VND7140AJ [STMICROELECTRONICS]

Double channel high-side driver with MultiSense analog feedback for automotive applications;
VND7140AJ
型号: VND7140AJ
厂家: ST    ST
描述:

Double channel high-side driver with MultiSense analog feedback for automotive applications

文件: 总47页 (文件大小:2389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VND7140AJ  
Double channel high-side driver with MultiSense analog  
feedback for automotive applications  
Datasheet - production data  
Loss of ground and loss of VCC  
Reverse battery with external  
components  
Electrostatic discharge protection  
Applications  
All types of automotive resistive, inductive  
and capacitive loads  
Features  
Max transient supply voltage  
Operating voltage range  
Typ. on-state resistance (per Ch)  
Current limitation (typ)  
VCC  
VCC  
40 V  
4 to 28 V  
140 mΩ  
12 A  
Specially intended for automotive signal  
lamps (up to R10W or LED Rear  
Combinations)  
RON  
ILIMH  
ISTBY  
Description  
Standby current (max)  
0.5 µA  
The device is a double channel high-side driver  
manufactured using ST proprietary VIPower®  
M0-7 technology and housed in PowerSSO-16  
package. The device is designed to drive 12 V  
automotive grounded loads through a 3 V and  
5 V CMOS-compatible interface, providing  
protection and diagnostics.  
AEC-Q100 qualified  
General  
Double channel smart high-side driver  
with MultiSense analog feedback  
Very low standby current  
The device integrates advanced protective  
functions such as load current limitation, overload  
active management by power limitation and  
overtemperature shutdown with configurable  
latch-off.  
Compatible with 3 V and 5 V CMOS  
outputs  
MultiSense diagnostic functions  
Multiplexed analog feedback of: load  
current with high precision proportional  
current mirror, VCC supply voltage and  
TCHIP device temperature  
A FaultRST pin unlatches the output in case of  
fault or disables the latch-off functionality.  
Overload and short to ground (power  
limitation) indication  
A dedicated multifunction multiplexed analog  
output pin delivers sophisticated diagnostic  
functions including high precision proportional  
load current sense, supply voltage feedback and  
chip temperature sense, in addition to the  
detection of overload and short circuit to ground,  
short to VCC and OFF-state open-load.  
Thermal shutdown indication  
OFF-state open-load detection  
Output short to VCC detection  
Sense enable/disable  
Protections  
Undervoltage shutdown  
Overvoltage clamp  
Load current limitation  
Self limiting of fast thermal transients  
Configurable latch-off on  
A sense enable pin allows OFF-state diagnosis to  
be disabled during the module low-power mode  
as well as external sense resistor sharing among  
similar devices.  
overtemperature or power limitation  
with dedicated fault reset pin  
October 2016  
DocID027398 Rev 2  
1/47  
www.st.com  
This is information on a product in full production.  
Contents  
VND7140AJ  
Contents  
1
2
Block diagram and pin description................................................5  
Electrical specification....................................................................7  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings................................................................7  
Thermal data.....................................................................................8  
Main electrical characteristics ...........................................................8  
Waveforms......................................................................................20  
Electrical characteristics curves ......................................................23  
3
4
Protections.....................................................................................27  
3.1  
3.2  
3.3  
3.4  
Power limitation...............................................................................27  
Thermal shutdown...........................................................................27  
Current limitation.............................................................................27  
Negative voltage clamp...................................................................27  
Application information ................................................................28  
4.1  
GND protection network against reverse battery.............................28  
4.1.1  
Diode (DGND) in the ground line ..................................................... 29  
4.2  
4.3  
4.4  
Immunity against transient electrical disturbances..........................29  
MCU I/Os protection........................................................................30  
Multisense - analog current sense ..................................................30  
4.4.1  
4.4.2  
4.4.3  
Principle of Multisense signal generation......................................... 32  
TCASE and VCC monitor................................................................. 34  
Short to VCC and OFF-state open-load detection ........................... 35  
5
6
Maximum demagnetization energy (VCC = 16 V)........................36  
Package and PCB thermal data....................................................37  
6.1  
PowerSSO-16 thermal data ............................................................37  
7
Package information .....................................................................40  
7.1  
7.2  
7.3  
PowerSSO-16 package information................................................40  
PowerSSO-16 packing information .................................................42  
PowerSSO-16 marking information.................................................44  
8
9
Order codes ...................................................................................45  
Revision history ............................................................................46  
2/47  
DocID027398 Rev 2  
VND7140AJ  
List of tables  
List of tables  
Table 1: Pin functions .................................................................................................................................5  
Table 2: Suggested connections for unused and not connected pins........................................................6  
Table 3: Absolute maximum ratings ...........................................................................................................7  
Table 4: Thermal data.................................................................................................................................8  
Table 5: Power section ...............................................................................................................................9  
Table 6: Switching.....................................................................................................................................10  
Table 7: Logic inputs.................................................................................................................................10  
Table 8: Protections..................................................................................................................................11  
Table 9: MultiSense ..................................................................................................................................12  
Table 10: Truth table.................................................................................................................................19  
Table 11: MultiSense multiplexer addressing...........................................................................................20  
Table 12: ISO 7637-2 - electrical transient conduction along supply line.................................................29  
Table 13: MultiSense pin levels in off-state ..............................................................................................34  
Table 14: PCB properties .........................................................................................................................37  
Table 15: Thermal parameters .................................................................................................................39  
Table 16: PowerSSO-16 mechanical data................................................................................................40  
Table 17: Reel dimensions .......................................................................................................................42  
Table 18: PowerSSO-16 carrier tape dimensions ....................................................................................43  
Table 19: Device summary.......................................................................................................................45  
Table 20: Document revision history ........................................................................................................46  
DocID027398 Rev 2  
3/47  
List of figures  
VND7140AJ  
List of figures  
Figure 1: Block diagram..............................................................................................................................5  
Figure 2: Configuration diagram (top view).................................................................................................6  
Figure 3: Current and voltage conventions.................................................................................................7  
Figure 4: IOUT/ISENSE versus IOUT.......................................................................................................16  
Figure 5: Current sense accuracy versus IOUT .......................................................................................17  
Figure 6: Switching time and Pulse skew .................................................................................................17  
Figure 7: MultiSense timings (current sense mode).................................................................................18  
Figure 8: Multisense timings (chip temperature and VCC sense mode) ..................................................18  
Figure 9: TDSTKON..................................................................................................................................19  
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) ......................20  
Figure 11: Latch functionality - behavior in hard short circuit condition....................................................21  
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)....21  
Figure 13: Standby mode activation .........................................................................................................22  
Figure 14: Standby state diagram.............................................................................................................22  
Figure 15: OFF-state output current .........................................................................................................23  
Figure 16: Standby current .......................................................................................................................23  
Figure 17: IGND(ON) vs. Iout ...................................................................................................................23  
Figure 18: Logic Input high level voltage ..................................................................................................23  
Figure 19: Logic Input low level voltage....................................................................................................23  
Figure 20: High level logic input current ...................................................................................................23  
Figure 21: Low level logic input current ....................................................................................................24  
Figure 22: Logic Input hysteresis voltage .................................................................................................24  
Figure 23: FaultRST Input clamp voltage .................................................................................................24  
Figure 24: Undervoltage shutdown...........................................................................................................24  
Figure 25: On-state resistance vs. Tcase.................................................................................................24  
Figure 26: On-state resistance vs. VCC ...................................................................................................24  
Figure 27: Turn-on voltage slope..............................................................................................................25  
Figure 28: Turn-off voltage slope..............................................................................................................25  
Figure 29: Won vs. Tcase.........................................................................................................................25  
Figure 30: Woff vs. Tcase.........................................................................................................................25  
Figure 31: ILIMH vs. Tcase.......................................................................................................................25  
Figure 32: OFF-state open-load voltage detection threshold ...................................................................25  
Figure 33: Vsense clamp vs. Tcase..........................................................................................................26  
Figure 34: Vsenseh vs. Tcase ..................................................................................................................26  
Figure 35: Application diagram.................................................................................................................28  
Figure 36: Simplified internal structure .....................................................................................................28  
Figure 37: MultiSense and diagnostic block diagram............................................................................31  
Figure 38: MultiSense block diagram .......................................................................................................32  
Figure 39: Analogue HSD open-load detection in off-state ...................................................................33  
Figure 40: Open-load / short to VCC condition.........................................................................................34  
Figure 41: GND voltage shift ....................................................................................................................35  
Figure 42: Maximum turn off current versus inductance ..........................................................................36  
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)............................................37  
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) ...........................................37  
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on) .....................38  
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) ..............38  
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16..........................................39  
Figure 48: PowerSSO-16 package outline ...............................................................................................40  
Figure 49: PowerSSO-16 reel 13" ............................................................................................................42  
Figure 50: PowerSSO-16 carrier tape ......................................................................................................43  
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape ..................................................43  
Figure 52: PowerSSO-16 marking information.........................................................................................44  
4/47  
DocID027398 Rev 2  
VND7140AJ  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1: Block diagram  
Table 1: Pin functions  
Function  
Name  
VCC  
Battery connection.  
OUTPUT0,1 Power output.  
Ground connection. Must be reverse battery protected by an external diode / resistor  
network.  
GND  
INPUT0,1  
MultiSense  
SEn  
Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS  
outputs. It controls output switch state.  
Multiplexed analog sense output pin; it delivers a current proportional to the selected  
diagnostic: load current, supply voltage or chip temperature.  
Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense  
diagnostic pin.  
Active high compatible with 3 V and 5 V CMOS outputs pin; they address the  
MultiSense multiplexer.  
SEL0,1  
Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in  
case of fault; If kept low, sets the outputs in auto-restart. mode  
FaultRST  
DocID027398 Rev 2  
5/47  
Block diagram and pin description  
VND7140AJ  
Figure 2: Configuration diagram (top view)  
Table 2: Suggested connections for unused and not connected pins  
SEn, SELx,  
FaultRST  
Connection /  
pin  
MultiSense  
N.C.  
Output  
Input  
Floating  
Not allowed  
X (1)  
X
X
X
X
Through 1 kΩ  
Not  
allowed  
Through 15 kΩ  
Through 15 kΩ  
To ground  
resistor  
resistor  
resistor  
Notes:  
(1)X: do not care.  
6/47  
DocID027398 Rev 2  
 
VND7140AJ  
Electrical specification  
2
Electrical specification  
Figure 3: Current and voltage conventions  
IS  
VCC  
VCC  
VFn  
IFR  
IOUT  
FaultRST  
SEn  
OUTPUT0,1  
MultiSense  
ISEn  
VOUT  
ISENSE  
ISEL  
SEL0,1  
VSENSE  
IIN  
INPUT0,1  
IGND  
GAPGCFT00315  
VFn = VOUTn - VCC during reverse battery condition.  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to the conditions in table below for extended  
periods may affect device reliability.  
Table 3: Absolute maximum ratings  
Symbol  
VCC  
Parameter  
Value  
38  
Unit  
DC supply voltage  
V
-VCC  
Reverse DC supply voltage  
0.3  
Maximum transient supply voltage (ISO 16750-2:2010 Test B  
clamped to 40V; RL = 4 Ω)  
VCCPK  
40  
V
Maximum jump start voltage for single pulse short circuit  
protection  
VCCJS  
-IGND  
IOUT  
28  
V
DC reverse ground pin current  
200  
mA  
Internally  
limited  
OUTPUT0,1 DC output current  
A
-IOUT  
IIN  
Reverse DC output current  
INPUT0,1 DC input current  
SEn DC input current  
4
ISEn  
ISEL  
IFR  
-1 to 10  
mA  
SEL0,1 DC input current  
FaultRST DC input current  
DocID027398 Rev 2  
7/47  
 
Electrical specification  
VND7140AJ  
Symbol  
Parameter  
Value  
Unit  
VFR  
FaultRST DC input voltage  
7.5  
10  
V
MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V)  
MultiSense pin DC output current in reverse (VCC < 0 V)  
ISENSE  
mA  
mJ  
-20  
Maximum switching energy (single pulse) (TDEMAG = 0.4 ms;  
Tjstart = 150 °C)  
EMAX  
10  
Electrostatic discharge (JEDEC 22A-114F)  
4000  
2000  
4000  
4000  
4000  
V
V
V
V
V
INPUT0,1  
MultiSense  
SEn, SEL0,1, FaultRST  
OUTPUT0,1  
VCC  
VESD  
VESD  
Tj  
Charge device model (CDM-AEC-Q100-011)  
Junction operating temperature  
Storage temperature  
750  
V
-40 to 150  
-55 to 150  
°C  
Tstg  
2.2  
Thermal data  
Table 4: Thermal data  
Parameter  
Symbol  
Typ. value  
7.7  
Unit  
Rthj-board Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) (1)(2)  
Rthj-amb  
Rthj-amb  
Thermal resistance junction-ambient (JEDEC JESD 51-5)(1)(3)  
Thermal resistance junction-ambient (JEDEC JESD 51-7)(1)(2)  
61  
°C/W  
26.5  
Notes:  
(1)One channel ON.  
(2)Device mounted on four-layers 2s2p PCB  
(3)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace  
2.3  
Main electrical characteristics  
7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified.  
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.  
8/47  
DocID027398 Rev 2  
 
VND7140AJ  
Electrical specification  
Table 5: Power section  
Test conditions  
Symbol  
Parameter  
Min. Typ. Max. Unit  
Operating supply  
voltage  
VCC  
4
13  
28  
4
V
V
V
Undervoltage  
shutdown  
VUSD  
Undervoltage  
shutdown reset  
VUSDReset  
5
Undervoltage  
VUSDhyst shutdown  
hysteresis  
0.3  
V
IOUT = 1 A; Tj = 25°C  
140  
On-state  
RON  
IOUT = 1 A; Tj = 150°C  
280  
210  
52  
mΩ  
resistance (1)  
IOUT = 1 A; VCC = 4 V; Tj = 25°C  
IS = 20 mA; 25°C < Tj < 150°C  
IS = 20 mA; Tj = -40°C  
41  
38  
46  
V
V
Vclamp  
Clamp voltage  
VCC = 13 V;  
VIN = VOUT = VFR = VSEn = 0 V;  
VSEL0,1 = 0 V; Tj = 25°C  
0.5  
0.5  
3
Supply current in  
standby at  
VCC = 13 V (2)  
VCC = 13 V;  
ISTBY  
VIN = VOUT = VFR = VSEn = 0 V;  
µA  
(3)  
VSEL0,1 = 0 V; Tj = 85°C  
VCC = 13 V;  
VIN = VOUT = VFR = VSEn = 0 V;  
VSEL0,1 = 0 V; Tj = 125°C  
VCC = 13 V;  
VIN = VOUT = VFR = VSEL0,1 = 0 V;  
VSEn = 5 V to 0 V  
Standby mode  
blanking time  
tD_STBY  
60  
300  
5
550  
8
µs  
VCC = 13 V; VSEn = VFR = VSEL0,1 = 0 V;  
VIN0 = 5 V; VIN1 = 5 V;  
IS(ON)  
Supply current  
mA  
IOUT0 = 0 A; IOUT1 = 0 A  
Control stage  
current  
VCC = 13 V; VSEn = 5 V;  
IGND(ON)  
consumption in ON VFR = VSEL0,1 = 0 V; VIN0 = 5 V;  
12  
mA  
state. All channels  
active.  
VIN1 = 5 V; IOUT0 = 1 A; IOUT1 = 1 A  
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 25°C  
0
0
0.01  
0.5  
3
Off-state output  
current at  
IL(off)  
µA  
V
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 125°C  
VCC = 13 V (1)  
Output - VCC diode  
voltage (1)  
VF  
IOUT = -1 A; Tj = 150°C  
0.7  
Notes:  
(1)For each channel  
(2)PowerMOS leakage included.  
(3)Parameter specified by design; not subject to production test.  
DocID027398 Rev 2  
9/47  
 
 
 
Electrical specification  
VND7140AJ  
Table 6: Switching  
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified  
Test  
conditions  
Symbol  
Parameter  
Min. Typ. Max. Unit  
(1)  
td(on)  
Turn-on delay time at Tj = 25 °C  
Turn-off delay time at Tj = 25 °C  
Turn-on voltage slope at Tj = 25 °C  
Turn-off voltage slope at Tj = 25 °C  
Switching energy losses at turn-on  
10  
10  
70  
40  
120  
100  
0.7  
RL = 13 Ω  
µs  
(1)  
td(off)  
(1)  
(1)  
(dVOUT/dt)on  
(dVOUT/dt)off  
0.1  
0.1  
0.27  
0.35  
RL = 13 Ω  
RL = 13 Ω  
V/µs  
mJ  
0.7  
WON  
0.15 0.18(2)  
(twon  
Switching energy losses at turn-off  
(twoff  
Differential Pulse skew (tPHL - tPLH  
)
WOFF  
RL = 13 Ω  
RL = 13 Ω  
0.1  
-50  
0.18(2)  
0
mJ  
µs  
)
(1)  
tSKEW  
)
-100  
Notes:  
(1)See Figure 6: "Switching time and Pulse skew".  
(2)Parameter guaranteed by design and characterization; not subject to production test.  
Table 7: Logic inputs  
7 V < VCC < 28 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
INPUT0,1 characteristics  
VIL  
IIL  
Input low level voltage  
0.9  
V
µA  
V
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
VIN = 0.9 V  
VIN = 2.1 V  
1
VIH  
2.1  
IIH  
10  
µA  
V
VI(hyst)  
0.2  
5.3  
IIN = 1 mA  
IIN = -1 mA  
7.2  
VICL  
Input clamp voltage  
V
-0.7  
FaultRST characteristics  
VFRL Input low level voltage  
IFRL  
VFRH  
IFRH  
0.9  
V
µA  
V
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VFR(hyst)  
0.2  
5.3  
IIN = 1 mA  
IIN = -1 mA  
7.5  
VFRCL  
Input clamp voltage  
V
-0.7  
SEL0,1 characteristics (7 V < VCC < 18 V)  
VSELL  
ISELL  
VSELH  
ISELH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
0.9  
10  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
µA  
10/47  
DocID027398 Rev 2  
 
 
VND7140AJ  
Electrical specification  
7 V < VCC < 28 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min.  
0.2  
Typ.  
Max.  
Unit  
VSEL(hyst)  
Input hysteresis voltage  
V
IIN = 1 mA  
IIN = -1 mA  
5.3  
7.2  
VSELCL  
Input clamp voltage  
V
-0.7  
SEn characteristics (7 V < VCC < 18 V)  
VSEnL  
ISEnL  
VSEnH  
ISEnH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
0.9  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VSEn(hyst)  
0.2  
5.3  
IIN = 1 mA  
IIN = -1 mA  
7.2  
VSEnCL  
Input clamp voltage  
V
-0.7  
Table 8: Protections  
Test conditions  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
VCC = 13 V  
8
12  
ILIMH  
DC short circuit current  
16  
4 V < VCC < 18 V (1)  
A
VCC = 13 V;  
Short circuit current  
during thermal cycling  
ILIML  
4
TR < Tj < TTSD  
TTSD  
TR  
Shutdown temperature  
Reset temperature (1)  
150  
175  
200  
TRS + 1 TRS + 7  
Thermal reset of fault  
diagnostic indication  
°C  
TRS  
VFR = 0 V; VSEn = 5 V  
Tj = -40°C; VCC = 13 V  
135  
Thermal hysteresis  
(TTSD - TR)(1)  
THYST  
7
ΔTJ_SD  
Dynamic temperature  
60  
K
VFR = 5 V to 0 V;  
VSEn = 5 V;  
Fault reset time for  
output unlatch (1)  
E.g. Ch0:  
tLATCH_RST  
3
10  
20  
µs  
VIN0 = 5 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V  
IOUT = 1 A; L = 6 mH;  
Tj = -40°C  
VCC  
38  
-
-
V
V
Turn-off output voltage  
clamp  
VDEMAG  
IOUT = 1 A; L = 6 mH;  
Tj = 25°C to 150°C  
VCC  
41  
VCC  
46  
-
VCC  
52  
-
Output voltage drop  
limitation  
VON  
IOUT = 0.07 A  
20  
mV  
Notes:  
(1)Parameter guaranteed by design and characterization; not subject to production test.  
DocID027398 Rev 2  
11/47  
 
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7140AJ  
Table 9: MultiSense  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VSEn = 0 V; ISENSE = 1 mA  
-17  
-12  
MultiSense clamp  
voltage  
VSENSE_CL  
V
VSEn = 0 V; ISENSE = -1 mA  
7
Current sense characteristics  
IOUT = 0.01 A; VSENSE = 0.5 V;  
VSEn = 5 V  
KOL  
dKcal/Kcal  
KLED  
IOUT/ISENSE  
295  
-30  
Current sense ratio  
drift at calibration  
point  
IOUT = 0.01 A to 0.025 A;  
Ical = 17.5 mA; VSENSE = 0.5 V;  
VSEn = 5 V  
(1)(2)  
30  
%
IOUT = 0.025 A;  
VSENSE = 0.5 V; VSEn = 5 V  
IOUT/ISENSE  
330  
-25  
580  
550  
820  
25  
Current sense ratio  
drift  
IOUT = 0.025 A;  
VSENSE = 0.5 V; VSEn = 5 V  
(1)(2)  
dKLED/KLED  
K0  
%
%
%
%
%
IOUT = 0.07 A; VSENSE = 0.5 V;  
VSEn = 5 V  
IOUT/ISENSE  
375  
720  
IOUT = 0.07 A; VSENSE = 0.5 V;  
VSEn = 5 V  
Current sense ratio  
drift  
(1)(2)  
dK0/K0  
K1  
-20  
360  
-15  
380  
-10  
20  
670  
15  
IOUT = 0.15 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
500  
475  
470  
IOUT = 0.15 A; VSENSE = 4 V;  
VSEn = 5 V  
Current sense ratio  
drift  
(1)(2)  
dK1/K1  
K2  
IOUT = 0.7 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
570  
10  
IOUT = 0.7 A; VSENSE = 4 V;  
VSEn = 5 V  
Current sense ratio  
drift  
(1)(2)  
(1)(2)  
dK2/K2  
K3  
IOUT = 2 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
430  
-5  
520  
5
Current sense ratio  
drift  
IOUT = 2 A; VSENSE = 4 V;  
VSEn = 5 V  
dK3/K3  
MultiSense disabled:  
VSEn = 0 V  
0
0.5  
0.5  
MultiSense disabled:  
-1 V < VSENSE < 5 V(1)  
-0.5  
MultiSense enabled:  
VSEn = 5 V; All channels ON;  
IOUTX = 0 A; ChX diagnostic  
selected;  
MultiSense leakage  
current  
ISENSE0  
µA  
0
2
E.g. Ch0:  
VIN0 = 5 V; VIN1 = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT0 = 0 A; IOUT1 = 1 A  
12/47  
DocID027398 Rev 2  
VND7140AJ  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
MultiSense enabled:  
VSEn = 5 V; ChX OFF; ChX  
diagnostic selected:  
0
2
E.g. Ch0:  
VIN0 = 0 V; VIN1 = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT1 = 1 A  
VSEn = 5 V; RSENSE = 2.7 kΩ;  
Output Voltage for  
MultiSense  
shutdown  
E.g. Ch0:  
(1)  
VOUT_MSD  
5
V
V
VIN0 = 5 V; VSEL0 = 0 V;  
VSEL1 = 0 V; IOUT0 = 1 A  
VCC = 7 V; RSENSE = 2.7 kΩ;  
VSEn = 5 V; VIN0 = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT0 = 2 A; Tj = 150°C  
Multisense  
saturation voltage  
VSENSE_SAT  
5
4
VCC = 7 V; VSENSE = 4 V;  
VIN0 = 5 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
CS saturation  
current  
(1)  
ISENSE_SAT  
mA  
A
Tj = 150°C  
VCC = 7 V; VSENSE = 4 V;  
VIN0 = 5 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
Output saturation  
current  
(1)  
IOUT_SAT  
2.2  
Tj = 150°C  
OFF-state diagnostic  
VSEn = 5 V; ChX OFF;  
OFF-state open-load ChX diagnostic selected  
voltage detection  
VOL  
2
3
4
V
E.g: Ch0  
threshold  
VIN0 = 0 V; VSEL0 = 0 V;  
VSEL1 = 0 V  
OFF-state output  
sink current  
IL(off2)  
VIN = 0 V; VOUT = VOL  
-100  
-15  
µA  
VSEn = 5 V; ChX ON to OFF  
transition;  
OFF-state  
diagnostic delay  
time from falling  
edge of INPUT (see  
Figure 9:  
ChX diagnostic selected  
tDSTKON  
100  
350  
700  
60  
µs  
µs  
E.g: Ch0  
VIN0 = 5 V to 0 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT0 = 0 A; VOUT = 4 V  
"TDSTKON")  
Settling time for  
valid OFF-state  
open load diagnostic  
indication from rising  
edge of SEn  
VIN0 = 0 V; VIN1 = 0 V;  
VFR = 0 V; VSEL0 = 0 V;  
VSEL1 = 0 V; VOUT0 = 4 V;  
VSEn = 0 V to 5 V  
tD_OL_V  
DocID027398 Rev 2  
13/47  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7140AJ  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VSEn = 5 V; ChX OFF;  
OFF-state  
ChX diagnostic selected  
diagnostic delay  
time from rising  
edge of VOUT  
E.g: Ch0  
tD_VOL  
5
30  
µs  
VIN0 = 0 V; VSEL0 = 0 V;  
VSEL1 = 0 V; VOUT = 0 V  
to 4 V  
Chip temperature analog feedback  
VSEn = 5 V; VSEL0 = 0 V;  
VSEL1 = 5 V; VIN0,1 = 0 V;  
RSENSE = 1 kΩ; Tj = -40°C  
2.325 2.41 2.495  
1.985 2.07 2.155  
V
V
MultiSense output  
VSEn = 5 V; VSEL0 = 0 V;  
voltage proportional VSEL1 = 5 V; VIN0,1 = 0 V;  
VSENSE_TC  
to chip temperature  
RSENSE = 1 kΩ; Tj = 25°C  
VSEn = 5 V; VSEL0 = 0 V;  
VSEL1 = 5 V; VIN0,1 = 0 V;  
RSENSE = 1 kΩ; Tj = 125°C  
1.435 1.52 1.605  
-5.5  
V
Temperature  
coefficient  
dVSENSE_TC/dT(1)  
Transfer function  
Tj = -40°C to 150°C  
mV/K  
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)  
VCC supply voltage analog feedback  
MultiSense output  
voltage proportional  
to VCC supply  
voltage  
VCC = 13 V; VSEn = 5 V;  
VSEL0 = 5 V; VSEL1 = 5 V; VIN0,1 3.16 3.23  
= 0 V; RSENSE = 1 kΩ  
VSENSE_VCC  
3.3  
V
Transfer function (3)  
VSENSE_VCC = VCC / 4  
Fault diagnostic feedback (see Table 10: "Truth table")  
VCC = 13 V; RSENSE = 1 kΩ;  
MultiSense output  
voltage in fault  
condition  
E.g: Ch0 in open load  
VIN0 = 0 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT0 = 0 A; VOUT = 4 V  
VSENSEH  
5
7
6.6  
30  
V
MultiSense output  
current in fault  
condition (2)  
ISENSEH  
VCC = 13 V; VSENSE = 5 V  
20  
mA  
MultiSense timings (current sense mode - see Figure 7: "MultiSense timings (current sense  
mode)")(4)  
Current sense  
settling time from  
rising edge of SEn  
VIN = 5 V; VSEn = 0 V to 5 V;  
RSENSE = 1 kΩ; RL = 13 Ω  
tDSENSE1H  
60  
20  
µs  
µs  
Current sense  
disable delay time  
from falling edge of  
SEn  
VIN = 5 V; VSEn = 5 V to 0 V;  
RSENSE = 1 kΩ; RL = 13 Ω  
tDSENSE1L  
5
Current sense  
settling time from  
rising edge of  
INPUT  
VIN = 0 V to 5 V; VSEn = 5 V;  
RSENSE = 1 kΩ; RL = 13 Ω  
tDSENSE2H  
100  
250  
µs  
14/47  
DocID027398 Rev 2  
VND7140AJ  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Current sense  
settling time from  
rising edge of IOUT  
(dynamic response  
to a step change of  
VIN = 5 V; VSEn = 5 V;  
RSENSE = 1 kΩ; ISENSE = 90 %  
of ISENSEMAX; RL = 13 Ω  
ΔtDSENSE2H  
100  
µs  
IOUT  
)
Current sense turn-  
off delay time from  
falling edge of  
INPUT  
VIN = 5 V to 0 V; VSEn = 5 V;  
RSENSE = 1 kΩ; RL = 13 Ω  
tDSENSE2L  
50  
250  
µs  
MultiSense timings (chip temperature sense mode - see Figure 8: "Multisense timings (chip  
temperature and VCC sense mode)")(4)  
VSENSE_TC settling  
time from rising  
edge of SEn  
VSEn = 0 V to 5 V; VSEL0 = 0 V;  
VSEL1 = 5 V; RSENSE = 1 kΩ  
tDSENSE3H  
60  
20  
µs  
µs  
VSENSE_TC disable  
delay time from  
falling edge of SEn  
VSEn = 5 V to 0 V; VSEL0 = 0 V;  
VSEL1 = 5 V; RSENSE = 1 kΩ  
tDSENSE3L  
MultiSense timings (VCC voltage sense mode - see Figure 8: "Multisense timings (chip  
temperature and VCC sense mode)")(4)  
VSENSE_VCC settling  
time from rising  
edge of SEn  
VSEn = 0 V to 5 V; VSEL0 = 5 V;  
VSEL1 = 5 V; RSENSE = 1 kΩ  
tDSENSE4H  
60  
20  
µs  
µs  
VSENSE_VCC disable  
delay time from  
falling edge of SEn  
VSEn = 5 V to 0 V; VSEL0 = 5 V;  
VSEL1 = 5 V; RSENSE = 1 kΩ  
tDSENSE4L  
MultiSense timings (Multiplexer transition times)(4)  
VIN0 = 5 V; VIN1 = 5 V;  
VSEn = 5 V; VSEL1 = 0 V;  
VSEL0 = 0 V to 5 V; IOUT0 = 0 A;  
IOUT1 = 1 A; RSENSE = 1 kΩ  
MultiSense  
transition delay from  
ChX to ChY  
tD_XtoY  
20  
60  
20  
60  
20  
µs  
µs  
µs  
µs  
µs  
MultiSense  
VIN0 = 5 V; VSEn = 5 V;  
transition delay from VSEL0 = 0 V; VSEL1 = 0 V to  
current sense to TC  
sense  
tD_CStoTC  
tD_TCtoCS  
tD_CStoVCC  
tD_VCCtoCS  
5 V; IOUT0 = 0.5 A;  
RSENSE = 1 kΩ  
MultiSense  
VIN0 = 5 V; VSEn = 5 V;  
transition delay from VSEL0 = 0 V; VSEL1 = 5 V to  
TC sense to current  
sense  
0 V; IOUT0 = 0.5 A;  
RSENSE = 1 kΩ  
MultiSense  
VIN1 = 5 V; VSEn = 5 V;  
transition delay from VSEL0 = 5 V; VSEL1 = 0 V to  
current sense to VCC 5 V; IOUT1 = 0.5 A;  
sense  
RSENSE = 1 kΩ  
MultiSense  
VIN1 = 5 V; VSEn = 5 V;  
transition delay from VSEL0 = 5 V; VSEL1 = 5 V to  
VCC sense to current 0 V; IOUT1 = 0.5 A;  
sense  
RSENSE = 1 kΩ  
DocID027398 Rev 2  
15/47  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7140AJ  
Symbol  
Parameter  
MultiSense  
transition delay from  
TC sense to VCC  
sense  
Test conditions  
Min. Typ. Max. Unit  
VCC = 13 V; Tj = 125°C;  
VSEn = 5 V; VSEL0 = 0 V to 5 V;  
VSEL1 = 5 V; RSENSE = 1 kΩ  
tD_TCtoVCC  
20  
20  
µs  
µs  
MultiSense  
VCC = 13 V; Tj = 125°C;  
VSEn = 5 V; VSEL0 = 5 V to 0 V;  
VSEL1 = 5 V; RSENSE = 1 kΩ  
transition delay from  
VCC sense to TC  
sense  
tD_VCCtoTC  
MultiSense  
VIN0 = 5 V; VIN1 = 0 V;  
transition delay from  
stable current sense  
on ChX to VSENSEH on  
ChY  
VSEn = 5 V; VSEL1 = 0 V;  
VSEL0 = 0 V to 5 V; IOUT0 = 1 A;  
VOUT1 = 4 V; RSENSE = 1 kΩ  
tD_CStoVSENSEH  
60  
µs  
Notes:  
(1)Parameter specified by design; not subject to production test.  
(2)All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.  
(3)  
V
sensing and TC sensing are referred to GND potential.  
CC  
(4)Transition delays are measured up to +/- 10% of final conditions.  
Figure 4: IOUT/ISENSE versus IOUT  
1000  
800  
600  
400  
200  
0
Max  
Min  
Typ  
0
1
2
3
IOUT[A]  
16/47  
DocID027398 Rev 2  
VND7140AJ  
Electrical specification  
Figure 5: Current sense accuracy versus IOUT  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Current sense uncalibrated precision  
Current sense calibrated precision  
%
0
0
1
2
3
IOUT[A]  
GAPGCFT01218  
Figure 6: Switching time and Pulse skew  
DocID027398 Rev 2  
17/47  
Electrical specification  
VND7140AJ  
Figure 7: MultiSense timings (current sense mode)  
Figure 8: Multisense timings (chip temperature and VCC sense mode)  
18/47  
DocID027398 Rev 2  
VND7140AJ  
Electrical specification  
Figure 9: TDSTKON  
Table 10: Truth table  
INX FR SEn SELX OUTX MultiSense  
Mode  
Standby  
Conditions  
Comments  
Low quiescent  
current  
consumption  
All logic inputs  
low  
L
L
L
X
L
L
L
L
L
Hi-Z  
See (1)  
See (1)  
Outputs  
configured for  
auto-restart  
Nominal load  
connected;  
H
H
Normal  
See (1)  
Tj < 150 °C  
Outputs  
configured for  
Latch-off  
H
L
H
X
H
L
See (1)  
See (1)  
Overload or  
short to GND  
causing:  
Output cycles  
with  
temperature  
hysteresis  
H
L
H
L
See (1)  
See (1)  
Overload  
See (1)  
Tj > TTSD or  
ΔTj > ΔTj_SD  
Output latches-  
off  
H
X
H
X
Re-start when  
L
L
Hi-Z  
Hi-Z  
VCC < VUSD  
(falling)  
VCC > VUSD  
+
Undervoltage  
X
X
VUSDhyst (rising)  
Short to VCC  
Open-load  
Inductive  
L
L
X
X
H
H
See (1)  
See (1)  
OFF-state  
diagnostics  
See (1)  
See (1)  
External pull-up  
Negative  
L
X
< 0 V  
See (1)  
output voltage loads turn-off  
Notes:  
(1)Refer to Table 11: "MultiSense multiplexer addressing"  
DocID027398 Rev 2  
19/47  
 
Electrical specification  
VND7140AJ  
Table 11: MultiSense multiplexer addressing  
MultiSense output  
SEn SEL1 SEL0 MUX channel  
Normal  
mode  
OFF-state  
diag. (1)  
Negative  
output  
Overload  
L
X
L
X
L
Hi-Z  
Channel 0  
diagnostic  
ISENSE  
1/K * IOUT0  
=
VSENSE  
VSENSEH  
=
VSENSE  
VSENSEH  
=
H
Hi-Z  
Hi-Z  
Channel 1  
diagnostic  
ISENSE  
1/K * IOUT1  
=
VSENSE  
VSENSEH  
=
VSENSE  
VSENSEH  
=
H
L
H
H
H
H
H
L
TCHIP Sense  
VCC Sense  
VSENSE = VSENSE_TC  
VSENSE = VSENSE_VCC  
H
Notes:  
(1)In case the output channel corresponding to the selected MUX channel is latched off while the  
relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic.  
Example 1: FR = 1; IN0 = 0; OUT0 = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0.  
Example 2: FR = 1; IN0 = 0; OUT0 = latched, VOUT0 > VOL; MUX channel = channel 0 diagnostic;  
Mutisense = VSENSEH  
2.4  
Waveforms  
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)  
20/47  
DocID027398 Rev 2  
 
VND7140AJ  
Electrical specification  
Figure 11: Latch functionality - behavior in hard short circuit condition  
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode +  
latch off)  
DocID027398 Rev 2  
21/47  
Electrical specification  
VND7140AJ  
Figure 13: Standby mode activation  
Figure 14: Standby state diagram  
22/47  
DocID027398 Rev 2  
VND7140AJ  
Electrical specification  
2.5  
Electrical characteristics curves  
Figure 16: Standby current  
Figure 15: OFF-state output current  
ISTBY [µA]  
1
Iloff [nA]  
160  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
140  
120  
Vcc = 13V  
Off State  
100  
Vcc = 13V  
Vin = Vout = 0  
80  
60  
40  
20  
0
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
GAPGCFT01222  
GAPGCFT01221  
Figure 17: IGND(ON) vs. Iout  
Figure 18: Logic Input high level voltage  
ViH, VFRH, VSELH, VSEnH [V]  
IGND(ON) [mA]  
3.5  
2
1.8  
1.6  
1.4  
1.2  
1
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Vcc = 13V  
Iout0 = Iout1 = 1A  
0.8  
0.6  
0.4  
0.2  
0
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
GAPGCFT01224  
GAPGCFT01223  
Figure 19: Logic Input low level voltage  
Figure 20: High level logic input current  
IiH, IFRH, ISELH, ISEnH [ µA]  
VilL VFRL, VSELL, VSEnL [V]  
4
2
1.8  
1.6  
1.4  
1.2  
1
3.5  
3
2.5  
2
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
GAPGCFT01225  
GAPGCFT01226  
DocID027398 Rev 2  
23/47  
Electrical specification  
Figure 21: Low level logic input current  
VND7140AJ  
Figure 22: Logic Input hysteresis voltage  
Vi(hyst), VFR(hyst), VSEL(hyst), VSEn(hyst) [V]  
IiL, IFRL, ISELL, ISEnL [µA]  
4
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
GAPGCFT01227  
GAPGCFT01228  
Figure 23: FaultRST Input clamp voltage  
Figure 24: Undervoltage shutdown  
VFRCL [V]  
8
VUSD [V]  
8
7
7
6
5
4
3
2
1
Iin = 1mA  
6
5
4
3
2
1
Iin = -1mA  
0
-1  
0
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
T [°C]  
GAPGCFT01229  
GAPGCFT01230  
Figure 25: On-state resistance vs. Tcase  
Figure 26: On-state resistance vs. VCC  
Ron [mOhm]  
Ron [mOhm]  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
280  
260  
240  
220  
200  
T = 150 °C  
T = 125 °C  
180  
Iout = 1A  
Vcc = 13V  
160  
140  
120  
100  
80  
T = 25 °C  
T = -40 °C  
60  
60  
40  
40  
20  
20  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
Vcc [V]  
GAPGCFT01231  
GAPGCFT01232  
24/47  
DocID027398 Rev 2  
VND7140AJ  
Electrical specification  
Figure 28: Turn-off voltage slope  
Figure 27: Turn-on voltage slope  
(dVout/dt)Off [V/ µs]  
(dVout/dt)On [V/µs]  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Vcc = 13V  
Rl = 13Ω  
Vcc = 13V  
Rl = 13Ω  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
T [°C]  
T [°C]  
GAPGCFT01233  
GAPGCFT01234  
Figure 29: Won vs. Tcase  
Figure 30: Woff vs. Tcase  
Woff [mJ]  
1
Won [mJ]  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
T [°C]  
T [°C]  
GAPGCFT01235  
GAPGCFT01236  
Figure 32: OFF-state open-load voltage  
detection threshold  
Figure 31: ILIMH vs. Tcase  
Ilimh [A]  
20  
VOL [V]  
4
3.5  
3
15  
10  
5
2.5  
2
Vcc = 13V  
1.5  
1
0.5  
0
0
-50  
-25  
0
25  
50  
T [°C]  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
T [°C]  
GAPGCFT01237  
GAPGCFT01238  
DocID027398 Rev 2  
25/47  
Electrical specification  
Figure 33: Vsense clamp vs. Tcase  
VND7140AJ  
Figure 34: Vsenseh vs. Tcase  
VSENSEH [V]  
10  
VSENSE_CL [V]  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
Iin = 1mA  
6
5
4
3
2
1
Iin = -1mA  
0
-1  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
T [°C]  
T [°C]  
GAPGCFT01239  
GAPGCFT01240  
26/47  
DocID027398 Rev 2  
VND7140AJ  
Protections  
3
Protections  
3.1  
Power limitation  
The basic working principle of this protection consists of an indirect measurement of the  
junction temperature swing ΔTj through the direct measurement of the spatial temperature  
gradient on the device surface in order to automatically shut off the output MOSFET as  
soon as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the  
FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis  
according to the maximum instantaneous power which can be handled (FaultRST = Low)  
or remains off (FaultRST = High). The protection prevents fast thermal transient effects  
and, consequently, reduces thermo-mechanical fatigue.  
3.2  
3.3  
Thermal shutdown  
In case the junction temperature of the device exceeds the maximum allowed threshold  
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.  
According to the voltage level on the FaultRST pin, the device switches on again as soon  
as its junction temperature drops to TR (FaultRST = Low) or remains off (FaultRST = High).  
Current limitation  
The device is equipped with an output current limiter in order to protect the silicon as well  
as the other components of the system (e.g. bonding wires, wiring harness, connectors,  
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or  
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the  
output power MOSFET in the active region.  
3.4  
Negative voltage clamp  
In case the device drives inductive load, the output voltage reaches a negative value during  
turn off. A negative voltage clamp structure limits the maximum negative voltage to a  
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the  
device.  
DocID027398 Rev 2  
27/47  
Application information  
VND7140AJ  
4
Application information  
Figure 35: Application diagram  
4.1  
GND protection network against reverse battery  
Figure 36: Simplified internal structure  
28/47  
DocID027398 Rev 2  
VND7140AJ  
Application information  
4.1.1  
Diode (DGND) in the ground line  
A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an  
inductive load.  
This small signal diode can be safely shared amongst several different HSDs. Also in this  
case, the presence of the ground network produces a shift (≈600 mV) in the input threshold  
and in the status output values if the microprocessor ground is not common to the device  
ground. This shift does not vary if more than one HSD shares the same diode/resistor  
network.  
4.2  
Immunity against transient electrical disturbances  
The immunity of the device against transient electrical emissions, conducted along the  
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)  
and ISO 16750-2:2010.  
The related function performance status classification is shown in Table 12: "ISO 7637-2 -  
electrical transient conduction along supply line".  
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and  
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present  
device only, without components and accessed through VCC and GND terminals.  
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as  
follows: “The function does not perform as designed during the test but returns  
automatically to normal operation after the test”.  
Table 12: ISO 7637-2 - electrical transient conduction along supply line  
Test pulse severity  
Test  
Pulse  
2011(E)  
Burst cycle /  
pulse  
Minimum  
number of  
pulses or test  
time  
level with Status II  
functional performance  
status  
Pulse duration and  
pulse generator  
internal impedance  
repetition time  
(1)  
Level  
III  
US  
min  
0.5 s  
0.2 s  
max  
1
-112 V  
+55 V  
500 pulses  
500 pulses  
2 ms, 10 Ω  
50 µs, 2 Ω  
2a  
III  
5 s  
100  
ms  
3a  
IV  
-220 V  
1h  
90 ms  
90 ms  
0.1 µs, 50 Ω  
100  
ms  
3b  
IV  
IV  
+150 V  
-7 V  
1h  
0.1 µs, 50 Ω  
4 (2)  
1 pulse  
100 ms, 0.01 Ω  
Load dump according to ISO 16750-2:2010  
Test B (3)  
40 V  
5 pulse  
1 min  
400 ms, 2 Ω  
Notes:  
(1)US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.  
(2)Test pulse from ISO 7637-2:2004(E).  
(3)With 40 V external suppressor referred to ground (-40°C < Tj < 150 °C).  
DocID027398 Rev 2  
29/47  
 
 
 
 
Application information  
VND7140AJ  
4.3  
MCU I/Os protection  
If a ground protection network is used and negative transients are present on the VCC line,  
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to  
prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.  
The value of these resistors is a compromise between the leakage current of  
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with  
the latch-up limit of microcontroller I/Os.  
Equation  
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax  
Calculation example:  
For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V  
7.5 kΩ ≤ Rprot ≤ 140 kΩ.  
Recommended values: Rprot = 15 kΩ  
4.4  
Multisense - analog current sense  
Diagnostic information on device and load status are provided by an analog output pin  
(MultiSense) delivering the following signals:  
Current monitor: current mirror of channel output current  
VCC monitor: voltage propotional to VCC  
TCASE: voltage propotional to chip temperature  
Those signals are routed through an analog multiplexer which is configured and controlled  
by means of SELx and SEn pins, according to the address map in MultiSense multiplexer  
addressing Table.  
30/47  
DocID027398 Rev 2  
VND7140AJ  
Application information  
Figure 37: MultiSense and diagnostic block diagram  
DocID027398 Rev 2  
31/47  
Application information  
VND7140AJ  
4.4.1  
Principle of Multisense signal generation  
Figure 38: MultiSense block diagram  
Current monitor  
When current mode is selected in the MultiSense, this output is capable to provide:  
Current mirror proportional to the load current in normal operation, delivering current  
proportional to the load according to known ratio named K  
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH  
The current delivered by the current sense circuit, ISENSE, can be easily converted to a  
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load  
monitoring and abnormal condition detection.  
Normal operation (channel ON, no fault, SEn active)  
While device is operating in normal conditions (no fault intervention), VSENSE calculation can  
be done using simple equations  
Current provided by MultiSense output: ISENSE = IOUT/K  
Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K  
Where:  
VSENSE is voltage measurable on RSENSE resistor  
ISENSE is current provided from MultiSense pin in current output mode  
32/47  
DocID027398 Rev 2  
VND7140AJ  
Application information  
IOUT is current flowing through output  
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its  
spread includes geometric factor spread, current sense amplifier offset and process  
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE  
.
Failure flag indication  
In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin  
which is switched to a “current limited” voltage source, VSENSEH  
.
In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH  
.
The typical behavior in case of overload or hard short circuit is shown in Waveforms  
section.  
Figure 39: Analogue HSD open-load detection in off-state  
DocID027398 Rev 2  
33/47  
Application information  
VND7140AJ  
Figure 40: Open-load / short to VCC condition  
Table 13: MultiSense pin levels in off-state  
Condition  
Output  
MultiSense  
SEn  
L
Hi-Z  
VSENSEH  
Hi-Z  
0
VOUT > VOL  
H
L
Open-load  
VOUT < VOL  
VOUT > VOL  
VOUT < VOL  
H
L
Hi-Z  
VSENSEH  
Hi-Z  
0
Short to VCC  
Nominal  
H
L
H
4.4.2  
TCASE and VCC monitor  
In this case, MultiSense output operates in voltage mode and output level is referred to  
device GND. Care must be taken in case a GND network protection is used, because a  
voltage shift is generated between the device GND and the microcontroller input GND  
reference.  
Figure 41: "GND voltage shift" shows the link between VMEASURED and the real VSENSE  
signal.  
34/47  
DocID027398 Rev 2  
VND7140AJ  
Application information  
Figure 41: GND voltage shift  
VCC monitor  
Battery monitoring channel provides VSENSE = VCC / 8.  
Case temperature monitor  
Case temperature monitor is capable of providing information about the actual device  
temperature. Since a diode is used for temperature sensing, the following equation  
describes the link between temperature and output VSENSE level:  
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)  
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C)).  
4.4.3  
Short to VCC and OFF-state open-load detection  
Short to VCC  
A short circuit between VCC and output is indicated by the relevant current sense pin set to  
VSENSEH during the device off-state. Small or no current is delivered by the current sense  
during the on-state depending on the nature of the short circuit.  
OFF-state open-load with external circuitry  
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting  
the output to a positive supply voltage VPU.  
It is preferable that VPU is switched off during the module standby mode in order to avoid  
the overall standby current consumption to increase in normal conditions, i.e. when load is  
connected.  
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following  
equation:  
Equation  
DocID027398 Rev 2  
35/47  
Maximum demagnetization energy (VCC = 16 V)  
VND7140AJ  
5
Maximum demagnetization energy (VCC = 16 V)  
Figure 42: Maximum turn off current versus inductance  
VND7140Ax- Maximum turn off current versus inductance  
10  
1
VND7140AJ - Single Pulse  
Repetitive pulse Tjstart=100°C  
Repetitive pulse Tjstart=125°C  
0.1  
0.1  
1
10  
100  
1000  
L (mH)  
VND7140Ax- Maximum turn off Energy versus Tdemag  
100  
VND7140AJ - Single Pulse  
Repetitive pulse Tjstart=100°C  
Repetitive pulse Tjstart=125°C  
10  
1
0.01  
0.1  
1
10  
Tdemag [ms]  
Values are generated with RL = 0 Ω.  
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of  
every pulse must not exceed the temperature specified above for curves A and B.  
36/47  
DocID027398 Rev 2  
VND7140AJ  
Package and PCB thermal data  
6
Package and PCB thermal data  
6.1  
PowerSSO-16 thermal data  
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)  
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)  
Table 14: PCB properties  
Dimension  
Value  
1.6 mm +/- 10%  
77 mm x 86 mm  
FR4  
Board finish thickness  
Board dimension  
Board Material  
Copper thickness (top and bottom layers)  
Copper thickness (inner layers)  
Thermal vias separation  
0.070 mm  
0.035 mm  
1.2 mm  
Thermal via diameter  
0.3 mm +/- 0.08 mm  
0.025 mm  
Copper thickness on vias  
Footprint dimension (top layer)  
Heatsink copper area dimension (bottom layer)  
2.2 mm x 3.9 mm  
Footprint, 2 cm2 or 8 cm2  
DocID027398 Rev 2  
37/47  
Package and PCB thermal data  
VND7140AJ  
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on)  
RTHjamb  
100  
90  
80  
70  
60  
50  
40  
30  
RTHjamb  
0
2
4
6
8
10  
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)  
ZTH (°C/W)  
100  
10  
1
Cu=foot print  
Cu=2 cm2  
Cu=8 cm2  
4 Layer  
0.1  
0.0001  
0.001  
0.01  
0.1  
Time (s)  
1
10  
100  
1000  
Equation: pulse calculation formula  
ZTHδ = RTH · δ + ZTHtp (1 - δ)  
where δ = tP/T  
38/47  
DocID027398 Rev 2  
VND7140AJ  
Package and PCB thermal data  
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16  
The fitting model is a simplified thermal tool and is valid for transient evolutions  
where the embedded protections (power limitation or thermal cycling during  
thermal shutdown) are not triggered.  
Table 15: Thermal parameters  
Area/island (cm2)  
R1 = R7 (°C/W)  
R2 = R8 (°C/W)  
R3 (°C/W)  
Footprint  
2.8  
2
8
4L  
2.5  
10  
10  
6
10  
6
7
4
3
7
R4 (°C/W)  
16  
R5 (°C/W)  
30  
20  
20  
10  
18  
R6 (°C/W)  
26  
C1 = C7 (W.s/°C)  
C2 = C8 (W.s/°C)  
C3 (W.s/°C)  
0.00012  
0.005  
0.07  
0.2  
C4 (W.s/°C)  
0.3  
1
0.3  
1
0.4  
4
C5 (W.s/°C)  
0.4  
C6 (W.s/°C)  
3
5
7
18  
DocID027398 Rev 2  
39/47  
Package information  
VND7140AJ  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
7.1  
PowerSSO-16 package information  
Figure 48: PowerSSO-16 package outline  
Table 16: PowerSSO-16 mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Min.  
0°  
Max.  
Θ
Θ1  
Θ2  
Θ3  
A
8°  
0°  
5°  
15°  
15°  
5°  
1.70  
40/47  
DocID027398 Rev 2  
VND7140AJ  
Package information  
Dimensions  
Millimeters  
Typ.  
Ref.  
Min.  
0.00  
1.10  
0.20  
0.20  
0.19  
0.19  
Max.  
0.10  
1.60  
0.30  
0.28  
0.25  
0.23  
A1  
A2  
b
b1  
c
0.25  
c1  
D
0.20  
4.9 BSC  
D1  
e
2.90  
3.50  
0.50 BSC  
6.00 BSC  
3.90 BSC  
E
E1  
E2  
h
2.20  
0.25  
0.40  
2.80  
0.50  
0.85  
L
0.60  
1.00 REF  
16  
L1  
N
R
0.07  
0.07  
0.20  
R1  
S
Tolerance of form and position  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.10  
0.08  
0.08  
0.10  
0.10  
0.15  
ggg  
DocID027398 Rev 2  
41/47  
Package information  
VND7140AJ  
7.2  
PowerSSO-16 packing information  
Figure 49: PowerSSO-16 reel 13"  
Table 17: Reel dimensions  
Description  
Value(1)  
2500  
2500  
330  
Base quantity  
Bulk quantity  
A (max)  
B (min)  
1.5  
C (+0.5, -0.2)  
D (min)  
13  
20.2  
100  
N
W1 (+2 /-0)  
W2 (max)  
12.4  
18.4  
Notes:  
(1)All dimensions are in mm.  
42/47  
DocID027398 Rev 2  
 
VND7140AJ  
Package information  
Figure 50: PowerSSO-16 carrier tape  
Table 18: PowerSSO-16 carrier tape dimensions  
Description  
Value(1)  
A0  
B0  
K0  
K1  
F
6.50 ± 0.1  
5.25 ± 0.1  
2.10 ± 0.1  
1.80 ± 0.1  
5.50 ± 0.1  
8.00 ± 0.1  
12.00 ± 0.3  
P1  
W
Notes:  
(1)All dimensions are in mm.  
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape  
DocID027398 Rev 2  
43/47  
 
Package information  
VND7140AJ  
7.3  
PowerSSO-16 marking information  
Figure 52: PowerSSO-16 marking information  
Engineering Samples: these samples can be clearly identified by a dedicated  
special symbol in the marking of each unit. These samples are intended to be  
used for electrical compatibility evaluation only; usage for any other purpose may  
be agreed only upon written authorization by ST. ST is not liable for any customer  
usage in production and/or in reliability qualification trials.  
Commercial Samples: fully qualified parts from ST standard production with no  
usage restrictions.  
44/47  
DocID027398 Rev 2  
 
VND7140AJ  
Order codes  
8
Order codes  
Table 19: Device summary  
Order codes  
Tape and reel  
VND7140AJTR  
Package  
PowerSSO-16  
DocID027398 Rev 2  
45/47  
Revision history  
VND7140AJ  
9
Revision history  
Table 20: Document revision history  
Changes  
Date  
Revision  
25-May-2015  
1
Initial release.  
Added AEC Q100 qualified in Features section  
Updated Figure 52: "PowerSSO-16 marking information"  
13-Oct-2016  
2
46/47  
DocID027398 Rev 2  
VND7140AJ  
IMPORTANT NOTICE PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST  
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the  
design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics All rights reserved  
DocID027398 Rev 2  
47/47  

相关型号:

VND7140AJ12

Double channel high-side driver with CurrentSense analog feedback
STMICROELECTR

VND7140AJ12TR

Double channel high-side driver with CurrentSense analog feedback
STMICROELECTR

VND7140AJTR

Double channel high-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VND7N04

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VND7N04-1

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VND7N04-1-E

OMNIFET :FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VND7N04-E

暂无描述
STMICROELECTR

VND7N04TR-E

暂无描述
STMICROELECTR

VND7N04_09

"OMNIFET"Fully autoprotected power MOSFET
STMICROELECTR

VND7NV04

OMNIFET II fully autoprotected Power MOSFET
STMICROELECTR

VND7NV04-1

OMNIFET II fully autoprotected Power MOSFET
STMICROELECTR

VND7NV04-1-E

OMNIFET II fully autoprotected Power MOSFET
STMICROELECTR