VIPER06LS [STMICROELECTRONICS]

Fixed-frequency VIPer plus family; 固定频率蝰蛇加上家庭
VIPER06LS
型号: VIPER06LS
厂家: ST    ST
描述:

Fixed-frequency VIPer plus family
固定频率蝰蛇加上家庭

文件: 总28页 (文件大小:999K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VIPER06  
Fixed-frequency VIPer™ plus family  
Datasheet — production data  
Features  
800 V avalanche rugged power section  
PWM operation with frequency jittering for low  
EMI  
SSO10  
DIP-7  
Operating frequency:  
– 30 kHz for VIPER06Xx  
– 60 kHz for VIPER06Lx  
– 115 kHz for VIPER06Hx  
Figure 1.  
Typical application  
$# INPUT VOLTAGE  
$# OUTPUT VOLTAGE  
No need for an auxiliary winding in low-power  
applications  
Standby power < 30 mW at 265 VAC  
Limiting current with adjustable set point  
On-board soft-start  
$2 !).  
#/-0  
6)0%2ꢀꢁ  
'.$  
6$$  
,)-  
&"  
Safe auto-restart after a fault condition  
Hysteretic thermal shutdown  
!-ꢂꢂꢃꢃꢄVꢂ  
Applications  
Replacement of capacitive power supplies  
Home appliances  
Power metering  
LED drivers  
Description  
The VIPER06 is an offline converter with an 800 V  
avalanche rugged power section, a PWM  
controller, a user-defined overcurrent limit, open-  
loop failure protection, hysteretic thermal  
protection, soft startup and safe auto-restart after  
any fault condition. The device is able to power  
itself directly from the rectified mains, eliminating  
the need for an auxiliary bias winding. Advanced  
frequency jittering reduces EMI filter cost. Burst  
mode operation and the device’s very low power  
consumption both help to meet the standards set  
by energy-saving regulations.  
March 2012  
Doc ID 022794 Rev 1  
1/28  
This is information on a product in full production.  
www.st.com  
28  
Contents  
VIPER06  
Contents  
1
2
3
4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Typical power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.1  
4.2  
4.3  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
5
Typical electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
High voltage current generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Soft startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Adjustable current limit set point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
FB pin and COMP pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Automatic auto-restart after overload or short-circuit . . . . . . . . . . . . 19  
Open-loop failure protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
2/28  
Doc ID 022794 Rev 1  
VIPER06  
17  
Contents  
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
18  
Doc ID 022794 Rev 1  
3/28  
Block diagram  
VIPER06  
1
Block diagram  
Figure 2.  
Block diagram  
VDD  
DRAIN  
SUPPLY  
&
UVLO  
HV_ON  
Internal Supply BUS &  
REFERENCE VOLTAGES  
IDDch  
UVLO  
THERMAL  
SHUTDOWN  
IDLIM  
LIM  
set-up  
Oscillator  
OTP  
-
TURN-ON  
LOGIC  
S
VCOMPL  
+
BURST-MODE  
Logic  
BURST  
Q
OCP  
Burst  
LEB  
R
-
+
PWM  
-
FB  
E/A  
+
OTP  
VREF_FB  
RSENSE  
COMP  
GND  
2
Typical power  
Table 1.  
Typical power  
230 VAC  
85-265 VAC  
Part number  
Adapter(1)  
Open frame(2)  
Adapter(1)  
Open frame(2)  
VIPER06  
6 W  
8 W  
4 W  
5 W  
1. Typical continuous power in non-ventilated enclosed adapter measured at 50 ° C ambient.  
2. Maximum practical continuous power in an open-frame design at 50 °C ambient, with adequate heat  
sinking.  
4/28  
Doc ID 022794 Rev 1  
 
