VNH7100AS [STMICROELECTRONICS]

Automotive fully integrated H-bridge motor driver;
VNH7100AS
型号: VNH7100AS
厂家: ST    ST
描述:

Automotive fully integrated H-bridge motor driver

文件: 总38页 (文件大小:1772K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VNH7100AS  
Automotive fully integrated H-bridge motor driver  
Datasheet  
-
production data  
Description  
The device is a full bridge motor driver intended  
for a wide range of automotive applications. The  
device incorporates a dual monolithic high-side  
driver and two low-side switches.  
SO-16N  
GAPGCFT00648  
Both switches are designed using  
Features  
STMicroelectronics’ well known and proven  
proprietary VIPower® M0 technology that allows  
to efficiently integrate on the same die a true  
Power MOSFET with an intelligent  
Type  
RDS(on)  
Iout VCCmax  
signal/protection circuitry. The three dies are  
assembled in SO-16N package on electrically  
isolated leadframes.  
100 mΩ typ  
(per leg)  
VNH7100AS  
12 A  
41 V  
Moreover, its fully symmetrical mechanical design  
allows superior manufacturability at board level.  
The input signals INA and INB can directly  
interface the microcontroller to select the motor  
direction and the brake condition. A SEL0 pin is  
available to address the information available on  
the MultiSense to the microcontroller. The  
MultiSense pin allows to monitor the motor  
current by delivering a current proportional to the  
motor current value.  
Automotive qualified  
Output current: 15 A  
3 V CMOS-compatible inputs  
Undervoltage shutdown  
Overvoltage clamp  
Thermal shutdown  
Cross-conduction protection  
Current and power limitation  
The PWM, up to 20 kHz, allows to control the  
speed of the motor in all possible conditions. In all  
cases, a low level state on the PWM pin turns off  
both the LSA and LSB switches.  
Very low standby power consumption  
Protection against loss of ground and loss of  
VCC  
PWM operation up to 20 kHz  
Table 1. Device summary  
MultiSense diagnostic functions  
– Analog motor current feedback  
– Output short to ground detection  
– Thermal shutdown indication  
– OFF-state open-load detection  
– Output short to VCC detection  
Order codes  
Package  
Tube  
Tape and reel  
SO-16N  
VNH7100ASTR  
Output protected against short to ground and  
short to VCC  
Standby Mode  
Half Bridge Operation  
Package: ECOPACK®  
October 2015  
DocID028092 Rev 4  
1/38  
This is information on a product in full production.  
www.st.com  
 
Contents  
VNH7100AS  
Contents  
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
2.2  
2.3  
2.4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.1  
3.2  
3.3  
3.4  
Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
OFF-state open-load detection – External circuitry dimensioning . . . . . . 23  
Immunity against transient electrical disturbances . . . . . . . . . . . . . . . . . . 24  
Device configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.1  
4.2  
SO16-N thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2.1  
4.2.2  
Thermal characterization in steady state conditions . . . . . . . . . . . . . . . 28  
Thermal characterization during transients . . . . . . . . . . . . . . . . . . . . . . 29  
5
6
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.1  
5.2  
5.3  
SO-16N mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SO-16N packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SO-16N marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2/38  
DocID028092 Rev 4  
VNH7100AS  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin definitions and functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic inputs (INA, INB, PWM) (VCC = 7 V up to 28 V; -40°C < Tj < 150°C) . . . . . . . . . . . . 10  
Switching (VCC = 13 V; RLOAD = 5.2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Protections and diagnostics (VCC = 7 V up to 18 V; -40°C < Tj < 150°C). . . . . . . . . . . . . . 11  
CS (7 V < VCC < 18 V; -40 °C < Tj < 150 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Operative condition - truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
On-state fault conditions - truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Off-state - truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
ISO 7637-2 - electrical transient conduction along supply line . . . . . . . . . . . . . . . . . . . . . . 24  
Thermal model for junction temperature calculation in steady-state conditions\ . . . . . . . . 29  
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SO-16N mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
SO-16N carrier tape dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DocID028092 Rev 4  
3/38  
3
List of figures  
VNH7100AS  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
T
DSTKON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Definition of the low-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Definition of the high-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Low-side turn-on delay time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Time to shutdown for the low-side driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Input reset time for HSD - fault unlatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 10. Input reset time for LSD - fault unlatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11. OFF-state diagnostic delay time from rising edge of VOUT (tD_VOL). . . . . . . . . . . . . . . . . . 17  
Figure 12. Normal operative conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. OUT shorted to ground and short clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 14. OUT shorted to Vcc and short clearing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15. Application schematic with reverse battery protection connected to Vbatt. . . . . . . . . . . . . 22  
Figure 16. Application schematic with reverse battery protection connected to GND . . . . . . . . . . . . . 22  
Figure 17. Suggested PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 18. Half-bridge configuration (case a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 19. Half-bridge configuration (case b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 20. Multi-motors configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 21. PCB layout (top and bottom): footprint, 2+2+2 cm2, 8+8+8 cm2 . . . . . . . . . . . . . . . . . . . . 27  
Figure 22. PCB 4 layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 23. Chipset configuration configuration in steady state conditions . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 24. Auto and mutual Rthj-amb vs. PCB heat-sink area in open box free air condition . . . . . . . . 29  
Figure 25. HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 26. LSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 27. Electrical equivalent model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 28. SO-16N package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 29. SO-16N reel 13” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 30. SO-16N carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 31. SO-16N schematic drawing of leader and trailer tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 32. SO-16N marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4/38  
DocID028092 Rev 4  
VNH7100AS  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1. Block diagram  
9
&&  
32:(5  
/,0,7$7,21  
/6$B29(57(03(5$785(  
+6$B29(57(03(5$785(  
/6%B29(57(03(5$785(  
+6%B29(57(03(5$785(  
89  
&/$03ꢀ+6$  
&/$03ꢀ+6%  
+6$  
+6%  
'5,9(5  
+6$  
'5,9(5  
+6%  
,/')#  
0QFOꢄMPBE  
0''ꢄTUBUFꢅ#  
0QFOꢄMPBE  
0''ꢄTUBUFꢅ"  
&855(17  
/,0,7$7,21ꢀ$  
&855(17  
/,0,7$7,21ꢀ%  
)$8/7  
287%  
287$  
.  
ꢁꢂ.  
'(7(&7,21  
&/$03ꢀ/6$  
&/$03ꢀ/6%  
'5,9(5  
'5,9(5  
/6%  
/6$  
/6%  
/6  
$
.69  
/6'%ꢀ29(5/2$'  
'(7(&725ꢀ%  
/6'$ꢀ29(5/2$'  
'(7(&725ꢀ$  
&6  
,1%  
*1'%  
6(/  
3:0  
,1$  
*1'$  
("1($'5ꢀꢁꢁꢂꢃ  
Table 2. Block description  
Description  
Name  
Allows the turn-on and the turn-off of the high-side and the  
low-side switches according to the truth table.  
Logic control  
Undervoltage  
Shuts down the device for battery voltage lower than 4 V.  
Protect the high-side and the low-side switches from the  
high voltage on the battery line.  
High-side and low-side clamp voltage  
Drive the gate of the concerned switch to allow a proper  
Ron for the leg of the bridge.  
High-side and low-side driver  
Current limitation  
Limits the motor current in case of short circuit.  
In case of short-circuit with the increase of the junction  
temperature, it shuts down the concerned driver to prevent  
degradation and to protect the die.  
High-side and low-side overtemperature  
protection  
Detects when low side current exceeds shutdown current  
and latches off the concerned Low side.  
Low-side overload detector  
DocID028092 Rev 4  
5/38  
37  
Block diagram and pin description  
VNH7100AS  
Table 2. Block description (continued)  
Description  
Name  
Signalizes the abnormal behavior of the switch through  
MultiSense pin.  
Fault detection  
Limits the power dissipation of the high-side driver inside  
safe range in case of short to ground condition.  
Power limitation  
Figure 2. Configuration diagram (top view)  
ꢁꢅ  
ꢁꢉ  
ꢁꢈ  
ꢁꢇ  
ꢁꢆ  
ꢁꢁ  
ꢁꢃ  
*1'  
287  
6(/  
*1'  
287  
$
$
$
$
,1  
9
$
&6  
&&  
&&  
62ꢄꢁꢅ1  
9
9
&&  
3:0  
287  
,1  
287  
*1'  
%
%
%
%
*1'  
%
*$3*&)7ꢃꢁꢁꢋꢊ  
Table 3. Pin definitions and functions  
Function  
Pin N°  
Symbol  
1, 16  
2, 15  
3
GNDA  
OUTA  
INA  
Source of low-side switch A  
Source of high-side switch A / drain of low-side switch A  
Clockwise input  
4, 5, 12  
6
VCC  
Power supply voltage  
INB  
Counter clockwise input  
7, 10  
8, 9  
OUTB  
GNDB  
Source of high-side switch B / drain of low-side switch B  
Source of low-side switch B  
Voltage controlled input pin with hysteresis, CMOS compatible. Gates  
of low-side FETS get modulated by the PWM signal during their on  
phase allowing speed control of the motor. Active high.  
11  
13  
14  
PWM  
CS  
Multiplexed analog sense output pin; it delivers a current proportional  
to the motor current.  
Active high compatible with 3 V and 5 V CMOS outputs pin; in  
combination with INA, INB, it addresses the CurrentSense information  
delivered to the micro according to the operative truth table.  
SEL0  
6/38  
DocID028092 Rev 4  
VNH7100AS  
Electrical specifications  
2
Electrical specifications  
Figure 3. Current and voltage conventions  
*
4
*
*/"  
*
7$$  
065"  
7$$  
*/"  
*/#  
065"  
065#  
*
*
*/#  
*
065#  
7065"  
*
4&-ꢀ  
4&/4&  
4&-ꢀ  
ꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅ$4  
*
18.  
7065#  
74&/4&  
18.  
(/%  
*
(/%  
7*/" 7*/# 74&-ꢀ 718.  
("1($'5ꢀꢁꢁꢂꢂ  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in Table 4: Absolute maximum ratings may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
Table 4. Absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
VCC  
-VCC  
Imax  
IR  
Supply voltage  
38  
V
V
A
A
Reverse DC Supply Voltage  
0.3  
Internally limited  
-15  
Maximum output current (continuous)  
Reverse output current (continuous)  
Maximum transient supply voltage (ISO 16750-2:2010  
Test B clamped to 40 V; RL = 4 Ω)  
VCCPK  
VCCJS  
40  
28  
V
V
Maximum jump start voltage for single pulse short circuit  
protection  
IIN  
Input current (INA and INB pins)  
-1 to 10  
-1 to 10  
-1 to 10  
10  
mA  
mA  
mA  
ISEL0  
IPWM  
SEL0 DC input current  
PWM input current  
CS pin DC output current (VGND = VCC and VSENSE < 0 V)  
CS pin DC output current in reverse (VCC < 0 V)  
ISENSE  
mA  
-20  
DocID028092 Rev 4  
7/38  
37  
 
