0.1 to 10 Hz  
15  
µVpp  
Follower configuration, fin = 1 kHz,  
RL = 100 kΩ, Vicm = (VCC -1.5 V)/2,  
BW = 22 kHz, Vout = 2 Vpp  
Total harmonic distortion +  
noise  
THD+N  
0.002  
%
Notes:  
(1)See Section 5.3: "Input offset voltage drift over temperature"  
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.  
(3)Guaranteed by design  
DocID023274 Rev 5  
9/28  
Electrical characteristics  
TSX56x, TSX56xA  
Table 6: Electrical characteristics at VCC+ = 16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and  
RL = 10 kΩ connected to VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
DC performance  
Min.  
Typ.  
Max.  
Unit  
TSX56xA, T = 25 °C  
600  
1800  
1
μV  
TSX56xA, -40 °C < T < 125 °C  
TSX56x, T = 25 °C  
Vio  
Offset voltage  
mV  
TSX56x, -40 °C < T < 125 °C  
-40 °C < T < 125 °C (1)  
2.2  
12  
ΔVio/ΔT  
ΔVio  
Input offset voltage drift  
2
µV/°C  
Long-term input offset  
voltage drift  
nV/  
√month  
T = 25 °C (2)  
1.6  
T = 25 °C  
-40 °C < T < 125 °C  
T = 25 °C  
1
1
100 (3)  
200 (3)  
100 (3)  
200 (3)  
Input bias current,  
Vout = VCC/2  
Iib  
pA  
1
Input offset current,  
Vout = VCC/2  
Iio  
-40 °C < T < 125 °C  
T = 25 °C  
1
Common mode rejection  
ratio, CMR = 20 log  
(ΔVic/ΔVio), Vic = -0.1 V to  
VCC - 1.5 V, Vout = VCC/2,  
RL > 1 MΩ  
76  
72  
60  
56  
95  
CMR1  
CMR2  
-40 °C < T < 125 °C  
T = 25 °C  
Common mode rejection  
ratio, CMR = 20 log  
(ΔVic/ΔVio), Vic = -0.1 V to  
VCC + 0.1 V, Vout = VCC/2,  
RL > 1 MΩ  
78  
90  
-40 °C < T < 125 °C  
dB  
Common mode rejection  
ratio, 20 log (ΔVCC/ΔVio),  
VCC = 3 V to 16 V,  
T = 25 °C  
76  
72  
SVR  
Avd  
-40 °C < T < 125 °C  
Vout = Vicm = VCC/2  
Large signal voltage gain,  
Vout = 0.5 V to (VCC - 0.5 V),  
RL > 1 MΩ  
T = 25 °C  
85  
83  
-40 °C < T < 125 °C  
RL = 10 kΩ, T = 25 °C  
RL = 10 kΩ, -40 °C < T < 125 °C  
RL = 10 kΩ, T = 25 °C  
70  
100  
70  
High-level output voltage,  
VOH = VCC - Vout  
VOH  
mV  
VOL  
Low-level output voltage  
RL = 10 kΩ, -40 °C < T < 125 °C  
Vout = VCC, T = 25 °C  
100  
40  
35  
30  
25  
92  
90  
Isink  
Vout = VCC, -40 °C < T < 125 °C  
Vout = 0 V, T = 25 °C  
Iout  
mA  
Isource  
Vout = 0 V, -40 °C < T < 125 °C  
T = 25 °C  
Supply current, per  
channel, Vout = VCC/2,  
RL > 1 MΩ  
250  
360  
400  
ICC  
μA  
-40 °C < T < 125 °C  
10/28  
DocID023274 Rev 5  
 
TSX56x, TSX56xA  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
AC performance  
GBP  
Fu  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
750  
900  
750  
55  
kHz  
RL = 10 kΩ, CL = 100 pF  
ɸm  
Gm  
Degrees  
dB  
Gain margin  
9
RL = 10 kΩ, CL = 100 pF,  
Vout = 0.5 V to VCC - 0.5 V  
SR  
en  
Slew rate  
1.1  
V/μs  
nV/√Hz  
µVpp  
f = 1 kHz  
48  
27  
Equivalent input noise  
voltage density  
f = 10 kHz  
Low-frequency peak-to-  
peak input noise  
∫en  
Bandwidth, f = 0.1 to 10 Hz  
15  
Follower configuration, fin = 1 kHz,  
RL = 100 kΩ, Vicm = (VCC -1.5 V)/2,  
BW = 22 kHz, Vout = 5 Vpp  
Total harmonic distortion +  
noise  
0.000  
5
THD+N  
%
Notes:  
(1)See Section 5.3: "Input offset voltage drift over temperature"  
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.  
(3)Guaranteed by design  
DocID023274 Rev 5  
11/28  
Electrical characteristic curves  
TSX56x, TSX56xA  
4
Electrical characteristic curves  
Figure 2: Supply current vs. supply voltage at  
Vicm = VCC/2  
Figure 3: Input offset voltage distribution at  
VCC = 16 V and Vicm = 8 V  
Figure 4: Input offset voltage temperature coefficient  
distribution at VCC = 16 V, Vicm = 8 V  
Figure 5: Input offset voltage vs. input common-mode  
voltage at VCC = 12 V  
Figure 6: Input offset voltage vs. temperature at VCC = 16 V  
2500  
2000  
1500  
1000  
500  
Limit forTSX56xA  
Limit forTSX56x  
0
-500  
-1000  
-1500  
-2000  
-2500  
V
= 16V,V  
= 8V  
CC  
icm  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
12/28  
DocID023274 Rev 5  
TSX56x, TSX56xA  
Figure 7: Output current vs. output voltage at  
Electrical characteristic curves  
Figure 8: Output current vs. output voltage at VCC = 5 V  
VCC = 3.3 V  
Figure 9: Output current vs. output voltage at  
VCC = 16 V  
Figure 10: Bode diagram at VCC = 3.3 V  
Figure 11: Bode diagram at VCC = 5 V  
Figure 12: Bode diagram at VCC = 16 V  
DocID023274 Rev 5  
13/28  
Electrical characteristic curves  
TSX56x, TSX56xA  
Figure 13: Phase margin vs. capacitive load at  
VCC = 12 V  
Figure 14: GBP vs. input common-mode voltage at  
VCC = 12 V  
Figure 15: Avd vs. input common-mode voltage at  
VCC = 12 V  
Figure 16: Slew rate vs. supply voltage  
Figure 17: Noise vs. frequency at VCC = 3.3 V  
Figure 18: Noise vs. frequency at VCC = 5 V  
14/28  
DocID023274 Rev 5  
TSX56x, TSX56xA  
Figure 19: Noise vs. frequency at VCC = 16 V  
Electrical characteristic curves  
Figure 20: Distortion and noise vs. output voltage  
amplitude  
Figure 21: Distortion and noise vs. amplitude at  
Vicm = VCC/2 and VCC = 12 V  
Figure 22: Distortion and noise vs. frequency  
DocID023274 Rev 5  
15/28  
Application information  
TSX56x, TSX56xA  
5
Application information  
5.1  
Operating voltages  
The amplifiers of the TSX56x and TSX56xA series can operate from 3 V to 16 V. Their  
parameters are fully specified at 3.3 V, 5 V, and 16 V power supplies. However, the  
parameters are very stable in the full VCC range. Additionally, the main specifications are  
guaranteed in extended temperature ranges from -40 to 125 ° C.  
5.2  
Rail-to-rail input  
The TSX56x and TSX56xA devices are built with two complementary PMOS and NMOS  
input differential pairs. The devices have a rail-to-rail input, and the input common mode  
range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V.  
However, the performance of these devices is clearly optimized for the PMOS differential  
pairs (which means from (VCC-) - 0.1 V to (VCC+) - 1.5 V).  
Beyond (VCC+) - 1.5 V, the operational amplifiers are still functional but with degraded  
performance, as can be observed in the electrical characteristics section of this datasheet  
(mainly Vio and GBP). These performances are suitable for a number of applications that  
need to be rail-to-rail.  
The devices are designed to prevent phase reversal.  
5.3  
Input offset voltage drift over temperature  
The maximum input voltage drift over the temperature variation is defined as the offset  
variation related to the offset value measured at 25 °C. The operational amplifier is one of  
the main circuits of the signal conditioning chain, and the amplifier input offset is a major  
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated  
during production at application level. The maximum input voltage drift over temperature  
enables the system designer to anticipate the effects of temperature variations.  
The maximum input voltage drift over temperature is computed using Equation 1.  
Equation 1  
Vio  
T  
°C  
Vio Vio
T 25°C  
= max  
Where T = -40 °C and 125 °C.  
The datasheet maximum value is guaranteed by measurements on a representative  
sample size ensuring a Cpk (process capability index) greater than 2.  
16/28  
DocID023274 Rev 5  
 
TSX56x, TSX56xA  
Application information  
5.4  
Long term input offset voltage drift  
To evaluate product reliability, two types of stress acceleration are used:  
Voltage acceleration, by changing the applied voltage  
Temperature acceleration, by changing the die temperature (below the maximum  
junction temperature allowed by the technology) with the ambient temperature.  
The voltage acceleration has been defined based on JEDEC results, and is defined using  
Equation 2.  
Equation 2  
AFV = eβ .
Where:  
AFV is the voltage acceleration factor  
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)  
VS is the stress voltage used for the accelerated test  
VU is the voltage used for the application  
The temperature acceleration is driven by the Arrhenius model, and is defined in  
Equation 3.  
Equation 3  
Ea  
1
1
.
------  
AFT = e k  
TU TS  
Where:  
AFT is the temperature acceleration factor  
Ea is the activation energy of the technology based on the failure rate  
k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)  
TU is the temperature of the die when VU is used (K)  
TS is the temperature of the die under temperature stress (K)  
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and  
the temperature acceleration factor (Equation 4).  
Equation 4  
AF = AFT × AFV  
AF is calculated using the temperature and voltage defined in the mission profile of the  
product. The AF value can then be used in Equation 5 to calculate the number of months of  
use equivalent to 1000 hours of reliable stress duration.  
Equation 5  
/
Months = AF × 1000 h × 12 months 
DocID023274 Rev 5  
17/28  
 
 
 
 
Application information  
TSX56x, TSX56xA  
To evaluate the op amp reliability, a follower stress condition is used where VCC is defined  
as a function of the maximum operating voltage and the absolute maximum rating (as  
recommended by JEDEC rules).  
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at  
different measurement conditions (see Equation 6).  
Equation 6  
VCC = maxVop with Vicm = VCC  
The long term drift parameter (ΔVio), estimating the reliability performance of the product, is  
obtained using the ratio of the Vio (input offset voltage value) drift over the square root of  
the calculated number of months (Equation 7).  
Equation 7  
Viodrift  
Vio  
=
Where Vio drift is the measured drift value in the specified test conditions after 1000 h  
stress duration.  
5.5  
5.6  
PCB layouts  
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible  
to the power supply pins.  
Macromodel  
Accurate macromodels of the TSX56x, TSX56xA devices are available on the  
STMicroelectronics’ website at: www.st.com. These models are a trade-off between  
accuracy and complexity (that is, time simulation) of the TSX56x and TSX56xA operational  
amplifiers. They emulate the nominal performance of a typical device within the specified  
operating conditions mentioned in the datasheet. They also help to validate a design  
approach and to select the right operational amplifier, but they do not replace on-board  
measurements.  
18/28  
DocID023274 Rev 5  
 
 
TSX56x, TSX56xA  
Package information  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
DocID023274 Rev 5  
19/28  
Package information  
TSX56x, TSX56xA  
6.1  
SOT23-5 package information  
Figure 23: SOT23-5 package outline  
Table 7: SOT23-5 mechanical data  
Dimensions  
Ref.  
Millimeters  
Inches  
Min.  
Typ.  
Max.  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
Min.  
Typ.  
Max.  
0.057  
0.006  
0.051  
0.020  
0.008  
0.118  
A
A1  
A2  
B
0.90  
1.20  
0.035  
0.047  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.35  
0.035  
0.014  
0.004  
0.110  
0.041  
0.016  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.014  
C
D
D1  
e
E
2.60  
1.50  
3.00  
1.75  
0.102  
0.059  
0.118  
0.069  
F
L
0.10  
0.60  
0.004  
0.024  
K
0 degrees  
10 degrees  
0 degrees  
10 degrees  
20/28  
DocID023274 Rev 5  
TSX56x, TSX56xA  
Package information  
6.2  
DFN8 2x2 package information  
Figure 24: DFN8 2x2 package outline  
Table 8: DFN8 2x2 mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
0.70  
0.00  
0.15  
Max.  
0.80  
0.05  
0.25  
Min.  
0.028  
0.000  
0.006  
Typ.  
0.030  
0.001  
0.008  
0.079  
0.079  
0.020  
0.022  
Max.  
0.031  
0.002  
0.010  
A
A1  
b
0.75  
0.02  
0.20  
2.00  
2.00  
0.50  
0.55  
D
E
e
L
0.045  
0.65  
0.018  
0.026  
DocID023274 Rev 5  
21/28  
 
Package information  
TSX56x, TSX56xA  
6.3  
MiniSO8 package information  
Figure 25: MiniSO8 package outline  
Table 9: MiniSO8 mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
1.1  
Min.  
Typ.  
Max.  
0.043  
0.006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
A
A1  
A2  
b
0
0.15  
0.95  
0.40  
0.23  
3.20  
5.15  
3.10  
0
0.75  
0.22  
0.08  
2.80  
4.65  
2.80  
0.85  
0.030  
0.009  
0.003  
0.11  
0.033  
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
0.183  
0.11  
E1  
e
L
0.40  
0°  
0.80  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.10  
0.004  
22/28  
DocID023274 Rev 5  
TSX56x, TSX56xA  
Package information  
6.4  
QFN16 3x3 package information  
Figure 26: QFN16 3x3 package outline  
D
B
INDEX AREA  
(D/ 2xE/ 2)  
aaa  
C 2x  
TOP VIEW  
ccc  
C
C
SEATING  
PLANE  
SIDEVIEW  
e
eee  
C
L
b
bbb  
bbb  
C
C
A B  
5
8
4
1
9
12  
16  
13  
Pin#1 ID  
R0.11  
BOTTOM VIEW  
DocID023274 Rev 5  
23/28  
Package information  
TSX56x, TSX56xA  
Table 10: QFN16 3x3 mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
0.50  
0
Max.  
0.65  
0.05  
0.30  
Min.  
0.020  
0
Typ.  
Max.  
0.026  
0.002  
0.012  
A
A1  
b
0.18  
0.25  
3.00  
3.00  
0.50  
0.007  
0.010  
0.118  
0.118  
0.020  
D
E
e
L
0.30  
0.50  
0.15  
0.10  
0.10  
0.05  
0.08  
0.012  
0.020  
0.006  
0.004  
0.004  
0.002  
0.003  
aaa  
bbb  
ccc  
ddd  
eee  
24/28  
DocID023274 Rev 5  
TSX56x, TSX56xA  
Package information  
6.5  
TSSOP14 package information  
Figure 27: TSSOP14 package outline  
aaa  
Table 11: TSSOP14 mechanical data  
Dimensions  
Ref.  
Millimeters  
Inches  
Min.  
Typ.  
Max.  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
6.60  
4.50  
Min.  
Typ.  
Max.  
0.047  
0.006  
0.041  
0.012  
0.0089  
0.201  
0.260  
0.176  
A
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
4.90  
6.20  
4.30  
0.002  
0.031  
0.007  
0.004  
0.193  
0.244  
0.169  
0.004  
0.039  
1.00  
c
D
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
0.197  
0.252  
0.173  
0.0256  
0.024  
0.039  
E
E1  
e
L
0.45  
0°  
0.75  
0.018  
0°  
0.030  
L1  
k
8°  
8°  
aaa  
0.10  
0.004  
DocID023274 Rev 5  
25/28  
 
Ordering information  
TSX56x, TSX56xA  
7
Ordering information  
Table 12: Order codes  
Temperature  
range  
Channel  
number  
Order code  
Package  
Packaging  
Marking  
1
TSX561ILT  
TSX562IQ2T  
TSX562IST  
SΟΤ23-5  
DFN8 2x2  
MiniSO8  
K23  
2
4
-40 to 125 °C  
TSX564IQ4T  
TSX564IPT  
QFN16 3x3  
TSSOP14  
SΟΤ23-5  
MiniSO8  
TSX5641  
K116  
TSX561IYLT (1)  
TSX562IYST (1)  
1
2
4
1
2
4
1
2
4
-40 to 125 °C  
automotive grade  
Tape and  
reel  
TSX564IYPT (1)  
TSX561AILT  
TSSOP14  
SΟΤ23-5  
MiniSO8  
TSSOP14  
SΟΤ23-5  
MiniSO8  
TSSOP14  
TSX5641Y  
K117  
TSX562AIST  
-40 to 125 °C  
TSX564AIPT  
TSX564AI  
K118  
TSX561AIYLT (1)  
TSX562AIYST (1)  
TSX564AIYPT (1)  
-40 to 125 °C  
automotive grade  
TSX564AIY  
Notes:  
(1)Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to  
AEC Q001 & Q 002 or equivalent  
26/28  
DocID023274 Rev 5  
 
 
 
TSX56x, TSX56xA  
Revision history  
8
Revision history  
Table 13: Document revision history  
Changes  
Date  
Revision  
06-Aug-2012  
1
Initial release.  
Added TSX562, TSX564, TSX562A, and TSX564A devices.  
Updated Features, Description, Figure 1, Table 1 (added DFN8, MiniSO8, QFN16,  
and TSSOP14 package).  
18-Sep-2012  
Updated Table 1 (updated ESD MM values).  
2
Updated Table 4 and Table 5 (added footnotes), Section 5 (added Figure 24 to  
Figure 28 and Table 8 to Table 12), Table 13 (added dual and quad devices).  
Minor corrections throughout document.  
Replaced the silhouette, pinout, package diagram, and mechanical data of the DFN8  
2x2 and QFN16 3x3 packages.  
Added Benefits and Related products.  
23-May-2013  
09-Aug-2013  
07-Feb-2017  
Table 1: updated Rthja values and added Rthjc values for DFN8 2x2 and QFN16 3x3.  
Updated Section 4.3, Section 4.4, and Section 4.6  
3
4
5
Replaced Figure 23: SOT23-5 package mechanical drawing and Table 7: SOT23-5  
package mechanical data.  
Added SO8 package for dual version TSX562 and TSX562A.  
Table 2: updated for SO8 package  
Table 13: added order codes TSX562IDT, TSX562IYDT, TSX562AIDT,  
TSX562AIYDT; updated automotive grade status.  
Removed SO8 package  
Table 8: "DFN8 2x2 mechanical data": removed "N"  
Table 11: "TSSOP14 mechanical data": added "L" and " L1" in inches; updated "aaa"  
in inches.  
Table 12: "Order codes": removed TSX562IDT, TSX562IYDT, TSX562AIDT,  
TSX562AIYDT.  
Updated terminology  
DocID023274 Rev 5  
27/28  
TSX56x, TSX56xA  
IMPORTANT NOTICE PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST  
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the  
design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2017 STMicroelectronics All rights reserved  
28/28  
DocID023274 Rev 5  

相关型号:

TSX631

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX631A

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX632

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX632A

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX632IYST

Micropower (60uA), rail-to-rail 16V CMOS Op-Amps, dual, GBP 200kHz
STMICROELECTR

TSX634

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX634A

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX68332MA16

RISC Microcontroller, 32-Bit, CMOS, CQFP132, CERQUAD-132
ATMEL

TSX68332MA7D/T

RISC Microcontroller, 32-Bit, CMOS, CQFP132, CERQUAD-132
ATMEL

TSX68332MR16

RISC Microcontroller, 32-Bit, CMOS, CPGA132, CERAMIC, PGA-132
ATMEL

TSX68332MRD/T

RISC Microcontroller, 32-Bit, CMOS, CPGA132, CERAMIC, PGA-132
ATMEL

TSX711

Low-power, precision, rail-to-rail, 2.7 MHz, 16 V CMOS operational amplifiers
STMICROELECTR