VIPER06  
Pin settings  
3
Pin settings  
Figure 3.  
Connection diagram (top view)  
DRAIN  
DRAIN  
DRAIN  
DRAIN  
DRAIN  
DRAIN  
DRAIN  
GND  
VDD  
LIM  
FB  
COMP  
AM11339v1  
Note:  
The copper area for heat dissipation has to be designed under the DRAIN pins.  
Table 2.  
Pin  
Pin description  
Name  
Function  
DIP-7  
SSO10  
Connected to the source of the internal power MOSFET and controller  
ground reference.  
1
1
GND  
VDD  
Supply voltage of the control section. This pin provides the charging  
current of the external capacitor.  
2
3
2
3
This pin allows setting the drain current limitation. The limit can be  
reduced by connecting an external resistor between this pin and GND.  
Pin left open if default drain current limitation is used.  
LIM  
FB  
Inverting input of the internal transconductance error amplifier.  
Connecting the converter output to this pin through a single resistor  
results in an output voltage equal to the error amplifier reference  
voltage (see VFB_REF in Table 6). An external resistor divider is  
required for higher output voltages.  
4
4
Output of the internal transconductance error amplifier. The  
compensation network has to be placed between this pin and GND to  
achieve stability and good dynamic performance of the voltage control  
loop. The pin is used also to directly control the PWM with an  
optocoupler. The linear voltage range extends from VCOMPL to  
5
5
COMP  
DRAIN  
VCOMPH (Table 6).  
High-voltage drain pins. The built-in high-voltage switched startup bias  
current is drawn from these pins too.  
7, 8  
6-10  
Pins connected to the metal frame to facilitate heat dissipation.  
Doc ID 022794 Rev 1  
5/28  
Electrical data  
VIPER06  
4
Electrical data  
4.1  
Maximum ratings  
Table 3.  
Symbol  
Absolute maximum ratings  
Value  
Pin  
Parameter  
Unit  
(DIP-7)  
Min  
Max  
VDRAIN  
EAV  
7, 8  
7, 8  
7, 8  
7, 8  
5
Drain-to-source (ground) voltage  
Repetitive avalanche energy (limited by TJ = 150 °C)  
Repetitive avalanche current (limited by TJ = 150 °C)  
Pulse drain current (limited by TJ = 150 °C)  
Input pin voltage  
800  
2
V
mJ  
A
IAR  
1
IDRAIN  
VCOMP  
VFB  
2.5  
3.5  
4.8  
2.4  
Self-  
A
-0.3  
-0.3  
-0.3  
V
4
Input pin voltage  
V
VLIM  
3
Input pin voltage  
V
VDD  
IDD  
2
2
Supply voltage  
-0.3  
V
limited  
Input current  
20  
mA  
W
Power dissipation at TA < 40 °C (DIP-7)  
Power dissipation at TA < 50 °C (SSO10)  
Operating junction temperature range  
Storage temperature  
1
PTOT  
1
W
TJ  
-40  
-55  
150  
150  
°C  
°C  
TSTG  
4.2  
Thermal data  
Table 4.  
Symbol  
Thermal data  
Max value  
SSO10  
Max value  
DIP-7  
Parameter  
Unit  
Thermal resistance junction pin  
(dissipated power = 1 W)  
RthJP  
RthJA  
RthJA  
35  
100  
80  
40  
110  
90  
°C/W  
°C/W  
°C/W  
Thermal resistance junction ambient  
(dissipated power = 1 W)  
Thermal resistance junction ambient (1)  
(dissipated power = 1 W)  
2
1. When mounted on a standard single side FR4 board with 100 mm (0.155 sq in) of Cu (35 μm thick).  
6/28  
Doc ID 022794 Rev 1  
VIPER06  
Electrical data  
4.3  
Electrical characteristics  
(TJ = -25 to 125 °C, VDD = 14 V (a) unless otherwise specified).  
Table 5.  
Symbol  
Power section  
Parameter  
Test condition  
DRAIN = 1 mA,  
Min Typ Max Unit  
I
VBVDSS  
IOFF  
Breakdown voltage  
800  
V
VCOMP = GND, TJ = 25 °C  
VDRAIN = max rating,  
VCOMP = GND  
OFF state drain current  
60  
μA  
I
I
DRAIN = 0.2 A, TJ = 25 °C  
DRAIN = 0.2 A, TJ = 125 °C  
32  
67  
Ω
Ω
RDS(on)  
COSS  
Drain-source on-state resistance  
Effective (energy related) output capacitance VDRAIN = 0 to 640 V  
10  
pF  
Table 6.  
Symbol  
Supply section  
Parameter  
Test condition  
Min Typ Max Unit  
Voltage  
V
Drain-source startup voltage  
Startup charging current  
25  
45  
V
_START  
DRAIN  
VDRAIN = 100 V to 640 V,  
VDD = 4 V  
IDDch1  
-0.6  
-1.8 mA  
-14 mA  
VDRAIN = 100 V to 640 V,  
VDD = 9 V falling edge  
IDDch2  
Charging current during operation  
-7  
VDD  
Operating voltage range  
VDD clamp voltage  
11.5  
23.5  
12  
23.5  
14  
V
V
V
VDDclamp  
VDDon  
IDD = 15 mA  
VDD startup threshold  
13  
VDD on internal high-voltage current  
generator threshold  
VDDCSon  
9.5 10.5 11.5  
7
V
V
VDDoff  
Current  
IDD0  
VDD undervoltage shutdown threshold  
8
9
Operating supply current, not switching  
FOSC = 0 kHz, VCOMP = GND  
VDRAIN = 120 V,  
0.6 mA  
1.3 mA  
F
OSC = 30 kHz  
VDRAIN = 120 V,  
OSC = 60 kHz  
VDRAIN = 120 V,  
OSC = 115 kHz  
IDD1  
Operating supply current, switching  
1.45 mA  
F
1.6 mA  
0.35 mA  
mA  
F
IDDoff  
IDDol  
Operating supply current with VDD < VDDoff  
Open-loop failure current threshold  
VDD < VDDoff  
VDD = VDDclamp  
VCOMP = 3.3 V,  
4
a. Adjust V above V  
startup threshold before setting to 14 V.  
Doc ID 022794 Rev 1  
DD  
DDon  
7/28  
 