Electrical specifications  
Symbol  
VNH7100AS  
Unit  
Table 4. Absolute maximum ratings (continued)  
Parameter  
Value  
Electrostatic discharge  
(Human body model: R = 1.5 kΩ; C = 100 pF)  
– INA,INB, PWM  
2
2
2
4
4
VESD  
– SEL0  
kV  
– CS  
– VCC  
– Output  
VESD  
Tc  
Charge device model (CDM-AEC-Q100-011)  
Junction operating temperature  
Storage temperature  
750  
V
-40 to 150  
-55 to 150  
°C  
°C  
TSTG  
2.2  
Thermal data  
Table 5. Thermal data  
Parameter  
Symbol  
Max. value  
Unit  
HSD  
LSD  
32  
45  
°C/W  
°C/W  
Rthj-pin Thermal resistance junction-pin  
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-2)(1)  
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-2)(2)  
See Figure 24 °C/W  
HSD  
LSD  
40.7  
55.4  
°C/W  
°C/W  
1. Device mounted on two-layers 2s0p PCB.  
2. Device mounted on four-layers 2s2p PCB.  
8/38  
DocID028092 Rev 4  
 
VNH7100AS  
Electrical specifications  
2.3  
Electrical characteristics  
Values specified in this section are for VCC = 7 V up to 28 V; -40°C < Tj < 150°C, unless  
otherwise specified.  
Table 6. Power section  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Operating supply  
voltage  
VCC  
4
28  
1
V
Off-state (standby)  
µA  
INA = INB = 0; SEL0 = 0;  
PWM = 0; Tj = 25 °C; VCC = 13 V;  
Off-state (standby)  
INA = INB = 0; SEL0 = 0;  
PWM = 0; VCC = 13 V; Tj = 85°C  
1
3
µA  
µA  
Off-state (standby)  
INA = INB = 0; SEL0 = 0;  
PWM = 0; VCC = 13 V; Tj = 125 °C  
IS  
Supply current  
Off-state (no standby)  
2
4
6
mA  
mA  
INA = INB = 0; SEL0 = 5 V;  
PWM= 0  
On-state: INA or INB = 5 V;  
PWM = 0 or PWM = 5; SEL0 = X  
3.5  
V
CC = 13 V;  
Standby mode blanking  
time  
(1)  
tD_STBY  
INA = INB = PMW = 0 V;  
VSEL0 from 5 V to 0 V  
0.2  
1
1.8  
ms  
I
OUT = 2.5 A; Tj = 25°C  
60  
mΩ  
Static high-side  
resistance  
RONHS  
IOUT = 2.5 A; Tj = -40 to 150°C  
IOUT = 2.5 A; Tj = 25°C  
120 mΩ  
mΩ  
40  
Static low-side  
resistance  
RONLS  
I
OUT = 2.5 A; Tj = -40°C to 150°C  
80  
mΩ  
Free-wheeling diode  
forward voltage  
Vf  
IOUT = -2.5 A; Tj = 150°C  
0.7  
0.9  
V
INA = INB = 0; PWM = 0;  
0
0
0.5  
3
µA  
µA  
V
CC = 13 V; Tj = 25 °C  
Off-state output current  
of one leg  
IL(off)  
INA = INB = 0; PWM = 0;  
VCC = 13 V; Tj = 125 °C  
Off-state output current  
IL(off_h) of one leg with other  
HSD on  
INA = 0; INB = 5 V; PWM = 0;  
VCC = 13 V  
20  
60  
µA  
1. To power on the device from the standby, it is recommended to:  
— toggle INA or INB from 0 to 1 first to come out from STBY mode  
— toggle PWM from 0 to 1 with a delay of 20 µs  
this avoids any over-stress on the device in case of existing short-to-battery.  
DocID028092 Rev 4  
9/38  
37  
 
Electrical specifications  
VNH7100AS  
Table 7. Logic inputs (INA, INB, PWM) (VCC = 7 V up to 28 V; -40°C < Tj < 150°C)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
Input hysteresis voltage  
0.9  
V
V
2.1  
0.2  
5.3  
VIHYST  
V
IIN = 1 mA  
7.2  
V
VICL  
Input clamp voltage  
IIN = -1 mA  
VIN = 0.9 V  
VIN = 2.1 V  
-0.7  
V
IINL  
IINH  
Input current  
Input current  
1
µA  
µA  
10  
SEL0 (VCC = 7 V up to 18 V; -40°C < Tj < 150°C)  
VSELL  
ISELL  
VSELH  
ISELH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
0.9  
V
µA  
V
VSEL = 0.9 V  
VSEL = 2.1 V  
1
2.1  
10  
µA  
V
VSEL(hyst) Input hysteresis voltage  
0.2  
5.3  
I
SEL = 1 mA  
ISEL = -1 mA  
PWM (VCC= 7 V up to 28 V; -40°C < Tj < 150°C)  
7.5  
V
VSELCL  
Input clamp voltage  
-0.8  
V
VPWM  
IPWM  
VPWM  
IPWMH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
0.9  
V
µA  
V
VPWM = 0.9 V  
VPWM = 2.1 V  
1
2.1  
10  
µA  
V
VPWM(hyst) Input hysteresis voltage  
0.2  
5.3  
I
PWM = 1 mA  
PWM = -1 mA  
7.2  
V
VPMWCL Input clamp voltage  
I
-0.7  
V
Table 8. Switching (VCC = 13 V; RLOAD = 5.2 )  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
f(1)  
td(on)  
td(off)  
tr  
PWM frequency  
Turn-on delay time  
Turn-off delay time  
Rise time  
0
20  
kHz  
µs  
Input rise time < 1µs (see Figure 6)  
Input rise time < 1µs (see Figure 6)  
See Figure 5  
20  
13  
1
µs  
2
2
µs  
tf  
Fall time  
See Figure 5  
1
µs  
Low-side turn-on delay  
time  
tcross  
Input rise time < 1 µs (see Figure 7) 40 150 350  
µs  
1. Parameter guaranteed by design and characterization; not subjected to production test.  
10/38  
DocID028092 Rev 4  
 
VNH7100AS  
Electrical specifications  
Table 9. Protections and diagnostics (VCC = 7 V up to 18 V; -40°C < Tj < 150°C)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VUSD  
Undervoltage shutdown  
4
5
V
V
Undervoltage shutdown  
reset  
VUSDreset  
VUSDHyst  
Undervolatge shutdown  
Hysteresis  
0.4  
V
High-side current  
limitation  
ILIM_H  
ISD_LS  
tSD_LS  
12  
14  
18  
22  
5
24  
30  
A
A
Shutdown LS current  
Time to shutdown for the VINA = VINB = 0 V;  
low-side  
µs  
PWM = 5 V (see Figure 8)  
High-side clamp voltage  
(VCC to OUTA = 0 or  
OUTB = 0)  
IOUT = 100 mA;  
tCLAMP = 1 ms  
VCL_HSD  
38  
38  
46  
46  
V
V
Low-side clamp voltage  
(OUTA = VCC or  
OUTB = VCC to GND)  
IOUT = 100 mA;  
tCLAMP = 1 ms  
VCL_LSD  
High-side thermal  
shutdown temperature  
TTSD_HS  
TTR_HS  
INx = 2.1 V  
150 175 200 °C  
High-side thermal reset  
temperature  
135  
°C  
°C  
High-side thermal  
THYST_HS  
hysteresis (TSD_HS  
TR_HS  
-
7
)
Low-side thermal  
shutdown temperature  
TTSD_LS  
VCL  
INx = 0 V  
OUT = 100 mA;  
150 175 200 °C  
Total clamp voltage  
(VCC to GND)  
I
38  
2
46  
3
52  
4
V
V
tCLAMP = 1 ms  
INA = INB = 0; PWM = 0;  
OFF-state open-load  
voltage detection  
threshold  
V
SEL0 = 5 V for CHA;  
VOL  
VSEL0 = 0 V and within  
tD_STBY for CHB  
INA = INB = 0; VOUTx = VOL  
;
OFF-state output sink  
current  
PWM = 0 V; VSEL0 = 5 V for  
CHA; VSEL0 = 0 V and within  
IL(off2)  
-100  
40  
-15  
µA  
tD_STBY for CHB  
OFF-state diagnostic  
delay time from falling  
edge of INPUT (see  
Figure 4)  
INA = 5 V to 0 V; INB = 0 V;  
VSEL0 = 5 V; IOUT = 0 A;  
tDSTKON  
150 350 µs  
VOUTA = 4 V; PWM = 0 V  
INA = INB = 0 V; PWM = 0 V;  
OUTx = 0 V to 4 V;  
VSEL0 = 5 V for CHA;  
VSEL0 = 0 V and within  
OFF-state diagnostic  
delay time from rising  
edge of VOUT (see  
Figure 11)  
V
(1)  
tD_VOL  
5
30  
µs  
tD_STBY for CHB  
DocID028092 Rev 4  
11/38  
37  
 
