VIPER319HDTR [STMICROELECTRONICS]

Energy saving offline high voltage converter;
VIPER319HDTR
型号: VIPER319HDTR
厂家: ST    ST
描述:

Energy saving offline high voltage converter

文件: 总40页 (文件大小:1107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VIPER31  
Datasheet  
Energy saving offline high voltage converter  
Features  
800 V avalanche-rugged power MOSFET to cover ultra-wide VAC input range  
Embedded HV startup and sense FET  
Current mode PWM controller  
Drain current limit protection (OCP):  
710 mA (VIPER317)  
850 mA (VIPER318)  
990 mA (VIPER319)  
~
AC  
DIN  
RIN  
VCC  
DRAIN  
GND  
OVP  
FB  
VIPER31  
CONTROL  
COMP  
Wide supply voltage range: 4.5 V to 30 V  
UVP  
CIN  
DAUX  
< 20 mW @ 230 VAC in no-load;  
R1  
< 430 mW @ 230 VAC, 25 0mW output load  
C1  
C2  
D1  
D2  
R2  
C3  
LOUT  
VOUT  
GND  
Jittered switching frequency reduces the EMI filter cost:  
COUT  
30 kHz ± 7% (type X)  
60 kHz ± 7% (type L)  
132 kHz ±7% (type H)  
GND  
Embedded E/A with 1.2 V reference  
Built-in soft-start for improved system reliability  
Protections with automatic restart:  
overload/short-circuit (OLP)  
thermal shutdown  
overvoltage  
Product status link  
Protections without automatic restart:  
VIPER31  
pulse-skip protection to avoid flux runaway  
undervoltage/disable  
Product label  
max. duty cycle  
Application  
Low power SMPS for home appliances, home automation, industrial,  
consumers, lighting  
Low power adapters  
Description  
The VIPER31 device is a high-voltage converter that smartly integrates an 800  
V avalanche rugged power MOSFET with PWM current-mode control. The 800 V  
breakdown allows extended input voltage range to be applied, as well as to reduce  
the size of the DRAIN snubber circuit. The IC can meet the most stringent energy-  
saving standards as it has very low consumption and operates in pulse frequency  
modulation at light load. Overvoltage and undervoltage protections with separate and  
settable intervention thresholds are available at OVP and UVP pins respectively. UVP  
can also be used as a disabling input for the entire SMPS, with ultra-low residual  
input power consumption. Integrated HV startup, sense FET, error amplifier and  
oscillator with frequency jitter allow a complete application to be designed with a  
minimum component count. Flyback, buck and buck boost topologies are supported.  
DS13285 - Rev 3 - November 2020  
For further information contact your local STMicroelectronics sales office.  
www.st.com  
 
VIPER31  
Pin setting  
1
Pin setting  
Figure 1. Connection diagram  
DRAIN  
GND  
N.C.  
DRAIN  
DRAIN  
DRAIN  
VCC  
N. A.  
N. C.  
N. C.  
N. C.  
N. C.  
UVP  
OVP  
FB  
COMP  
Table 1. Pin description  
Function  
Pin  
number  
Name  
Ground and MOSFET source. Connection of both the source of the internal MOSFET and the return of  
the bias current of the device. All of the groundings of bias components must be tied to a trace going to  
this pin and kept separate from the pulsed current return.  
1
2
GND  
N. C.  
Not connected. When designing the PCB, this pin can be soldered to GND.  
Controller Supply. An external storage capacitor has to be connected across this pin and GND. The  
pin, internally connected to the high-voltage current source, provides the VCC capacitor charging current  
at startup. A small bypass capacitor (0.1 μF typ.) in parallel, placed as close as possible to the IC, is also  
recommended, for noise filtering purposes.  
3
4
VCC  
N.A.  
Not available for user. This pin is mechanically connected to the controller die pad of the frame. In order  
to improve noise immunity, it is highly recommended to connect it to GND.  
Undervoltage Protection. If V  
falls below the internal threshold V  
(0.4 V typ.) for more than  
UVP_th  
UVP  
t
time (30 ms, typ.), the IC is disabled, and its consumption reduced to ultra-low values. When  
UVP_DEB  
V
rises above V  
the device waits for a t  
time interval (30 ms, typ.) then resumes  
UVP_REST  
UVP  
UVP_th,  
5
UVP  
switching. The pin can be used to realize an input undervoltage protection or as a disabling input for the  
entire SMPS, with ultra-low residual input power consumption. If the feature is not required, the pin must  
be left open, which excludes the function.  
Overvoltage protection. If VOVP exceeds the internal threshold V  
(4 V typ.) for more than  
OVP_th  
t
time (250 μsec, typ.), the PWM is disabled in auto-restart for t  
(500 msec, typ.) until  
OVP_REST  
OVP_DEB  
the OVP condition is removed, after that it restarts switching with soft-start phase. OVP pin can be  
used to realize an input overvoltage protection (or, in non-isolated topologies, an output overvoltage  
protection).  
6
7
OVP  
FB  
If the feature is not required, the pin must be connected to GND, which excludes the function.  
Direct feedback. It is the inverting input of the internal transconductance E/A, internally referenced to  
1.2 V with respect to GND. In non-isolated converter, the output voltage information is directly fed into the  
pin through a voltage divider. In primary regulation, the FB voltage divider is connected to the VCC. The  
E/A is disabled if FB is connected to GND pin.  
DS13285 - Rev 3  
page 2/40  
 
 
 
VIPER31  
Pin setting  
Pin  
number  
Name  
Function  
Compensation. This is the output of the internal E/A. A compensation network is placed between  
this pin and GND to achieve stability and good dynamic performance of the control loop. In case of  
secondary feedback, the internal E/A must be disabled and the COMP directly driven by the optocoupler  
to control the DRAIN peak current setpoint.  
8
COMP  
N.C.  
9 to 12  
Not connected. These pins must be left floating in order to get a safe clearance distance.  
MOSFET drain. The internal high-voltage current source sources current from these pins to charge  
the VCC capacitor at startup. The pins are mechanically connected to the internal metal PAD of the  
MOSFET in order to facilitate heat dissipation. On the PCB, some copper areas under these pins  
decreases the total junction-to-ambient thermal resistance thus facilitating the power dissipation.  
13 to 16 DRAIN  
DS13285 - Rev 3  
page 3/40  
VIPER31  
Electrical and thermal ratings  
2
Electrical and thermal ratings  
Table 2. Absolute maximum ratings  
Parameter (1)(2)  
Drain-to- source (ground) voltage  
Symbol  
Min.  
Max.  
800  
Unit  
V
I
V
A
V
DS  
Pulsed drain current (pulse-width limited by SOA)  
VCC voltage  
3
DRAIN  
V
-0.3  
30.5V  
CC  
Internally  
limited(3)  
V
OVP voltage  
-0.3  
V
OVP  
Internally  
limited (3)  
V
V
V
UVP voltage  
FB voltage  
-0.3  
-0.3  
-0.3  
V
V
V
UVP  
FB  
5 (4)  
Internally  
limited (3)  
COMP voltage  
COMP  
1(5)  
P
T
Power Dissipation @ Tamb < 50°C  
Junction Temperature operating range  
Storage Temperature  
W
TOT  
-40  
-55  
150  
150  
°C  
°C  
J
T
STG  
1. stresses beyond those listed absolute maximum ratings may cause permanent damage to the device.  
2. exposure to absolute-maximum-rated conditions for extended periods may affect the device reliability  
3. by internal clamp between 4.75 V and 5.25 V or Vcc + 0.6 V, whichever is lower  
4. the AMR value is intended when VCC ≥ 5 V, otherwise the value VCC + 0.3 V has to be considered.  
5. when mounted on a standard single side FR4 board with 100 mm² (0.155² inch) of Cu (35 μm thick)  
Table 3. Thermal data  
Max. value  
Symbol  
Parameter  
Unit  
SO16N  
Thermal resistance junction to case(1)  
R
R
R
R
10  
120  
5
°C/W  
°C/W  
°C/W  
°C/W  
TH-JC  
(dissipated power = 1W)  
Thermal resistance junction to ambient(1)  
(dissipated power = 1W)  
TH-JA  
TH-JC  
TH-JA  
Thermal resistance junction to case(2)  
(dissipated power = 1W)  
Thermal resistance junction to ambient(2)  
(dissipated power = 1W)  
85  
1. when mounted on a standard single side FR4 board with minimum copper area  
2. when mounted on a standard single side FR4 board with 100mm² (0.155² inch) of Cu (35 μm thick)  
DS13285 - Rev 3  
page 4/40  
 
 
 
 
 
 
 
 
 
VIPER31  
Electrical characteristics  
Figure 2. Rth_JA versus copper area  
R
thJA/(RthJA@ A = 100mm2)  
1.500  
1.375  
1.250  
1.125  
1.000  
0.875  
0.750  
0
25  
50  
75  
100  
125  
150  
175  
200  
225  
A (mm2)  
Table 4. Avalanche characteristics  
Symbol  
Parameter  
Avalanche current  
Condition  
Min.  
Typ.  
Max.  
1.15  
Unit  
Repetitive and non-repetitive.  
I
A
AR  
Pulse-width limited by T  
Jmax  
I
= I  
AR  
,
AS  
Single pulse avalanche energy(1)  
V
= 100 V,  
EAS  
3
mJ  
DS  
Starting T = 25°C  
J
1. Parameter derived by characterization  
2.1  
Electrical characteristics  
Tj = -40 to 125°C, VCC = 9 V (unless otherwise specified)  
Table 5. Power section  
Test condition  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
I
= 1 mA, V  
= V  
,
GND  
DRAIN  
COMP  
V
I
Breakdown voltage  
800  
V
BVDSS  
T = 25°C  
J
V
= 400 V, V  
= V  
,
GND  
DS  
COMP  
Drain-source leakage current  
OFF state drain current  
1
µA  
µA  
DSS  
OFF  
T = 25°C  
J
V
V
= max. rating,  
DRAIN  
COMP  
I
60  
= V  
, T = 25°C  
GND J  
I
= 400 mA, T = 25°C  
J
3.5  
7
DRAIN  
DRAIN  
Static drain-source  
ONresistance  
R
DS(on)  
I
= 400 mA, T = 125°C  
J
DS13285 - Rev 3  
page 5/40  
 
 
 
 
 
VIPER31  
Electrical characteristics  
Table 6. Supply section  
Test condition  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
High-voltage startup current source  
Breakdown voltage of startup  
MOSFET  
V
T = 25°C  
800  
V
V
BVDSS_SU  
J
V
Drain-source startup voltage  
Startup resistor  
24  
54  
HV_START  
V
V
V
> V  
,
FB_REF  
FB  
R
I
= 400 V,  
= 600 V  
36  
45  
MΩ  
mA  
G
DRAIN  
DRAIN  
V
V
charging current at startup  
charging current  
V
V
= 100V, V 1V  
0.5  
7.6  
1
1.5  
10  
CH1  
CC  
CC  
DRAIN  
CC  
> V  
, V  
DRAIN  
= 100V  
FB  
FB_REF  
I
8.8  
CH2  
1V < V <V  
CC  
CCon  
IC supply and consumptions  
V
Operating voltage range  
VCC startup threshold  
4.5  
7.5  
30  
V
V
CC  
V
8
4.25  
4
8.5  
Ccon  
HV current source turn-on  
threshold  
V
V
V
falling  
CC  
4
4.5  
V
V
Cson  
Ccoff  
UVLO  
3.75  
4.25  
0.35  
0.48  
Not switching,  
X, L versions  
H version  
= 1.2 V,  
I
Quiescent current  
mA  
q
V
FB  
> V  
FB_REF  
V
DS  
= 150 V, V  
= 30 kHz  
COMP  
COMP  
COMP  
1.25  
1.5  
1.7  
2
F
OSC  
V
= 150 V, V  
= 60 kHz  
= 1.2 V,  
= 1.2 V,  
Operating supply current,  
switching  
DS  
I
mA  
CC  
F
OSC  
V
= 150 V, V  
= 132 kHz  
DS  
2.25  
2.8  
F
OSC  
Note:  
1.  
2.  
Current supplied only during the main MOSFET OFF time.  
Parameter assured by design and characterization.  
DS13285 - Rev 3  
page 6/40  
 
VIPER31  
Electrical characteristics  
Table 7. Controller section  
Test condition  
Symbol  
E/A  
Parameter  
Min.  
Typ.  
Max.  
Unit  
V
V
I
Reference voltage  
1.175  
150  
1.2  
180  
1
1.225  
210  
V
FB_REF  
E/A disable voltage  
Pull-up current  
mV  
µA  
FB_DIS  
0.9  
1.1  
FB_PULL UP  
V
V
=1.5 V,  
COMP  
G
Trans conductance  
Max. source current  
Max. sink current  
400  
75  
550  
100  
100  
700  
125  
125  
µA/V  
µA  
M
FB >VFBREF  
V
V
=1.5 V,  
COMP  
I
I
COMP1  
COMP2  
=0.5 V  
FB  
V
V
=2 V,  
FB  
75  
µA  
=1.5 V  
=2.7 V,  
COMP  
V
V
COMP  
R
V
Dynamic resistance  
13  
15  
17  
kΩ  
COMP(DYN)  
=G  
FB  
ND  
Current limitation threshold  
PFM threshold  
2.75  
3.1  
3.45  
V
V
COMPH  
COMPL  
V
0.6  
3.8  
3.2  
2.9  
0.8  
4.2  
3.5  
3.2  
1
VIPER317*  
VIPER318*  
VIPER319*  
4,6  
3.8  
3.5  
H
ΔV  
/ΔI  
COMP  
COMP DRAIN  
V/A  
OLP and timing  
T = 25°C , VIPER317*  
675  
810  
940  
639  
765  
891  
710  
850  
745  
890  
J
T = 25°C , VIPER318*  
J
T = 25°C , VIPER319*  
J
990  
710  
1040  
781  
I
Drain current limitation  
mA  
DLIM  
VIPER317*(1)  
VIPER318*(1)  
VIPER319*(1)  
VIPER317L  
VIPER317H  
VIPER318X  
VIPER318L  
VIPER318H  
VIPER319X  
VIPER319L  
VIPER319H  
850  
935  
990  
1089  
30.2  
66.5  
21.7  
43.4  
95.4  
29.4  
58.8  
129.4  
Power coefficient  
2
2
-10%  
+10%  
I f  
A ·kHz  
2
I
x F  
OSC_TYP  
DLIM_TYP  
(2)  
(2)  
(2)  
T =25°C, V  
=V  
=V  
=V  
J
COMP  
COMPL  
COMPL  
COMPL  
80  
110  
130  
150  
140  
160  
180  
VIPER317* (1)  
T =25°C, V  
J
COMP  
I
Drain current limitation at light load  
100  
120  
mA  
Dlim_PFM  
VIPER318*(1)  
T =25°C, V  
J
COMP  
VIPER319*(1)  
DS13285 - Rev 3  
page 7/40  
 