Electrical data  
VIPER06  
Table 7.  
Symbol  
Controller section  
Parameter  
Test condition  
Min Typ Max Unit  
Error amplifier  
VREF_FB  
FB reference voltage  
3.2 3.3 3.4  
V
IFB_PULL UP Current pull-up  
-1  
2
μA  
GM  
Transconductance  
mA/V  
Current setting (LIM) pin  
VLIM_LOW Low-level clamp voltage  
ILIM = -100 μA  
0.5  
3
V
Compensation (COMP) pin  
VCOMPH  
VCOMPL  
Upper saturation limit  
Burst mode threshold  
TJ = 25 °C  
TJ = 25 °C  
TJ = 25 °C  
V
V
1
4
1.1 1.2  
VCOMPL_HYS Burst mode hysteresis  
HCOMP ΔVCOMP / ΔIDRAIN  
40  
mV  
V/A  
kΩ  
μA  
μA  
9
RCOMP(DYN) Dynamic resistance  
VFB = GND  
15  
Source / sink current  
ICOMP  
VFB > 100 mV  
150  
220  
Max source current  
VCOMP = GND, VFB = GND  
Current limitation  
ILIM = -10 μA, VCOMP = 3.3 V,  
TJ = 25 °C  
IDlim  
Drain current limitation  
0.32 0.35 0.38  
A
tSS  
Soft-start time  
8.5  
450  
85  
ms  
ns  
TON_MIN  
IDlim_bm  
Minimum turn-on time  
Burst mode current limitation  
VCOMP = VCOMPL  
mA  
Overload  
tOVL  
Overload time  
50  
1
ms  
s
tRESTART  
Restart time after fault  
Oscillator section  
VIPER06Xx  
VIPER06Lx  
VIPER06Hx  
FOSC = 30 kHz  
27  
54  
30  
60  
33 kHz  
66 kHz  
FOSC  
Switching frequency  
103 115 127 kHz  
3
4
kHz  
kHz  
kHz  
Hz  
FD  
Modulation depth  
F
OSC = 60 kHz  
FOSC = 115 kHz  
8
FM  
Modulation frequency  
Maximum duty cycle  
230  
DMAX  
70  
80  
%
8/28  
Doc ID 022794 Rev 1  
 