Electrical specifications  
VNH7100AS  
Table 9. Protections and diagnostics (VCC = 7 V up to 18 V; -40°C < Tj < 150°C)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Input reset time for high-  
side fault unlatch (see  
Figure 9)  
V
INx = 5 V to 0 V; HSDx  
(1)  
tLatch_RST_HD  
3
3
10  
10  
20  
20  
µs  
µs  
faulting  
Input reset time for low-  
side fault unlatch (see  
Figure 10)  
V
INx = 0 V to 5 V; LSDx  
(1)  
tLatch_RST_LS  
faulting  
1. Parameter guaranteed by design and characterization; not subjected to production test.  
Table 10. CS (7 V < VCC < 18 V; -40 °C < Tj < 150 °C)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VCC = 18 V; ISENSE = -5 mA  
11  
V
V
MultiSense clamp  
voltage  
VSENSE_CL  
VCC = 18 V; ISENSE = 5 mA  
-13  
-9  
IOUT = 0.05 A; VSENSE = 0.5 V;  
Tj = -40°C to 150°C  
K0  
K1  
K2  
K3  
IOUT SENSE  
IOUT/ISENSE  
IOUT/ISENSE  
IOUT/ISENSE  
/I  
420  
IOUT = 0.2 A; VSENSE = 0.5 V;  
Tj = -40°C to 150°C  
710 1190 1670  
980 1120 1247  
990 1120 1235  
IOUT = 2.5 A; VSENSE = 4 V;  
Tj = -40°C to 150°C  
IOUT = 4 A; VSENSE = 4 V;  
Tj = -40°C to 150°C  
Analog sense current IOUT = 0.05 A; VSENSE = 0.5 V;  
drift Tj = -40°C to 150°C  
(1)(2)  
dK0/K0  
-25  
-21  
-5  
25  
21  
5
%
%
%
%
Analog sense current IOUT = 0.2 A; VSENSE = 0.5 V;  
drift Tj = -40°C to 150°C  
(1)(2)  
dK1/K1  
Analog sense current IOUT = 2.5 A; VSENSE = 4 V;  
drift Tj = -40°C to 150°C  
(1)(2)  
dK2/K2  
Analog sense current IOUT = 4 A; VSENSE = 4 V;  
(1)(2)  
dK3/K3  
-4  
4
drift  
Tj = -40°C to 150°C  
V
CC = 7 V; RSENSE = 10 k;  
Max analog sense  
output voltage  
VSENSE_SAT  
VSEL0 = 5 V; IOUTA = 4 A;  
INA = 5 V; PWM = 0; Tj = 150 °C  
5
0
V
V
IOUT = 0 A; VSENSE = 0 V;  
INx = 0 V; SEL0 = 0;  
Tj = -40°C to 150°C (standby)  
0.5 µA  
0.5 µA  
MultiSense leakage IOUT = 0 A; VSENSE = 0 V;  
ISENSE0  
current  
INx = 0 V; SEL0 = 5 V;  
Tj = -40°C to 150°C (no standby)  
0
0
INx = 5 V; PWM = 5 V:  
Tj = -40°C to 150°C; IOUT = 0 A  
5
µA  
12/38  
DocID028092 Rev 4  
 
 
VNH7100AS  
Electrical specifications  
Table 10. CS (7 V < VCC < 18 V; -40 °C < Tj < 150 °C) (continued)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VCC = 13 V; RSENSE = 1 kΩ  
MultiSense output  
voltage in fault  
condition  
– E.g: OUTA in open-load  
INA = 0 V; IOUTA = 0 A;  
VOUTA = 4 V; VSEL0 = 5 V  
VSENSEH  
5
7
V
VINA = 5 V; VINB = 0 V;  
VSEL0 = 5 V; RSENSE = 2.7 kΩ  
IOUT = 2.5 A  
Output Voltage for  
MultiSense shutdown  
(2)  
VOUT_MSD  
5
V
mA  
A
VCC = 13 V; VSENSE = 4 V;  
VINA = 5 V; VINB = 0 V;  
VSEL0 = 5 V; Tj = 150 °C  
MultiSense  
saturation current  
(2)  
ISENSE_SAT  
5.8  
7
VCC = 13 V; VSENSE = 4 V;  
VINA = 5 V; VINB = 0 V;  
VSEL0 = 5 V; IOUT = 7 A; Tj = 150°C  
Output saturation  
current  
(2)  
IOUT_SAT  
MultiSense output  
voltage in fault  
condition  
ISENSEH  
VCC = 13 V; VSENSE = VSENSEH  
7
20  
30 mA  
1. Analog sense current drift is deviation of factor K for a given device over (-40 °C to 150 °C and  
9 V < V < 18 V) with respect to its value measured at T = 25 °C, V = 13 V.  
CC  
j
CC  
2. Parameter guaranteed by design and characterization; not subjected to production test.  
Figure 4. TDSTKON  
9,1387  
9287  
9287ꢀ!ꢀ92/  
0XOWL6HQVH  
7'67.21  
*$3*&)7ꢃꢃꢅꢃꢁ  
DocID028092 Rev 4  
13/38  
37  
 
Electrical specifications  
VNH7100AS  
Figure 5. Definition of the low-side switching times  
PWM  
t
VOUTA, B  
90%  
80%  
t
f
t
t
10%  
20%  
r
Figure 6. Definition of the high-side switching times  
VINA  
tD(on)  
tD(off)  
t
VOUTA  
90%  
10%  
t
14/38  
DocID028092 Rev 4  
VNH7100AS  
Electrical specifications  
Figure 7. Low-side turn-on delay time  
,1$  
,1%  
W
W
3:0  
2XWꢀ$  
W
W
WFURVV  
2XWꢀ%  
W
("1(ꢀꢆꢀꢃꢁꢇꢁꢇꢁꢁ3*  
Figure 8. Time to shutdown for the low-side driver  
,
/6'  
,
6'B/6  
,
RS  
9VHQVH  
9VHQVH 9VHQVH+  
W6'B/6  
9VHQVHBQRP  
("1(ꢆꢁꢀꢈꢁꢇꢀꢃꢆꢈ$'5  
DocID028092 Rev 4  
15/38  
37  
Electrical specifications  
VNH7100AS  
Figure 9. Input reset time for HSD - fault unlatch  
,1$  
5HVHWꢀ3XOVH  
287$  
)DXOWꢀ+6$  
0XOWL6HQVH  
)DXOWꢀUHPRYLQJ  
)DXOWꢀFOHDQLQJ  
9
PXOWLBVHQVH+  
7ODWFKB567B+6'  
9
VHQVHBQRP  
*$3*ꢇꢃꢃꢇꢁꢉꢁꢃꢁꢉ&)7  
Figure 10. Input reset time for LSD - fault unlatch  
,1$  
287$  
5HVHWꢀ3XOVH  
WFURVV  
)DXOWꢀ/6$  
2XW$ꢀ6KRUWꢀWRꢀ9&&  
)DXOWꢀUHPRYLQJ  
)DXOWꢀFOHDQLQJ  
0XOWLVHQVH  
9
PXOWLBVHQVH+  
7B/DFKWB567B/6'  
*$3*ꢇꢃꢃꢇꢁꢉꢁꢃꢆꢇ&)7  
16/38  
DocID028092 Rev 4  
 