VIPER31  
Electrical characteristics  
Symbol  
Parameter  
Overload delay time  
Test condition  
Min.  
Typ.  
Max.  
55  
Unit  
ms  
t
t
t
45  
50  
OVL  
Max. overload delay time  
Soft-start time  
When in pulse skipping  
100  
11  
ms  
OVL_max  
SS  
5
8
300  
1
ms  
V
V
V
=9 V,  
CC  
t
t
=1 V,  
Minimum turn-on time  
Restart time after fault  
250  
350  
ns  
s
ON_MIN  
COMP  
=V  
FB  
FB_REF  
0.625  
1.375  
RESTART  
UVP  
V
V
V
=9 V,  
CC  
V
=1 V,  
UVP threshold  
0.38  
0.4  
0.42  
V
UVP_th  
COMP  
FB=VFB_REF  
I
t
UVP pull-up current  
-1  
µA  
ms  
UVP_pull- up  
Debounce time before UVP tripping  
18.75  
18.75  
30  
41.25  
41.25  
0.35  
UVP_DEB  
Debounce time for restoring normal  
operation from UVP  
t
I
30  
ms  
UVP_REST  
Not switching, V >V  
Quiescient current during UVP  
0.25  
mA  
q_DIS  
FB  
FB_REF  
OVP  
V
V
V
=9 V,  
CC  
V
=1 V,  
Overvoltage protection threshold  
Debounce time before OVP tripping  
3.85  
4
4.15  
V
OVP_th  
COMP  
=V  
FB  
FB_REF  
t
t
156  
312  
250  
500  
344  
688  
µs  
OVP_DEB  
Restart time after overvoltage  
protection tripping  
ms  
OVP_REST  
Oscillator  
T =25ºC VIPER31*X  
27  
54  
30  
60  
33  
66  
J
F
T = 25ºC, VIPER31*L  
J
Switching frequency  
kHz  
OSC  
T = 25ºC, VIPER31*H  
119  
13.5  
132  
15  
145  
16.5  
J
T = 25ºC (3)  
F
Min. switching frequency  
Modulation depth  
kHz  
%
OSC MIN  
J
(4)  
(4)  
(4)  
F
±7·F  
OSC  
D
F
Modulation frequency  
Max. duty cycle  
200  
Hz  
%
M
D
70  
80  
MAX  
Thermal shutdown protection  
Thermal shutdown temperature  
threshold  
(4)  
T
150  
160  
°C  
SD  
1. Measured at Vin = 100 Vdc in Flyback topology, with 1.5 mH transformer primary inductance  
2. See Section 4.10 Pulse frequency modulation  
3. See Section 4.7 Pulse skipping  
4. Parameter assured by design and characterization.  
DS13285 - Rev 3  
page 8/40  
 
 
 
 
VIPER31  
Typical electrical characteristics  
3
Typical electrical characteristics  
Figure 3. IDLIM vs. TJ  
Figure 4. FOSC vs. TJ  
IDLIM/(IDLIM@25°C)  
FOSC/(FOSC@25°C)  
1.2  
1.1  
1
1.1  
1.05  
1
0.9  
0.8  
0.95  
0.9  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [°C]  
Tj [°C]  
Figure 5. VHV_START vs. TJ  
Figure 6. VFB_REF vs. TJ  
VHV_START/(VHV_START@25°C)  
VFB_REF/(VFB_REF@25°C)  
1.2  
1.1  
1
1.05  
1.025  
1
0.9  
0.8  
0.975  
0.95  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [°C]  
Tj [°C]  
Figure 7. Quiescent Current Iq vs. TJ  
Figure 8. Operating current ICC vs. TJ  
Iq/(Iq@25°C)  
ICC/(ICC@25°C)  
1.1  
1.2  
1.05  
1.1  
1
1
0.95  
0.9  
0.9  
0.8  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [°C]  
Tj [°C]  
DS13285 - Rev 3  
page 9/40  
 
 
 
 
 
 
 
VIPER31  
Typical electrical characteristics  
Figure 9. ICH1 vs. TJ  
Figure 10. ICH2 vs. TJ  
ICH2/(ICH2@25°C)  
ICH1/(ICH1@25°C)  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
1.2  
1.1  
1
0.9  
0.8  
-50  
-25  
0
25  
50  
75  
100  
125  
700  
125  
150  
800  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
700  
125  
150  
800  
150  
Tj [°C]  
Tj [°C]  
Figure 11. ICH1 vs. VDRAIN  
Figure 12. ICH2 vs. VDRAIN  
ICH1/(ICH1@VDRAIN = 100V)  
ICH2/(ICH2@VDRAIN=100V)  
1.1  
1.05  
1
1.1  
1.05  
1
0.95  
0.9  
0.95  
0.9  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
VDRAIN [V]  
500  
600  
VDRAIN [V]  
Figure 13. GM vs. TJ  
Figure 14. ICOMP vs. TJ  
ICOMP/(ICOMP@25°C)  
GM/(GM@25°C)  
1.2  
1.1  
1
1.1  
1.05  
1
0.9  
0.8  
0.95  
0.9  
-50  
-25  
0
25  
50  
Tj [°C]  
75  
100  
-50  
-25  
0
25  
50  
Tj [°C]  
75  
100  
DS13285 - Rev 3  
page 10/40  
 
 
 
 
 
VIPER31  
Typical electrical characteristics  
Figure 16. RDSON vs. IDRAIN  
Figure 15. RDSON vs. TJ  
RDS(on) /(RDS(on)@IDRAIN = 360mA)  
1.5  
RDS(on)/(RDS(on)@25°C)  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
1
0.5  
T = 25°C  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [°C]  
0
0
50  
100  
150  
200  
IDRAIN [mA]  
250  
300  
350  
400  
Figure 18. Power MOSFET COSS vs. VDS @ VGS=0, f=1MHz  
COSS [pF]  
Figure 17. Static drain-source on resistance  
10000  
1000  
100  
10  
1
0
1
10  
100  
1000  
VDS [V]  
Figure 19. VBVDSS vs. TJ  
Figure 20. Output characteristic  
V(BR)DSS/ (V(BR)DSS @ 250C)  
1.12  
IDRAIN [A]  
4.8  
4.4  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
-40°C  
1.08  
1.04  
1
25°C  
ID = 1 mA  
125°C  
0.96  
0.92  
0.88  
-50  
0
50  
TJ [°C]  
100  
150  
0.0  
4.0  
8.0  
12.0  
16.0  
VDS [V]  
DS13285 - Rev 3  
page 11/40  
 
 
 
 
 
 
VIPER31  
Typical electrical characteristics  
Figure 22. Maximum avalanche energy vs. Tj  
Figure 21. SOA SO16N package  
EAS [mJ]  
ID [A]  
4
3
2
1
0
10  
Single pulse,  
ID = 1A, VDD = 50 V  
1
tp = 1 ms  
RDS(on) limit  
tp = 10 ms  
0.1  
tp = 100 ms  
tp = 1 ms  
0.01  
0.1  
1
10  
100  
1000  
V[V]  
DS  
-50  
0
50  
100  
150  
Tj [°C]  
DS13285 - Rev 3  
page 12/40  
 