VIPER06  
Electrical data  
Table 7.  
Symbol  
Controller section (continued)  
Parameter  
Test condition  
Min Typ Max Unit  
Thermal shutdown  
TSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
150 160  
30  
°C  
°C  
THYST  
Doc ID 022794 Rev 1  
9/28  
Typical electrical characteristics  
VIPER06  
5
Typical electrical characteristics  
Figure 4.  
IDlim vs. TJ  
Figure 5.  
FOSC vs. TJ  
IDlim/ IDlim@2 5°C  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
FOSC  
/
FOSC@2 5°C  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TJ [°C]  
TJ [°C]  
AM01145v1  
AM01144v1  
Figure 6.  
VDRAIN_START vs. TJ  
Figure 7.  
HCOMP vs. TJ  
V DRAIN_ START  
/
V DRAIN_ START@2 5°C  
1.30  
1.020  
1.010  
1.000  
0.990  
0.980  
0.970  
0.960  
1.20  
1.10  
1.00  
0.90  
0.80  
-50  
0
50  
TJ [°C]  
100  
150  
-50  
0
50  
100  
150  
TJ [°C]  
AM01147v1  
AM01146v1  
Figure 8.  
GM vs. TJ  
Figure 9.  
VREF_FB vs. TJ  
V REF_ FB  
/ V REF_ FB@2 5°C  
GM  
/
GM @2 5°C  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.08  
1.04  
1.00  
0.96  
0.92  
0.88  
0.84  
0.80  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TJ [°C]  
TJ [°C]  
AM01148v1  
AM01149v1  
10/28  
Doc ID 022794 Rev 1  
VIPER06  
Typical electrical characteristics  
Figure 10. ICOMP vs. TJ  
Figure 11. Operating supply current  
(no switching) vs. TJ  
ICOM P  
/ ICOM P@2 5°C  
IDD0  
/
IDD0 @2 5°C  
1.08  
1.04  
1.00  
0.96  
0.92  
0.88  
0.84  
0.80  
1.08  
1.04  
1.00  
0.96  
0.92  
0.88  
0.84  
0.80  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TJ [°C]  
TJ [°C]  
AM01150v1  
AM01151v1  
Figure 12. Operating supply current  
(switching) vs. TJ  
Figure 13. IDlim vs. RLIM  
IDlim  
/ IDlim@10 0 KOhm  
IDD1 / IDD1@2 5°C  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
-50  
0
50  
100  
150  
0
20  
40  
60  
80  
100  
TJ [°C]  
Rlim [k Ohm ]  
AM01152v1  
AM01153v1  
Figure 14. Power MOSFET on-resistance  
vs. TJ  
Figure 15. Power MOSFET breakdown voltage  
vs. TJ  
Doc ID 022794 Rev 1  
11/28  
 
