VND920TR-E [STMICROELECTRONICS]

2 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO28, SO-28;
VND920TR-E
型号: VND920TR-E
厂家: ST    ST
描述:

2 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO28, SO-28

外围驱动器 驱动程序和接口 接口集成电路 继电器 固态继电器 光电二极管
文件: 总18页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VND920  
®
DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY  
TYPE  
R
I
V
CC  
DS(on)  
OUT  
VND920  
16mΩ  
35 A (*)  
36 V  
(*) Per channel with all the output pins connected to the PCB.  
CMOS COMPATIBLE INPUT  
PROPORTIONAL LOAD CURRENT SENSE  
SHORTED LOAD PROTECTION  
UNDERVOLTAGE AND OVERVOLTAGE  
SHUTDOWN  
OVERVOLTAGE CLAMP  
SO-28 (DOUBLE ISLAND)  
ORDER CODES  
THERMAL SHUTDOWN  
CURRENT LIMITATION  
PACKAGE  
TUBE  
T&R  
PROTECTION AGAINST LOSS OF GROUND  
SO-28  
VND920  
VND92013TR  
AND LOSS OF VCC  
VERY LOW STAND-BY POWER DISSIPATION  
REVERSE BATTERY PROTECTION (*)  
voltage clamp protects the device against low  
energy spikes (see ISO7637 transient  
compatibility table). Active current limitation  
combined with thermal shutdown and automatic  
restart protect the device against overload. Built-  
in analog current sense output delivers a current  
proportional to the load current. Device  
automatically turns off in case of ground pin  
disconnection.  
DESCRIPTION  
The VND920 is a double chip device made by  
using  
STMicroelectronics  
VIPower  
M0-3  
Technology, intended for driving any kind of load  
with one side connected to ground. Active VCC pin  
CONNECTION DIAGRAM (TOP VIEW)  
V
1
V
1
CC  
28  
1
CC  
GND 1  
OUTPUT 1  
OUTPUT 1  
OUTPUT 1  
INPUT 1  
CURRENT SENSE 1  
NC  
NC  
OUTPUT 1  
OUTPUT 1  
OUTPUT 1  
V
1
CC  
V
2
OUTPUT 2  
OUTPUT 2  
OUTPUT 2  
OUTPUT 2  
OUTPUT 2  
OUTPUT 2  
CC  
GND 2  
INPUT 2  
CURRENT SENSE 2  
NC  
NC  
V
2
V
2
14  
15  
CC  
CC  
(*) See application schematic at page 10  
October 2002  
1/18  
1
VND920  
BLOCK DIAGRAM  
V
1
CC  
OVERVOLTAGE  
DETECTION  
V
CC  
CLAMP  
UNDERVOLTAGE  
DETECTION  
GND 1  
Power CLAMP  
DRIVER  
OUTPUT 1  
LOGIC  
INPUT 1  
CURRENT LIMITER  
LIMITER  
V
DS  
I
OUT  
CURRENT  
SENSE 1  
K
OVERTEMPERATURE  
DETECTION  
V
2
CC  
OVERVOLTAGE  
DETECTION  
V
CC  
CLAMP  
UNDERVOLTAGE  
DETECTION  
GND 2  
Power CLAMP  
DRIVER  
OUTPUT 2  
LOGIC  
INPUT 2  
CURRENT LIMITER  
V
LIMITER  
DS  
I
OUT  
CURRENT  
SENSE 2  
K
OVERTEMPERATURE  
DETECTION  
2/18  
VND920  
ABSOLUTE MAXIMUM RATING (Per each channel)  
Symbol  
Parameter  
Value  
Unit  
V
V
DC Supply Voltage  
41  
CC  
- V  
Reverse DC Supply Voltage  
- 0.3  
V
CC  
GND  
OUT  
- I  
DC Reverse Ground Pin Current  
DC Output Current  
- 200  
mA  
A
I
Internally Limited  
- I  
Reverse DC Output Current  
DC Input Current  
- 21  
+/- 10  
-3  
A
OUT  
I
mA  
V
IN  
Current Sense Maximum Voltage  
V
CSENSE  
+15  
V
Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)  
- INPUT  
4000  