 
VNH7100AS  
Electrical specifications  
Figure 11. OFF-state diagnostic delay time from rising edge of VOUT (tD_VOL  
)
,1$  
287$  
)DXOWꢀꢍꢀ9287ꢀ!ꢀ92/  
&6  
9VHQVH+  
W'B92/  
*$3*ꢇꢃꢃꢇꢁꢉꢁꢃꢇꢁ&)7  
DocID028092 Rev 4  
17/38  
37  
Electrical specifications  
VNH7100AS  
Table 11. Operative condition - truth table  
Pin status HSDs and LDSs Status  
INA  
INB  
SEL0  
PWM  
CS  
HSDA  
LSDA  
HSDB  
LSDB  
Current  
Monitoring  
HSDA  
1
1
1
x
On  
Off  
On  
Off  
Current  
Monitoring  
0
1
HSDB  
1
0
Current  
Monitoring  
HSDA  
On  
On  
Off  
Off  
Off  
Off  
On  
Off  
1
0
1
0
1
0
1
On  
On  
Off  
Off  
Off  
Off  
Off  
On  
Off  
On  
Off  
Off  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
1
0
0
1
0
1
Hi-Z  
Hi-Z  
Current  
Monitoring  
0
1
0
0
1
Off  
Off  
Off  
On  
On  
Off  
Off  
On  
HSDB  
Hi-Z  
1
0
0
0
0
0
1
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
0
x(1)  
0(2)  
1. Refer to Table 13: Off-state - truth table  
2. For IN =IN =SEL = PWM = 0, the device enters in standby after t  
D_STBY  
A
B
0
Table 12. On-state fault conditions - truth table  
INA  
INB  
SEL0  
PWM  
OutA  
OutB  
CS  
Fault description  
On state diagnostic  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
X
H
X
H
H
L
H
X
L
VSENSEH  
VSENSEH  
VSENSEH  
VSENSEH  
VSENSEH  
VSENSEH  
VSENSEH  
VSENSEH  
Short to VBATT on Leg B  
Short to VBATT on Leg A  
Out B short to GND  
Out A short to VCC  
X
1
H
H
L
1
Out B short to VCC  
X
X
X
Out A short to GND  
Short to GND on Leg B  
Short to GND on Leg A  
X
L
L
X
18/38  
DocID028092 Rev 4  
VNH7100AS  
Electrical specifications  
Description  
Table 13. Off-state - truth table  
INA  
INB  
SEL0  
PWM  
OutA  
OutB  
CS  
Off-state diagnostic  
Case 1. OutA shorted to VCC if no  
pull-up is applied  
Case 2. No open-load in full bridge  
configuration with an external pull-  
up on OutB  
VoutA>VOL  
x
VSENSEH  
Case 3. open-load in half bridge  
configuration with an external pull-  
up on OutA(motor connected  
between OutA and Ground)  
1
Case 1. Open-load in full Bridge  
configuration with an external pull-  
up on OutB  
VoutA<VOL  
x
Hi-Z  
VSENSEH  
Hi-Z  
Case 2. No open-load in half Bridge  
configuration with external pull-up  
on OutA (motor connected between  
OutA and Ground)  
0
0
0
Case 1. OutB shorted to VCC if  
no pull-up is applied  
Case 2. No open-load in full  
bridge configuration with  
external pull-up on OutA  
Case 3. Open-load in half bridge  
configuration with external pull-up  
on OutB (motor connected between  
OutB and Ground)  
X
VoutB>VOL  
0(1)(2)  
Case1. Open-load in full Bridge  
configuration with an external pull-  
up on OutA  
X
VoutB<VOL  
Case 2. No open-load in half Bridge  
configuration with external pull-up  
on OutB (motor connected between  
OutB and Ground)  
1. The device enters standby mode after t  
D_STBY  
2. To power on the device from the standby, it is recommended to toggle IN or IN from 0 to 1 first and then PWM from 0 to 1  
A
B
to avoid any over-stress on the device in case of short-to-battery.  
DocID028092 Rev 4  
19/38  
37  
 
Electrical specifications  
VNH7100AS  
2.4  
Waveforms  
Figure 12. Normal operative conditions  
9,1$  
9,1%  
93:0  
96(/ꢃ  
9287$  
9287%  
,/RDG  
9VHQVH  
("1(ꢆꢃꢀꢃꢁꢉꢀꢈꢉꢆ$'5  
Figure 13. OUT shorted to ground and short clearing  
0VUYꢅ4IPSUFEꢅ5Pꢅ(OEꢅꢋꢅ'BVMUꢅ$MFBSJOH  
s/Eꢀ  
s/Eꢁ  
ZĞƐĞƚꢀWƵůƐĞ  
KƵƚꢁꢀ^ŚŽƌƚĞĚꢀƚŽꢀ'ŶĚ  
&ĂƵůƚꢀZĞŵŽǀŝŶŐ  
ZĞƐĞƚꢀWƵůƐĞ  
&ĂƵůƚꢀZĞŵŽǀŝŶŐ  
KƵƚꢂꢀ^ŚŽƌƚĞĚꢀƚŽꢀ'ŶĚ  
sWtD  
s^ꢂ>Ϭ  
sKhdꢀ  
sKhdꢁ  
s^ĞŶƐĞ,  
sƐĞŶƐĞͺŶŽŵ  
s^ꢂE^ꢂ  
/
>ŽĂĚͺŶŽŵ  
/
>Kꢀꢃ  
("1(ꢆꢃꢀꢃꢁꢉꢀꢈꢊꢃ$'5  
20/38  
DocID028092 Rev 4  
 
VNH7100AS  
Electrical specifications  
Figure 14. OUT shorted to Vcc and short clearing  
0VUYꢅ4IPSUFEꢅ5Pꢅ7DDꢅꢋꢅ'BVMUꢅ$MFBSJOH  
s/Eꢀ  
s/Eꢁ  
ZĞƐĞƚꢀWƵůƐĞ  
&ĂƵůƚꢀZĞŵŽǀŝŶŐ  
KƵƚꢁꢀ^ŚŽƌƚĞĚꢀƚŽꢀsĐĐ  
ZĞƐĞƚꢀWƵůƐĞ  
&ĂƵůƚꢀZĞŵŽǀŝŶŐ  
sWtD  
KƵƚꢂꢀ^ŚŽƌƚĞĚꢀƚŽꢀsĐĐ  
s^ꢂ>Ϭ  
sKhdꢀ  
sKhdꢁ  
s^ꢂE^ꢂ  
s^ĞŶƐĞ,  
/
/
>Kꢀꢃ  
>ŽĂĚͺŶŽŵ  
("1(ꢆꢃꢀꢃꢁꢉꢀꢈꢇꢊ$'5  
DocID028092 Rev 4  
21/38  
37  
Application information  
VNH7100AS  
3
Application information  
Here following there is the typical application schematic suggested for a proper operation of  
the device in DC or PWM conditions.  
Figure 15. Application schematic with reverse battery protection connected to Vbatt  
9%DWW  
3ꢀ0RVIHW  
5HJꢀ  9  
='ꢁꢀ  
ꢁꢉ9  
ꢁ.  
9FF  
ꢁꢃꢃQ)  
ꢁ.  
ꢁ.  
5SXOOBXS  
,1$  
,1%  
& ꢁꢂꢀ—)  
+6%  
+6$  
ꢁ.  
ꢁ.  
3:0  
6(/ꢀ  
([WHUQDOꢀ  
SXOOꢀXSꢀ  
VZLWFK  
—&  
287$  
287%  
0
ꢁꢃ.  
&6  
2SHQꢃORDGꢃLQꢃRIIꢃ  
VWDWHꢃGHWHFWLRQꢃ  
FLUFXLWU\ꢃ  
/6$  
/6%  
ꢁꢃQ  
5VHQVH  
*1'  
*1'  
("1(ꢆꢃꢀꢃꢁꢉꢁꢁꢇꢉ$'5  
Figure 16. Application schematic with reverse battery protection connected to GND  
9FF  
5HJꢀꢉ9  
ꢁꢃꢃQ)  
9FF  
,1$  
ꢁ.  
& ꢁꢂꢀ—)  
,1%  
ꢁ.  
5SXOOBXS  
+6$  
+6%  
ꢁ.  
ꢁ.  
3:0  
—&  
287$  
287%  
6(/  
0
([WHUQDOꢀ  
SXOOꢀXSꢀ  
VZLWFK  
/6$  
ꢁꢃ.  
&6  
5VHQVH  
/6%  
ꢁꢃQ  
2SHQꢃORDGꢃLQꢃRIIꢃ  
VWDWHꢃGHWHFWLRQꢃ  
FLUFXLWU\ꢃ  
*1'  
*1'  
']!ꢁꢃ9  
ꢁQ)  
ꢁꢃꢃ.  
1ꢀ0RVIHW  
("1(ꢆꢃꢀꢃꢁꢉꢁꢁꢇꢂ$'5  
22/38  
DocID028092 Rev 4  
 
VNH7100AS  
Application information  
Figure 17. Suggested PCB layout  
Note:  
PCB layout recommendation:  
Optimized connection (short) between Drain LSD and Source HSD  
Optimized GNDa and GNDb connection (symmetric connection)  
3.1  
Reverse battery protection  
Three possible solutions can be considered:  
A Schottky diode D connected to VCC pin  
An N-channel MOSFET connected to the GND pin  
A P-channel MOSFET connected to the VCC pin  
In case the reverse battery protection is not present, the device sustains no more than -15 A  
because of the two Body diodes of the Power MOSFETs. Additionally, in reverse battery  
condition the I/Os of the device is pulled down to the VCC line (approximately -1.5 V).  
Series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If  
IRmax is the maximum target reverse current through microcontroller I/Os, series resistor is:  
V
V  
CC  
IOs  
R = ------------------------------  
I
Rmax  
3.2  
OFF-state open-load detection – External circuitry  
dimensioning  
The detection of an open-load in off state requires an external circuitry to be connected  
between Output and VBATT  
.
For the detection it is necessary to put one network on each leg in case of Half Bridge  
operation or one network on one of the output in case of full bridge (see Table 13: Off-state -  
truth table).  
The external circuitry is made up by an external pull-up resistor Rpull_up connecting the  
output to a positive supply voltage VPU (VBatt).  
DocID028092 Rev 4  
23/38  
37  
Application information  
VNH7100AS  
It is preferable to switch-off VPU by using an external pull_up switch to reduce the overall  
standby current during he module standby mode.  
R
pull_up must be dimensioned to ensure that in normal operative conditions VOUT > VOLmax  
.
To satisfy this condition the Rpull_up must be selected according to:  
if the device is used in half bridge configuration, the equation is:  
V
V  
OLmax  
BATTmin  
R
< -------------------------------------------------------  
pull_up  
I
L(off2)min[@VOLmax]  
if the device is used in H-bridge configuration, the equation is:  
V
V  
OLmax  
BATTmin  
R
< -------------------------------------------------------------  
pull_up  
2 × I  
L(off2)min[@VOLmax]  
3.3  
Immunity against transient electrical disturbances  
The immunity of the device against transient electrical emissions, conducted along the  
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)  
and ISO 16750-2:2010.  
The related function performance status classification is shown in Table 14.  
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and  
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device  
only, without components and accessed through VCC and GND terminals.  
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as  
follows: “The function does not perform as designed during the test but returns automatically  
to normal operation after the test”.  
Table 14. ISO 7637-2 - electrical transient conduction along supply line  
Test pulse severity  
Test  
Pulse  
Minimum  
number of  
pulses or test  
time  
level with Status II  
functionalperformance  
status  
Burst cycle / pulse  
repetition time  
Pulse duration and  
pulse generator  
internal impedance  
2011(E)  
(1)  
Level  
US  
min  
max  
1
III  
III  
IV  
IV  
IV  
-112 V  
+55 V  
-220 V  
+150 V  
-7 V  
500 pulses  
500 pulses  
1h  
0,5 s  
0,2 s  
2ms, 10 Ω  
50µs, 2 Ω  
2a  
3a  
3b  
4(2)  
5 s  
90 ms  
90 ms  
100 ms  
100 ms  
0.1µs, 50 Ω  
0.1µs, 50 Ω  
100ms, 0.0 1Ω  
1h  
1 pulse  
Load dump according to ISO 16750-2:2010  
Test B(3)  
40 V  
5 pulse  
1 min  
400 ms, 2 Ω  
1.  
U
is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.  
S
24/38  
DocID028092 Rev 4  
 
VNH7100AS  
Application information  
2. Test pulse from ISO 7637-2:2004(E).  
3. With 40 V external suppressor referred to ground (-40°C < T < 150°C).  
j
3.4  
Device configurations  
Figure 18. Half-bridge configuration (case a)  
9FF  
,1%  
,1$  
3:0  
6(/ꢃ  
&6  
2XWꢀ$  
2XWꢀ%  
0
0
*1'  
*1'  
*1'  
("1(ꢆꢃꢀꢃꢁꢉꢁꢆꢀꢂ$'5  
Note:  
The VNH7100AS can be used in half bridge configuration as the two legs can be  
independently driven. The SEL0 pin can be used to address the diagnostic on the CS  
according to the operative truth table.  
Figure 19. Half-bridge configuration (case b)  
9FF  
,1$  
,1%  
,1$  
,1%  
6(/ꢃ  
&6  
3:0  
2XWꢀ%  
3:0  
2XWꢀ%  
6(/ꢃ  
&6  
0
2XWꢀ$  
2XWꢀ$  
*1'  
*1'  
("1(ꢊꢀꢀꢃꢁꢉꢁꢌꢀꢇ$'5  
Note:  
The VNH7100AS can be used in applications where an half-bridge with a resistance of  
50 mper leg is needed.  
DocID028092 Rev 4  
25/38  
37  
Application information  
VNH7100AS  
Figure 20. Multi-motors configuration  
9FF  
,1$  
3:0  
6(/ꢃ  
&6  
,1%  
,1$  
3:0  
6(/ꢃ  
&6  
,1%  
0
2XWꢀ$  
2XWꢀ%  
2XWꢀ%  
2XWꢀ$  
*1'  
*1'  
0
0
("1(ꢊꢀꢀꢃꢁꢉꢁꢌꢁꢀ$'5  
Note:  
The VNH7100AS can easily be designed in multi motor driving configuration in the  
applications where only one motor at a time must be activated. The SEL0 pin can be used to  
read the diagnostic on the CS according to the operative truth table.  
26/38  
DocID028092 Rev 4  
VNH7100AS  
Package and PCB thermal data  
4
Package and PCB thermal data  
4.1  
SO16-N thermal data  
Figure 21. PCB layout (top and bottom): footprint, 2+2+2 cm2, 8+8+8 cm2  
DocID028092 Rev 4  
27/38  
37  
 
Package and PCB thermal data  
VNH7100AS  
Figure 22. PCB 4 layer  
Note:  
Board finish thickness 1.6 mm +/- 10%; Board double layer and four layers; Board  
dimension 77x86 mm; Board Material FR4; Cu thickness 0.070mm (outer layers); Cu  
thickness 0.035mm (inner layers); Thermal vias separation 1.2 mm; Thermal via diameter  
0.3 mm +/- 0.08 mm; Cu thickness on vias 0.025 mm.  
4.2  
Package thermal data  
4.2.1  
Thermal characterization in steady state conditions  
Figure 23. Chipset configuration configuration in steady state conditions  
$IJQꢀꢁ  
3UI#  
3UI"#  
$IJQꢀꢂ  
3UI"  
3UI"$  
3UI#$  
$IJQꢀꢃ  
3UI$  
("1(ꢆꢃꢀꢃꢁꢉꢀꢃꢁꢂ$'5  
28/38  
DocID028092 Rev 4  
VNH7100AS  
Package and PCB thermal data  
Figure 24. Auto and mutual Rthj-amb vs. PCB heat-sink area in open box free air  
condition  
ꢅꢁꢀ  
5WK$  
5WK%ꢆ ꢆ5WK&  
ꢅꢀꢀ  
5WK$%ꢆ ꢆ5WK$&  
5WK%&  
ꢄꢀ  
ꢃꢀ  
ꢂꢀ  
ꢁꢀ  
ꢅꢀ  
FP RIꢃ&Xꢃ$UHDꢃꢅUHIHUꢃWRꢃ3&%ꢃꢁ/D\HUꢃOD\RXWꢆ  
("1(ꢆꢃꢀꢃꢁꢉꢀꢃꢆꢌ$'5  
Table 15. Thermal model for junction temperature calculation in steady-state  
conditions\  
Chip 1 Chip 2 Chip 3  
Tjchip1  
Tjchip2  
Tjchip3  
Pdchip1 • RthA + Pdchip3 Pdchip1 • RthAB + Pdchip3 Pdchip1 • RthAC + Pdchip3  
ON  
OFF  
ON  
• RthAC + Tamb • RthBC + Tamb • RthC + Tamb  
Pdchip1 • RthA + Pdchip2 Pdchip1 • RthAB + Pdchip2 Pdchip1 • RthAC + Pdchip2  
ON  
ON  
ON  
OFF  
OFF  
• RthAB + Tamb  
• RthB + Tamb  
• RthBC + Tamb  
OFF  
Pdchip1 • RthA+ Tamb  
Pdchip1 • RthAB + Tamb  
Pdchip1 • RthAC + Tamb  
P
dchip1 • RthA + (Pdchip2 Pdchip2 • RthB + Pdchip1 • Pdchip1 • RthAB + Pdchip2  
ON  
ON  
ON  
+ Pdchip3) • RthAB  
Tamb  
+
RthAB + Pdchip3 • RthBC • RthBC + Pdchip3 • RthC  
+ Tamb + Tamb  
4.2.2  
Thermal characterization during transients  
Ths= Pdhs • Zhs + Zhsls • (PdlsA + PdlsB) + Tamb  
TlsA= PdlsA • Zls + Pdhs • Zhsls + PdlsB • Zlsls + Tamb  
TlsB= PdlsB • Zls + Pdhs • Zhsls + PdlsA • Zlsls + Tamb  
DocID028092 Rev 4  
29/38  
37  
Package and PCB thermal data  
VNH7100AS  
Figure 25. HSD thermal impedance junction ambient single pulse  
=7+ꢆꢋꢆ+6'ꢆ#ꢆFXꢆDUHD  
ƒ&ꢈ:  
ꢅꢀꢀ  
+6'ꢋIRRWSULQW  
+6'ꢋꢁꢆFPAꢁꢆ&X  
+6'ꢋꢄꢆFPAꢁꢆ&X  
+6'ꢋꢂ/D\HU  
+V/V'ꢋIRRWSULQW  
+V/V'ꢋꢁꢆFPAꢁꢆ&X  
+V/V'ꢋꢄꢆFPAꢁꢆ&X  
+V/V'ꢋꢂ/D\HU  
=
KV  
ꢅꢀ  
ꢀꢇꢅ  
=
KVOV  
ꢀꢇꢀꢅ  
ꢀꢇꢀꢀꢀꢅ  
ꢀꢇꢀꢀꢅ  
ꢀꢇꢀꢅ  
ꢀꢇꢅ  
ꢅꢀ  
ꢅꢀꢀ  
ꢅꢀꢀꢀ  
WLPHꢆꢉVHFꢊ  
("1(ꢆꢃꢀꢃꢁꢉꢁꢀꢀꢁ$'5  
Figure 26. LSD thermal impedance junction ambient single pulse  
=7+ꢆꢋ/6'ꢆ#ꢆFXꢆDUHD  
ƒ&ꢈ:  
ꢅꢀꢀ  
/6'ꢋIRRWSULQW  
/6'ꢋꢁꢆFPAꢁꢆ&X  
/6'ꢋꢄꢆFPAꢁꢆ&X  
/6'ꢋꢂ/D\HU  
/V/V'ꢋIRRWSULQW  
/V/V'ꢋꢁꢆFPAꢁꢆ&X  
/V/V'ꢋꢄꢆFPAꢁꢆ&X  
/V/V'ꢋꢂ/D\HU  
=
OV  
ꢅꢀ  
ꢀꢇꢅ  
=
OVOV  
ꢀꢇꢀꢅ  
ꢀꢇꢀꢀꢀꢅ  
ꢀꢇꢀꢀꢅ  
ꢀꢇꢀꢅ  
ꢀꢇꢅ  
ꢅꢀ  
ꢅꢀꢀ  
ꢅꢀꢀꢀ  
WLPHꢆꢉVHFꢊ  
("1(ꢆꢃꢀꢃꢁꢉꢁꢀꢀꢂ$'5  
30/38  
DocID028092 Rev 4  
VNH7100AS  
Package and PCB thermal data  
Figure 27. Electrical equivalent model  
Table 16. Thermal parameters  
2
Area/island (cm2)  
FP  
8
4L  
R1 (°C/W)  
R2 (°C/W)  
R3 (°C/W)  
R4 (°C/W)  
R5 (°C/W)  
R6 (°C/W)  
R7 (°C/W)  
R8 (°C/W)  
R9 (°C/W)  
R10 (°C/W)  
R11 (°C/W)  
R12 (°C/W)  
R13 (°C/W)  
R14 (°C/W)  
R15 (°C/W)  
R16 (°C/W)  
R17 (°C/W)  
R18 (°C/W)  
R19 (°C/W)  
R20 (°C/W)  
5.3  
12  
5.3  
12  
5.3  
12  
5.3  
12  
30  
25  
25  
30  
42  
12  
12  
2
85  
45  
30  
17  
5.3  
5.1  
12  
5.3  
5.1  
12  
5.3  
5.1  
12  
5.3  
5.1  
12  
30  
30  
30  
42  
68  
52  
48  
10  
75  
80  
60  
26  
5.1  
12  
5.1  
12  
5.1  
12  
5.1  
12  
30  
30  
30  
42  
68  
52  
48  
10  
75  
80  
60  
26  
120  
120  
180  
180  
100  
100  
170  
170  
100  
100  
170  
170  
100  
100  
170  
170  
DocID028092 Rev 4  
31/38  
37  
Package and PCB thermal data  
Area/island (cm2)  
VNH7100AS  
4L  
Table 16. Thermal parameters (continued)  
FP  
2
8
C1 (W·s/°C)  
C2 (W·s/°C)  
C3 (W·s/°C)  
C4 (W·s/°C)  
C5 (W·s/°C)  
C6 (W·s/°C)  
C7 (W·s/°C)  
C8 (W·s/°C)  
C9 (W·s/°C)  
C10 (W·s/°C)  
C11 (W·s/°C)  
C12 (W·s/°C)  
C13 (W·s/°C)  
C14 (W·s/°C)  
C15 (W·s/°C)  
C16 (W·s/°C)  
0.00065  
0.018  
0.08  
0.2  
0.00065  
0.018  
0.1  
0.00065  
0.018  
0.1  
0.00065  
0.018  
0.1  
0.5  
1
2
1.5  
2
6
12  
0.00065  
0.001  
0.02  
0.06  
0.08  
1
0.00065  
0.001  
0.02  
0.06  
0.1  
0.00065  
0.001  
0.02  
0.06  
0.2  
0.00065  
0.001  
0.02  
0.06  
0.5  
2.5  
3
6
0.00065  
0.02  
0.06  
0.08  
1
0.00065  
0.02  
0.06  
0.1  
0.00065  
0.02  
0.06  
0.2  
0.00065  
0.02  
0.06  
0.5  
2.5  
3
6
32/38  
DocID028092 Rev 4  
VNH7100AS  
Package and packing information  
5
Package and packing information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
5.1  
SO-16N mechanical data  
Figure 28. SO-16N package dimensions  
("1($'5ꢀꢀꢂꢁꢂ  
DocID028092 Rev 4  
33/38  
37  
Package and packing information  
VNH7100AS  
Table 17. SO-16N mechanical data  
Millimeters  
Symbol  
Min.  
Typ.  
Max.  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
9.80  
5.80  
3.80  
0.51  
0.25  
10.00  
6.20  
4.00  
c
D
9.90  
6.00  
3.90  
1.27  
E
E1  
e
h
0.25  
0.40  
0
0.50  
1.27  
8
L
k
ccc  
0.10  
5.2  
SO-16N packing information  
Figure 29. SO-16N reel 13”  
"DDFTTꢅ)PMFꢅBU  
4MPUꢅ-PDBUJPO  
ꢍꢅꢅꢅꢅꢇꢀꢅNNꢅNJOꢎꢏ  
8ꢆ  
/
%
"
$
8ꢁ  
*GꢅQSFTFOUꢐ  
UBQFꢅTMPUꢅJOꢅDPSF  
GPSꢅUBQFꢅTUBSUꢑ  
ꢆꢎꢉꢅNNꢅNJOꢎꢅXJEUIꢅY  
ꢁꢀꢎꢀꢅNNꢅNJOꢎꢅEFQUI  
#
5"1(ꢆꢀꢀꢇꢁꢉꢁꢌꢉꢉ$'5  
34/38  
DocID028092 Rev 4  
VNH7100AS  
Package and packing information  
Table 18. Reel dimensions  
Description  
Value(1)  
Base quantity  
2500  
Bulk quantity  
A (max)  
2500  
330  
1.5  
B (min)  
C (+0.5, -0.2)  
D (min)  
13  
20.2  
100  
16.4  
22.4  
N
W1 (+2 /-0)  
W2 (max)  
1. All dimensions are in mm.  
Figure 30. SO-16N carrier tape  
("1(ꢀꢂꢀꢈꢁꢉꢁꢆꢆꢃ$'5  
Table 19. SO-16N carrier tape dimensions  
Description  
Value  
A
0
6.55 ± 0.1  
10.38 ± 0.1  
2.10 ± 0.1  
1.80 ± 0.1  
7.50 ± 0.1  
B
0
K
0
1
K
F
DocID028092 Rev 4  
35/38  
37  
Package and packing information  
VNH7100AS  
Table 19. SO-16N carrier tape dimensions (continued)  
Description  
Value  
P
1
8.00 ± 0.1  
W
16.00 ± 0.3  
Figure 31. SO-16N schematic drawing of leader and trailer tape  
5.3  
SO-16N marking information  
Figure 32. SO-16N marking information  
.BSLJOHꢅBSFB  
ꢃ ꢁꢀ ꢁꢁ ꢁꢆ  
4QFDJBMꢀGVODUJPOꢀEJHJU  
ꢄ&4ꢑꢅ&OHJOFFSJOHꢅTBNQMF  
ꢒCMBOLꢓꢑꢅ$PNNFSDJBMꢅTBNQMF  
40ꢄꢁꢌ/ꢅ501ꢅ7*&8ꢅ  
ꢍOPUꢅJOꢅTDBMFꢏ  
("1(ꢀꢂꢀꢈꢁꢉꢁꢉꢉꢂ$'5  
Note:  
Engineering Samples: these samples can be clearly identified by a dedicated special  
symbol in the marking of each unit. These samples are intended to be used for electrical  
compatibility evaluation only; usage for any other purpose may be agreed only upon written  
authorization by ST. ST is not liable for any customer usage in production and/or in reliability  
qualification trials.  
Commercial Samples: fully qualified parts from ST standard production with no usage  
restrictions.  
36/38  
DocID028092 Rev 4  
VNH7100AS  
Revision history  
6
Revision history  
Table 20. Document revision history  
Changes  
Date  
Revision  
16-Jul-2015  
1
Initial release.  
Table 8: Switching (VCC = 13 V; RLOAD = 5.2 ):  
– tcross: updated values  
Table 9: Protections and diagnostics (VCC = 7 V up to 18 V; -40°C < Tj  
< 150°C):  
01-Sep-2015  
04-Sep-2015  
2
3
– ISD_LS, tDSTKON: updated values  
Table 10: CS (7 V < VCC < 18 V; -40 °C < Tj < 150 °C):  
– K2, K3, ISENSE_SAT: updated values  
Table 4: Absolute maximum ratings:  
– IR: updated value  
Table 4: Absolute maximum ratings:  
– -IGND: removed row  
Updated Table 5: Thermal data  
Table 6: Power section:  
– Vf: updated parameter  
07-Oct-2015  
4
Updated Figure 9: Input reset time for HSD - fault unlatch and  
Figure 10: Input reset time for LSD - fault unlatch  
Added Section 2.4: Waveforms and Chapter 4: Package and PCB  
thermal data  
Updated Chapter 3: Application information  
DocID028092 Rev 4  
37/38  
37  
VNH7100AS  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
38/38  
DocID028092 Rev 4  

相关型号:

VNH7100ASTR

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNI4140K

Quad high side smart power solid state relay
STMICROELECTR

VNI4140K-32

Quad high side smart power solid state relay
STMICROELECTR

VNI4140KTR

Quad high side smart power solid state relay
STMICROELECTR

VNI4140KTR-32

Quad high side smart power solid state relay
STMICROELECTR

VNI4140K_08

Quad high side smart power solid state relay S
STMICROELECTR

VNI4140K_12

Quad high-side smart power solid-state relay
STMICROELECTR

VNI8200XP

Octal high-side smart power solid state relay with serial/parallel selectable interface on chip
STMICROELECTR

VNI8200XP-32

Octal high-side smart power solid-state relay with serial
STMICROELECTR

VNI8200XPTR

Octal high-side smart power solid state relay with serial/parallel selectable interface on chip
STMICROELECTR

VNI8200XPTR-32

Octal high-side smart power solid-state relay with serial
STMICROELECTR

VNI8200XP_13

Octal high-side smart power solid state relay with serial/parallel selectable interface on chip
STMICROELECTR