Typical electrical characteristics  
Figure 16. Thermal shutdown  
VIPER06  
VDD  
VDDon  
VDDCSon  
VDDoff  
time  
time  
IDRAIN  
TJ  
TSD  
TSD - THYST  
time  
Normal operation  
Normal operation  
Shut down after over temperature  
12/28  
Doc ID 022794 Rev 1  
VIPER06  
Typical circuit  
6
Typical circuit  
Figure 17. Flyback converter (non-isolated output)  
Rin  
L1  
AC IN  
6
Din  
-
+
2
4
C2  
+
C3  
+
Rcl  
Ccl  
VOUT  
Dout  
12  
10  
AC IN  
D1  
4
+
Cout  
Daux  
VIPer16  
Rfb1  
VDD  
DRAIN  
GND  
FB  
CONTROL  
LIM  
COMP  
Rfb2 C1  
Rcomp1  
Ccomp1  
Ccomp2  
RLIM  
(optional)  
AM01197v1  
Figure 18. Flyback converter (isolated output)  
R1  
D1  
T2  
L1  
AC IN  
R2  
C5  
D3  
VOUT  
D2  
+
C7  
VIPER06  
-
C3  
VDD  
DRAIN  
GND  
FB  
C1  
+
C2  
+
C6  
R3  
CONTROL  
COMP  
LIM  
R5  
IC3  
R4  
C8  
C4  
IC2  
R6  
AC IN  
AM01195v1  
Doc ID 022794 Rev 1  
13/28  
Typical circuit  
Figure 19. Flyback converter (isolated output without optocoupler)  
VIPER06  
FUSE  
AC IN  
TRANSF  
L1  
-
+
D0  
2
4
6
BRIDGE  
C1  
C2  
AC IN  
+
+
Rcl  
Ccl  
D2  
Vout  
12  
10  
D1  
+
Raux  
Daux  
Cout  
4
3
.
VIPer06  
1
DRAIN  
GND  
Rfbh  
VDD  
FB  
CONTROL  
CVDD  
+
COMP  
LIM  
Rfbl  
Cfb  
Rc  
Cc  
Cp  
RLIM  
(optional)  
AM01196v1  
Figure 20. Buck converter  
Rfb1  
Rfb2  
AC IN  
L1  
VIPer06  
C2  
C3  
DRAIN  
VDD  
C4  
GND  
FB  
CONTROL  
LIM  
C1  
COMP  
D2  
Cfb  
GND  
Rcomp  
Ccomp  
RLIM  
(optional)  
Lout  
Vout  
Cout  
Dout  
AM01194v1  
14/28  
Doc ID 022794 Rev 1  
VIPER06  
Power section  
7
Power section  
The power section is implemented with an N-channel power MOSFET with a breakdown  
voltage of 800 V min. and a typical RDS(on) of 32 Ω. It includes a SenseFET structure to allow  
virtually lossless current sensing and the thermal sensor.  
The gate driver of the power MOSFET is designed to supply a controlled gate current during  
both turn-ON and turn-OFF in order to minimize common-mode EMI. During UVLO  
conditions, an internal pull-down circuit holds the gate low in order to ensure that the power  
MOSFET cannot be turned ON accidentally.  
8
High voltage current generator  
The high-voltage current generator is supplied by the DRAIN pin. At the first startup of the  
converter it is enabled when the voltage across the input bulk capacitor reaches the  
V
DRAIN_START threshold, sourcing a IDDch1 current (see Table 6 on page 7). As the VDD  
voltage reaches the VDDon threshold, the power section starts switching and the high-  
voltage current generator is turned OFF. The VIPER06 is powered by the energy stored in  
the VDD capacitor.  
In a steady-state condition, if the self-biasing function is used, the high-voltage current  
generator is activated between VDDCSon and VDDon (see Table 6 on page 7), delivering  
IDDch2, see Table 6 on page 7 to the VDD capacitor during the MOSFET off-time (see  
Figure 21).  
The device can also be supplied through the auxiliary winding in which case the high-  
voltage current source is disabled during steady-state operation, provided that VDD is  
above VDDCSon  
.
At converter power-down, the VDD voltage drops and the converter activity stops as it falls  
below the VDDoff threshold (see Table 6 on page 7).  
Figure 21. Power-on and power-off  
VIN < VDRAIN_START  
VIN  
HV startup is no more activated  
VDRAIN_START  
With internal self-supply  
VDD  
VDDon  
t
t
regulation is lost here  
Without internal self-supply  
VDDCSon  
VDDoff  
VDRAIN  
IDD  
IDDch2  
t
t
IDDch1  
Normal operation  
Power-off  
Power-on  
Doc ID 022794 Rev 1  
15/28  
 