 
VIPER31  
General description  
4
General description  
4.1  
Block diagram  
Figure 23. Block diagram  
VCC  
DRAIN  
IC_DIS  
HV  
Start up  
IHV  
ICH*  
REGULATOR  
Q
IC DISABLE  
LOGIC  
4V  
S
R
HV DISABLE  
LOGIC  
RG  
Vz  
Internal Supply bus  
LIGHT LOAD PFM  
COMP  
JITTERED  
OSCILLATOR  
THERMAL  
DIODE  
(OTP)  
SOFT START  
TURN ON  
LOGIC  
IDLIM ref  
LEB  
+
S
OCP  
E/A  
-
Q
-
FB  
+
R
+
-
PWM  
-
OCP  
tOVL filter  
PROTECTION  
LOGIC  
tRESTART  
VFB_REF  
IC_DIS_SET  
IC_DIS_RESET  
+
UVLO VCC  
VCC_clamp  
tUVP_DEB filter  
OVP LOGIC  
tOVP_REST  
tOVP_DEB filter  
TSD LOGIC  
tRESTART  
tUVP_REST filter  
OTP  
IC_DIS  
+
-
+
-
VUVP_th  
VOVP_th  
RSENSE  
UVP  
OVP  
GND  
4.2  
Typical power capability  
Table 8. Typical power  
Vin: 230 V  
Vin: 85-265 V  
AC  
AC  
Adapter (1)  
27 W  
Open Frame (2)  
31 W  
Adapter (1)  
16 W  
Open Frame (2)  
19 W  
1. Typical continuous power in non-ventilated enclosed adapter measured at 50°C ambient.  
2. Maximum practical continuous power in an open frame design at 50°C ambient, with adequate heat sinking.  
DS13285 - Rev 3  
page 13/40  
 
 
 
 
 
 
 
VIPER31  
Primary MOSFET  
Figure 24. Typical deliverable output power vs. TAMB (Vin: 85-265VAC  
)
4.3  
4.4  
Primary MOSFET  
The primary switch is implemented with an avalanche rugged N-channel MOSFET with 800 V minimum  
breakdown voltage, VBVDSS, and 3.5 Ω maximum on-resistance, RDS(on)  
.
The sense-FET is embedded and allows a virtually lossless current sensing.  
The MOSFET gate driver controls the gate current during both turn-on and turn-off in order to minimize common  
mode EMI. Under UVLO conditions the embedded pull-down circuit holds the gate low in order to ensure that the  
MOSFET cannot be turned on accidentally.  
High-voltage startup  
The embedded high-voltage startup includes both the 800 V startup FET, whose gate is biased through the  
resistor RG, and the switchable HV current source, delivering the current IHV. The major portion of IHV, (ICH),  
charges the capacitor connected to VCC pin. A minor portion is sunk by the controller block.  
Power on: at startup, as the voltage across the DRAIN pin exceeds the VHV_START threshold, the HV current  
source is turned on, charging linearly the VCC capacitor with the current ICH2 (8.8 mA typ.). This charging current  
is reduced to ICH1 (1 mA typ.) in case VCC is lower than 1 V (typical value), in order to limit IC power dissipation in  
case the pin is accidentally shorted to GND.  
As VCC reaches the startup threshold, VCCon, the chip starts operating, the primary MOSFET is enabled to switch,  
the HV current source is disabled and the device is powered by the energy stored in the VCC capacitor. The IC  
can be supplied through a transformer auxiliary winding or, in case of not isolated topologies with VOUT ≥ 5 V,  
directly from the converter’s output.  
The supply operating range is from 4.5 V to 30.5 V. If VCC pin voltage exceeds 30.5 V (referred to VGND), the  
internal clamp could be reached, which causes the VIPER31 to stop switching.  
This condition is potentially dangerous for the VIPER31 and must be avoided, by means of proper transformer  
design and/or external protection (zener diode between VCC and GND pins).  
In normal operation the HV current source is always kept off by maintaining VCC above VCson, so its residual  
consumption is given by the power dissipated on RG only, calculated as follows:  
Equation 1  
(1)  
PHV(VIN) = VIN2/RG  
DS13285 - Rev 3  
page 14/40  
 
 
 
VIPER31  
Soft startup  
At nominal input voltage (230 VAC), typical and worst-case consumptions are 2.4 mW and 3.0 mW respectively  
(corresponding to RG_typ = 45 Mohm and RG_min = 36 Mohm). This means that, with a careful design, the  
overall no-load input power consumption of the application can be maintained very low (typically, below 10 mW  
@230 VAC  
)
Power-off: when the IC is disconnected from the mains, or there is a mains interruption, for some time the  
converter keeps on working, powered by the energy stored in the input bulk capacitor. When it is discharged  
below a critical value, the converter is no longer able to keep the output voltage regulated. During the power  
down, when the DRAIN voltage becomes too low, the HV current source remains off and the IC is stopped as  
soon as VCC drops below the UVLO threshold, VCcoff  
.
Figure 25. Power ON and power OFF  
VIN_DC  
Power-off:  
VIN decreases  
VHV_START  
Power-on:  
HV current source enabled  
t
VDRAIN  
t
HV current source is  
disabled here  
VCC  
HV current source is no  
more activated because  
of too low VDRAIN  
VCCon  
VCSon  
VCCoff  
UVLO  
ICH2  
1V  
ICH1  
t
VOUT  
Output regulation is lost here  
Power-off  
t
Power-on  
Steady-state  
4.5  
Soft startup  
The internal soft-start function of the VIPer31 progressively increases the cycle-by-cycle current limitation set  
point from zero up to IDLIM  
.
The soft-start time, tSS, which is internally set at 8 ms, is activated at any attempt of converter power-on and at  
any restart after a fault event.  
The feature is used to reduce the stress of the power components and increase the reliability of the system.  
DS13285 - Rev 3  
page 15/40  
 
 
VIPER31  
Oscillator  
Figure 26. Soft startup  
IDRAIN  
Soft start phase  
tSS  
Steady state  
IDLIM  
time  
VCOMP  
VCOMPH  
time  
VOUT  
VOUT  
time  
4.6  
4.7  
Oscillator  
The IC embeds a fixed frequency oscillator with jittering feature. The switching frequency is modulated by  
approximately ±7%·FOSC at 200 Hz rate. The purpose of the jittering is to get a spread-spectrum action that  
distributes the energy of each harmonic of the switching frequency over a number of frequency bands, having  
the same energy on the whole but smaller amplitudes. This helps to reduce the conducted emissions, especially  
when measured with the average detection method or, which is the same, to pass the EMI tests with an input  
filter of smaller size with respect to the one that should be needed in absence of jittering feature. Three switching  
frequency options, FOSC, are available: 30 kHz (X type), 60 kHz (L type) and 132 kHz (H type).  
Pulse skipping  
The IC embeds a pulse skip circuit that operates in the following way:  
Each time the DRAIN peak current exceeds IDLIM level within tON_MIN, the next switching cycle is skipped.  
The cycles can be skipped until the minimum switching frequency FOSC_MIN (15 kHz) is reached.  
Each time the DRAIN peak current does not exceed IDLIM within tON_MIN, the next switching cycle is  
restored. The cycles can be restored until the nominal switching frequency FOSC is reached.  
The protection is intended in order to avoid the so called “flux runaway” condition often present at converter  
startup and due to the fact that the primary MOSFET, which is turned on by the internal oscillator, cannot be  
turned off before the minimum on-time.  
During the on-time, the inductor is charged through the input voltage and, if it cannot be discharged by the  
same amount during the off-time, in every switching cycle there is a net increase of the average inductor current,  
that can reach dangerously high values until the output capacitor is not charged enough to ensure the inductor  
discharge rate needed for the volt-second balance. This condition is common at converter startup, because of the  
low output voltage.  
In the following Figure 27. Pulse skipping during startup the effect of pulse skipping feature on the DRAIN peak  
current shape is shown (solid line), compared with the DRAIN peak current shape when pulse skipping feature  
is not implemented (dashed line). Providing more time for cycle-by-cycle inductor discharge when needed, this  
feature is effective in keeping low the maximum DRAIN peak current avoiding the flux runaway condition.  
DS13285 - Rev 3  
page 16/40  
 
 
 
VIPER31  
Direct feedback  
Figure 27. Pulse skipping during startup  
VOUT  
VOUT_nom  
time  
IDRAIN  
without pulse skipping  
with pulse skipping  
IDLIM  
time  
skipped cycles  
4.8  
Direct feedback  
The IC embeds a transconductance type error amplifier (E/A) whose inverting input and output are FB and  
COMP, respectively. The internal reference voltage of the E/A is VFB_REF (1.2 V typical value referred to GND).  
In non-isolated topologies, a positive output voltage can be tightly set through a simple voltage divider applied  
among the output voltage terminal, FB and GND.  
The E/A output is scaled down and fed into the PWM comparator, where it is compared to the voltage across the  
sense resistor in series to the sense-FET, thus setting the cycle-by-cycle drain current limitation.  
An R-C network connected on the output of the error amplifier (COMP) is usually used to stabilize the overall  
control loop.  
The FB is provided with an internal pull-up to prevent a wrong IC behavior when the pin is accidentally left  
floating.  
The E/A is disabled if the FB voltage is lower than VFB_DIS (200 mV, typ).  
4.9  
Secondary feedback  
When a secondary feedback is required, the internal E/A has to be disabled shorting FB to GND (VFB < VFB_DIS).  
With this setting, COMP is internally connected to the parallel of a 100 uA current generator and the 15 kΩ (typ.)  
RCOMP(DYN) resistor, and the voltage across COMP is set by the current sunk.  
This allows to set the output voltage value through an external error amplifier (TS431 or similar) placed on the  
secondary side, whose error signal is used to set the DRAIN peak current setpoint corresponding to the output  
power demand. If isolation is required, the error signal must be transferred through an optocoupler, with the  
phototransistor collector connected across COMP and GND.  
4.10  
Pulse frequency modulation  
If the output load is decreased, the feedback loop reacts by lowering VCOMP, which reduces the DRAIN peak  
current setpoint. The minimum value is IDLIM_PFM, corresponding to the VCOMPL threshold.  
If the load is further decreased, the DRAIN peak current value is maintained at IDLIM_PFM and some PWM cycles  
are skipped. This kind of operation is referred to as “pulse frequency modulation” (PFM), the number of the  
skipped cycles depending on the balance between the output power demand and the power transferred from the  
input. The result is an equivalent switching frequency which can go down to some hundreds Hz, thus reducing all  
the frequency-related losses.  
DS13285 - Rev 3  
page 17/40  
 
 
 
 
VIPER31  
Overload protection  
This kind of operation, together with the extremely low IC quiescent current, allows very low input power  
consumption in no-load and light load, while the low DRAIN peak current value, IDLIM_PFM, prevents any  
audible noise which could arise from low switching frequency values. When the output load is increased, VCOMP  
increases and PFM is exited. VCOMP reaches its maximum at VCOMPH, corresponding to the DRAIN current  
limitation (IDLIM).  
4.11  
Overload protection  
In order to manage the overload condition the IC embeds the following main blocks: the OCP comparator to turn  
off the power MOSFET when the drain current reaches its limit (IDLIM), the up and down OCP counter to define  
the turn-off delay time in case of continuous overload (tOVL = 50 ms typ.) and the timer to define the restart time  
after protection tripping (tRESTART = 1 sec, typ.).  
In case of short-circuit or overload, the control level on the inverting input of the PWM comparator is greater than  
the reference level fed into the inverting input of the OCP comparator. As a result, the cycle-by-cycle turn off of the  
power switch is triggered by the OCP comparator instead of by the PWM comparator. Every cycle this condition is  
met, the OCP counter is incremented. If the fault condition persists for a time greater than tOVL (corresponding to  
the counter end-of-count), the protection is tripped, the PWM is disabled for tRESTART, then it resumes switching  
with soft-start and, if the fault is still present, it is disabled again after tOVL. The OLP management prevents the IC  
from being indefinitely operated at IDLIM and the low repetition rate of the restart attempts of the converter avoids  
overheating the IC in case of repeated fault events.  
After the fault removal, the IC resumes working normally. If the fault is removed before the protection tripping  
(before tOVL), the tOVL counter is decremented on a cycle-by-cycle basis down to zero and the protection is not  
tripped. If the fault is removed during tRESTART, the IC waits for the tRESTART period ot have elapsed before  
resuming switching.  
In fault condition, VCC is kept between VCSon and VCCon by the periodical activation of the HV current source,  
which recharges the VCC capacitor to VCcon any time the IC internal consumption discharges it to VCson  
.
Figure 28. Overload protection  
Overload removed  
Overload applied  
VCC  
VCCon  
VCSon  
IDRAIN  
time  
IDLIM  
tOVL  
tOVL  
time  
tRESTART  
tRESTART  
tSS  
tSS  
4.12  
Undervoltage protection  
If the voltage across the UVP pin (VUVP) falls below the internal threshold VUVP_th (0.4 V typ.) for a time greater  
than tUVP_DEB (30 ms, typ.), the IC is disabled and its consumption is reduced to ultra-low values (Iq_DIS).  
When VUVP rises above VUVP_th, the IC must wait tUVP_REST (30 ms, typ.) before resuming switching.  
Both tUVP_DEB and tUVP_REST are intended to filter out possible noises/disturbances of the line, which could affect  
the correct operation of the function. They are obtained through two separate up/down counters:  
DEB (REST) up/down counter has a deb_eoc (rest_eoc) end-of-count. The operation is illustrated in  
Figure 29. UVP timing.  
If the counter starts from zero and counts always up, end-of-count is reached in a time interval tUVP_DEB  
(tUVP_REST).  
DS13285 - Rev 3  
page 18/40  
 
 
 
VIPER31  
Undervoltage protection  
If VUVP falls below VUVP_th, the DEB counter is incremented. If VUVP increases above VUVP_th before uvp_eoc  
is reached, the counter is decremented. If the count goes back down to zero, a disturbance on the UVP pin is  
assumed and there is no consequence on the IC behavior.  
If VUVP stays below VUVP_th until the counter reaches deb_eoc: the device is disabled; most of the internal blocks  
are turned off and the internal consumption is reduced to Iq_DIS; VCC is maintained between VCson and VCcon  
by the periodical activation of the internal HV-current source; the DEB counter is reset. Of course, if during the  
count-up VUVP exceeds VUVP_th for some time, the DEB counter is decremented during that time and the IC  
disable is delayed accordingly.  
With IC disabled: if VUVP rises above VUVP_th, the REST counter is incremented, and when it reaches rest_eoc  
(corresponding to tUVP_REST), the IC resumes switching. Of course, if during the count-up, VUVP falls below  
VUVP_th for some time, the REST counter is decremented during that time and the IC re-enabling is delayed  
accordingly.  
Figure 29. UVP timing  
VUVP  
VUVP_th  
VDD  
VCCon  
VCSon  
DEB counter  
deb_eoc  
REST counter  
tUVP_DEB  
< tUVP_DEB  
rest_eoc  
tUVP_REST  
IDRAIN  
IC re-enabled  
IC disabled  
Restart  
delay  
normal operation  
normal operation  
disabled with ultra-low consumption (Iq_DIS)  
An input undervoltage protection can be easily realized connecting the rectified mains to UVP pin through a  
voltage divider, as shown in Figure 30. Connection for input undervoltage protection/disable (isolated or non-  
isolated topologies).  
DS13285 - Rev 3  
page 19/40  
 
VIPER31  
Undervoltage protection  
Figure 30. Connection for input undervoltage protection/disable (isolated or non-isolated topologies)  
DIN  
~ AC  
from VAUX or VOUT  
RH  
VIPER31  
VCC  
OVP  
DRAIN  
CIN  
CONTROL  
Cs  
FB  
GND  
COMP  
UVP  
R2  
C2  
RL  
C1  
GND  
If UVP function is not required, the UVP pin must be left floating. In this case, noise immunity of the pin is  
guaranteed by the internal pull-up IUVP_pull-up (1 uA, typ.) present in the UVP block.  
If UVP function is required, RH value can be set arbitrarily, but some Mohms at least are recommended in order to  
minimize the power consumption of the UVP network. Then, if Vin_UVP is the desired input undervoltage threshold,  
the value of RL can be found from the following formula:  
Equation 2  
(2)  
V
UVP_th  
RL =  
V
V  
in_UVP  
UVP_th  
+ I  
UVP_pull up  
RH  
Equation 3  
(3)  
2
Vin  
RH + RL  
PUVP Vin =  
Thanks to the ultra-low consumption, the UVP pin can be used as an input to disable the SMPS from external,  
reaching the lowest input power consumption while the SMPS is still connected to the AC mains but not delivering  
power to its output.  
The purpose of the UVP debounce time tUVP_DEB is also to guarantee some hold-up in case of a missing cycle of  
the input line, as illustrated in Figure 31. Hold-up in case of input line missing cycles.  
DS13285 - Rev 3  
page 20/40  
 
VIPER31  
Overvoltage protection  
Figure 31. Hold-up in case of input line missing cycles  
VBULK  
1 missing cycle  
2 missing cycles  
VUVP  
VUVP_th  
tUVP_DEB  
tUVP_DEB  
IC disabled  
here  
IDRAIN  
4.13  
Overvoltage protection  
If the voltage across OVP pin (VOVP) exceeds the internal threshold VOVP_th (4 V typ.) for a time greater than  
tOVP_DEB (250 us, typ.), the PWM is disabled in autorestart for tOVP_REST time (500 ms, typ.), until VOVP falls  
below VOVP_th  
.
The time interval tOVP_DEB is intended to filter out possible noises/disturbances of the line, which could affect the  
correct operation of the function, and is obtained through an up/down counter, where tOVP_DEB is the time the  
counter needs to reach its end-of-count (ovp_eoc) starting from zero and counting always up.  
The operation is shown in Figure 32. OVP timing. When VOVP exceeds VOVP_th, the up/down OVP counter is  
incremented.  
If VOVP falls below VOVP_th before the OVP counter reaches ovp_eoc, the counter is decremented. If the count  
goes down to zero, a disturbance on the OVP pin is assumed and there is no consequence on the IC behavior.  
If VOVP stays above VOVP_th until the OVP counter reaches ovp_eoc: the PWM is disabled in autorestart for a  
tOVP_REST time interval; the OVP counter is reset; VCC is maintained between VCson and VCcon by the periodical  
activation of the internal HV-current source. Of course, if during the count-up VOVP falls below VOVP_th for some  
time, during that time the counter is decremented and the PWM disable is delayed accordingly.  
When VOVP drops below VOVP_th, the IC waits for the end of tOVP_REST, then restarts with soft-start phase.  
DS13285 - Rev 3  
page 21/40  
 
 
VIPER31  
Overvoltage protection  
Figure 32. OVP timing  
VOVP  
VOVP_th  
VDD  
VCCon  
VCSon  
OVP count  
ovp_eoc  
< tOVP_DEB  
tOVP_DEB  
tOVP_REST  
tOVP_REST  
tOVP_DEB  
OVP check and  
IC re-enabled  
GD  
OVP triggered  
and IC disabled  
OVP check and  
IC disabled  
An input overvoltage protection can be easily realized connecting the rectified mains to OVP pin through a voltage  
divider, as shown in Figure 33. Connection for input overvoltage protection (iso/non-iso topologies).  
In case of non-isolated topologies, with the same principle an output overvoltage protection can be implemented,  
as shown in Figure 34. Connection for output overvoltage protection (non-iso topologies).  
If the OVP feature is not required, OVP pin must be connected to GND, which excludes the function.  
If the OVP feature is required, RH value can be set arbitrarily, but some Mohms at least are recommended in  
order to minimize the power consumption of the OVP network. Then, if Vin/out_OVP is the desired input/output  
overvoltage threshold, the value of RL can be calculated from the following formula:  
Equation 4  
(4)  
RH  
RL =  
V
in/out_OVP  
1  
V
OVP_tℎ  
The power consumption of the OVP network at given Vin is expressed as:  
Equation 5  
(5)  
2
Vin  
POVP Vin =  
RH + RL  
in case of connection for input overvoltage protection and  
Equation 6  
(6)  
2
VOUT  
POVP VOUT =  
RH + RL  
in case of connection for output overvoltage protection.  
DS13285 - Rev 3  
page 22/40  
 
VIPER31  
Undervoltage and overvoltage protection  
Figure 33. Connection for input overvoltage protection (iso/non-iso topologies)  
DIN  
~ AC  
from VAUX or VOUT  
RH  
VIPER31  
VCC  
OVP  
DRAIN  
CIN  
CONTROL  
Cs  
FB  
GND  
COMP  
UVP  
R2  
C2  
RL  
C1  
GND  
Figure 34. Connection for output overvoltage protection (non-iso topologies)  
VOUT  
DOUT  
COUT  
from VAUX or VOUT  
VIPER31  
GND  
VCC  
DRAIN  
OVP  
FB  
Rfb1  
RH  
CONTROL  
COMP  
Cs  
GND  
UVP  
R2  
C2  
C1  
Rfb2  
RL  
4.14  
Undervoltage and overvoltage protection  
If both undervoltage and overvoltage protections are required, they can be set independently from each other  
through a single voltage divider, as illustrated in the figure below.  
DS13285 - Rev 3  
page 23/40  
 
 
 
VIPER31  
Undervoltage and overvoltage protection  
Figure 35. Connection for input and output overvoltage protections (iso/non-iso topologies)  
~ AC  
DIN  
from VAUX or VOUT  
RH  
VIPER31  
VCC  
DRAIN  
OVP  
FB  
CIN  
CONTROL  
COMP  
Cs  
RM  
GND  
UVP  
R2  
C2  
RL  
C1  
GND  
The voltage divider equations are:  
Equation 7  
(7)  
(8)  
V
UVP  
tℎ  
RL  
V
=
− I  
· RH + RM + RL + RL · I  
in_UVP  
UVP_pull − up UVP_pull − up  
Equation 8  
RH  
RH + RM + RL  
V
= V  
· RL · I  
UVP_pull − up  
·
in_OVP  
OVP  
RH + RM + RL  
RM + RL  
tℎ  
Considering that the value of RH is much higher than the values of RM and RL (Mohms vs. kohms), equations 7  
and 8 can be approximated into Eq. 7.a) and Eq. 8.a) respectively:  
Equation 7.a  
(7.a)  
V
UVP  
RL  
tℎ  
V
− I  
· RH + RL · I  
UVP_pull − up  
in_UVP  
UVP_pull − up  
Equation 8.a  
(8.a)  
RH  
V
V
− RL · I  
·
UVP_pull − up  
RM + RL  
in_OVP  
OVP  
tℎ  
Selecting arbitrarily the RH value, Equation 7.a) can be solved for RL:  
Equation 9  
(9)  
2
V
+ I  
UVP_pull − up  
· RH −  
V
+ I  
UVP_pull − up  
· RH − 4 · V  
· I · RH  
UVP_pull − up  
in_UVP  
in_UVP  
2 · I  
UVP  
tℎ  
RL =  
UVP_pull − up  
and Equation 8.a) for RM:  
Equation 10  
DS13285 - Rev 3  
page 24/40  
 
 
 
 
 
 
VIPER31  
Thermal shutdown  
(10)  
(11)  
RH  
RM = V  
− RL · I  
·
− RL  
OVP  
UVP_pull − up  
V
tℎ  
in_OVP  
The power consumption of the UVP-OVP network at given Vin is expressed as:  
Equation 11  
2
in  
V
P
V
=
UVP_OVP in  
RH + RM + RL  
As an example, if Vin_UVP and Vin_OVP design values are 50 Vdc and 450 Vdc respectively, and RH is set to 6  
Mohm: from Equations 9 and 10 we have RL = 43 kohm, and RM = 60 kohm respectively, while from Equation 11  
the power consumption of the network at 230 Vac is about 17 mW.  
4.15  
Thermal shutdown  
The power MOSFET junction temperature is sensed during the on-time through a diode integrated into the HV  
section of the chip. If a junction temperature higher than the internal threshold TSD (160°C, typ.) is measured, the  
PWM is disabled for tRESTART. In order to increase robustness against electromagnetic noises, the protection is  
triggered only if the condition is met for nth = 3 consecutive switching cycles.  
After tRESTART, the IC resumes switching with soft-start phase: if a junction temperature above TSD is still  
measured for nth consecutive switching cycles, the protection is triggered and PWM is disabled again for  
tRESTART; otherwise normal operation is restored.  
During tRESTART, VCC is maintained between VCson and VCcon by the HV current source periodical activation.  
Such a behavior is summarized in Figure 36. Thermal shutdown timing diagram.  
Figure 36. Thermal shutdown timing diagram  
TJ  
TSD  
t
VCC  
VCCon  
VCSon  
t
GD  
n < nth  
n = nth  
n = nth  
t
tRESTART  
tRESTART  
DS13285 - Rev 3  
page 25/40  
 
 
 
 
VIPER31  
Application information  
5
Application information  
5.1  
Typical schematics  
Figure 37. Flyback converter (non-isolated)  
Daux  
~ AC  
Din  
Rin  
Dout  
Vout  
T
Ccl  
Cout  
Cin  
Rcl  
GND  
VIPER31  
DRAIN  
VCC  
OVP  
CONTROL  
RH  
FB  
COMP  
UVP  
Cs  
GND  
R2  
C2  
RL  
C1  
Figure 38. Flyback converter (isolated)  
~ AC  
Din  
Rin  
T
Dout  
Vout  
Cin  
Ccl  
Cout  
Rcl  
Raux  
Daux  
GND2  
R3  
VIPER31  
VCC  
DRAIN  
RH  
OVP  
FB  
OPTO  
CONTROL  
COMP  
R4  
C2  
Cs  
GND  
UVP  
OPTO  
C1  
RL  
GND1  
DS13285 - Rev 3  
page 26/40  
 
 
 
 
VIPER31  
Typical schematics  
Figure 39. Flyback converter (primary regulation)  
Dout  
Din  
Rin  
Vout  
T
~ AC  
Cout  
Ccl  
Rcl  
GND2  
Daux  
VIPER31  
VCC  
DRAIN  
RH  
Cin  
OVP  
FB  
Cs  
CONTROL  
COMP  
GND  
UVP  
RL  
C2  
C1  
R2  
GND1  
Figure 40. Buck converter  
Din  
Rin  
~ AC  
Daux  
VIPER31  
VCC  
DRAIN  
GND  
RH  
RL  
OVP  
FB  
Cs  
C3  
CONTROL  
COMP  
UVP  
C1  
D2  
Cin  
R2  
C2  
Lout  
Vout  
D1  
Cout  
GND  
GND  
Figure 41. Buck-boost converter  
Din  
Rin  
~ AC  
Daux  
VIPER31  
VCC  
DRAIN  
GND  
RH  
OVP  
FB  
Cs  
CONTROL  
COMP  
C3  
UVP  
C1  
Cin  
RL  
D2  
D1  
Vout  
GND  
R2  
C2  
Cout  
Lout  
GND  
DS13285 - Rev 3  
page 27/40  
 
 
 
VIPER31  
Energy saving performances  
5.2  
Energy saving performances  
The VIPer31 allows the design of applications compliant with the most stringent energy saving regulations. In  
order to show the typical performances achievable, the active mode average efficiency and the efficiency at  
10% of the rated output power of a single output flyback converter using VIPer31 have been measured and are  
reported in Table 9. In addition, Figures 52 and 53 show no-load and light load consumptions.  
Table 9. Power supply efficiency, VOUT = 15 V  
10% output load  
efficiency [%]  
Active mode average  
efficiency [%]  
Pin @ no-load  
[mW]  
V
Parameter  
IN  
115 V  
230 V  
83.2  
77.4  
85.9  
86.6  
26.0  
29.7  
AC  
Flyback iso, 15V/1.2A  
AC  
Figure 42. PIN versus VIN in no-load, VOUT = 15V  
40  
30  
20  
10  
50  
100  
150  
200  
VIN [VAC]  
250  
300  
DS13285 - Rev 3  
page 28/40  
 
 
 
VIPER31  
Energy saving performances  
Figure 43. PIN versus VIN in light-load, VOUT = 15V  
450  
400  
350  
300  
250  
200  
150  
100  
50  
POUT = 250mW  
POUT = 50mW  
POUT = 25mW  
0
50  
100  
150  
200  
VIN [VAC  
250  
300  
]
DS13285 - Rev 3  
page 29/40  
 
VIPER31  
Layout guidelines and design recommendations  
5.3  
Layout guidelines and design recommendations  
A proper printed circuit board layout is essential for correct operation of any switch-mode converter and this is  
true for the VIPer as well. The main reasons to have a proper PCB layout are to:  
Provide clean signals to the IC, ensuring good immunity against external noises and switching noises  
Reduce the electromagnetic interferences, both radiated and conducted, to pass more easily the EMC  
When designing an SMPS using VIPer, the following basic rules should be considered:  
Separating signal from power tracks: generally, traces carrying signal currents should run far from those  
carrying pulsed currents or with quickly swinging voltages. Signal ground traces should be connected to the  
IC signal ground, GND, using a single “star point”, placed close to the IC. Power ground traces should be  
connected to the IC power ground, GND. The compensation network should be connected to the COMP,  
maintaining the trace to GND as short as possible. In case of two layer PCB, it is a good practice to route  
signal traces on one PCB side and power traces on the other side.  
Filtering sensitive pins: some crucial points of the circuit need or may need filtering. A small high-  
frequency bypass capacitor to GND might be useful to get a clean bias voltage for the signal part of the  
IC and protect the IC itself during EFT/ESD tests. A low ESL ceramic capacitor (a few hundreds pF up to  
0.1 μF) should be connected across VCC and GND, placed as close as possible to the IC. With flyback  
topologies, when the auxiliary winding is used, it is suggested to connect the VCC capacitor on the auxiliary  
return and then to the main GND using a single track.  
Keep power loops as confined as possible: minimize the area circumscribed by current loops where high  
pulsed currents flow, in order to reduce its parasitic self-inductance and the radiated electromagnetic field:  
this greatly reduces the electromagnetic interferences produced by the power supply during the switching. In  
a flyback converter the most critical loops are: the one including the input bulk capacitor, the power switch,  
the power transformer, the one including the snubber, the one including the secondary winding, the output  
rectifier and the output capacitor. In a buck converter the most critical loop is the one including the input bulk  
capacitor, the power switch, the power inductor, the output capacitor and the free-wheeling diode.  
Reduce line lengths: any wire acts as an antenna. With the very short rise times exhibited by EFT pulses,  
any antenna has the capability of receiving high-voltage spikes. By reducing line lengths, the level of  
radiated energy that is received is reduced, and the resulting spikes from electrostatic discharges are lower.  
This also keeps both resistive and inductive effects to a minimum. In particular, all of the traces carrying high  
currents, especially if pulsed (tracks of the power loops) should be as short and fat as possible.  
Optimize track routing: as levels of pickup from static discharges are likely to be greater closer to the  
extremities of the board, it is wise to keep any sensitive lines away from these areas. Input and output lines  
often need to reach the PCB edge at some stage, but they can be routed away from the edge as soon  
as possible where applicable. Since vias are to be considered inductive elements, it is recommended to  
minimize their number in the signal path and avoid them when designing the power path.  
Improve thermal dissipation: an adequate copper area has to be provided under the DRAIN pins as heat  
sink, while it is not recommended to place large copper areas on the GND.  
DS13285 - Rev 3  
page 30/40  
 
VIPER31  
Layout guidelines and design recommendations  
Figure 44. Recommended routing for flyback converter  
DIN  
RIN  
DOUT  
VOUT  
~ AC  
TR  
CIN  
CCL  
RCL  
COUT  
DAUX  
GROUND  
Cs  
ROPTO  
OPTO  
RH  
CC  
RC  
DR. DR. DR. DR. N.C. N.C. N.C. N.C.  
VIPER31  
CONTROL  
GND N.C. VCC N.A. UVP OVP FB COMP  
OPTO  
RL  
C1  
Figure 45. Recommended routing for buck converter  
DIN  
RIN  
~ AC  
CIN  
DR. DR. DR. DR. N.C. N.C. N.C. N.C.  
VIPER31  
CONTROL  
GND N.C. VCC N.A. UVP OVP FB COMP  
Cc  
DAUX  
Cs  
RH  
RL  
C1  
D1  
LOUT  
VOUT  
COUT  
DOUT  
GROUND  
DS13285 - Rev 3  
page 31/40  
 
 
VIPER31  
Package information  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
6.1  
SO16N package information  
Figure 46. SO16N package outline  
DS13285 - Rev 3  
page 32/40  
 
 
 
VIPER31  
SO16N package information  
Table 10. SO16N mechanical data  
mm  
Dim.  
Min.  
Typ.  
Max.  
1.75  
0.25  
A
A1  
A2  
b
0.1  
1.25  
0.31  
0.17  
9.8  
0.51  
0.25  
10  
c
D
9.9  
6
E
5.8  
6.2  
4
E1  
e
3.8  
3.9  
1.27  
h
0.25  
0.4  
0
0.5  
1.27  
8
L
k
ccc  
0.1  
DS13285 - Rev 3  
page 33/40  
 
VIPER31  
Order code  
7
Order code  
Table 11. Order code  
I
(OCP) typ  
Order code  
FOSC ± jitter  
Package  
DLIM  
VIPER318XDTR  
VIPER319XDTR  
VIPER317LDTR  
VIPER318LDTR  
VIPER319LDTR  
VIPER317HDTR  
VIPER318HDTR  
VIPER319HDTR  
850 mA  
990 mA  
710 mA  
850 mA  
990 mA  
710 mA  
850 mA  
990 mA  
30 kHz ± 7%  
60 kHz ± 7%  
132 kHz ± 7%  
SO16N tape and reel  
DS13285 - Rev 3  
page 34/40  
 
 
VIPER31  
Revision history  
Table 12. Document revision history  
Date  
Version  
Changes  
31-Mar-2020  
8-Jun-2020  
1
2
Initial release.  
Updated Section Features; updated Table 6, Table 7, Table 11; updated  
figures in Section 5.1 Typical schematics; minor text update.  
Added data for VIPER317/318/319 in Section Features, in Table 7 and  
Table 11  
17-Nov-2020  
3
DS13285 - Rev 3  
page 35/40  
 
 
VIPER31  
Contents  
Contents  
1
2
Pin setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Electrical and thermal ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2.1  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
4
Typical electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
General description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Typical power capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Primary MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
High-voltage startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Soft startup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Pulse skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Direct feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Secondary feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.10 Pulse frequency modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.11 Overload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.12 Undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.13 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.14 Undervoltage and overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.15 Thermal shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Application information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5
5.1  
5.2  
5.3  
Typical schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Energy saving performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Layout guidelines and design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
6
7
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
6.1  
[Package name] package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
DS13285 - Rev 3  
page 36/40  
 
VIPER31  
Contents  
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
DS13285 - Rev 3  
page 37/40  
VIPER31  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Avalanche characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Supply section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Controller section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power supply efficiency, VOUT = 15 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 10. SO16N mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 11. Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 12. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DS13285 - Rev 3  
page 38/40  
 
VIPER31  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Rth_JA versus copper area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
IDLIM vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
FOSC vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VHV_START vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VFB_REF vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Quiescent Current Iq vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating current ICC vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
ICH1 vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ICH2 vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ICH1 vs. VDRAIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ICH2 vs. VDRAIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
GM vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ICOMP vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
RDSON vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
RDSON vs. IDRAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Static drain-source on resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power MOSFET COSS vs. VDS @ VGS=0, f=1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VBVDSS vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SOA SO16N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Maximum avalanche energy vs. Tj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Typical deliverable output power vs. TAMB (Vin: 85-265VAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power ON and power OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Soft startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pulse skipping during startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Overload protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
UVP timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Connection for input undervoltage protection/disable (isolated or non-isolated topologies) . . . . . . . . . . . . . . . 20  
Hold-up in case of input line missing cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
OVP timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Connection for input overvoltage protection (iso/non-iso topologies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Connection for output overvoltage protection (non-iso topologies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Connection for input and output overvoltage protections (iso/non-iso topologies). . . . . . . . . . . . . . . . . . . . . . 24  
Thermal shutdown timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Flyback converter (non-isolated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Flyback converter (isolated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Flyback converter (primary regulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Buck converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Buck-boost converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PIN versus VIN in no-load, VOUT = 15V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
PIN versus VIN in light-load, VOUT = 15V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Recommended routing for flyback converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Recommended routing for buck converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SO16N package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
Figure 45.  
Figure 46.  
DS13285 - Rev 3  
page 39/40  
 
VIPER31  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS13285 - Rev 3  
page 40/40  

相关型号:

VIPER319LDTR

Energy saving offline high voltage converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER319XDTR

Energy saving offline high voltage converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER31SP

BATTERY CHARGER PRIMARY I.C.

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER37

VIPerPlus family: fixed frequency offline converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER37HE

VIPerPlus family: fixed frequency offline converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER37LE

VIPerPlus family: fixed frequency offline converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER38

VIPerPlus family: peak power high-voltage converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER38HD

VIPerPlus family: peak power high-voltage converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER38HDTR

VIPerPlus family: peak power high-voltage converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER38HE

VIPerPlus family: peak power high-voltage converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER38LD

VIPerPlus family: peak power high-voltage converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VIPER38LDTR

VIPerPlus family: peak power high-voltage converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR