VN7040AJTR-E [STMICROELECTRONICS]

BUF OR INV BASED PRPHL DRVR, PDSO16, ROHS COMPLIANT, SSOP-16;
VN7040AJTR-E
型号: VN7040AJTR-E
厂家: ST    ST
描述:

BUF OR INV BASED PRPHL DRVR, PDSO16, ROHS COMPLIANT, SSOP-16

驱动 光电二极管 接口集成电路
文件: 总54页 (文件大小:1994K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
62ꢀꢂ  
                            
                             
VN7040AS-E  
VN7040AJ-E  
High-side driver with MultiSense analog feedback  
for automotive application  
Datasheet  
-
production data  
– Configurable latch-off on overtemperature  
or power limitation with dedicated fault  
reset pin  
– Loss of ground and loss of VCC  
1PXFS440ꢅꢆꢂ  
("1($'5ꢀꢀꢁꢀꢂ  
– Reverse battery with external components  
– Electrostatic discharge protection  
("1($'5ꢀꢀꢁꢃꢄ  
Features  
Applications  
Max transient supply voltage  
Operating voltage range  
VCC  
VCC  
40 V  
4 to 28 V  
40 mΩ  
34 A  
All types of automotive resistive, inductive and  
capacitive loads  
Typ. on-state resistance (per Ch) RON  
Specially intended for Automotive Turn  
Indicators (up to P27W or SAE1156 and R5W  
paralleled or LED Rear Combinations)  
Current limitation (typ)  
Stand-by current (max)  
ILIMH  
ISTBY  
0.5 µA  
Description  
General  
The VN7040AS-E and VN7040AJ-E are single  
channel high-side drivers manufactured using ST  
proprietary VIPower® technology and housed in  
PowerSSO-16 and SO-8 packages. The devices  
are designed to drive 12 V automotive grounded  
loads through a 3 V and 5 V CMOS compatible  
interface, and to provide protection and  
diagnostics.  
– Single channel smart high-side driver with  
MultiSense analog feedback  
– Very low standby current  
– Compatible with 3 V and 5 V CMOS  
outputs  
MultiSense diagnostic functions  
– Multiplexed analog feedback of: load  
current with high precision proportional  
current mirror, VCC supply voltage and  
The devices integrate advanced protective  
functions such as load current limitation, overload  
active management by power limitation and  
overtemperature shutdown with configurable  
latch-off. A FaultRST pin unlatches the output in  
case of fault or disables the latch-off functionality.  
T
CHIP device temperature  
– Overload and short to ground (power  
limitation) indication  
– Thermal shutdown indication  
– OFF-state open-load detection  
– Output short to VCC detection  
– Sense enable/ disable  
A dedicated multifunction multiplexed analog  
output pin delivers sophisticated diagnostic  
functions including high precision proportional  
load current sense, supply voltage feedback and  
chip temperature sense, in addition to the  
detection of overload and short circuit to ground,  
short to VCC and OFF-state open-load.  
Protections  
– Undervoltage shutdown  
– Overvoltage clamp  
– Load current limitation  
– Self limiting of fast thermal transients  
A sense enable pin allows OFF-state diagnosis to  
be disabled during the module low-power mode  
as well as external sense resistor sharing among  
similar devices.  
May 2014  
DocID022406 Rev 7  
1/54  
This is information on a product in full production.  
www.st.com  
1
 
Contents  
VN7040AS-E, VN7040AJ-E  
Contents  
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Main electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3
4
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.1  
3.2  
3.3  
3.4  
Power limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Negative voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.1  
GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 30  
4.1.1 Diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.2  
4.3  
4.4  
Immunity against transient electrical disturbances . . . . . . . . . . . . . . . . . . 31  
MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Multisense - analog current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.4.1  
4.4.2  
4.4.3  
Principle of Multisense signal generation . . . . . . . . . . . . . . . . . . . . . . . 34  
CASE and VCC monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Short to VCC and OFF-state open-load detection . . . . . . . . . . . . . . . . . 37  
T
4.5  
Maximum demagnetization energy (V = 13.5 V) . . . . . . . . . . . . . . . . . 38  
CC  
5
6
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.1  
5.2  
PowerSSO-16 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
SO-8 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
®
6.1  
6.2  
ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
PowerSSO-16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
2/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Contents  
6.3  
6.4  
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
7
8
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
DocID022406 Rev 7  
3/54  
List of tables  
VN7040AS-E, VN7040AJ-E  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified). . . . . . . . . . . . . . 12  
Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MultiSense multiplexer addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
ISO 7637-2 - electrical transient conduction along supply line . . . . . . . . . . . . . . . . . . . . . 31  
Multisense pin levels in off-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
PCB properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
PCB properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
PowerSSO-16 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
4/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
I
OUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Current sense accuracy versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Switching times and Pulse skew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
MultiSense timings (current sense mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Multisense timings (chip temperature and VCC sense mode) (VN7040AJ-E only) . . . . . . 20  
T
DSTKON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 10. Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) . . . . . . . . . . . 22  
Figure 11. Latch functionality - behavior in hard short circuit condition . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12. Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off) 23  
Figure 13. Standby mode activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 14. Standby state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 15. OFF-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 16. Standby current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 17.  
IGND(ON) vs. Iout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 18. Logic Input high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 19. Logic Input low level voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 20. High level logic input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 21. Low level logic input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 22. Logic Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 23. FaultRST Input clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 24. Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 25. On-state resistance vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 26. On-state resistance vs. VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 27. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 28. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 29. Won vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 30. Woff vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 31.  
ILIMH vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 32. OFF-state open-load voltage detection threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 33.  
Figure 34.  
V
V
sense clamp vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
senseh vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 35. Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 36. Simplified internal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 37. Multisense and diagnostic – block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 38. Multisense block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 39. Analogue HSD – open-load detection in off-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 40. Open-load / short to VCC condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 41. GND voltage shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 42. Maximum turn off current versus inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 43. PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5) . . . . . . . . . . . . . . . . . . . . 39  
Figure 44. PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) . . . . . . . . . . . . . . . . . . . . 39  
Figure 45. PowerSSO-16 Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . 40  
Figure 46. PowerSSO-16 thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . 40  
Figure 47. Thermal fitting model for PowerSSO-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 48. SO-8 on two-layers PCB (2s0p to JEDEC JESD 51-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
DocID022406 Rev 7  
5/54  
List of figures  
VN7040AS-E, VN7040AJ-E  
Figure 49. SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 50. SO-8 Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . 43  
Figure 51. SO-8 thermal impedance junction ambient single pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 52. Thermal fitting model for SO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 53. PowerSSO-16 package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 54. SO-8 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 55. SO-8 tube shipment (no suffix). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 56. SO-8 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1. Block diagram  
VCC  
Internal supply  
VCC – GND  
Clamp  
Undervoltage  
shut-down  
Control & Diagnostic  
VCC – OUT  
Clamp  
FaultRST  
Gate Driver  
INPUT  
SEL1  
T
VCC  
VON  
Limitation  
SEL0  
Current  
Limitation  
SEn  
Power Limitation  
Overtemperature  
T
Multisense  
Short to VCC  
Open-Load in OFF  
Current  
Sense  
Fault  
VSENSEH  
GND  
OUTPUT  
Table 1. Pin functions  
Name  
VCC  
Function  
Battery connection.  
Power output.  
OUTPUT  
GND  
Ground connection. Must be reverse battery protected by an external  
diode/resistor network.  
Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V  
CMOS outputs. It controls output switch state.  
INPUT  
MultiSense  
SEn  
Multiplexed analog sense output pin; it delivers a current proportional to the  
selected diagnostic: load current, supply voltage or chip temperature  
Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the  
MultiSense diagnostic pin.  
Active high compatible with 3 V and 5 V CMOS outputs pin; they address the  
MultiSense multiplexer.  
SEL0,1  
Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the  
output in case of fault; If kept low, sets the outputs in auto-restart mode.  
FaultRST  
DocID022406 Rev 7  
7/54  
 
Block diagram and pin description  
VN7040AS-E, VN7040AJ-E  
Figure 2. Configuration diagram (top view)  
PowerSSO-16  
1
16  
15  
14  
13  
12  
11  
10  
9
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
N.C.  
N.C.  
N.C.  
N.C.  
INPUT  
FaultRST  
SEn  
2
3
4
5
6
7
8
GND  
SEL0  
SEL1  
MultiSense  
N.C.  
TAB = VCC  
SO-8  
VCC  
1
2
3
4
8
7
6
5
INPUT  
SEn  
OUTPUT  
OUTPUT  
VCC  
GND  
MultiSense  
Table 2. Suggested connections for unused and not connected pins  
SEn, SELx,  
FaultRST  
Connection/pin MultiSense  
N.C.  
Output  
Input  
Floating  
To ground  
Not allowed  
X(1)  
X
X
X
X
Through 1 kΩ  
Through 15 kΩ Through 15 kΩ  
resistor resistor  
Not allowed  
resistor  
1. X: do not care.  
8/54  
DocID022406 Rev 7  
 
VN7040AS-E, VN7040AJ-E  
Electrical specification  
2
Electrical specification  
Figure 3. Current and voltage conventions  
,
6
9&&  
9&&  
9)Q  
,
,
)5  
,
287  
)DXOW567  
6(Q  
287387  
6(Q  
9287  
,
6(16(  
,
6(/  
0XOWL6HQVH  
6(/ꢃꢄꢅ  
96(16(  
,
,1  
,1387  
,
*1'  
*$3*&)7ꢃꢃꢆꢆꢃ  
Note: VF = VOUT - VCC during reverse battery condition.  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in Table 3 may cause permanent damage to the  
device. These are stress ratings only and operation of the device at these or any other  
conditions above those indicated in the operating sections of this specification is not implied.  
Exposure to the conditions in table below for extended periods may affect device reliability.  
Table 3. Absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
VCC  
DC supply voltage  
38  
-VCC  
Reverse DC supply voltage  
0.3  
Maximum transient supply voltage (ISO 16750-2:2010 Test B  
clamped to 40 V; RL = 4 Ω)  
V
VCCPK  
VCCJS  
40  
28  
Maximum jump start voltage for single pulse short circuit  
protection  
-IGND  
IOUT  
-IOUT  
IIN  
DC reverse ground pin current  
OUTPUT DC output current  
Reverse DC output current  
INPUT DC input current  
SEn DC input current  
200  
Internally limited  
11  
mA  
A
ISEn  
ISEL  
IFR  
-1 to 10  
mA  
V
SEL0,1 DC input current  
FaultRST DC input current  
FaultRST DC input voltage  
-1 to 10  
7.5  
VFR  
DocID022406 Rev 7  
9/54  
 