Oscillator  
VIPER06  
9
Oscillator  
The switching frequency is internally fixed at 30 kHz or 60 kHz or 115 kHz (respectively part  
numbers VIPER06Xx, VIPER06Lx and VIPER06Hx).  
The switching frequency is modulated by approximately 3 kHz (30 kHz version) or 4 kHz  
(60 kHz version) or 8 kHz (115 kHz version) at 230 Hz (typical) rate, so that the resulting  
spread spectrum action distributes the energy of each harmonic of the switching frequency  
over a number of sideband harmonics having the same energy on the whole, but smaller  
amplitudes.  
10  
11  
Soft startup  
During the converter’s startup phase, the soft-start function progressively increases the  
cycle-by-cycle drain current limit, up to the default value IDlim. In this way the drain current is  
further limited and the output voltage is progressively increased, reducing the stress on the  
secondary diode. The soft-start time is internally fixed to tSS, see typical value  
in Table 7 on page 8, and the function is activated for any attempt of converter startup and  
after a fault event.  
This function helps prevent saturation of the transformer during startup and short-circuit.  
Adjustable current limit set point  
The VIPER06 includes a current-mode PWM controller. The drain current is sensed cycle-  
by-cycle through the integrated resistor RSENSE and the voltage is applied to the non-  
inverting input of the PWM comparator, see Figure 2 on page 4. As soon as the sensed  
voltage is equal to the voltage derived from the COMP pin, the power MOSFET is switched  
OFF.  
In parallel with the PWM operations, the comparator OCP, see Figure 2 on page 4, checks  
the level of the drain current and switches OFF the power MOSFET in case the current is  
higher than the threshold IDlim, see Table 7 on page 8.  
The level of the drain current limit IDlim can be reduced using a resistor RLIM connected  
between the LIM and GND pins. Current is sunk from the LIM pin through the resistor RLIM  
and the setup of IDlim depends on the level of this current. The relation between IDlim and  
R
LIM is shown in Figure 13 on page 11.  
When the LIM pin is left open or if RLIM has a high value (i.e. > 80 kΩ), the current limit is  
fixed to its default value, IDlim, as given in Table 7 on page 8.  
16/28  
Doc ID 022794 Rev 1  
VIPER06  
FB pin and COMP pin  
12  
FB pin and COMP pin  
The device can be used both in non-isolated and isolated topology. In non-isolated topology,  
the feedback signal from the output voltage is applied directly to the FB pin as the inverting  
input of the internal error amplifier having the reference voltage, VREF_FB, see Table 7 on  
page 8.  
The output of the error amplifier sources and sinks the current, ICOMP, respectively to and  
from the compensation network connected on the COMP pin. This signal is then compared  
in the PWM comparator with the signal coming from the SenseFET in order to switch off the  
power MOSFET on a cycle-by-cycle basis. See the Figure 2 on page 4 and the Figure 22.  
When the power supply output voltage is equal to the error amplifier reference voltage,  
V
REF_FB, a single resistor has to be connected from the output to the FB pin. For higher  
output voltages the external resistor divider is needed. If the voltage on the FB pin is  
accidentally left floating, an internal pull-up protects the controller.  
The output of the error amplifier is externally accessible through the COMP pin and it’s used  
for the loop compensation, usually an RC network.  
As shown in Figure 22, in case of an isolated power supply, the internal error amplifier has to  
be disabled (FB pin shorted to GND). In this case an internal resistor is connected between  
an internal reference voltage and the COMP pin, see Figure 22. The current loop has to be  
closed on the COMP pin through the opto-transistor in parallel with the compensation  
network. The VCOMP dynamic range is between VCOMPL and VCOMPH shown in Figure 23 on  
page 18.  
When the voltage VCOMP drops below the voltage threshold VCOMPL, the converter enters  
burst mode, see Section 13 on page 18.  
When the voltage VCOMP rises above the VCOMPH threshold, the peak drain current, as well  
as the deliverable output power, will reach its limit.  
Figure 22. Feedback circuit  
Without Isolation:  
VREF  
switch open & E/A enabled  
RCOMP  
VCOMPL  
With Isolation:  
switch closed & E/A disabled  
PWM stop  
+
-
VOUT  
SW  
BUS  
FB  
-
from RSENSE  
E/A  
+
RH  
VREF_FB  
to PWM  
+
-
nR  
Isolation  
No  
Isolation  
RL  
R
COMP  
Doc ID 022794 Rev 1  
17/28  
 
Burst mode  
VIPER06  
Figure 23. COMP pin voltage versus IDRAIN  
DRAIN  
I
IDlim  
IDlim_bm  
COMP  
V
VCOMPL  
VCOMPH  
AM01095v1  
13  
Burst mode  
When the voltage VCOMP drops below the threshold, VCOMPL, the power MOSFET is kept in  
the OFF state and the consumption is reduced to the IDD0 current, as reported on Table 6 on  
page 7. In reaction to the loss of energy, the VCOMP voltage increases and as soon as it  
exceeds the threshold VCOMPL + VCOMPL_HYS, the converter starts switching again with a  
level of consumption equal to the IDD1 current. This ON-OFF operation mode, referred to as  
“burst mode” and shown in Figure 24 on page 18, reduces the average frequency, which can  
go down even to a few hundreds hertz, thus minimizing all frequency-related losses and  
making it easier to comply with energy-saving regulations. During burst mode, the drain  
current limit is reduced to the value IDlim_bm (given inTable 7 on page 8) in order to avoid the  
audible noise issue.  
Figure 24. Load-dependent operating modes: timing waveforms  
VCOMP  
VCOMPL +VCOMPL_HYS  
VCOMPL  
time  
IDD  
IDD1  
IDD0  
time  
IDRAIN  
IDlim_bm  
time  
Burst Mode  
18/28  
Doc ID 022794 Rev 1  
 
VIPER06  
Automatic auto-restart after overload or short-circuit  
14  
Automatic auto-restart after overload or short-circuit  
The overload protection is implemented automatically using the integrated up-down counter.  
Every cycle, it is incremented or decremented depending upon the current logic detection of  
the limit condition or not. The limit condition is the peak drain current, IDlim , given in Table 7  
on page 8 or the one set by the user through the RLIM resistor, shown in Figure 13 on  
page 11. After the reset of the counter, if the peak drain current is continuously equal to the  
level IDlim, the counter will be incremented until the fixed time, tOVL, at which point the power  
MOSFET switch ON will be disabled. It will be activated again through the soft-start after the  
tRESTART time (see Figure 25 and Figure 26 on page 19) and the time values mentioned in  
Table 7 on page 8.  
For overload or short-circuit events, the power MOSFET switching will be stopped after a  
period of time dependent upon the counter with a maximum equal to tOVL. The protection  
sequence continues until the overload condition is removed, see Figure 25 and Figure 26.  
This protection ensures a low repetition rate of restart attempts of the converter, so that it  
works safely with extremely low power throughput and avoids overheating the IC in case of  
repeated overload events. If the overload is removed before the protection tripping, the  
counter will be decremented cycle-by-cycle down to zero and the IC will not be stopped.  
Figure 25. Timing diagram: OLP sequence (IC externally biased)  
SHORT CIRCUIT  
REMOVED HERE  
SHORT CIRCUIT  
OCCURS HERE  
VDD  
VDDon  
VDDCSon  
time  
time  
IDRAIN  
IDlim_bm  
tOVL  
tOVL  
*
tRESTART  
t1  
tRESTART  
tRESTART  
tSS  
* The time t1 can be lower or equal to the time tOVL  
tSS  
tSS  
Figure 26. Timing diagram: OLP sequence (IC internally biased)  
SHORT CIRCUIT  
REMOVED HERE  
SHORT CIRCUIT  
OCCURS HERE  
VDD  
VDDon  
VDDCSon  
time  
time  
IDRAIN  
IDlim_bm  
tOVL  
tOVL  
*
tRESTART  
t1  
tRESTART  
tRESTART  
tSS  
tSS  
tSS  
*
The time t1 can be lower than or equal to the time tOVL  
Doc ID 022794 Rev 1  
19/28  
 
 
Open-loop failure protection  
VIPER06  
15  
Open-loop failure protection  
If the power supply has been designed using flyback topology and the VIPER06 is supplied  
by an auxiliary winding, as shown in Figure 27 and Figure 28 on page 21, the converter is  
protected against feedback loop failure or accidental disconnections of the winding.  
The following description is applicable for the schematics of Figure 27 and Figure 28 on  
page 21, respectively the non-isolated flyback and the isolated flyback.  
If RH is open or RL is shorted, the VIPER06 works at its drain current limitation. The output  
voltage, VOUT, will increase as does the auxiliary voltage, VAUX, which is coupled with the  
output through the secondary-to-auxiliary turns ratio.  
As the auxiliary voltage increases up to the internal VDD active clamp, VDDclamp (the value is  
given in Table 7 on page 8) and the clamp current injected on the VDD pin exceeds the latch  
threshold, IDDol (the value is given in Table 7 on page 8), a fault signal is internally  
generated.  
In order to distinguish an actual malfunction from a bad auxiliary winding design, both the  
above conditions (drain current equal to the drain current limitation and current higher than  
IDDol through the VDD clamp) have to be verified to reveal the fault.  
If RL is open or RH is shorted, the output voltage, VOUT, will be clamped to the reference  
voltage VREF_FB (for non-isolated flyback) or to the external TL voltage reference (for  
isolated flyback).  
Figure 27. FB pin connection for non-isolated flyback  
DAUX  
RAUX  
VAUX  
CVDD  
VDD  
VOUT  
VCOMPL  
PWM stop  
+
-
RH  
RL  
BUS  
FB  
-
from RSENSE  
E/A  
+
VREF_FB  
+
-
to PWM  
nR  
R
COMP  
RS  
CS  
CP  
20/28  
Doc ID 022794 Rev 1  
 
VIPER06  
Open-loop failure protection  
Figure 28. FB pin connection for isolated flyback  
RAUX  
DAUX  
VAUX  
CVDD  
VREF  
RCOMP  
SW  
VCOMPL  
+
-
PWM stop  
BUS  
Disabled  
FB  
VOUT  
from RSENSE  
-
E/A  
+
VREF_FB  
+
-
nR  
to PWM  
R
ROPTO  
RH  
COMP  
R3  
U5  
RC  
CC  
CCOMP  
TL  
RL  
-
Doc ID 022794 Rev 1  
21/28  
Package mechanical data  
VIPER06  
16  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
Table 8.  
DIP-7 mechanical data  
mm  
Min  
Dim.  
Typ  
Max  
A
A1  
A2  
b
5.33  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
3.30  
2.508  
0.50  
2.92  
0.40  
M(1)(2)  
N
0.60  
0.60  
N1  
O(2)(3)  
0.548  
1. Creepage distance > 800 V.  
2. Creepage distance as given in the 664-1 CEI / IEC standard.  
3. Creepage distance 250 V.  
Note:  
1
2
3
4
The lead size includes the thickness of the lead finishing material.  
Dimensions do not include mold protrusion, not to exceed 0.25 mm in total (both sides).  
Package outline exclusive of metal burr dimensions.  
Datum plane “H” coincident with the bottom of lead, where lead exits body (refer to  
Figure 29 on page 23).  
22/28  
Doc ID 022794 Rev 1  
VIPER06  
Package mechanical data  
Figure 29. DIP-7 package dimensions  
Doc ID 022794 Rev 1  
23/28  
Package mechanical data  
Table 9. SSO10 mechanical data  
VIPER06  
Databook (mm.)  
Min.  
Dim.  
Typ  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.10  
1.25  
0.31  
0.17  
4.80  
5.80  
3.80  
0.51  
0.25  
5
c
D
E
4.90  
6
6.20  
4
E1  
e
3.90  
1
h
0.25  
0.40  
0°  
0.50  
0.90  
8°  
L
K
24/28  
Doc ID 022794 Rev 1  
VIPER06  
Package mechanical data  
Figure 30. SSO10 package dimensions  
8140761 rev. A  
Doc ID 022794 Rev 1  
25/28  
Order codes  
VIPER06  
17  
Order codes  
Table 10. Ordering information  
Order code  
Package  
Packaging  
VIPER06XN  
VIPER06LN  
DIP-7  
Tube  
VIPER06HN  
VIPER06XS  
VIPER06XSTR  
VIPER06LS  
Tube  
Tape and reel  
Tube  
SSO10  
VIPER06LSTR  
VIPER06HS  
VIPER06HSTR  
Tape and reel  
Tube  
Tape and reel  
26/28  
Doc ID 022794 Rev 1  
VIPER06  
Revision history  
18  
Revision history  
s
Table 11. Document revision history  
Date  
Revision  
Changes  
08-Mar-2012  
1
Initial release.  
Doc ID 022794 Rev 1  
27/28  
VIPER06  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
28/28  
Doc ID 022794 Rev 1  

相关型号:

VIPER06LSTR

Fixed-frequency VIPer plus family
STMICROELECTR

VIPER06XN

Fixed-frequency VIPer plus family
STMICROELECTR

VIPER06XS

Fixed-frequency VIPer plus family
STMICROELECTR

VIPER06XSTR

Fixed-frequency VIPer plus family
STMICROELECTR

VIPER100

SMPS PRIMARY I.C.
STMICROELECTR

VIPER100-22-E

SMPS PRIMARY I.C.
STMICROELECTR

VIPER100-E

SMPS PRIMARY I.C.
STMICROELECTR

VIPER100/SP

SMPS PRIMARY I.C.
STMICROELECTR

VIPER100A

SMPS PRIMARY I.C.
STMICROELECTR

VIPER100A-22-E

SMPS PRIMARY I.C.
STMICROELECTR