2000  
5000  
5000  
V
V
V
V
V
- CURRENT SENSE  
- OUTPUT  
ESD  
- V  
CC  
Maximum Switching Energy  
(L=0.25mH; R =0; V =13.5V; T  
E
355  
mJ  
MAX  
=150ºC; I =45A)  
L
bat  
jstart  
L
P
Power Dissipation T 25°C  
6.25 (**)  
Internally limited  
- 40 to 150  
W
°C  
°C  
°C  
tot  
l
T
Junction Operating Temperature  
Case Operating Temperature  
Storage Temperature  
j
T
c
T
- 55 to 150  
STG  
(**) Per island  
CURRENT AND VOLTAGE CONVENTIONS  
I
I
S2  
S1  
V
V
CC2  
CC1  
V
V
CC2  
CC1  
I
OUT1  
I
IN1  
OUTPUT1  
INPUT1  
V
OUT1  
I
V
SENSE1  
IN1  
CURRENT SENSE 1  
OUTPUT2  
V
SENSE1  
I
I
OUT2  
I
IN2  
V
INPUT2  
OUT2  
V
SENSE2  
IN2  
CURRENT SENSE 2  
V
SENSE2  
GROUND2  
GROUND1  
I
I
GND2  
GND1  
3/18  
VND920  
THERMAL DATA (Per island)  
Symbol  
Parameter  
Value  
20  
Unit  
°C/W  
°C/W  
°C/W  
R
R
R
Thermal Resistance Junction-lead  
thj-lead  
thj-amb  
thj-amb  
Thermal Resistance Junction-ambient (one chip ON)  
Thermal Resistance Junction-ambient (two chips ON)  
55 (*)  
42 (*)  
2
(*) When mounted on a standard single-sided FR-4 board with 1cm of Cu (at least 35µm thick) connected to all V pins.  
CC  
Horizontal mounting and no artificial air flow.  
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)  
(Per island)  
POWER  
Symbol  
Parameter  
Test Conditions  
Min  
5.5  
3
Typ  
13  
4
Max  
36  
Unit  
V
V
Operating Supply Voltage  
Undervoltage Shut-down  
Overvoltage Shut-down  
CC  
V
5.5  
V
USD  
V
36  
V
OV  
I
I
I
I
=10A; T =25°C  
16  
32  
55  
55  
25  
mΩ  
mΩ  
mΩ  
V
OUT  
OUT  
OUT  
j
On State Resistance  
R
=10A  
=3A; V =6V  
ON  
CC  
V
Clamp Voltage  
=20mA (See note 1)  
CC  
41  
48  
10  
clamp  
µA  
Off State; V =13V; V =V  
=0V  
CC  
IN  
OUT  
Off State; V =13V; V =V  
=0V;  
CC  
IN  
OUT  
Supply Current  
I
10  
20  
µA  
T =25°C  
S
j
On State; V =13V; V =5V; I =0A;  
OUT  
CC  
IN  
R
=3.9KΩ  
5
50  
0
mA  
µA  
µA  
µA  
µA  
SENSE  
I
I
I
I
Off State Output Current V =V =0V  
OUT  
0
L(off1)  
L(off2)  
L(off3)  
L(off4)  
IN  
Off State Output Current V =0V; V  
=3.5V  
-75  
IN  
OUT  
Off State Output Current V =V  
=0V; V =13V; T =125°C  
5
IN  
OUT  
OUT  
CC  
j
Off State Output Current V =V  
=0V; V =13V; T =25°C  
3
IN  
CC  
j
SWITCHING (VCC=13V)  
Symbol  
Parameter  
Test Conditions  
R =1.3(see figure 2)  
Min  
Typ  
50  
Max  
Unit  
µs  
t
t
Turn-on Delay Time  
Turn-off Delay Time  
d(on)  
d(off)  
L
R =1.3(see figure 2)  
50  
µs  
L
See  
dV  
dV  
/dt  
Turn-on Voltage Slope  
Turn-off Voltage Slope  
R =1.3(see figure 2)  
relative  
diagram  
V/µs  
V/µs  
OUT (on)  
L
See  
relative  
diagram  
/dt  
R =1.3(see figure 2)  
OUT (off)  
L
LOGIC INPUT  
Symbol  
Parameter  
Input Low Level  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
1.25  
IL  
I
Low Level Input Current V =1.25V  
1
µA  
V
IL  
IN  
V
Input High Level  
3.25  
IH  
IH  
I
High Level Input Current V =3.25V  
10  
8
µA  
V
IN  
V
Input Hysteresis Voltage  
0.5  
6
I(hyst)  
I =1mA  
6.8  
V
IN  
V
Input Clamp Voltage  
ICL  
I =-1mA  
-0.7  
V
IN  
Note 1: V  
4/18  
and V are correlated. Typical difference is 5V.  
clamp  
OV  
1
VND920  
ELECTRICAL CHARACTERISTICS (continued)  
CURRENT SENSE (9V VCC 16V) (See Fig.1)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
I
=1A; V  
=0.5V;  
SENSE  
OUT  
K
I
/I  
OUT SENSE  
3300  
4400  
6000  
1
T = -40°C...150°C  
j
I
=1A; V  
=0.5V;  
SENSE  
OUT  
dK1/K1  
Current Sense Ratio Drift  
I /I  
OUT SENSE  
-10  
+10  
%
T = -40°C...+150°C  
j
I
=10A; V  
=4V; T =-40°C  
4200  
4400  
4900  
4900  
6000  
5750  
OUT  
SENSE  
j
K
2
T =25°C...150°C  
j
I
=10A; V  
=4V;  
OUT  
SENSE  
dK2/K2  
Current Sense Ratio Drift  
I /I  
OUT SENSE  
-8  
+8  
%
T =-40°C...+150°C  
j
I
=30A; V  
=4V; T =-40°C  
4200  
4400  
4900  
4900  
5500  
5250  
OUT  
SENSE  
j
K
3
T =25°C...150°C  
j
I
=30A; V  
=4V;  
OUT  
SENSE  
dK3/K3  
Current Sense Ratio Drift  
-6  
+6  
%
T =-40°C...+150°C  
j
V
=6...16V; I  
=0A;V  
=0V;  
Analog Sense Leakage  
Current  
CC  
OUT  
SENSE  
I
0
10  
µA  
SENSEO  
T =-40°C...+150°C  
j
V
V
=5.5V; I  
=5A; R =10KΩ  
SENSE  
2
4
V
V
Max Analog Sense Output  
Voltage  
CC  
OUT  
V
SENSE  
>8V; I  
=10A; R  
=10KΩ  
CC  
OUT  
SENSE  
Sense Voltage in  
Overtemperature  
conditions  
V
V
=13V; R =3.9KΩ  
SENSE  
5.5  
V
SENSEH  
CC  
Analog Sense Output  
Impedance in  
Overtemperature  
Condition  
R
V
=13V; T >T ; All channels open  
TSD  
400  
VSENSEH  
CC  
j
Current sense delay  
response  
t
to 90% I  
(see note 2)  
SENSE  
500  
µs  
DSENSE  
PROTECTIONS  
Symbol  
Parameter  
Test Conditions  
Min  
150  
135  
7
Typ  
Max  
Unit  
°C  
°C  
°C  
A
T
Shut-down Temperature  
Reset Temperature  
Thermal Hysteresis  
175  
200  
TSD  
T
R
T
15  
45  
hyst  
V
=13V  
30  
75  
75  
CC  
I
DC Short Circuit Current  
lim  
5V<V <36V  
A
CC  
Turn-off Output Clamp  
Voltage  
V
I
I
=2A; V =0V; L=6mH  
V
-41 V -48 V -55  
V
demag  
OUT  
IN  
CC  
CC  
CC  
Output Voltage Drop  
Limitation  
V
=1A; T =-40°C....+150°C  
50  
mV  
ON  
OUT  
j
Note 2: current sense signal delay after positive input slope  
Note: Sense pin doesn’t have to be left floating.  
5/18  
2
VND920  
Figure 1: I  
/I  
versus I  
OUT SENSE OUT  
6500  
I
/I  
OUT SENSE  
6000  
max.Tj=-40°C  
5500  
5000  
4500  
4000  
3500  
3000  
max.Tj=25...150°C  
min.Tj=25...150°C  
typical value  
min.Tj=-40°C  
0
2
4
6
8
10  
12  
14  
(A)  
16  
18  
20  
22  
24  
26  
28  
30  
32  
I
OUT  
Figure 2: Switching Characteristics (Resistive load RL=1.3)  
VOUT  
90%  
80%  
dVOUT/dt(off)  
dVOUT/dt(on)  
10%  
tf  
tr  
t
ISENSE  
90%  
t
t
DSENSE  
INPUT  
td(on)  
td(off)  
t
6/18  
VND920  
Switching time Waveforms  
V
OUT  
90%  
80%  
dV /dt  
OUT (off)  
dV  
/dt  
OUT (on)  
t
t
f
r
10%  
t
V
IN  
t
d(on)  
t
d(off)  
t
TRUTH TABLE (Per each channel)  
CONDITIONS  
INPUT  
OUTPUT  
CURRENT SENSE  
L
H
L
L
H
L
L
L
L
L
L
L
L
L
H
H
L
0
Normal operation  
Overtemperature  
Undervoltage  
Nominal  
0
H
L
V
SENSEH  
0
H
L
0
0
0
0
Overvoltage  
H
L
Short circuit to GND  
H
H
L
(T <T  
) 0  
) V  
0
j
TSD  
TSD  
(T >T  
j
SENSEH  
Short circuit to V  
CC  
H
L
< Nominal  
0
Negative output voltage clamp  
7/18  
VND920  
ELECTRICAL TRANSIENT REQUIREMENTS  
ISO T/R 7637/1  
TEST LEVELS  
III  
I
II  
IV  
Delays and  
Impedance  
Test Pulse  
1
2
-25 V  
+25 V  
-25 V  
-50 V  
+50 V  
-50 V  
-75 V  
+75 V  
-100 V  
+75 V  
-6 V  
-100 V  
+100 V  
-150 V  
+100 V  
-7 V  
2 ms 10 Ω  
0.2 ms 10 Ω  
0.1 µs 50 Ω  
0.1 µs 50 Ω  
100 ms, 0.01 Ω  
400 ms, 2 Ω  
3a  
3b  
4
+25 V  
-4 V  
+50 V  
-5 V  
5
+26.5 V  
+46.5 V  
+66.5 V  
+86.5 V  
ISO T/R 7637/1  
Test Pulse  
TEST LEVELS RESULTS  
I
II  
III  
C
C
C
C
C
E
IV  
C
C
C
C
C
E
1
2
C
C
C
C
C
C
C
C
C
C
C
E
3a  
3b  
4
5
CLASS  
CONTENTS  
C
E
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device is not performed as designed after exposure to disturbance  
and cannot be returned to proper operation without replacing the device.  
8/18  
VND920  
Figure 3: Waveforms  
NORMAL OPERATION  
INPUTn  
LOAD CURRENTn  
SENSEn  
UNDERVOLTAGE  
V
CCn  
V
USDhyst  
V
USD  
INPUTn  
LOAD CURRENTn  
SENSEn  
OVERVOLTAGE  
V
OV  
V
CCn  
V
V
> V  
USD  
OVhyst  
CC  
INPUTn  
LOAD CURRENTn  
SENSEn  
SHORT TO GROUND  
INPUTn  
LOAD CURRENTn  
LOAD VOLTAGEn  
SENSEn  
SHORT TO V  
CC  
INPUTn  
LOAD VOLTAGEn  
LOAD CURRENTn  
SENSEn  
<Nominal  
<Nominal  
OVERTEMPERATURE  
T
TSD  
T
j
T
R
INPUTn  
LOAD CURRENTn  
SENSEn  
V
R
SENSEH  
I
=
SENSE  
SENSE  
9/18  
VND920  
APPLICATION SCHEMATIC  
+5V  
R
prot  
INPUT1  
V
V
CC1  
CC2  
D
ld  
R
R
OUTPUT1  
prot  
C. SENSE 1  
INPUT2  
prot  
µC  
OUTPUT2  
R
prot  
C. SENSE 2  
GND2  
GND1  
R
SENSE1,2  
R
GND  
D
GND  
V
GND  
This small signal diode can be safely shared amongst  
several different HSD. Also in this case, the presence of  
the ground network will produce a shift ( 600mV) in the  
input threshold and the status output values if the  
microprocessor ground is not common with the device  
ground. This shift will not vary if more than one HSD  
shares the same diode/resistor network.  
GND PROTECTION NETWORK AGAINST  
REVERSE BATTERY  
Solution 1: Resistor in the ground line (R  
can be used with any type of load.  
only). This  
GND  
The following is an indication on how to dimension the  
R
resistor.  
GND  
1) R  
2) R  
where -I  
600mV / (I  
).  
S(on)max  
LOAD DUMP PROTECTION  
GND  
GND  
≥ (−V ) / (-I  
)
CC  
GND  
D
is necessary (Voltage Transient Suppressor) if the  
ld  
is the DC reverse ground pin current and can  
load dump peak voltage exceeds V max DC rating. The  
GND  
CC  
be found in the absolute maximum rating section of the  
device’s datasheet.  
Power Dissipation in R  
battery situations) is:  
same applies if the device will be subject to transients on  
the V  
line that are greater than the ones shown in the  
CC  
ISO T/R 7637/1 table.  
(when V <0: during reverse  
CC  
GND  
µC I/Os PROTECTION:  
2
P = (-V ) /R  
D
CC  
GND  
If a ground protection network is used and negative  
This resistor can be shared amongst several different  
HSD. Please note that the value of this resistor should be  
transients are present on the V line, the control pins will  
CC  
be pulled negative. ST suggests to insert a resistor (R  
)
prot  
calculated with formula (1) where I  
becomes the  
in line to prevent the µC I/Os pins to latch-up.  
S(on)max  
sum of the maximum on-state currents of the different  
devices.  
The value of these resistors is a compromise between the  
leakage current of µC and the current required by the  
HSD I/Os (Input levels compatibility) with the latch-up limit  
of µC I/Os.  
Please note that if the microprocessor ground is not  
common with the device ground then the R  
will  
GND  
produce a shift (I  
* R  
) in the input thresholds  
S(on)max  
GND  
-V  
/I  
R  
(V  
-V -V  
) / I  
CCpeak latchup  
prot  
OHµC IH GND  
IHmax  
and the status output values. This shift will vary  
depending on how many devices are ON in the case of  
Calculation example:  
several high side drivers sharing the same R  
.
For V  
= - 100V and I  
20mA; V  
4.5V  
CCpeak  
latchup  
OHµC  
GND  
If the calculated power dissipation leads to a large resistor  
or several devices have to share the same resistor then  
the ST suggests to utilize Solution 2 (see below).  
5kΩ ≤ R  
65k.  
prot  
Recommended R  
value is 10kΩ.  
prot  
Solution 2: A diode (D  
) in the ground line.  
GND  
A resistor (R  
GND  
=1kΩ) should be inserted in parallel to  
GND  
D
if the device will be driving an inductive load.  
10/18  
1
VND920  
High Level Input Current  
Off State Output Current  
IL(off1) (uA)  
Iih (uA)  
9
5
4.5  
8
7
6
5
4
3
2
1
0
Vin=3.25V  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Input Clamp Voltage  
Input High Level  
Vih (V)  
Vicl (V)  
3.6  
8
7.8  
3.4  
3.2  
3
Iin=1mA  
7.6  
7.4  
7.2  
7
2.8  
2.6  
2.4  
2.2  
2
6.8  
6.6  
6.4  
6.2  
6
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Input Low Level  
Input Hysteresis Voltage  
Vil (V)  
Vhyst (V)  
1.5  
2.6  
1.4  
1.3  
1.2  
1.1  
1
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.9  
0.8  
0.7  
0.6  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
11/18  
VND920  
ILIM Vs Tcase  
Overvoltage Shutdown  
Vov (V)  
Ilim (A)  
100  
50  
90  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
Vcc=13V  
80  
70  
60  
50  
40  
30  
20  
10  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
Tc (°C)  
Tc (°C)  
Turn-on Voltage Slope  
Turn-off Voltage Slope  
dVout/dt(off) (V/ms)  
dVout/dt(on) (V/ms)  
550  
700  
500  
650  
Vcc=13V  
Rl=1.3Ohm  
450  
Vcc=13V  
Rl=1.3Ohm  
600  
400  
550  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
0
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
Tc (°C)  
Tc (ºC)  
On State Resistance Vs Tcase  
On State Resistance Vs VCC  
Ron (mOhm)  
Ron (mOhm)  
50  
50  
45  
45  
40  
35  
30  
25  
20  
15  
10  
5
Iout=10A  
Vcc=8V; 36V  
40  
35  
Tc= 150ºC  
30  
25  
20  
15  
10  
5
Tc= 25ºC  
Tc= - 40ºC  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
5
10  
15  
20  
25  
30  
35  
40  
Tc (ºC)  
Vcc (V)  
12/18  
VND920  
Maximum turn off current versus load inductance  
LMAX (A)  
I
100  
10  
1
A
B
C
0.01  
0.1  
1
10  
100  
L(mH)  
A = Single Pulse at TJstart=150ºC  
B= Repetitive pulse at TJstart=100ºC  
C= Repetitive Pulse at TJstart=125ºC  
Conditions:  
VCC=13.5V  
Values are generated with RL=0Ω  
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed  
the temperature specified above for curves B and C.  
VIN, IL  
Demagnetization  
Demagnetization  
Demagnetization  
t
13/18  
VND920  
SO-28 DOUBLE ISLAND THERMAL DATA  
SO-28 Double island PC Board  
Layout condition of R and Z measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,  
th  
th  
2
2
2
Cu thickness=35µm, Copper areas: 0.5cm , 3cm , 6cm ).  
Thermal calculation according to the PCB heatsink area  
Chip 1 Chip 2  
T
T
Note  
jchip1  
jchip2  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
R
R
R
x P  
x P  
+ T  
+ T  
R
R
R
x P  
x P  
+ T  
+ T  
thA  
thC  
thB  
dchip1  
amb  
thC  
thA  
thB  
dchip1  
amb  
dchip2  
amb  
dchip2  
amb  
x (P  
+ P  
) + T  
x (P  
+ P  
) + T  
P
P
=P  
dchip1 dchip2  
dchip1  
dchip1  
dchip2  
amb  
dchip1  
dchip2  
dchip2  
amb  
ON  
(R x P  
) + R  
x P  
+ T  
(R x P  
) + R x P  
+ T  
P  
dchip1 dchip2  
thA  
thC  
dchip2  
amb  
thA  
thC  
dchip1  
amb  
R
R
R
= Thermal resistance Junction to Ambient with one chip ON  
= Thermal resistance Junction to Ambient with both chips ON and P  
= Mutual thermal resistance  
thA  
thB  
thC  
=P  
dchip2  
dchip1  
Rthj-amb Vs PCB copper area in open box free air condition  
RTHj_am b  
(°C/W)  
70  
60  
50  
40  
30  
20  
10  
RthA  
RthB  
RthC  
0
1
2
3
4
5
6
7
PCB Cu heatsink area (cm^2)/island  
14/18  
VND920  
SO-28 Thermal Impedance Junction Ambient Single Pulse  
Zth(°C/W)  
100  
0,5 cm ^2/island  
3 cm ^2/island  
6 cm ^2/island  
10  
1
One channel ON  
Tw o channels ON  
0.1  
0.01  
0.0001  
0.001  
0.01  
0.1  
time(s)  
1
10  
100  
1000  
Thermal fitting model of a two channels HSD in  
SO-28  
Pulse calculation formula  
ZTHδ = RTH δ + ZTHtp(1 δ)  
δ = tp T  
where  
Thermal Parameter  
2
Area/island (cm )  
R1= (°C/W)  
0.5  
0.02  
0.1  
6
13  
8
Tj_1  
C1  
R1  
C1  
R1  
C2  
R2  
C3  
R3  
C4  
R4  
C5  
R5  
C6  
R6  
R2= (°C/W)  
R3= (°C/W)  
R4= (°C/W)  
R5= (°C/W)  
R6= (°C/W)  