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Table 3. Absolute maximum ratings (continued)  
Symbol  
Parameter  
Value  
Unit  
MultiSense pin DC output current (VGND = VCC and  
VSENSE < 0 V)  
10  
-20  
36  
ISENSE  
mA  
MultiSense pin DC output current in reverse (VCC < 0V)  
Maximum switching energy (single pulse)  
TDEMAG = 0.4 ms; Tjstart = 150 °C  
EMAX  
mJ  
Electrostatic discharge (JEDEC 22A-114F)  
– INPUT  
4000  
2000  
4000  
4000  
4000  
V
V
V
V
V
– MultiSense  
– SEn, SEL0,1, FaultRST  
– OUTPUT  
VESD  
– VCC  
VESD  
Tj  
Charge device model (CDM-AEC-Q100-011)  
Junction operating temperature  
Storage temperature  
750  
V
-40 to 150  
-55 to 150  
°C  
Tstg  
2.2  
Thermal data  
Table 4. Thermal data  
Parameter  
Typ. value  
Symbol  
Unit  
SO-8 PSSO-16  
Rthj-board Thermal resistance junction-board (JEDEC JESD 51-5/51-8) (1) 29  
6.2  
57  
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-5) (2)  
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-7) (1)  
1. Device mounted on four-layers 2s2p PCB.  
67  
45  
°C/W  
23.5  
2
2. Device mounted on two-layers 2s0p PCB with 2 cm heatsink copper trace.  
10/54  
DocID022406 Rev 7  
 
VN7040AS-E, VN7040AJ-E  
Electrical specification  
2.3  
Main electrical characteristics  
7 V < VCC < 28 V; -40 °C < Tj < 150 °C, unless otherwise specified.  
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.  
Table 5. Power section  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VCC  
Operating supply voltage  
Undervoltage shutdown  
4
13  
28  
4
VUSD  
Undervoltage shutdown  
reset  
V
VUSDReset  
5
Undervoltage shutdown  
hysteresis  
VUSDhyst  
0.3  
40  
IOUT = 2.5 A; Tj = 25 °C  
IOUT = 2.5 A; Tj = 150 °C  
RON  
On-state resistance  
Clamp voltage  
80  
60  
mΩ  
I
OUT = 2.5 A; VCC = 4 V; Tj = 25 °C  
IS = 20 mA; Tj = -40 °C  
38  
41  
Vclamp  
V
IS = 20 mA; 25°C < Tj < 150°C  
46  
52  
VCC = 13 V;  
VIN = VOUT = VSEn 0 V;  
0.5  
V
FR = VSEL0,1 = 0 V; Tj = 25 °C  
Supply current in  
standby at  
V
CC = 13 V;  
ISTBY  
VIN = VOUT = VSEn 0 V;  
V
FR = VSEL0,1 = 0 V; Tj = 85 °C (2)  
0.5  
3
µA  
VCC = 13 V (1)  
VCC = 13 V;  
VIN = VOUT = VSEn 0 V;  
V
FR = VSEL0,1 = 0 V; Tj = 125 °C;  
VCC = 13 V;  
VIN = VOUT = VFR = VSEL0,1 = 0V;  
Standby mode blanking  
time  
tD_STBY  
60 300 550 µs  
V
SEn = 5 V to 0 V  
V
CC = 13 V; VSEn = 0 V;  
IS(ON)  
Supply current  
VSEL0,1 = VFR = 0V;  
IN = 5 V; IOUT = 0 A  
3
5
6
mA  
mA  
V
Control stage current  
consumption in ON  
state. All channels  
active.  
VCC = 13 V; VSEn = 5 V;  
VFR = VSEL0,1 = 0 V; VIN = 5 V;  
IGND(ON)  
I
OUT = 2.5 A  
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 25 °C  
0
0
0.01 0.5  
Off-state output current  
at VCC = 13 V  
IL(off)  
µA  
V
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 125 °C  
3
Output - VCC diode  
voltage  
VF  
IOUT = -2.5 A; Tj = 150 °C  
0.7  
1. PowerMOS leakage included.  
2. Parameter specified by design; not subject to production test.  
DocID022406 Rev 7  
11/54  
 
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Table 6. Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified(1)  
)
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max. Unit  
Turn-on delay time at  
Tj = 25°C  
td(on)  
10  
40  
120  
100  
0.7  
RL = 5.2 Ω  
µs  
Turn-off delay time at  
Tj = 25°C  
td(off)  
(dVOUT/dt)on  
(dVOUT/dt)off  
WON  
10  
0.1  
0.1  
35  
Turn-on voltage slope at  
Tj = 25°C  
0.24  
0.28  
0.32  
0.33  
10  
RL = 5.2 Ω  
V/µs  
Turn-off voltage slope at  
Tj = 25°C  
0.7  
Switching energy losses at  
RL = 5.2 Ω  
RL = 5.2 Ω  
RL = 5.2 Ω  
0.4(2)  
0.4(2)  
60  
mJ  
mJ  
µs  
turn-on (twon  
)
Switching energy losses at  
WOFF  
turn-off (twoff  
)
Differential Pulse skew  
(tPHL - tPLH) see Figure 6  
tSKEW  
-40  
1. See Figure 6: Switching times and Pulse skew.  
2. Parameter guaranteed by design and characterization; not subject to production test.  
Table 7. Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
INPUT characteristics  
VIL  
IIL  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
0.9  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
IIN = 1 mA  
1
VIH  
2.1  
IIH  
10  
µA  
V
VI(hyst)  
0.2  
5.3  
7.2  
VICL  
Input clamp voltage  
V
I
IN = -1 mA  
-0.7  
FaultRST characteristics (VN7040AJ-E only)  
VFRL  
IFRL  
VFRH  
IFRH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
0.9  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VFR(hyst)  
0.2  
5.3  
I
IN = 1 mA  
7.5  
VFRCL  
Input clamp voltage  
V
IIN = -1 mA  
-0.3  
SEL0,1 characteristics (7 V < VCC < 18 V) (VN7040AJ-E only)  
VSELL Input low level voltage  
0.9  
V
12/54  
DocID022406 Rev 7  
 
VN7040AS-E, VN7040AJ-E  
Electrical specification  
Table 7. Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C) (continued)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
ISELL  
VSELH  
ISELH  
Low level input current  
Input high level voltage  
High level input current  
VIN = 0.9 V  
1
µA  
V
2.1  
VIN = 2.1 V  
10  
µA  
V
VSEL(hyst) Input hysteresis voltage  
VSELCL Input clamp voltage  
SEn characteristics (7 V < VCC < 18 V)  
0.2  
5.3  
IIN = 1 mA  
IIN = -1 mA  
7.2  
V
-0.7  
VSEnL  
ISEnL  
VSEnH  
ISEnH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
0.9  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VSEn(hyst) Input hysteresis voltage  
0.2  
5.3  
I
IN = 1 mA  
7.2  
VSEnCL  
Input clamp voltage  
V
IIN = -1 mA  
-0.7  
Table 8. Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C)  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
V
CC = 13 V  
24  
34  
48  
48  
ILIMH  
DC short circuit current  
4 V < VCC < 18 V(1)  
A
Short circuit current  
during thermal cycling  
VCC = 13 V;  
TR < Tj < TTSD  
ILIML  
13  
TTSD  
TR  
Shutdown temperature  
Reset temperature(1)  
150  
175  
200  
TRS + 1 TRS + 7  
135  
Thermal reset of fault  
diagnostic indication  
VFR = 0 V;  
°C  
TRS  
VSEn = 5 V;  
Thermal hysteresis  
(TTSD - TR)(1)  
THYST  
ΔTJ_SD  
7
Tj = -40 °C;  
VCC = 13 V  
Dynamic temperature  
60  
K
Fault reset time for output VFR = 5 V to 0 V;  
tLATCH_RST unlatch(1) (VN7040AJ-E  
only)  
V
SEn = 5 V;VIN = 5 V;  
3
10  
20  
µs  
VSEL0,1 = 0 V  
DocID022406 Rev 7  
13/54  
 
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Table 8. Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
IOUT = 2 A; L = 6 mH;  
Tj = -40 °C  
VCC - 38  
Turn-off output voltage  
clamp  
VDEMAG  
V
IOUT = 2 A; L = 6 mH;  
Tj = 25 °C to +150 °C  
VCC - 41 VCC - 46 VCC - 52  
20  
Output voltage drop  
limitation  
VON  
IOUT = 0.25 A  
mV  
1. Parameter guaranteed by design and characterization; not subject to production test.  
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VSEn = 0 V; ISENSE = 1 mA  
-17  
-12  
V
MultiSense clamp  
voltage  
VSENSE_CL  
VSEn = 0 V; ISENSE = -1 mA  
7
Current Sense characteristics  
IOUT = 0.01 A;  
VSENSE = 0.5 V; VSEn = 5 V  
KOL  
dKcal/Kcal  
KLED  
IOUT/ISENSE  
530  
-30  
Current sense ratio  
drift at calibration  
point  
IOUT = 0.01 A to 0.05 A;  
(1)(2)  
I
cal = 30 mA;  
30  
%
VSENSE = 0.5 V; VSEn = 5 V  
IOUT = 0.05 A;  
IOUT/ISENSE  
900 1800 2650  
V
SENSE = 0.5 V; VSEn = 5 V  
Current sense ratio  
drift  
IOUT = 0.05 A; VSENSE = 0.5  
V; VSEn = 5 V  
(1)(2)  
dKLED/KLED  
-25  
940 1550 2200  
-20 20  
25  
%
%
%
%
%
IOUT = 0.25 A; VSENSE = 0.5  
V; VSEn = 5 V  
K0  
IOUT/ISENSE  
Current sense ratio  
drift  
IOUT = 0.25 A; VSENSE = 0.5  
V; VSEn = 5 V  
(1)(2)  
dK0/K0  
IOUT = 0.5 A; VSENSE = 4 V;  
VSEn = 5 V  
K1  
IOUT/ISENSE  
1000 1400 1920  
-15 15  
1140 1350 1710  
Current sense ratio  
drift  
IOUT = 0.5 A; VSENSE = 4 V;  
VSEn = 5 V  
(1)(2)  
dK1/K1  
IOUT = 1.5 A; VSENSE = 4 V;  
K2  
IOUT/ISENSE  
VSEn = 5 V  
Current sense ratio  
drift  
IOUT = 1.5 A; VSENSE = 4 V;  
VSEn = 5 V  
(1)(2)  
dK2/K2  
K3  
-10  
10  
IOUT = 4.5 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
1200 1340 1470  
Current sense ratio  
drift  
IOUT = 4.5 A; VSENSE = 4 V;  
(1)(2)  
dK3/K3  
-5  
5
VSEn = 5 V  
14/54  
DocID022406 Rev 7  
 
