UAA4713DP [STMICROELECTRONICS]

MOTION DETECTOR INTERFACE; 运动检测器接口
UAA4713DP
型号: UAA4713DP
厂家: ST    ST
描述:

MOTION DETECTOR INTERFACE
运动检测器接口

模拟IC 信号电路 光电二极管
文件: 总14页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UAA4713  
MOTION DETECTOR INTERFACE  
ADVANCE DATA  
50/ 60 Hz AC SUPPLY  
INPUT FOR PYROELECTRICAL SENSOR  
INPUT FOR PHOTORESISTIVE SENSOR  
SENSOR FILTER AMPLIFIER  
PROGRAMMABLE ON-TIMER  
TRIAC OUTPUT AND RELAY OUTPUT  
SHORT CIRCUIT PROTECTION  
LOW QUIESCENT CURRENT  
TWO-WIRE TECHNIQUE  
DIP-14  
SO-14  
ORDERING NUMBERS:  
UAA4713DP  
UAA4713FP  
DESCRIPTION  
The UAA4713 is a monolithic integrated circuit in-  
tended to control triac or relay switch for AC-  
mains timer applications.The device can be used  
in a wide range of industrial and consumer appli-  
cations as light control, automatic door opening  
detector, fire alarm, fluid level control .  
The circuit processes the output signal of an infra-  
red pyroelectric detector which senses tempera-  
ture changes caused by heat radiation of the hu-  
man body.  
If the sensor detects a temperature change, a  
programmable timer will start and switch a lamp  
or other loads to the mains.  
A further input for a photo-resistive sensor allows  
to program circuit operation depending on the  
day-light intensity.  
Internal circuits avoid false triggering of the exter-  
nal actuators. (see functional diagram).  
BLOCK DIAGRAM  
December 1991  
1/14  
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
UAA4713  
FUNCTIONAL DIAGRAM  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Test Conditions  
Unit  
mA  
mA  
mA  
mA  
V
I7  
I7  
AC Supply Current  
60  
200  
Peak Current (T.P < 200µs)  
I7  
Sourge Current (not repetitive 10ms)  
ZCD Max. Input Current  
500  
I9  
5
V6-3  
V8-3  
V14-3  
V10-12  
Top  
Tstg,Tj  
Ptot  
Negative Clamp Voltage  
-9  
Positive Clamp Voltage  
9.5  
V
Comp. Input Voltage  
±8  
V
Differential Input Voltage  
±8  
V
Operating Temperature  
-25 to 85  
-40 to 150  
650  
°C  
Junction and Storage Temperature  
Total Power Dissipation (Tj = 85°C)  
°C  
mW  
THERMAL DATA  
Symbol  
Parameter  
Value  
Unit  
Rth j-amb Thermal Resistance Junction-ambient  
max  
100  
°C/W  
2/14  
UAA4713  
PIN CONNECTION (Top view)  
PIN FUNCTIONS  
Pin  
1
Symbols  
TCI  
Functions  
Time control Input  
2
PRI  
Photosensor comparator input  
Ground  
3
GND  
ROUT  
TOUT  
V-  
4
Relay output  
5
Triac output  
6
Negative clamp voltage  
AC-input supply  
7
ACI  
8
V+  
Positive clamp voltage  
Zero cross detector  
Non-invert input sensor amplifier  
Sensor reference voltage  
Invert input sensor amplifier  
Output sensor amplifier  
Window comparator input  
9
ZCD  
NII  
10  
11  
12  
13  
14  
VREF  
II  
OP OUT  
WCI  
3/14  
UAA4713  
ELECTRICAL CHARACTERISTICS (IS = + 2mA to +10mA;Tamb = 25°C unless otherwise specified)  
Symbol  
IS  
Parameter  
Test Condition  
Pin  
7
Min.  
±0.7  
-7.8  
7.6  
Typ.  
Max.  
+ 15  
-7  
Unit  
mA  
V
Operative Supply Current  
V-  
Negative Clamping Voltage ±IS = 0.7mA  
6
V+  
Positive Clamping Voltage  
8
8.4  
V
VREF  
Sensor Reference Voltage  
IREF = 50µA  
REF = 200µA  
Output Current Relay Driver during on-time VROUT = 0V  
11  
6
5
6.6  
7.2  
7.2  
V
V
I
IROUT  
4
4
80  
µA  
VR HIGH  
Relay Driver Source  
Saturation Voltage  
IR OUT = 80µA  
2
8
V
IR  
Relay Sink Output Current  
Triac Firing Current  
VR OUT = 0.4V during on-time  
4
5
9
1
mA  
mA  
V
ITOUT  
VZCD  
50  
65  
Zero Cross Detector  
Clamping Voltage  
±7.4  
±8  
±8.6  
10  
IZCD  
IPRI  
Zero Cross Detector  
Operating Current  
9
2
2
1.6  
6
µA  
µA  
V
Photoresistor Source  
Current  
VPRI = 0V  
10  
14  
VPRth  
Photoresistor Threshold  
Voltage  
IS = 0.7mA  
3
3.3  
3.6  
ITCI  
tTIM  
Timer Control Input Current VTCI 0 to V+  
On-Timer Counter Duration VTCI  
1
0
50  
0.5  
60  
µA  
Hz  
s
14/4  
(depends on the mains  
frequency and on externally  
11/12 V+  
0
0
9/12 V+  
7/12 V+  
5/12 V+  
3/12 V+  
1/12 V+  
0V (GND)  
50Hz  
4.48  
40  
3.73  
33.3  
67.5  
135.8  
272.5  
s
adjustable Timer Control  
Input Voltage) + 1/2 cicle  
precision  
s
81  
s
163  
327  
s
s
Continue  
50  
tD  
Delay Time Between  
Window Comparator Input  
and Timer Start  
14/4  
14/4  
40  
60  
50  
ms  
60Hz  
33.3  
41.6  
500  
ms  
ms  
tDR  
Delay Time Between Timer 50Hz  
Stop to Retrigger  
60Hz  
600  
ms  
µA  
V
ITOL  
Vth WCI  
IWCI  
Triac Output Leakage Current VTO = 0V  
5
10  
±1.40  
± 1  
Window Comparator T4  
Pin 2 open  
14/4  
14  
±1.20  
±1.3  
Window Comparator Input  
Current  
VWCI = -2V to + 2V  
mA  
OP. AMP.  
RI  
IIO  
Input Resistance  
10/12  
10/12  
10/12  
10/12  
10/12  
13  
1
MΩ  
nA  
µA  
mV  
V
Input Offset Current  
Input Bias Current  
25  
1
IIB  
VIO  
VCM  
VO  
IO  
Input Offset Voltage  
Common Mode Volt. Renge  
Output Voltage Swing  
Output Current  
- 10  
- 4.5  
±4  
+10  
5
±5  
V
13  
1.5  
mA  
mA  
V
ISC  
GV  
Output Short Circuit Current  
13  
3
Large Signal Open Loop  
Voltage Gain  
RL = 10K  
80  
100  
4/14  
UAA4713  
Figure 1: Open Loop Frequency Response  
Figure 2: VREF versus IREF  
Figure 3: Supply Current  
5/14  
UAA4713  
steps (see tTIM table in the electical charac-  
teristics). The timer is clocked by the mains fre-  
quency.  
Two outputs for various applications are avail-  
able.  
Pin 5 is the trigger output for triac gate.  
Pin 4 output can be used to switch a relay or  
other loads.  
The zero crossing detector provides the firing  
pulse for the triac at the right time, shortly after  
the zero crossing of the AC-signal.  
The RC-network at pin 7 supplies current to the  
circuit via a double wave rectification which is pro-  
vided by a split power supply. Due to the capaci-  
tive energy transfer into pin 7, the circuit will also  
be supplied with current if the triac is fired. A short  
wire for circuit supply is not needed.  
The circuit works similar to a simple two-terminal  
switch and can be installed in parallel with ordi-  
nary mechanical pulse switches (fig. 4).  
After a short supply connection via an external  
pulse switch, the circuit timer will also start with-  
out a sensor signal.  
SYSTEM DESCRIPTION (see Functional Diagram)  
If a heat source moves in front of the IR-detector,  
the sensor delivers a quasi sinusoidal AC-signal  
in the µV to mV range. The operational amplifier  
amplifies the sensor signal by 72dB.  
To reject an unwanted signal, a band pass filter is  
needed. If the AC-level at pin 14 exceeds the win-  
dow comparator thresholds, the programmable  
timer will start. To suppress short sensor signals,  
a 50ms time filter is implemented between the  
window comparator output and the programmable  
timer. This function improves the noise immunity.  
After the reset of the timer a second timer will pro-  
vide a 600ms dead time to prevent retriggering of  
the timer. This function avoids restarting of the  
timer, when the turned off lamp temperature. de-  
creases  
The lamp switched by the triac can be located  
close to the sensor.  
To avoid circuit operation during day-time, a  
photo resistor (LDR) senses the light intensity and  
switches off the circuit. The capacitor at pin 2 pre-  
vents circuit start-up during short shadow phases,  
when a person passes by the sensor.  
From the analog input pin 1 via the AD-converter  
the on-time duration can be programmed in 7  
Therefore the circuit can also be used as an ordi-  
nary light timer without the IR-moving sensor fea-  
ture.  
Figure 4  
Figure 5: Different Possible Filter Solutions  
6/14  
UAA4713  
Figure 6: Triac Application  
7/14  
UAA4713  
Figure 7: Relay Application  
8/14  
UAA4713  
APPLICATION INFORMATION  
1. HOW TO CHOOSE THE TRIAC ASSOCIATED  
TO THE MOTION DETECTOR UAA4713  
b)The thermal fast fuse behaviour during  
short-circuit condition.  
(I2t) (Triac) > (I2t) (fuse)  
To select the ITsm (given as a minimum value) the  
following table is suggested.  
Analysis of the Triac Associated to the Motion  
Detector UAA4713  
Mains: VAC (V)  
240V  
110V  
Associated with the UAA4713, the Triac is de-  
fined by the driver output stage (Triac output pin  
5) and the characteristics of the load.  
The Triac is consequentlydefined by:  
1) The gate sensitivity  
Power (W)  
600  
1000  
>1000  
ITsm(min)  
50  
80  
>100  
ITsm (min)  
80  
120  
>150  
2) The surge current capability  
3) The RMS Triac current  
4) The blocking voltage capability  
3) RMS Triac Current  
The RMS Triac current ITRMS is defined by the  
light power P:  
1) The gate sensitivity  
ITRMS > 1. 25 x P x VAC  
The ”Triggering gate current” is the parameter to  
be taken into consideration. The IGT is given at  
25°C. as a maximum value required to trigger the  
Triac.  
It depends also on the heat sink which has to limit  
the junction temperature in the worse case condi-  
tions (Tamb max and ITRMS)  
.
With the snubberless triac ITRMS ranges from 6A  
to 25A.  
ex. BTA06-600CW = IGT max (mA) = 35mA  
The UAA4713 Triac output provides a current of  
65mA typical.  
4) Blocking Voltage Capability  
I
Tout = 65mA(Typ) = IG  
The maximum blocking voltage VDRM is defined  
by the mains:  
In order to control the Triac properly IG should be  
greater than 1.5 x IGT or  
Mains Voltage  
Country  
VDRM (V)  
ITout > 1.5 IGT  
(V) VAC  
For this reason it is suggested to use a snubber-  
less Triac of the CW series (IGT < 35mA).  
EUROPE  
USA  
240  
600  
400  
110  
2) The surge current capability  
5) Conclusion:  
In the Triac databook the surge current capability  
of the Triac is given by the non repetitive surge  
peak current:  
Selector guide with the above parameters the op-  
timal device selection for a given power to be  
controlled is given in the following table:  
ITSM  
MAINS VOLTAGE VAC (V)  
240 110  
LIGHT POWER  
(W)  
ex. BTA06-600CW  
ITSM at TJ initial = 25°C  
600  
BTA 06 600 CW BTA 08 400 CW  
BTA 08 600 CW BTA 12 400 CW  
t = 8.3mA: 63A  
t = 10ms: 60A  
1,000  
> 1,000  
BTA X 600 CW  
X = 10  
BTA X 400 CW  
X = 12  
X = 16 (A)  
The choice of the Triac is defined by the following  
application parameters:  
X = 12  
X = 16  
a)The starting performance, and the ratio of  
the nominal resistance to the cold resis-  
tance, KR  
Ref: High Performance Triacs that need no snub-  
ber (DSTRIACBK/1088)  
Imax > KR x Inominal x 2  
9/14  
UAA4713  
APPLICATION INFORMATION (continued)  
2. MOTION DETECTOR DEMO BOARD  
This document allows the user to construct rap-  
idly a Demo and Test Board for the UAA4713  
Figure 8: Demo Board Diagram  
10/14  
UAA4713  
APPLICATION INFORMATION (continued)  
Demo Board - Part List  
QTY  
DEVICE  
DESCRIPTION  
SUPPLIER  
SGS-THOMSON  
1
1
UAA4713DP OR UAA4713FP  
INTEGRATED CIRCUIT  
BTA06-600 (240V mains)  
BTA08-400 (110V mains)  
TRIAC  
TRIAC  
SGS-THOMSON  
SGS-THOMSON  
1
1
KRX10FL or  
IRA - EI00S series  
SENSOR WITH FRESNEL LENS PHILIPS COMPONENTS  
Pyroelectic Infrared Sensor  
MURATA  
LDR07  
PHOTORESISTOR  
PHILIPS COMPONENTS  
CAPACITORS  
QUANTITY  
RESISTORS (0.25W)  
VALUE  
QUANTITY  
VALUE  
1MΩ  
4
2
2
1
1
1
1
100µF/35V  
330nF  
3
3
47kΩ  
47nF  
1
680Ω  
4.7nF  
1
1KΩ  
68nF 400V  
150nF 250V  
3.3µF 35V  
1
470KΩ  
220KΩ  
500KΩ  
1
2 POTENTIOMETERS  
Figure 9: Demo Board Photo IRA - E100S  
11/14  
UAA4713  
DIP14 PACKAGE MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
0.51  
1.39  
TYP.  
MAX.  
MIN.  
0.020  
0.055  
MAX.  
a1  
B
b
1.65  
0.065  
0.5  
0.020  
0.010  
b1  
D
E
e
0.25  
20  
0.787  
8.5  
2.54  
0.335  
0.100  
0.600  
e3  
F
15.24  
7.1  
5.1  
0.280  
0.201  
I
L
3.3  
0.130  
Z
1.27  
2.54  
0.050  
0.100  
12/14  
UAA4713  
SO14 PACKAGE MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
TYP.  
MAX.  
1.75  
0.25  
1.6  
MIN.  
MAX.  
0.069  
0.009  
0.063  
0.018  
0.010  
A
a1  
a2  
b
0.1  
0.004  
0.35  
0.19  
0.46  
0.25  
0.014  
0.007  
b1  
C
0.5  
0.020  
c1  
D
45 (typ.)  
8.55  
5.8  
8.75  
6.2  
0.336  
0.228  
0.344  
0.244  
E
e
1.27  
7.62  
0.050  
0.300  
e3  
F
3.8  
0.4  
4.0  
0.15  
0.157  
0.050  
0.027  
L
1.27  
0.68  
0.016  
M
S
8 (max.)  
13/14  
UAA4713  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications men-  
tioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without ex-  
press written approval of SGS-THOMSON Microelectronics.  
1994 SGS-THOMSON Microelectronics - All RightsReserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -  
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.  
14/14  

相关型号:

UAA4713FP

MOTION DETECTOR INTERFACE
STMICROELECTR

UAA91

DUODIODE
ETC

UAB1408

Converter IC
ETC

UAB4718SP

Industrial Control IC
ETC

UABC80

EABC80
ETC

UABS1

ULTRA FAST SURFACE MOUNT GLASS PASSIVATED BRIDGE RECTIFIER
SENO

UABS10

ULTRA FAST SURFACE MOUNT GLASS PASSIVATED BRIDGE RECTIFIER
SENO

UABS1505

ULTRA FAST SURFACE MOUNT GLASS PASSIVATED BRIDGE RECTIFIER
SENO

UABS151

ULTRA FAST SURFACE MOUNT GLASS PASSIVATED BRIDGE RECTIFIER
SENO

UABS1510

ULTRA FAST SURFACE MOUNT GLASS PASSIVATED BRIDGE RECTIFIER
SENO

UABS1510

SINGLE PHASE 1.5AMP ULTRA FAST GLASS PASSIVATED BRIDGE RECTIFIER
DYELEC