C1= (W.s/°C)  
C2= (W.s/°C)  
C3= (W.s/°C)  
C4= (W.s/°C)  
C5= (W.s/°C)  
C6= (W.s/°C)  
Pd1  
2.2  
C2  
11  
Tj_2  
15  
R2  
30  
Pd2  
0.0015  
7.00E-03  
1.50E-02  
0.2  
T_amb  
1.5  
5
15/18  
VND920  
SO-28 MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
TYP  
MAX.  
2.65  
0.30  
0.49  
0.32  
MIN.  
MAX.  
0.104  
0.012  
0.019  
0.012  
A
a1  
b
0.10  
0.35  
0.23  
0.004  
0.013  
0.009  
b1  
C
c1  
D
E
0.50  
0.020  
45 (typ.)  
17.7  
18.1  
0.697  
0.393  
0.713  
0.419  
10.00  
10.65  
e
1.27  
0.050  
0.650  
e3  
F
16.51  
7.40  
0.40  
7.60  
1.27  
0.291  
0.016  
0.299  
0.050  
L
S
8 (max.)  
16/18  
VND920  
SO-28 TUBE SHIPMENT (no suffix)  
Base Q.ty  
28  
700  
532  
3.5  
Bulk Q.ty  
Tube length (± 0.5)  
C
B
A
B
13.8  
0.6  
C (± 0.1)  
All dimensions are in mm.  
A
TAPE AND REEL SHIPMENT (suffix “13TR”)  
REEL DIMENSIONS  
Base Q.ty  
1000  
1000  
330  
1.5  
Bulk Q.ty  
A (max)  
B (min)  
C (± 0.2)  
F
13  
20.2  
16.4  
60  
G (+ 2 / -0)  
N (min)  
T (max)  
22.4  
TAPE DIMENSIONS  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb 1986  
Tape width  
W
P0 (± 0.1)  
P
16  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
12  
D (± 0.1/-0) 1.5  
Hole Diameter  
D1 (min)  
F (± 0.05)  
K (max)  
1.5  
7.5  
6.5  
2
Hole Position  
Compartment Depth  
Hole Spacing  
P1 (± 0.1)  
End  
All dimensions are in mm.  
Start  
Top  
No components  
500mm min  
Components  
No components  
500mm min  
cover  
tape  
Empty components pockets  
saled with cover tape.  
User direction of feed  
17/18  
VND920  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectronics  
2002 STMicroelectronics - Printed in ITALY- All Rights Reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
18/18  

相关型号:

VNDB1CHP

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

VNDB1CHP-1

Small Signal Field-Effect Transistor, 240V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
VISHAY

VNDN1CHP

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

VNDN1CHP-2

Small Signal Field-Effect Transistor, 240V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
VISHAY

VNDO1CHP

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

VNDO1CHP-1

Small Signal Field-Effect Transistor, 500V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
VISHAY

VNDO1CHP-2

Small Signal Field-Effect Transistor, 500V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
VISHAY

VNDP1CHP

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

VNDP1CHP-1

Small Signal Field-Effect Transistor, 60V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
VISHAY

VNDQ1CHP

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | CHIP
ETC

VNDQ1CHP-2

Small Signal Field-Effect Transistor, 30V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
VISHAY

VNDQ2CHP

Small Signal Field-Effect Transistor, 60V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
VISHAY