VN7040AS-E, VN7040AJ-E  
Electrical specification  
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
MultiSense disabled:  
VSEn = 0 V;  
0
0.5  
0.5  
MultiSense disabled:  
-1 V < VSENSE < 5 V(1)  
-0.5  
MultiSense enabled:  
VSEn = 5 V  
Channel ON; IOUT = 0 A;  
Diagnostic selected;  
0
0
2
2
MultiSense leakage  
current  
ISENSE  
µA  
0
V
IN = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT = 0 A;  
MultiSense enabled:  
VSEn = 5 V  
Channel OFF;  
Diagnostic selected:  
VIN = 0 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
VSEn = 5 V;  
Output Voltage for  
MultiSense shutdown VSEL0 = 0 V; VSEL1 = 0 V;  
RSENSE = 2.7 kΩ; VIN = 5 V;  
(1)  
VOUT_MSD  
5
V
V
I
OUT = 2.5 A  
VCC = 7 V;  
RSENSE = 2.7 kΩ;  
Multisense saturation  
voltage  
VSENSE_SAT  
V
SEn = 5 V; VIN = 5 V;  
5
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT = 4.5 A; Tj = 150°C  
VCC = 7 V; VSENSE = 4 V;  
VIN = 5 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
Tj = 150°C  
(1)  
ISENSE_SAT  
CS saturation current  
4
6
mA  
A
V
CC = 7 V; VSENSE = 4 V;  
VIN = 5 V; VSEn = 5 V;  
SEL0 = 0 V; VSEL1 = 0 V;  
Tj = 150°C  
Output saturation  
current  
(1)  
IOUT_SAT  
V
OFF-state diagnostic  
OFF-state open-load VIN = 0 V;  
VOL  
voltage detection  
threshold  
V
SEn = 5 V;  
2
3
4
V
VSEL0 = 0 V; VSEL1 = 0 V;  
OFF-state output sink VIN = 0 V; VOUT = VOL  
;
IL(off2)  
-100  
-15  
µA  
current  
Tj = -40°C to 125°C  
OFF-state diagnostic  
delay time from falling  
edge of INPUT  
VIN = 5 V to 0 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
tDSTKON  
100  
350  
700  
µs  
I
OUT = 0 A; VOUT = 4 V  
(see Figure 9)  
DocID022406 Rev 7  
15/54  
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Settling time for valid  
OFF-state open load  
diagnostic indication  
from rising edge of  
SEn  
VIN = 0 V; VFR = 0 V;  
V
SEL0 = 0 V; VSEL1 = 0 V;  
tD_OL_V  
60  
30  
µs  
µs  
VOUT = 4 V; VSEn = 0 V to  
5 V  
OFF-state diagnostic VIN = 0 V; VSEn = 5 V;  
delay time from rising VSEL0 = 0 V; VSEL1 = 0 V;  
tD_VOL  
5
edge of VOUT  
Chip temperature analog feedback (VN7040AJ-E only)  
VSEn = 5 V; VSEL0 = 0 V;  
VOUT = 0 V to 4 V  
VSEL1 = 5 V; VIN = 0 V;  
RSENSE = 1 KΩ; Tj = -40 °C  
2.325 2.41 2.495  
1.985 2.07 2.155  
V
V
MultiSense output  
voltage proportional  
to chip temperature  
VSEn = 5 V; VSEL0 = 0 V;  
VSEL1 = 5 V; VIN = 0 V;  
RSENSE = 1 KΩ; Tj = 25 °C  
VSENSE_TC  
VSEn = 5 V; VSEL0 = 0 V;  
VSEL1 = 5 V; VIN = 0 V;  
RSENSE = 1 KΩ; Tj = 125 °C  
1.435 1.52 1.605  
-5.5  
V
Temperature  
coefficient  
dVSENSE_TC/dT  
Transfer function  
Tj = -40 °C to 150 °C  
mV/K  
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T -  
T0)  
VCC supply voltage analog feedback (VN7040AJ-E only)  
MultiSense output  
voltage proportional  
VCC = 13 V; VSEn = 5 V;  
VSEL0 = 5 V; VSEL1 = 5 V;  
VSENSE_VCC  
3.16 3.23  
3.3  
V
to VCC supply voltage VIN = 0 V; RSENSE = 1 KΩ  
Transfer function(3)  
VSENSE_VCC = VCC / 4  
Fault diagnostic feedback (see Table 10)  
VCC = 13 V; RSENSE = 1 kΩ;  
SEn = 5 V; VIN = 0 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT = 0 A; VOUT = 4 V  
MultiSense output  
voltage in fault  
condition  
V
VSENSEH  
5
6.6  
30  
V
MultiSense output  
current in fault  
condition  
ISENSEH  
VCC = 13 V; VSENSE = 5 V  
7
20  
mA  
MultiSense timings (current sense mode - see Figure 7)  
Current sense settling  
time from rising edge  
of SEn  
VIN = 5 V; VSEn = 0 V to 5 V;  
RSENSE = 1 kΩ; RL = 5.2 Ω  
tDSENSE1H  
60  
20  
µs  
µs  
Current sense disable  
delay time from falling  
edge of SEn  
VIN = 5 V; VSEn = 5 V to 0 V;  
RSENSE = 1 kΩ; RL = 5.2 Ω  
tDSENSE1L  
5
16/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Electrical specification  
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Current sense settling  
time from rising edge  
of INPUT  
V
R
IN = 0 V to 5 V; VSEn = 5 V;  
SENSE = 1 kΩ; RL = 5.2 Ω  
tDSENSE2H  
100  
250  
100  
250  
µs  
µs  
µs  
Current sense settling  
time from rising edge  
of IOUT (dynamic  
VIN = 5 V; VSEn = 5 V;  
R
ISENSE = 90 % of  
ISENSEMAX; RL = 5.2 Ω  
SENSE = 1 kΩ;  
ΔtDSENSE2H  
response to a step  
change of IOUT  
)
Current sense turn-off  
delay time from falling  
edge of INPUT  
VIN = 5 V to 0 V; VSEn = 5 V;  
RSENSE = 1 kΩ; RL = 5.2 Ω  
tDSENSE2L  
50  
MultiSense timings (chip temperature sense mode - see Figure 8) (VN7040AJ-E only)  
VSENSE_TC settling VSEn = 0 V to 5 V;  
tDSENSE3H  
time from rising edge VSEL0 = 0 V; VSEL1 = 5 V;  
60  
20  
µs  
µs  
of SEn  
RSENSE = 1 kΩ  
VSENSE_TC disable  
VSEn = 5 V to 0 V;  
tDSENSE3L  
delay time from falling VSEL0 = 0 V; VSEL1 = 5 V;  
edge of SEn RSENSE = 1 kΩ  
MultiSense timings (VCC voltage sense mode - see Figure 8) (VN7040AJ-E only)  
VSENSE_VCC settling VSEn = 0 V to 5 V;  
tDSENSE4H  
time from rising edge VSEL0 = 5 V; VSEL1 = 5 V;  
of SEn RSENSE = 1 kΩ  
60  
20  
µs  
µs  
VSENSE_VCC disable VSEn = 5 V to 0 V;  
delay time from falling VSEL0 = 5 V; VSEL1 = 5 V;  
tDSENSE4L  
edge of SEn  
MultiSense timings (Multiplexer transition times)(4) (VN7040AJ-E only)  
IN = 5 V; VSEn = 5 V;  
RSENSE = 1 kΩ  
V
MultiSense transition VSEL0 = 0 V;  
tD_CStoTC  
tD_TCtoCS  
tD_CStoVCC  
delay from current  
sense to TC sense  
VSEL1 = 0 V to 5 V;  
OUT = 1.25 A;  
RSENSE = 1 kΩ  
60  
20  
60  
µs  
µs  
µs  
I
VIN = 5 V; VSEn = 5 V;  
VSEL0 = 0 V;  
MultiSense transition  
delay from TC sense VSEL1 = 5 V to 0 V;  
to current sense IOUT = 1.25 A;  
SENSE = 1 kΩ  
R
V
IN = 5 V; VSEn = 5 V;  
MultiSense transition VSEL0 = 5 V;  
delay from current  
sense to VCC sense  
VSEL1 = 0 V to 5 V;  
IOUT = 1.25 A;  
RSENSE = 1 kΩ  
DocID022406 Rev 7  
17/54  
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VIN = 5 V; VSEn = 5 V;  
MultiSense transition VSEL0 = 5 V;  
tD_VCCtoCS  
delay from VCC sense VSEL1 = 5 V to 0 V;  
20  
µs  
to current sense  
IOUT = 1.25 A;  
RSENSE = 1 kΩ  
VCC = 13 V; Tj = 125 °C;  
VSEn = 5 V; VSEL1 = 5 V;  
VSEL0 = 0 V to 5 V;  
MultiSense transition  
delay from TC sense  
to VCC sense  
tD_TCtoVCC  
20  
20  
µs  
µs  
RSENSE = 1 kΩ  
VCC = 13 V; Tj = 125 °C;  
VSEn = 5 V; VSEL1 = 5 V;  
MultiSense transition  
delay from VCC sense  
to TC sense  
tD_VCCtoTC  
V
SEL0 = 5 V to 0 V;  
RSENSE = 1 kΩ  
1. Parameter specified by design; not subject to production test.  
2. All values refer to V = 13 V; T = 25°C, unless otherwise specified.  
CC  
j
3.  
V
sensing and T are referred to GND potential.  
CC C  
4. Transition delay are measured up to +/- 10% of final conditions.  
Figure 4. IOUT SENSE  
/I  
versus IOUT  
ϯϬϬϬ  
ϮϱϬϬ  
ϮϬϬϬ  
ϭϱϬϬ  
ϭϬϬϬ  
ϱϬϬ  
DĂdž  
DŝŶ  
dLJƉ  
Ϭ
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
/
΀ꢀ΁  
Khd  
("1($'5ꢀꢆꢃꢆꢀ  
18/54  
DocID022406 Rev 7  
 
VN7040AS-E, VN7040AJ-E  
Electrical specification  
Figure 5. Current sense accuracy versus IOUT  
ϲϱ  
ϲϬ  
ϱϱ  
ϱϬ  
ϰϱ  
ϰϬ  
ꢀƵƌƌĞŶƚꢁƐĞŶƐĞꢁƵŶĐĂůŝďƌĂƚĞĚꢁƉƌĞĐŝƐŝŽŶ  
ꢀƵƌƌĞŶƚꢁƐĞŶƐĞꢁĐĂůŝďƌĂƚĞĚꢁƉƌĞĐŝƐŝŽŶ  
ϯϱ  
ϯϬ  
й
Ϯϱ  
ϮϬ  
ϭϱ  
ϭϬ  
ϱ
Ϭ
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
/
΀ꢀ΁  
Khd  
("1($'5ꢀꢆꢃꢆꢆ  
Figure 6. Switching times and Pulse skew  
WZRQ  
WZRII  
9287  
9FF  
ꢂꢃꢇꢁ9FF  
ꢈꢃꢇꢁ9FF  
21  
2))  
G9287ꢋGW  
G9287ꢋGW  
W
,1387  
WGꢉRIIꢊ  
WGꢉRQꢊ  
WS/+  
WS+/  
W
("1($'5ꢀꢀꢄꢇꢄ  
DocID022406 Rev 7  
19/54  
 
 
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Figure 7. MultiSense timings (current sense mode)  
,1ꢅ  
+LJK  
6(Q  
/RZ  
+LJK  
6(/ꢃ  
6(/ꢅ  
/RZ  
+LJK  
/RZ  
,
287ꢅ  
&855(17ꢁ6(16(  
W'6(16(ꢈ+  
W'6(16(ꢅ/  
W'6(16(ꢅ+  
W'6(16(ꢈ/  
*$3*&)7ꢃꢃꢌꢆꢌ  
Figure 8. Multisense timings (chip temperature and VCC sense mode) (VN7040AJ-E  
only)  
+LJK  
6(Q  
/RZ  
+LJK  
6(/ꢃ  
/RZ  
+LJK  
6(/ꢅ  
/RZ  
9&&  
96(16(  ꢁ96(16(B9&&  
96(16(  ꢁ96(16(B7&  
6(16(  
W'6(16(ꢌ+  
W'6(16(ꢌ/  
W'6(16(ꢆ+  
W'6(16(ꢆ/  
9&&ꢀ92/7$*(ꢀ6(16(ꢀ02'(  
&+,3ꢀ7(03(5$785(ꢀ6(16(ꢀ02'(  
("1($'5ꢀꢀꢁꢆꢇ  
20/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Electrical specification  
Figure 9. TDSTKON  
9,1387  
9287  
9287ꢁ!ꢁ92/  
0XOWL6HQVH  
7'67.21  
*$3*&)7ꢃꢃꢍꢃꢅ  
Table 10. Truth table  
FR  
SELX  
Mode  
Conditions INX  
SEn  
OUTX MultiSense  
Comments  
(1)  
(1)  
All logic  
L
Low quiescent current  
consumption  
Standby  
L
X
L
L
L
L
L
Hi-Z  
inputs low  
L
Nominal load  
connected;  
Outputs configured for  
auto-restart  
H
Refer to  
Table 11  
H
Refer to  
Table 11  
Normal  
Tj < 150°C  
H
Outputs configured for  
Latch-off(1)  
H
X
L
H
L
Overload or  
short to GND  
causing:  
L
H
H
Output cycles with  
temperature hysteresis  
Refer to  
Table 11  
Refer to  
Table 11  
H
L
Overload  
Tj > TTSD or  
ΔTj > ΔTj_SD  
H
Output latches-off(1)  
Re-start when  
VCC > VUSD +  
VUSDhyst (rising)  
VCC < VUSD  
(falling)  
L
L
Hi-Z  
Hi-Z  
Undervoltage  
X
X
X
X
Short to VCC  
Open-load  
Inductive  
L
L
X
X
H
H
OFF-state  
diagnostics  
Refer to  
Table 11  
Refer to  
Table 11  
External pull-up  
Negative  
Refer to  
Table 11  
Refer to  
Table 11  
L
X
< 0 V  
output voltage loads turn-off  
1. VN7040AJ only  
DocID022406 Rev 7  
21/54  
 
 
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Table 11. MultiSense multiplexer addressing  
MultiSense output  
MUX  
channel  
SEn SEL1 SEL0  
OFF-state  
diag.(1)  
Negative  
output  
Nomal mode  
SO-8  
Overload  
L
n.a. n.a. n.a.  
Channel  
Hi-Z  
ISENSE  
1/K * IOUT  
=
VSENSE  
VSENSEH  
=
VSENSE =  
VSENSEH  
H
n.a. n.a.  
Hi-Z  
diagnostic  
PowerSSO-16  
ISENSE VSENSE  
Channel  
diagnostic  
=
=
VSENSE  
VSENSEH  
=
H
H
L
L
L
Hi-Z  
Hi-Z  
1/K * IOUT VSENSEH  
Channel  
diagnostic  
ISENSE  
=
VSENSE  
=
VSENSE  
VSENSEH  
=
H
1/K * IOUT VSENSEH  
H
H
H
H
L
TCHIP Sense  
VCC Sense  
VSENSE = VSENSE_TC  
VSENSE = VSENSE_VCC  
H
1. In case the output channel corresponding to the selected MUX channel is latched off while the relevant  
input is low, Multisense pin delivers feedback according to OFF-State diagnostic.  
Example 1: FR = 1; IN = 0; OUT = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0  
0
0
0
0
Example 2: FR = 1; IN = 0; OUT = latched, V  
> V ; MUX channel = channel 0 diagnostic;  
OUT0  
OL  
Mutisense = V  
SENSEH  
2.4  
Waveforms  
Figure 10. Latch functionality - behavior in hard short circuit condition (TAMB << TTSD  
)
22/54  
DocID022406 Rev 7  
 
 
VN7040AS-E, VN7040AJ-E  
Electrical specification  
Figure 11. Latch functionality - behavior in hard short circuit condition  
Figure 12. Latch functionality - behavior in hard short circuit condition (autorestart mode + latch  
off)  
DocID022406 Rev 7  
23/54  
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Figure 13. Standby mode activation  
 ꢀ6WDQGE\  
 ꢀWꢀꢁꢀW'B67%<  
 ꢀWꢀ!ꢀW'B67%<  
("1($'5ꢀꢀꢈꢆꢄ  
Figure 14. Standby state diagram  
1RUPDOꢀ2SHUDWLRQ  
,1[ꢁ ꢁ/RZ  
,1[ꢁ ꢁ+LJK  
25  
$1'  
)DXOW567ꢁ ꢁ/RZ  
$1'  
)DXOW567ꢁ ꢁ+LJK  
25  
Wꢁ!ꢁW 'B67%<  
6(Qꢁ ꢁ/RZ  
$1'  
6(/[ꢁ ꢁ/RZ  
6(Qꢁ ꢁ+LJK  
25  
6(/[ꢁ ꢁ+LJK  
ȗ
6WDQGꢂE\ꢀ0RGH  
*$3*&)7ꢃꢃꢎꢏꢂ  
24/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Electrical specification  
2.5  
Electrical characteristics curves  
Figure 15. OFF-state output current  
Figure 16. Standby current  
,ORIIꢀ>Q$@  
,67%<ꢀ>—$@  
ꢍꢃꢃ  
ꢎꢃꢃ  
ꢌꢃꢃ  
ꢆꢃꢃ  
ꢈꢃꢃ  
ꢅꢃꢃ  
ꢃꢑꢏ  
ꢃꢑꢂ  
ꢃꢑꢐ  
ꢃꢑꢍ  
ꢃꢑꢎ  
ꢃꢑꢌ  
ꢃꢑꢆ  
ꢃꢑꢈ  
ꢃꢑꢅ  
9FFꢀ ꢀꢃꢄ9  
2IIꢀ6WDWH  
9FFꢀ ꢀꢃꢄ9  
9LQꢀ ꢀ9RXWꢀ ꢀꢅ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
7ꢀ>ƒ&@  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
7ꢀ>ƒ&@  
("1($'5ꢀꢆꢆꢇꢆ  
("1($'5ꢀꢆꢆꢇꢀ  
Figure 17. IGND(ON) vs. Iout  
Figure 18. Logic Input high level voltage  
,*1'ꢆ21ꢇꢀ>P$@  
9L+ꢋꢀ9)5+ꢋꢀ96(/+ꢋꢀ96(Q+ꢀ>9@  
ꢆꢑꢎ  
ꢅꢑꢂ  
ꢅꢑꢍ  
ꢅꢑꢌ  
ꢅꢑꢈ  
ꢆꢑꢃ  
ꢈꢑꢎ  
ꢈꢑꢃ  
ꢅꢑꢎ  
ꢅꢑꢃ  
ꢃꢑꢎ  
ꢃꢑꢃ  
9FFꢀ ꢀꢃꢄ9  
,RXWꢅꢀ ꢀ,RXWꢃꢀ ꢀꢈꢉꢊ$  
ꢃꢑꢂ  
ꢃꢑꢍ  
ꢃꢑꢌ  
ꢃꢑꢈ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
7ꢀ>ƒ&@  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
7ꢀ>ƒ&@  
("1($'5ꢀꢆꢆꢇꢁ  
("1($'5ꢀꢆꢆꢇꢃ  
Figure 19. Logic Input low level voltage  
Figure 20. High level logic input current  
9LO/ꢀ9)5/ꢋꢀ96(//ꢋꢀ96(Q/ꢀ>9@  
,L+ꢋꢀ,)5+ꢋꢀ,6(/+ꢋꢀ,6(Q+ꢀ>—$@  
ꢅꢑꢂ  
ꢅꢑꢍ  
ꢅꢑꢌ  
ꢅꢑꢈ  
ꢆꢑꢎ  
ꢈꢑꢎ  
ꢃꢑꢂ  
ꢃꢑꢍ  
ꢃꢑꢌ  
ꢃꢑꢈ  
ꢅꢑꢎ  
ꢃꢑꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
7ꢀ>ƒ&@  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
7ꢀ>ƒ&@  
("1($'5ꢀꢆꢆꢇꢉ  
("1($'5ꢀꢆꢆꢇꢊ  
DocID022406 Rev 7  
25/54  
 
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Figure 21. Low level logic input current  
Figure 22. Logic Input hysteresis voltage  
9LꢆK\VWꢇꢋꢀ9)5ꢆK\VWꢇꢋꢀ96(/ꢆK\VWꢇꢋꢀ96(QꢆK\VWꢇꢀ>9@  
,L/ꢋꢀ,)5/ꢋꢀ,6(//ꢋꢀ,6(Q/ꢀ>—$@  
ꢃꢑꢏ  
ꢃꢑꢂ  
ꢃꢑꢐ  
ꢃꢑꢍ  
ꢃꢑꢎ  
ꢃꢑꢌ  
ꢃꢑꢆ  
ꢃꢑꢈ  
ꢃꢑꢅ  
ꢆꢑꢎ  
ꢈꢑꢎ  
ꢅꢑꢎ  
ꢃꢑꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
7ꢀ>ƒ&@  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
7ꢀ>ƒ&@  
("1($'5ꢀꢆꢆꢇꢂ  
("1($'5ꢀꢆꢆꢇꢄ  
Figure 23. FaultRST Input clamp voltage  
Figure 24. Undervoltage shutdown  
986'ꢀ>9@  
9)5&/ꢀ>9@  
,LQꢀ ꢀꢃP$  
,LQꢀ ꢀꢂꢃP$  
ꢀꢅ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
7ꢀ>ƒ&@  
7ꢀ>ƒ&@  
("1($'5ꢀꢆꢆꢇꢈ  
("1($'5ꢀꢆꢆꢇꢇ  
Figure 25. On-state resistance vs. Tcase  
Figure 26. On-state resistance vs. VCC  
5RQꢀ>P2KP@  
5RQꢀ>P2KP@  
ꢅꢃꢃ  
ꢏꢃ  
ꢅꢃꢃ  
ꢏꢃ  
ꢂꢃ  
ꢂꢃ  
7ꢀ ꢀꢃꢊꢅ ƒ&  
ꢐꢃ  
ꢐꢃ  
7ꢀ ꢀꢃꢈꢊ ƒ&  
,RXWꢀ ꢀꢈꢉꢊ$  
9FFꢀ ꢀꢃꢄ9  
ꢍꢃ  
ꢎꢃ  
ꢌꢃ  
ꢆꢃ  
ꢈꢃ  
ꢅꢃ  
ꢍꢃ  
ꢎꢃ  
7ꢀ ꢀꢈꢊ ƒ&  
ꢌꢃ  
ꢆꢃ  
7ꢀ ꢀꢂꢌꢅ ƒ&  
ꢈꢃ  
ꢅꢃ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢅꢃ  
ꢅꢎ  
ꢈꢃ  
ꢈꢎ  
ꢆꢃ  
ꢆꢎ  
ꢌꢃ  
7ꢀ>ƒ&@  
9FFꢀ>9@  
("1($'5ꢀꢆꢃꢀꢀ  
("1($'5ꢀꢆꢃꢀꢆ  
26/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Electrical specification  
Figure 27. Turn-on voltage slope  
Figure 28. Turn-off voltage slope  
ꢆG9RXWꢍGWꢇ2Qꢀ>9ꢍ—V@  
ꢆG9RXWꢍGWꢇ2IIꢀ>9ꢍ—V@  
ꢃꢑꢏ  
ꢃꢑꢂ  
ꢃꢑꢐ  
ꢃꢑꢍ  
ꢃꢑꢎ  
ꢃꢑꢌ  
ꢃꢑꢆ  
ꢃꢑꢈ  
ꢃꢑꢅ  
ꢃꢑꢏ  
ꢃꢑꢂ  
ꢃꢑꢐ  
ꢃꢑꢍ  
ꢃꢑꢎ  
ꢃꢑꢌ  
ꢃꢑꢆ  
ꢃꢑꢈ  
ꢃꢑꢅ  
9FFꢀ ꢀꢃꢄ9  
5Oꢀ ꢀꢊꢉꢈȍꢀ  
9FFꢀ ꢀꢃꢄ9  
5Oꢀ ꢀꢊꢉꢈȍꢀ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
7ꢀ>ƒ&@  
7ꢀ>ƒ&@  
("1($'5ꢀꢆꢃꢀꢃ  
("1($'5ꢀꢆꢃꢀꢁ  
Figure 29. Won vs. Tcase  
Figure 30. Woff vs. Tcase  
:RIIꢀ>P-@  
:RQꢀ>P-@  
ꢃꢑꢏ  
ꢃꢑꢂ  
ꢃꢑꢐ  
ꢃꢑꢍ  
ꢃꢑꢎ  
ꢃꢑꢌ  
ꢃꢑꢆ  
ꢃꢑꢈ  
ꢃꢑꢅ  
ꢃꢑꢏ  
ꢃꢑꢂ  
ꢃꢑꢐ  
ꢃꢑꢍ  
ꢃꢑꢎ  
ꢃꢑꢌ  
ꢃꢑꢆ  
ꢃꢑꢈ  
ꢃꢑꢅ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
7ꢀ>ƒ&@  
7ꢀ>ƒ&@  
("1($'5ꢀꢆꢃꢀꢉ  
("1($'5ꢀꢆꢃꢀꢊ  
Figure 31. ILIMH vs. Tcase  
Figure 32. OFF-state open-load voltage  
detection threshold  
92/ꢀ>9@  
,OLPKꢀ>$@  
ꢌꢃ  
ꢆꢑꢎ  
ꢆꢎ  
ꢆꢃ  
ꢈꢎ  
ꢈꢃ  
ꢅꢎ  
ꢈꢑꢎ  
9FFꢀ ꢀꢃꢄ9ꢀ  
ꢅꢑꢎ  
ꢃꢑꢎ  
ꢅꢃ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
7ꢀ>ƒ&@  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
7ꢀ>ƒ&@  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
("1($'5ꢀꢆꢃꢀꢄ  
("1($'5ꢀꢆꢃꢀꢂ  
DocID022406 Rev 7  
27/54  
Electrical specification  
VN7040AS-E, VN7040AJ-E  
Figure 33. Vsense clamp vs. Tcase  
Figure 34. Vsenseh vs. Tcase  
96(16(+ꢀ>9@  
ꢅꢃ  
96(16(B&/ꢀ>9@  
ꢅꢃ  
,LQꢀ ꢀꢃP$  
,LQꢀ ꢀꢂꢃP$  
ꢀꢅ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
ꢀꢎꢃ  
ꢀꢈꢎ  
ꢈꢎ  
ꢎꢃ  
ꢐꢎ  
ꢅꢃꢃ  
ꢅꢈꢎ  
ꢅꢎꢃ  
ꢅꢐꢎ  
7ꢀ>ƒ&@  
7ꢀ>ƒ&@  
("1($'5ꢀꢆꢃꢀꢈ  
("1($'5ꢀꢆꢃꢀꢇ  
28/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Protections  
3
Protections  
3.1  
Power limitation  
The basic working principle of this protection consists of an indirect measurement of the  
junction temperature swing ΔTj through the direct measurement of the spatial temperature  
gradient on the device surface in order to automatically shut off the output MOSFET as soon  
as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the FaultRST  
pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the  
maximum instantaneous power which can be handled (FaultRST = Low) or remains off  
(FaultRST = High). The protection prevents fast thermal transient effects and, consequently,  
reduces thermo-mechanical fatigue.  
3.2  
3.3  
3.4  
Thermal shutdown  
In case the junction temperature of the device exceeds the maximum allowed threshold  
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.  
According to the voltage level on the FaultRST pin, the device switches on again as soon as  
its junction temperature drops to TR (see Table 8, FaultRST = Low) or remains off (FaultRST  
= High).  
Current limitation  
The device is equipped with an output current limiter in order to protect the silicon as well as  
the other components of the system (e.g. bonding wires, wiring harness, connectors, loads,  
etc.) from excessive current flow. Consequently, in case of short circuit, overload or during  
load power-up, the output current is clamped to a safety level, ILIMH, by operating the output  
power MOSFET in the active region.  
Negative voltage clamp  
In case the device drives inductive load, the output voltage reaches negative value during  
turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain  
value, VDEMAG (see Table 8), allowing the inductor energy to be dissipated without  
damaging the device.  
DocID022406 Rev 7  
29/54  
 
 
 
Application information  
VN7040AS-E, VN7040AJ-E  
4
Application information  
Figure 35. Application diagram  
+5V  
VDD  
OUT  
OUT  
OUT  
OUT  
ADC in  
OUT  
VCC  
Rprot  
Rprot  
FaultRST  
INPUT  
Logic  
Dld  
Rprot  
Rprot  
SEn  
SEL  
OUTPUT  
Rprot  
Multisense  
Currentmirror  
GND  
Cext  
Rsense  
R GND  
D GND  
GND  
GND  
GND  
GND  
GND  
GND  
4.1  
GND protection network against reverse battery  
Figure 36. Simplified internal structure  
ꢎ9  
9FF  
5SURW  
,1387  
5SURW  
6(Q  
0&8  
'OG  
5SURW  
5SURW  
)DXOW567  
287387  
0XOWLVHQVH  
*1'  
5VHQVH  
'
5*1'  
*1'  
*1'  
*$3*&)7ꢃꢃꢂꢃꢏ  
30/54  
DocID022406 Rev 7  
 
VN7040AS-E, VN7040AJ-E  
Application information  
4.1.1  
Diode (D  
) in the ground line  
GND  
A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an  
inductive load.  
This small signal diode can be safely shared amongst several different HSDs. Also in this  
case, the presence of the ground network produces a shift (600 mV) in the input threshold  
and in the status output values if the microprocessor ground is not common to the device  
ground. This shift does not vary if more than one HSD shares the same diode/resistor  
network.  
4.2  
Immunity against transient electrical disturbances  
The immunity of the device against transient electrical emissions, conducted along the  
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)  
and ISO 16750-2:2010.  
The related function performance status classification is shown in Table 12.  
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and  
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device  
only, without components and accessed through VCC and GND terminals.  
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as  
follows: “The function does not perform as designed during the test but returns automatically  
to normal operation after the test”.  
Table 12. ISO 7637-2 - electrical transient conduction along supply line  
Test pulse severity  
Test  
Pulse  
Minimum  
number of  
pulses or test  
time  
level with Status II  
functionalperformance  
status  
Burst cycle / pulse  
repetition time  
Pulse duration and  
pulse generator  
internal impedance  
2011(E)  
(1)  
Level  
US  
min  
max  
1
III  
III  
IV  
IV  
IV  
-112V  
+55V  
-220V  
+150V  
-7V  
500 pulses  
500 pulses  
1h  
0,5 s  
0,2 s  
2ms, 10Ω  
50μs, 2Ω  
2a  
3a  
3b  
4(2)  
5 s  
90 ms  
90 ms  
100 ms  
100 ms  
0.1μs, 50Ω  
0.1μs, 50Ω  
100ms, 0.01Ω  
1h  
1 pulse  
Load dump according to ISO 16750-2:2010  
Test B(3)  
40V  
5 pulse  
1 min  
400ms, 2Ω  
1.  
U is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.  
S
2. Test pulse from ISO 7637-2:2004(E).  
3. With 40 V external suppressor referred to ground (-40°C < T < 150°C).  
j
DocID022406 Rev 7  
31/54  
 
 
 
Application information  
VN7040AS-E, VN7040AJ-E  
4.3  
MCU I/Os protection  
If a ground protection network is used and negative transients are present on the VCC line,  
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to  
prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.  
The value of these resistors is a compromise between the leakage current of microcontroller  
and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of  
microcontroller I/Os.  
Equation 1  
V
CCpeak/Ilatchup Rprot (VOHμC-VIH-VGND) / IIHmax  
Calculation example:  
For VCCpeak = -150 V; Ilatchup 20mA; VOHμC 4.5V  
7.5 kΩ ≤ Rprot 140 kΩ.  
Recommended values: Rprot = 15 kΩ  
4.4  
Multisense - analog current sense  
Diagnostic information on device and load status are provided by an analog output pin  
(Multisense) delivering the following signals:  
Current monitor: current mirror of channel output current  
CC monitor: voltage propotional to VCC  
TCASE: voltage propotional to chip temperature  
V
Those signals are routed through an analog multiplexer which is configured and controlled  
by means of SELx and SEn pins, according to the address map in Table 11.  
32/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Application information  
Figure 37. Multisense and diagnostic – block diagram  
Internal Supply  
VCC – GND  
Clamp  
Undervoltage  
shut-down  
Control & Diagnostic  
VCC – OUT  
Clamp  
FaultRST  
INPUT  
Gate Driver  
VCC  
T
SEL1  
SEL0  
SEn  
VON  
Limitation  
VCC  
Current  
Limitation  
MONITOR  
ISENSE  
Power Limitation  
Overtemperature  
Fault  
Diagnostic  
RPROT  
MultiSense  
TEMP  
Temp  
MONITOR  
Short to VCC  
To uC ADC  
Open-Load in OFF  
K factor  
RSENSE  
Current  
Sense  
CURRENT  
IOUT  
OUT  
MONITOR  
Fault  
VSENSEH  
GND  
DocID022406 Rev 7  
33/54  
Application information  
VN7040AS-E, VN7040AJ-E  
4.4.1  
Principle of Multisense signal generation  
Figure 38. Multisense block diagram  
9FF  
).054  
6HQVHꢁ026  
0DLQꢁ026  
287  
&XUUHQWꢁVHQVH  
9EDWꢁ0RQLWRU  
7HPSHUDWXUHꢁPRQLWRU  
)DXOW  
0XOWLVHQVHꢁ6ZLWFKꢁ%ORFN  
08/7,6(16(  
7RꢁX&ꢁ$'&  
53527  
56(16(  
*$3*&)7ꢃꢅꢃꢌꢃ  
Current monitor  
When current mode is selected in the Multisense, this output is capable to provide:  
Current mirror proportional to the load current in normal operation, delivering  
current proportional to the load according to known ratio named K  
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH  
The current delivered by the current sense circuit, ISENSE, can be easily converted to a  
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load  
monitoring and abnormal condition detection.  
Normal operation (channel ON, no fault, SEn active)  
While device is operating in normal conditions (no fault intervention), VSENSE calculation  
can be done using simple equations  
Current provided by Multisense output: ISENSE = IOUT/K  
.
.
Voltage on RSENSE: VSENSE = RSENSE ISENSE = RSENSE IOUT/K  
34/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Application information  
Where :  
VSENSE is voltage measurable on RSENSE resistor  
I
SENSE is current provided from Multisense pin in current output mode  
OUT is current flowing through output  
I
K factor represent the ratio between PowerMOS cells and SenseMOS cells; its spread  
includes geometric factor spread, current sense amplifier offset and process  
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE  
.
Failure flag indication  
In case of power limitation/overtemperature, the fault is indicated by the Multisense pin  
which is switched to a “current limited” voltage source, VSENSEH (see Table 9).  
In any case, the current sourced by the Multisense in this condition is limited to ISENSEH (see  
Table 9).  
The typical behavior in case of overload or hard short circuit is shown in Table 8, Table 9  
and Table 10.  
Figure 39. Analogue HSD – open-load detection in off-state  
9  
9EDW  
9EDW  
ꢅꢃQ)9  
ꢅꢃQ)  
5SXOOꢀXS  
*1'  
*1'  
0LFURFRQWUROOHU  
9''  
9&&  
287  
)DXOW567  
,1387  
ꢎN  
([WHUQDOꢁ  
3XOO ꢀ8Sꢁ  
VZLWFK  
287  
287  
/RJLF  
N  
N  
N  
N  
6(Q  
6(/  
287387  
287387  
287  
0XOWLVHQVH  
&XUUHQWPLUURU  
*1'  
$'&ꢁLQ  
287  
5*1'  
ꢌꢑN  
5VHQVH  
'
*1'  
Q) ꢋꢅꢃ9  
N  
*1'  
&(;7  
*1'  
*1'  
*1'  
*1'  
*1'  
*$3*&)7ꢃꢅꢅꢆꢎ  
DocID022406 Rev 7  
35/54  
 
Application information  
VN7040AS-E, VN7040AJ-E  
Figure 40. Open-load / short to VCC condition  
9,1  
96(16(  
3XOOꢀXSꢁFRQQHFWHG  
96(16(+  
2SHQꢀORDG  
96(16(ꢁ ꢁꢃ  
3XOOꢀXSꢁ  
GLVFRQQHFWHG  
96(16(  
W'67.21  
6KRUWꢁWRꢁ9&&  
96(16(+  
*$3*&)7ꢃꢃꢎꢏꢐ  
Table 13. Multisense pin levels in off-state  
Condition  
Output  
Multisense  
SEn  
Hi-Z  
VSENSEH  
Hi-Z  
L
H
L
VOUT > VOL  
Open-load  
VOUT < VOL  
VOUT > VOL  
VOUT < VOL  
0
H
L
Hi-Z  
Short to VCC  
Nominal  
VSENSEH  
Hi-Z  
H
L
0
H
4.4.2  
T
and V monitor  
CASE CC  
In this case, MultiSense output operates in voltage mode and output level is referred to  
device GND. Care must be taken in case a GND network protection is used, because of a  
voltage shift is generated between device GND and the microcontroller input GND  
reference.  
Figure 41 shows link between VMEASURED and real VSENSE signal.  
36/54  
DocID022406 Rev 7  
 
VN7040AS-E, VN7040AJ-E  
Application information  
Figure 41. GND voltage shift  
9%$7  
ꢅꢃꢃQ)ꢋꢎꢃ9  
9&&  
)DXOW567  
,1ꢃ  
0XOWLVHQVHꢁYROWDJHꢁPRGHꢁ  
ꢀꢁ96(16(+  
ꢀꢁ9&&ꢁPRQLWRU  
6(Q  
287ꢃ  
ꢀꢁ7&$6(ꢁPRQLWRU  
6(/ꢃ  
6(/ꢅ  
53527  
0XOWLVHQVH  
*1'  
7RꢁX&ꢁ$'&  
56(16(  
'
*1'  
53527  
ꢌꢑN  
'!0'#&4ꢁꢀꢀꢂꢃ  
V
monitor  
CC  
Battery monitoring channel provides VSENSE = VCC / 4.  
Case temperature monitor  
Case temperature monitor is capable to provide information about actual device  
temperature. Since diode is used for temperature sensing, following equation describe link  
between temperature and output VSENSE level:  
V
SENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)  
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40oC to +150oC).  
4.4.3  
Short to V and OFF-state open-load detection  
CC  
Short to VCC  
A short circuit between VCC and output is indicated by the relevant current sense pin set to  
V
SENSEH during the device off-state. Small or no current is delivered by the current sense  
during the on-state depending on the nature of the short circuit.  
OFF-state open-load with external circuitry  
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting  
the output to a positive supply voltage VPU  
.
It is preferable VPU to be switched off during the module standby mode in order to avoid the  
overall standby current consumption to increase in normal conditions, i.e. when load is  
connected.  
R
PU must be selected in order to ensure VOUT > VOLmax in accordance with to following  
equation:  
Equation 2  
V
4  
PU  
R
< -----------------------------------------  
PU  
I
L(off2)min @ 4V  
DocID022406 Rev 7  
37/54  
 
Application information  
VN7040AS-E, VN7040AJ-E  
4.5  
Maximum demagnetization energy (V = 13.5 V)  
CC  
Figure 42. Maximum turn off current versus inductance  
91ꢆꢀꢇꢀ$[ 0D[LPXPꢃWXUQꢃRIIꢃ&XUUHQWꢃYHUVXVꢃLQGXFWDQFH  
ꢂꢀꢀ  
ꢂꢀ  
91ꢆꢀꢇꢀ$[ꢃꢈꢃ6LQJOHꢃ3XOVH  
5HSHWLWLYHꢃSXOVHꢃ7MVWDUW ꢂꢀꢀƒ&  
5HSHWLWLYHꢃSXOVHꢃ7MVWDUW ꢂꢉꢊƒ&  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢂꢀ  
ꢂꢀꢀ  
ꢂꢀꢀꢀ  
("1($'5ꢀꢆꢆꢉꢄ  
/ꢃꢄP+ꢅ  
A: Tjstart = 150 °C single pulse  
B
: Tjstart = 100 °C repetitive pulse  
: Tjstart = 125 °C repetitive pulse  
C
VIN, IL  
Demagnetization  
Demagnetization  
Demagnetization  
t
1. Values are generated with R = 0 Ω.  
L
jstart  
In case of repetitive pulses, T  
(at the beginning of each demagnetization) of every pulse must not  
exceed the temperature specified above for curves A and B.  
38/54  
DocID022406 Rev 7  
 
 
VN7040AS-E, VN7040AJ-E  
Package and PCB thermal data  
5
Package and PCB thermal data  
5.1  
PowerSSO-16 thermal data  
Figure 43. PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)  
("1($'5ꢀꢀꢁꢃꢆ  
Figure 44. PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)  
5PQ  
(/%ꢋQMBOF  
7$$ꢋQMBOF  
#PUUPN  
("1($'5ꢀꢀꢁꢃꢃ  
Table 14. PCB properties  
Dimension  
Value  
Board finish thickness  
Board dimension  
Board Material  
1.6 mm +/- 10%  
77 mm x 86 mm  
FR4  
Copper thickness (top and bottom layers)  
Copper thickness (inner layers)  
Thermal vias separation  
0.070 mm  
0.035 mm  
1.2 mm  
Thermal via diameter  
0.3 mm +/- 0.08 mm  
0.025 mm  
Copper thickness on vias  
Footprint dimension (top layer)  
Heatsink copper area dimension (bottom layer)  
2.2 mm x 3.9 mm  
Footprint, 2 cm2 or 8 cm2  
DocID022406 Rev 7  
39/54  
 
Package and PCB thermal data  
VN7040AS-E, VN7040AJ-E  
Figure 45. PowerSSO-16 Rthj-amb vs PCB copper area in open box free air condition  
57+MDPE  
ꢏꢃ  
57+MDPE  
ꢂꢃ  
ꢐꢃ  
ꢍꢃ  
ꢎꢃ  
ꢌꢃ  
ꢂꢁ  
ꢅꢃ  
*$3*&)7ꢃꢅꢅꢌꢅ  
Figure 46. PowerSSO-16 thermal impedance junction ambient single pulse  
=7+ ꢉƒ&ꢋ:ꢊ  
ꢅꢃꢃ  
ꢅꢃ  
&X IRRWꢁSULQW  
&X ꢈꢁFPꢈ  
&X ꢂꢁFPꢈ  
ꢌꢁ/D\HU  
ꢁꢄꢀ  
ꢃꢑꢃꢃꢃꢅ  
ꢃꢑꢃꢃꢅ  
ꢃꢑꢃꢅ  
ꢃꢑꢅ  
7LPHꢁꢉVꢊ  
ꢅꢃ  
ꢅꢃꢃ  
ꢅꢃꢃꢃ  
*$3*&)7ꢃꢅꢅꢌꢈ  
Equation 3: pulse calculation formula  
Z
= R  
⋅ δ + Z  
(1 δ)  
THtp  
THδ  
TH  
where δ = tP/T  
40/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Package and PCB thermal data  
Figure 47. Thermal fitting model for PowerSSO-16  
'!0'#&4ꢁꢀꢀꢂꢅ  
1. The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded  
protections (power limitation or thermal cycling during thermal shutdown) are not triggered.  
Table 15. Thermal parameters  
Area/island (cm2)  
R1 (°C/W)  
Footprint  
2
8
4L  
2.3  
1.8  
7
R2 (°C/W)  
R3 (°C/W)  
7
6
7
6
5
4
3
7
R4 (°C/W)  
14  
R5 (°C/W)  
30  
20  
20  
10  
18  
R6 (°C/W)  
26  
C1 (W.s/°C)  
C2 (W.s/°C)  
C3 (W.s/°C)  
C4 (W.s/°C)  
C5 (W.s/°C)  
C6 (W.s/°C)  
0.00045  
0.03  
0.1  
0.2  
0.4  
3
0.3  
1
0.3  
1
0.4  
4
5
7
18  
DocID022406 Rev 7  
41/54  
Package and PCB thermal data  
VN7040AS-E, VN7040AJ-E  
5.2  
SO-8 thermal data  
Figure 48. SO-8 on two-layers PCB (2s0p to JEDEC JESD 51-5)  
'!0'#&4ꢁꢀꢀꢆꢂ  
Figure 49. SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7)  
'!0'#&4ꢁꢀꢀꢆꢆ  
Table 16. PCB properties  
Dimension  
Value  
Board finish thickness  
Board dimension  
Board Material  
1.6 mm +/- 10%  
77 mm x 86 mm  
FR4  
Copper thickness (top and bottom layers)  
Copper thickness (inner layers)  
Thermal vias separation  
0.070 mm  
0.035 mm  
1.2 mm  
Thermal via diameter  
0.3 mm +/- 0.08 mm  
0.025 mm  
Copper thickness on vias  
Footprint dimension (top layer)  
Heatsink copper area dimension (bottom layer)  
2.2 mm x 3.9 mm  
Footprint, 2 + 2 cm2 or 8 + 8 cm2  
42/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Package and PCB thermal data  
Figure 50. SO-8 Rthj-amb vs PCB copper area in open box free air condition  
57+MDPE  
ꢅꢃꢃ  
ꢏꢎ  
ꢏꢃ  
ꢂꢎ  
ꢂꢃ  
ꢐꢎ  
ꢐꢃ  
ꢍꢎ  
ꢍꢃ  
ꢎꢎ  
ꢇꢁ  
57+MDPE  
ꢅꢃ  
*$3*&)7ꢃꢅꢅꢌꢎ  
Figure 51. SO-8 thermal impedance junction ambient single pulse  
=7+ ꢉƒ&ꢋ:ꢊ  
ꢅꢃꢃ  
ꢅꢃ  
&X ꢂꢁFPꢈ  
&X ꢈꢁFPꢈ  
&X IRRWꢁSULQW  
ꢌꢁ/D\HU  
ꢁꢄꢀ  
ꢃꢑꢃꢃꢃꢅ  
ꢃꢑꢃꢃꢅ  
ꢃꢑꢃꢅ  
ꢃꢑꢅ  
7LPHꢁꢉVꢊ  
ꢅꢃ  
ꢅꢃꢃ  
ꢅꢃꢃꢃ  
*$3*&)7ꢃꢅꢅꢌꢍ  
Equation 4: pulse calculation formula  
Z
= R  
⋅ δ + Z  
(1 δ)  
THtp  
THδ  
TH  
where δ = tP/T  
DocID022406 Rev 7  
43/54  
Package and PCB thermal data  
VN7040AS-E, VN7040AJ-E  
Figure 52. Thermal fitting model for SO-8  
'!0'#&4ꢁꢀꢀꢂꢅ  
1. The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded  
protections (power limitation or thermal cycling during thermal shutdown) are not triggered.  
Table 17. Thermal parameters  
Area/island (cm2)  
R1 (°C/W)  
Footprint  
2.3  
2
8
4L  
R2 (°C/W)  
2.5  
R3 (°C/W)  
10  
R4 (°C/W)  
28  
17  
12  
23  
17  
9
17  
4
R5 (°C/W)  
24  
R6 (°C/W)  
30  
19  
9
C1 (W.s/°C)  
C2 (W.s/°C)  
C3 (W.s/°C)  
C4 (W.s/°C)  
C5 (W.s/°C)  
C6 (W.s/°C)  
0.0006  
0.03  
0.05  
0.1  
0.4  
0.8  
7
0.8  
11  
0.8  
22  
3
44/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Package information  
6
Package information  
®
6.1  
ECOPACK  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
6.2  
PowerSSO-16 package information  
Figure 53. PowerSSO-16 package dimensions  
ꢈꢀꢆꢄꢇꢂꢊ@&  
("1(ꢆꢂꢀꢊꢆꢉꢆꢆꢊꢇ$'5  
Table 18. PowerSSO-16 mechanical data  
Millimeters  
Typ.  
Symbol  
Min.  
Max.  
Θ
0°  
0°  
8°  
Θ1  
DocID022406 Rev 7  
45/54  
 
Package information  
VN7040AS-E, VN7040AJ-E  
Table 18. PowerSSO-16 mechanical data (continued)  
Millimeters  
Typ.  
Symbol  
Min.  
Max.  
Θ2  
Θ3  
A
5°  
5°  
15°  
15°  
1.70  
0.10  
1.65  
0.30  
0.30  
0.25  
0.23  
A1  
A2  
b
0.00  
1.10  
0.20  
0.20  
0.19  
0.19  
b1  
c
0.25  
c1  
D
0.20  
4.9  
D1  
e
2.20  
2.80  
0.50  
6.00  
3.90  
E
E1  
E2  
h
2.90  
0.25  
0.40  
3.50  
0.50  
0.85  
L
0.60  
1.00  
16  
L1  
N
R
0.7  
0.7  
R1  
S
0.20  
46/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Package information  
6.3  
SO-8 package information  
Figure 54. SO-8 package dimensions  
ꢀꢀꢆꢂꢀꢃꢁ@)  
("1(ꢆꢂꢀꢊꢆꢉꢆꢆꢆꢁ$'5  
DocID022406 Rev 7  
47/54  
 
Package information  
VN7040AS-E, VN7040AJ-E  
Table 19. SO-8 mechanical data  
mm.  
Dim.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.75  
0.25  
0.10  
1.25  
0.28  
0.17  
4.80  
5.80  
3.80  
0.48  
0.23  
5.00  
6.20  
4.00  
c
D
4.90  
6.00  
3.90  
1.27  
E
E1  
e
h
0.25  
0.40  
0.50  
1.27  
L
L1  
k
1.04  
0°  
8°  
ccc  
0.10  
48/54  
DocID022406 Rev 7  
                                                                            
VN7040AS-E, VN7040AJ-E  
Package information  
6.4  
Packing information  
Figure 55. SO-8 tube shipment (no suffix)  
Base q.ty  
100  
2000  
532  
3.2  
%
&
$
Bulk q.ty  
Tube length (± 0.5)  
A
B
6
C (± 0.1)  
0.6  
All dimensions are in mm  
("1($'5ꢀꢀꢁꢀꢁ  
Figure 56. SO-8 tape and reel shipment (suffix “TR”)  
5((ꢁꢁꢁ',0(16,216  
%DVHTꢑW\  
%XONꢁTꢑW \  
$ꢁꢉPD[ꢊ  
%ꢁꢉPLQꢊ  
&ꢁꢉ“ ꢁꢃꢑꢈꢊ  
)
*ꢁꢒꢁꢈꢁꢀꢃꢊ  
1ꢁꢉPLQꢊ  
7ꢁꢉPD[ꢊ  
ꢈꢎꢃꢃ  
ꢈꢎꢃꢃ  
ꢆꢆꢃ  
ꢅꢑꢎ  
ꢅꢆ  
ꢈꢃꢑꢈ  
ꢅꢈꢑꢌ  
ꢍꢃ  
ꢅꢂꢑꢌ  
$OOꢁGLPHQVLRQVꢁDUHꢁLQꢁPPꢑ  
7$3 ꢁ',0(16,216  
!CCORDIN G TO %LECTRON IC )NDUSTRIES !SS OCIATION  
ꢉ(,$ꢊꢁ6WDQGDUGꢁꢌꢂꢅꢁUHYꢑꢁ$ꢄꢁ)HEꢑꢁꢅꢏꢂꢍ  
7DSHꢁZLGWKꢁ  
:
3ꢁꢉ“ꢁꢃꢑꢅꢊ  
3
'ꢁꢉꢒꢁꢃꢑꢅꢃꢊ  
'ꢁꢉPLQꢊ  
ꢅꢈ  
ꢅꢑꢎ  
ꢅꢑꢎ  
ꢎꢑꢎ  
ꢌꢑꢎ  
7DSHꢁKROHꢁVSDFLQJ  
&RPSRQHQWꢁVSDFLQJ  
+ROHꢁGLDPHWHU  
+ROHꢁGLDPHWHU  
+ROHꢁSRVLWLRQ  
)ꢁ“ꢁꢃꢑꢃꢎꢊ  
.ꢁꢉPD[ꢊ  
3ꢁꢉ“ꢁꢃꢑꢅꢊ  
&RPSDUWPHQWꢁGHSWK  
+ROHꢁVSDFLQJ  
$OOꢁGLPHQVLRQVꢁDUHꢁLQꢁPPꢑ  
(QG  
6WDUW  
1RꢁFRPSRQHQWV  
7R S  
FRYHU  
WDSH  
1RꢁFRPSRQHQWV &RPSRQHQWV  
ꢎꢃꢃPPꢁPLQ  
ꢎꢃꢃPPꢁPLQ  
(PSW\ꢁFRPSRQHQWVꢁSRFNHWV  
VDOHGꢁZLWKꢁFRYHUꢁWDSHꢑ  
8VHUꢁGLUHFWLRQꢁRIꢁIHHG  
*$3*&)7ꢃꢃꢆꢃꢌ  
DocID022406 Rev 7  
49/54  
Order codes  
VN7040AS-E, VN7040AJ-E  
7
Order codes  
Table 20. Device summary  
Order codes  
Package  
Tube  
Tape and reel  
VN7040AJTR-E  
VN7040ASTR-E  
PowerSSO-16  
SO-8  
VN7040AJ-E  
VN7040AS-E  
50/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Revision history  
8
Revision history  
Table 21. Document revision history  
Changes  
Date  
Revision  
26-Oct-2011  
1
Initial release  
Updated Features list  
Updated Table 1: Pin functions  
Table 3: Absolute maximum ratings:  
– VCCPK, -IOUT, ISENSE, VESD: updated values  
– VCCJS: added row  
– VSENSE: removed row  
Table 5: Power section:  
– VUSDReset, IGND(ON): added row  
– Vclamp: updated test conditions and values  
Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C):  
– ILIM, TR: added note  
Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C):  
– VSENSE_CL, KOL, KLED, dKLED/KLED, K0, dK0/K0, K1, dK1/K1, K2,  
dK2/K2, K3, dK3/K3, ISENSE0, IL(off2), VSENSE_TC, VSENSE_VCC  
VSENSEH, ISENSEH,: updated test condiions and values;  
,
03-Oct-2012  
2
– tDSENSE1H, tDSENSE1L, tDSENSE2H, tDSENSE2L, ΔtDSENSE2H  
tDSENSE3L, tDSENSE3H, tDSENSE3L, tDSENSE4H, tDSENSE4L, tD_CStoTC  
tD_TCtoCS, tD_CStoVCC, tD_VCCtoCS, tD_TCtoVCC, tD_VCCtoTC: updated  
test condiions  
,
,
– VOUT_MSD, VSENSE_SAT, ISENSE_SAT, IOUT_SAT, tD_OL_V: added rows  
Updated Figure 6: Switching times and Pulse skew  
Removed Figure: Pulse skew  
Figure 9: TDSTKON  
Uploaded Table 10: Truth table:  
– Overload conditions updated  
Table 11: MultiSense multiplexer addressing:  
– Added note  
Updated Section 2.4: Waveforms  
Added Chapter 3: Protections and Chapter 4: Application information  
Figure 39: Analogue HSD – open-load detection in off-state:  
– X, Y: updated min and max values  
DocID022406 Rev 7  
51/54  
Revision history  
VN7040AS-E, VN7040AJ-E  
Table 21. Document revision history (continued)  
Date  
Revision  
Changes  
Updated Table 2: Suggested connections for unused and not  
connected pins  
Table 3: Absolute maximum ratings:  
– ISENSE: updated value  
Updated Table 4: Thermal data  
Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless  
otherwise specified):  
– td(on): updated min value  
Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C):  
– dKcal/Kcal: added row  
– VSENSE_CL, VSENSE_VCC: updated test conditions  
– KLED, K0, K1, K2, K3, VSENSE_H: updated values  
– tDSTKON: updated parameter  
– VSENSE_TC, VSENSE_VCC: updated test conditions and values  
Updated Table 11: MultiSense multiplexer addressing  
Removed following tables:  
06-Feb-2013  
3
Table: Electrical transient requirements (part 1/3)  
Table: Electrical transient requirements (part 2/3)  
Table: Electrical transient requirements (part 3/3)  
Updated Section 3.2: Thermal shutdown, Section 3.4: Negative  
voltage clamp and Section 4.1.1: Diode (DGND) in the ground line  
Removed Section: Load dump protection  
Added Section 4.2: Immunity against transient electrical disturbances  
and Section 4.5: Maximum demagnetization energy (VCC = 13.5 V)  
Updated Figure 39: Analogue HSD – open-load detection in off-state  
and Figure 41: GND voltage shift  
Updated Table 13: Multisense pin levels in off-state  
Updated Chapter 5: Package and PCB thermal data  
Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless  
otherwise specified):  
15-Feb-2013  
4
– WON, WOFF: updated typical and maximum value  
Table 3: Absolute maximum ratings:  
– VCCPK: updated parameter  
– -IOUT: updated value  
– EMAX: updated parameter and value  
Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless  
otherwise specified):  
– WON, WOFF: updated typical and maximum values  
Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C):  
– KOL, KLED, K1, K2, K3: updated value  
15-Mar-2013  
5
Added Figure 4: IOUT/ISENSE versus IOUT and Figure 5: Current  
sense accuracy versus IOUT  
Added Section 2.5: Electrical characteristics curves  
Updated Figure 42: Maximum turn off current versus inductance  
Updated Section 6.2: PowerSSO-16 package information  
52/54  
DocID022406 Rev 7  
VN7040AS-E, VN7040AJ-E  
Revision history  
Table 21. Document revision history (continued)  
Revision Changes  
Date  
18-Sep-2013  
6
7
Updated disclaimer.  
Updated Section 6.2: PowerSSO-16 package information and  
Section 6.3: SO-8 package information  
26-May-2014  
DocID022406 Rev 7  
53/54  
VN7040AS-E, VN7040AJ-E  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2014 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
54/54  
DocID022406 Rev 7  

相关型号:

VN7040AS

High-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VN7040AS-E

BUF OR INV BASED PRPHL DRVR, PDSO8, ROHS COMPLIANT, SOP-8
STMICROELECTR

VN7040ASTR

High-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VN7040ASTR-E

BUF OR INV BASED PRPHL DRVR, PDSO8, ROHS COMPLIANT, SOP-8
STMICROELECTR

VN7050AJ

High-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VN7050AJTR

High-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VN7050AS

High-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VN7050ASTR

High-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VN710SP

AUTOMOTIVE GLOW PLUG DRIVER
STMICROELECTR

VN710SP13TR

AUTOMOTIVE GLOW PLUG DRIVER
STMICROELECTR

VN7140AJ

High-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VN7140AJTR

High-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR