VNQ830TR-E [STMICROELECTRONICS]

9A 4 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO28, SO-28;
VNQ830TR-E
型号: VNQ830TR-E
厂家: ST    ST
描述:

9A 4 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO28, SO-28

外围驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总20页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
VNQ830  
QUAD CHANNEL HIGH SIDE DRIVER  
TYPE  
R
I
V
CC  
DS(on)  
OUT  
VNQ830  
65 m(*)  
6 A (*)  
36 V  
(*) Per each channel  
CMOS COMPATIBLE INPUTS  
OPEN DRAIN STATUS OUTPUTS  
ON STATE OPEN LOAD DETECTION  
OFF STATE OPEN LOAD DETECTION  
SHORTED LOAD PROTECTION  
UNDERVOLTAGE AND OVERVOLTAGE  
SHUTDOWN  
LOSS OF GROUND PROTECTION  
VERY LOW STAND-BY CURRENT  
REVERSE BATTERY PROTECTION (**)  
SO-28 (DOUBLE ISLAND)  
ORDER CODES  
PACKAGE  
TUBE  
T&R  
VNQ830  
VNQ83013TR  
SO-28  
DESCRIPTION  
against low energy spikes (see ISO7637 transient  
compatibility table). Active current limitation  
combined with thermal shutdown and automatic  
restart protects the device against overload.  
The device detects open load condition both in on  
and off state. Output shorted to VCC is detected in  
the off state. Device automatically turns off in case  
of ground pin disconnection.  
The VNQ830 is  
a quad HSD formed by  
assembling two VND830 chips in the same SO-28  
package. The VND830 is a monolithic device  
made by using| STMicroelectronics VIPower M0-3  
Technology. The VNQ830 is intended for driving  
any type of multiple loads with one side connected  
to ground.  
Active VCC pin voltage clamp protects the device  
ABSOLUTE MAXIMUM RATING  
Symbol  
Parameter  
Value  
Unit  
V
V
DC Supply Voltage  
41  
- 0.3  
CC  
- V  
Reverse DC Supply Voltage  
V
CC  
GND  
OUT  
- I  
DC Reverse Ground Pin Current  
- 200  
mA  
A
I
DC Output Current  
Internally Limited  
- 6  
- I  
Reverse DC Output Current  
A
OUT  
I
DC Input Current  
+/- 10  
mA  
mA  
IN  
I
DC Status Current  
+/- 10  
STAT  
Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)  
- INPUT  
4000  
4000  
5000  
5000  
V
V
V
V
V
- STATUS  
- OUTPUT  
ESD  
- V  
CC  
Maximum Switching Energy  
(L=1.5mH; R =0; V =13.5V; T  
E
85  
mJ  
MAX  
=150ºC; I =9A)  
L
bat  
jstart  
L
P
Power dissipation (per island) at T  
Junction Operating Temperature  
Storage Temperature  
=25°C  
6.25  
W
°C  
°C  
tot  
lead  
T
Internally Limited  
- 55 to 150  
j
T
stg  
(**) See application schematic at page 9  
January 2003  
1/20  
VNQ830  
BLOCK DIAGRAM  
V
CC1,2  
V
cc  
OVERVOLTAGE  
UNDERVOLTAGE  
CLAMP  
GND1,2  
INPUT1  
STATUS1  
CLAMP 1  
OUTPUT1  
OUTPUT2  
DRIVER 1  
CLAMP 2  
CURRENT LIMITER 1  
OPENLOAD ON 1  
DRIVER 2  
LOGIC  
OVERTEMP. 1  
CURRENT LIMITER 2  
OPENLOAD ON 2  
INPUT2  
OPENLOAD OFF 1  
STATUS2  
OPENLOAD OFF 2  
OVERTEMP. 2  
V
CC3,4  
V
cc  
OVERVOLTAGE  
UNDERVOLTAGE  
CLAMP 3  
CLAMP  
GND3,4  
INPUT3  
OUTPUT3  
OUTPUT4  
DRIVER 3  
CLAMP 4  
STATUS3  
CURRENT LIMITER 3  
OPENLOAD ON 3  
DRIVER 4  
LOGIC  
OVERTEMP. 3  
CURRENT LIMITER 4  
OPENLOAD ON 4  
INPUT4  
OPENLOAD OFF 3  
STATUS4  
OPENLOAD OFF 4  
OVERTEMP. 4  
2/20  
VNQ830  
CURRENT AND VOLTAGE CONVENTIONS  
I
I
S3,4  
S1,2  
V
V
CC3,4  
CC1,2  
V
CC1,2  
V
CC3,4  
I
IN1  
INPUT1  
I
I
V
OUT1  
STAT1  
IN1  
STATUS1  
OUTPUT1  
OUTPUT2  
OUTPUT3  
I
V
IN2  
V
STAT1  
OUT1  
I
INPUT2  
OUT2  
I
V
STAT2  
IN2  
STATUS2  
I
V
IN3  
V
OUT2  
STAT2  
I
I
OUT3  
INPUT3  
I
I
I
STAT3  
V
IN3  
STATUS3  
V
OUT3  
IN4  
V
OUT4  
STAT3  
INPUT4  
OUTPUT4  
STAT4  
V
IN4  
V
STATUS4  
OUT4  
V
GND  
STAT4  
1,2  
GND  
3,4  
I
I
GND1,2  
GND3,4  
CONNECTION DIAGRAM (TOP VIEW)  
V
1,2  
1
28  
CC  
V
1,2  
CC  
GND 1,2  
INPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
STATUS1  
STATUS2  
INPUT2  
OUTPUT2  
OUTPUT2  
OUTPUT2  
V
1,2  
3,4  
CC  
V
OUTPUT3  
OUTPUT3  
OUTPUT3  
OUTPUT4  
CC  
GND 3,4  
INPUT3  
STATUS3  
STATUS4  
INPUT4  
OUTPUT4  
OUTPUT4  
V
3,4  
14  
15  
V
3,4  
CC  
CC  
3/20  
VNQ830  
THERMAL DATA (Per island)  
Symbol  
Parameter  
Value  
20  
Unit  
°C/W  
°C/W  
°C/W  
R
R
R
Thermal Resistance Junction-lead per chip  
thj-lead  
thj-amb  
thj-amb  
Thermal Resistance Junction-ambient (one chip ON)  
Thermal Resistance Junction-ambient (two chips ON)  
60 (*)  
46 (*)  
2
(*) When mounted on a standard single-sided FR-4 board with 0.5cm of Cu per island (at least 35µm thick) connected to all V pins.  
CC  
Horizontal mounting and no artificial air flow.  
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C< Tj <150°C, unless otherwise specified)  
POWER OUTPUT (Per each channel)  
Symbol  
(**)  
Parameter  
Test Conditions  
Min  
5.5  
3
Typ  
13  
4
Max  
36  
Unit  
V
V
Operating Supply Voltage  
CC  
V
(**) Undervoltage Shut-down  
5.5  
V
USD  
V
(**)  
Overvoltage Shut-down  
36  
V
OV  
I
I
=2A; T=25°C  
65  
130  
40  
mΩ  
mΩ  
µA  
OUT  
OUT  
j
R
On State Resistance  
on  
=2A; V >8V  
CC  
12  
12  
5
Off State; V =13V; V =V  
=0V  
CC  
IN  
OUT  
Off State; V =13V; V =V  
=0V;  
CC  
IN  
OUT  
I (**)  
Supply Current  
25  
µA  
S
T =25°C  
j
On State; V =13V; V =5V; I =0A  
OUT  
CC  
IN  
7
50  
0
mA  
µA  
µA  
µA  
µA  
I
I
I
I
Off State Output Current  
Off State Output Current  
Off State Output Current  
Off State Output Current  
V =V =0V  
OUT  
0
L(off1)  
L(off2)  
L(off3)  
L(off4)  
IN  
V =0V; V  
=3.5V  
-75  
IN  
OUT  
V =V  
=0V; V =13V; T =125°C  
5
IN  
OUT  
OUT  
CC  
j
V =V  
=0V; V =13V; T =25°C  
3
IN  
CC  
j
SWITCHING (Per each Channel) (VCC =13V)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
R =6.5from V rising edge to  
L
IN  
t
t
Turn-on Delay Time  
30  
µs  
d(on)  
d(off)  
V
=1.3V  
OUT  
R =6.5from V falling edge to  
L
IN  
Turn-off Delay Time  
30  
µs  
V
=11.7V  
OUT  
See  
relative  
dV  
dV  
/dt  
Turn-on Voltage Slope  
R =6.5from V  
=1.3V to V =10.4V  
OUT  
V/µs  
OUT (on)  
L
OUT  
diagram  
See  
relative  
/dt  
Turn-off Voltage Slope  
R =6.5from V  
=11.7V to V =1.3V  
OUT  
V/µs  
OUT (off)  
L
OUT  
diagram  
LOGIC INPUT (Per each channel)  
Symbol  
Parameter  
Input Low Level  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
1.25  
IL  
I
Low Level Input Current  
Input High Level  
V =1.25V  
1
µA  
V
IL  
IN  
V
3.25  
IH  
IH  
I
High Level Input Current V =3.25V  
10  
8
µA  
V
IN  
V
Input Hysteresis Voltage  
0.5  
6
I(hyst)  
I =1mA  
6.8  
V
IN  
V
Input Clamp Voltage  
ICL  
I =-1mA  
-0.7  
V
IN  
(**) Per island  
4/20  
VNQ830  
ELECTRICAL CHARACTERISTICS (continued)  
VCC - OUTPUT DIODE  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
Forward on Voltage  
-I  
=2A; T =150°C  
0.6  
V
F
OUT  
j
STATUS PIN (Per each channel)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
0.5  
10  
Unit  
V
V
Status Low Output Voltage I  
Status Leakage Current  
=1.6mA  
STAT  
STAT  
I
Normal Operation; V  
=5V  
=5V  
µA  
LSTAT  
STAT  
Status Pin Input  
Capacitance  
C
Normal Operation; V  
100  
8
pF  
STAT  
STAT  
I
=1mA  
6
6.8  
V
V
STAT  
V
Status Clamp Voltage  
I
SCL  
=-1mA  
-0.7  
STAT  
PROTECTIONS (Per each channel)  
Symbol  
Parameter  
Shut-down Temperature  
Reset Temperature  
Thermal Hysteresis  
Test Conditions  
Min  
150  
135  
7
Typ  
Max  
Unit  
°C  
T
175  
200  
TSD  
T
°C  
R
T
15  
9
°C  
hyst  
Status Delay in Overload  
Conditions  
t
T >T  
20  
µs  
SDL  
j
TSD  
6
15  
15  
A
A
I
Current limitation  
lim  
5.5V<V <36V  
CC  
Turn-off Output Clamp  
Voltage  
V
I
=2A; L=6mH  
V
-41 V -48 V -55  
V
demag  
OUT  
CC  
CC  
CC  
OPENLOAD DETECTION (per each channel)  
Symbol  
Parameter  
Openload ON State  
Detection Threshold  
Openload ON State  
Detection Delay  
Test Conditions  
Min  
Typ  
Max  
Unit  
I
V =5V  
50  
100  
200  
mA  
OL  
IN  
t
I
=0A  
OUT  
200  
µs  
DOL(on)  
Openload OFF State  
Voltage Detection  
Threshold  
V
V =0V  
1.5  
2.5  
3.5  
V
OL  
IN  
Openload Detection Delay  
at Turn Off  
t
1000  
µs  
DOL(off)  
OPEN LOAD STATUS TIMING (with external pull-up)  
< I  
OVER TEMP STATUS TIMING  
T > T  
I
V
> V  
OL  
OUT  
OL  
OUT  
j
TSD  
V
INn  
V
V
INn  
V
STATn  
STATn  
t
t
SDL  
SDL  
t
DOL(off)  
t
DOL(on)  
5/20  
VNQ830  
Switching time Waveforms  
V
OUTn  
90%  
80%  
dV  
/dt  
dV  
/dt  
OUT (off)  
OUT (on)  
10%  
t
V
INn  
td  
(on)  
td  
(off)  
t
TRUTH TABLE  
CONDITIONS  
INPUT  
OUTPUT  
STATUS  
L
H
L
H
H
H
Normal Operation  
L
H
H
L
X
X
H
) H  
) L  
Current Limitation  
(T < T  
j
TSD  
TSD  
(T > T  
j
L
H
L
L
H
L
Overtemperature  
Undervoltage  
Overvoltage  
L
H
L
L
X
X
L
H
L
L
H
H
L
H
H
H
L
H
Output Voltage > V  
OL  
OL  
L
H
L
H
H
L
Output Current < I  
6/20  
VNQ830  
ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN  
ISO T/R 7637/1  
Test Pulse  
TEST LEVELS  
I
II  
III  
IV  
Delays and  
Impedance  
1
2
-25 V  
+25 V  
-25 V  
-50 V  
+50 V  
-50 V  
-75 V  
+75 V  
-100 V  
+75 V  
-6 V  
-100 V  
+100 V  
-150 V  
+100 V  
-7 V  
2 ms 10 Ω  
0.2 ms 10 Ω  
0.1 µs 50 Ω  
0.1 µs 50 Ω  
100 ms, 0.01 Ω  
400 ms, 2 Ω  
3a  
3b  
4
+25 V  
-4 V  
+50 V  
-5 V  
5
+26.5 V  
+46.5 V  
+66.5 V  
+86.5 V  
ISO T/R 7637/1  
Test Pulse  
TEST LEVELS RESULTS  
I
II  
III  
C
C
C
C
C
E
IV  
C
C
C
C
C
E
1
2
C
C
C
C
C
C
C
C
C
C
C
E
3a  
3b  
4
5
CLASS  
CONTENTS  
All functions of the device are performed as designed after exposure to disturbance.  
C
E
One or more functions of the device is not performed as designed after exposure and cannot be returned  
to proper operation without replacing the device.  
7/20  
VNQ830  
Figure1: Waveforms  
NORMAL OPERATION  
UNDERVOLTAGE  
INPUT  
n
LOAD VOLTAGE  
n
STATUS  
n
V
V
USDhyst  
CC  
V
USD  
INPUT  
n
LOAD VOLTAGE  
STATUS  
n
undefined  
OVERVOLTAGE  
V
<V  
OV  
V
>V  
OV  
CC  
CC  
V
CC  
INPUT  
n
LOAD VOLTAGE  
n
STATUS  
n
OPEN LOAD with external pull-up  
INPUT  
n
V
>V  
OL  
OUT  
LOAD VOLTAGE  
n
V
OL  
STATUS  
n
OPEN LOAD without external pull-up  
INPUT  
n
LOAD VOLTAGE  
n
STATUS  
n
OVERTEMPERATURE  
T
T
TSD  
R
T
j
INPUT  
n
LOAD CURRENT  
n
STATUS  
n
8/20  
1
VNQ830  
APPLICATION SCHEMATIC  
+5V  
+5V  
+5V  
V
V
CC3,4  
CC1,2  
R
prot  
STATUS1  
R
prot  
INPUT1  
D
ld  
R
prot  
STATUS2  
OUTPUT1  
R
prot  
INPUT2  
µC  
OUTPUT2  
OUTPUT3  
R
prot  
STATUS3  
INPUT3  
R
prot  
R
prot  
STATUS4  
INPUT4  
OUTPUT4  
R
prot  
GND3,4  
GND1,2  
R
GND  
D
GND  
V
+5V  
+5V  
GND  
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.  
2
P = (-V ) /R  
GND  
D
CC  
GND PROTECTION NETWORK AGAINST  
REVERSE BATTERY  
This resistor can be shared amongst several different  
HSD. Please note that the value of this resistor should be  
Solution 1: Resistor in the ground line (R  
can be used with any type of load.  
only). This  
calculated with formula (1) where I  
becomes the  
GND  
S(on)max  
sum of the maximum on-state currents of the different  
devices.  
The following is an indication on how to dimension the  
R
GND  
1) R  
resistor.  
Please note that if the microprocessor ground is not  
common with the device ground then the R  
will  
600mV / 2(I  
).  
S(on)max  
GND  
GND  
produce a shift (I  
* R  
) in the input thresholds  
S(on)max  
GND  
2) R  
≥ (−V ) / (-I  
)
GND  
GND  
CC  
and the status output values. This shift will vary  
depending on how many devices are ON in the case of  
where -I  
is the DC reverse ground pin current and can  
GND  
be found in the absolute maximum rating section of the  
several high side drivers sharing the same R  
.
GND  
device’s datasheet.  
If the calculated power dissipation leads to a large resistor  
or several devices have to share the same resistor then  
the ST suggests to utilize Solution 2.  
Power Dissipation in R  
battery situations) is:  
(when V <0: during reverse  
CC  
GND  
9/20  
VNQ830  
Solution 2: A diode (D  
) in the ground line.  
µC I/Os PROTECTION:  
GND  
A resistor (R  
GND  
=1kΩ) should be inserted in parallel to  
If a ground protection network is used and negative  
GND  
D
if the device will be driving an inductive load.  
transients are present on the V line, the control pins will  
CC  
be pulled negative. ST suggests to insert a resistor (R  
)
This small signal diode can be safely shared amongst  
several different HSD. Also in this case, the presence of  
the ground network will produce a shift ( 600mV) in the  
input threshold and the status output values if the  
microprocessor ground is not common with the device  
ground. This shift will not vary if more than one HSD  
shares the same diode/resistor network.  
prot  
in line to prevent the µC I/Os pins to latch-up.  
The value of these resistors is a compromise between the  
leakage current of µC and the current required by the  
HSD I/Os (Input levels compatibility) with the latch-up limit  
of µC I/Os.  
-V  
/I  
R  
(V  
-V -V  
) / I  
CCpeak latchup  
prot  
OHµC IH GND IHmax  
LOAD DUMP PROTECTION  
Calculation example:  
D
is necessary (Voltage Transient Suppressor) if the  
For V  
5kΩ ≤ R  
Recommended R  
= - 100V and I  
65k.  
20mA; V 4.5V  
OHµC  
ld  
CCpeak  
latchup  
load dump peak voltage exceeds V max DC rating. The  
CC  
prot  
same applies if the device will be subject to transients on  
value is 10kΩ.  
prot  
the V line that are greater than the ones shown in the  
CC  
ISO T/R 7637/1 table.  
10/20  
VNQ830  
OPEN LOAD DETECTION IN OFF STATE  
2) no misdetection when load is disconnected: in this  
Off state open load detection requires an external pull-up  
case the V  
has to be higher than V  
; this  
OLmax  
resistor (R ) connected between OUTPUT pin and a  
OUT  
PU  
results in the following condition R <(V  
V
)/  
positive supply voltage (V ) like the +5V line used to  
PU  
PU– OLmax  
PU  
I
.
L(off2)  
supply the microprocessor.  
Because I  
may significantly increase if V is pulled  
out  
The external resistor has to be selected according to the  
following requirements:  
1) no false open load indication when load is connected:  
s(OFF)  
high (up to several mA), the pull-up resistor R  
should  
PU  
be connected to a supply that is switched OFF when the  
module is in standby.  
in this case we have to avoid V  
to be higher than  
OUT  
V
; this results in the following condition  
The values of V  
, V  
and I  
are available in  
L(off2)  
Olmin  
OLmin  
OLmax  
V
=(V /(R +R ))R <V  
PU L PU L Olmin.  
the Electrical Characteristics section.  
OUT  
Open Load detection in off state  
PU  
V batt.  
V
VCC  
PU  
R
DRIVER  
+
L(off2)  
I
INPUT  
LOGIC  
OUT  
+
-
R
STATUS  
OL  
V
L
R
GROUND  
11/20  
VNQ830  
High Level Input Current  
Off State Output Current  
Iih (uA)  
IL(off1) (uA)  
5
2.5  
4.5  
2.25  
Off state  
Vcc=36V  
Vin=3.25V  
4
2
Vin=Vout=0V  
3.5  
3
1.75  
1.5  
1.25  
1
2.5  
2
1.5  
1
0.75  
0.5  
0.25  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100 125 150  
175  
Tc (°C)  
Tc (°C)  
Input Clamp Voltage  
Status Leakage Current  
Vicl (V)  
Ilstat (uA)  
8
0.05  
7.8  
Iin=1mA  
7.6  
0.04  
7.4  
7.2  
7
Vstat=5V  
0.03  
6.8  
6.6  
6.4  
6.2  
6
0.02  
0.01  
0
-50  
-25  
0
25  
50  
75  
100 125 150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Status Low Output Voltage  
Status Clamp Voltage  
Vscl (V)  
Vstat (V)  
8
0.8  
7.8  
0.7  
Istat=1mA  
Istat=1.6mA  
7.6  
0.6  
7.4  
7.2  
7
0.5  
0.4  
0.3  
0.2  
0.1  
0
6.8  
6.6  
6.4  
6.2  
6
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
12/20  
VNQ830  
On State Resistance Vs Tcase  
On State Resistance Vs VCC  
Ron (mOhm)  
Ron (mOhm)  
120  
160  
Tc=150°C  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
Iout=2A  
Vcc=8V; 13V & 36V  
120  
100  
80  
60  
40  
20  
0
Tc=25°C  
Tc= - 40°C  
Iout=5A  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
5
10  
15  
20  
25  
30  
35  
40  
Tc (°C)  
Vcc (V)  
Openload On State Detection Threshold  
Input High Level  
Iol (mA)  
Vih (V)  
150  
3.6  
140  
3.4  
3.2  
3
Vcc=13V  
Vin=5V  
130  
120  
110  
100  
90  
2.8  
2.6  
2.4  
2.2  
2
80  
70  
60  
50  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Input Low Level  
Input Hysteresis Voltage  
Vil (V)  
Vhyst (V)  
1.5  
2.6  
1.4  
1.3  
1.2  
1.1  
1
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.9  
0.8  
0.7  
0.6  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
13/20  
VNQ830  
Overvoltage Shutdown  
Openload Off State Voltage Detection Threshold  
Vov (V)  
Vol (V)  
50  
5
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
4.5  
Vin=0V  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Turn-on Voltage Slope  
Turn-off Voltage Slope  
dVout/dt(on) (V/ms)  
dVout/dt(off) (V/ms)  
800  
600  
700  
550  
Vcc=13V  
Ri=6.5Ohm  
Rl=6.5Ohm  
600  
500  
500  
400  
300  
200  
100  
0
450  
400  
350  
300  
250  
200  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
Tc (°C)  
Tc (ºC)  
ILIM Vs Tcase  
Ilim (A)  
20  
18  
16  
14  
12  
10  
8
Vcc=13V  
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
14/20  
VNQ830  
Maximum turn off current versus load inductance  
LMAX (A)  
I
100  
10  
1
A
B
C
0.1  
1
10  
100  
L(mH)  
A = Single Pulse at TJstart=150ºC  
B= Repetitive pulse at TJstart=100ºC  
C= Repetitive Pulse at TJstart=125ºC  
Conditions:  
VCC=13.5V  
Values are generated with RL=0Ω  
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed  
the temperature specified above for curves B and C.  
VIN, IL  
Demagnetization  
Demagnetization  
Demagnetization  
t
15/20  
VNQ830  
SO-28 DOUBLE ISLAND THERMAL DATA  
SO-28 Double island PC Board  
Layout condition of R and Z measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,  
th  
th  
2
2
2
Cu thickness=35µm, Copper areas: 0.5cm , 3cm , 6cm ).  
Thermal calculation according to the PCB heatsink area  
Chip 1 Chip 2  
T
T
Note  
jchip1  
jchip2  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
R
R
R
x P  
x P  
+ T  
+ T  
R
R
R
x P  
x P  
+ T  
+ T  
thA  
thC  
thB  
dchip1  
amb  
thC  
thA  
thB  
dchip1  
amb  
dchip2  
amb  
dchip2  
amb  
x (P  
+ P  
) + T  
x (P  
+ P  
) + T  
P
P
=P  
dchip1 dchip2  
dchip1  
dchip1  
dchip2  
amb  
dchip1  
dchip2  
dchip2  
amb  
ON  
(R x P  
) + R  
x P  
+ T  
(R x P  
) + R x P  
+ T  
P  
dchip1 dchip2  
thA  
thC  
dchip2  
amb  
thA  
thC  
dchip1  
amb  
R
R
R
= Thermal resistance Junction to Ambient with one chip ON  
= Thermal resistance Junction to Ambient with both chips ON and P  
= Mutual thermal resistance  
thA  
thB  
thC  
=P  
dchip2  
dchip1  
Rthj-amb Vs. PCB copper area in open box free air condition  
RTHj_am b  
(°C/W)  
70  
60  
50  
40  
30  
20  
10  
RthA  
RthB  
RthC  
0
1
2
3
4
5
6
7
PCB Cu heatsink area (cm^2)/island  
16/20  
VNQ830  
SO-28 Thermal Impedance Junction Ambient Single Pulse  
One channel ON  
ZTH (°C/W)  
Two channels ON  
on same chip  
1000  
100  
10  
1
2
0.5 cm  
2
6 cm  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (s)  
Thermal fitting model of a four channels HSD  
in SO-28  
Pulse calculation formula  
ZTHδ = RTH δ + ZTHtp(1 δ)  
δ = tp T  
Tj_1  
C1  
C2  
R2  
C3  
R3  
C4  
R4  
C5  
R5  
C6  
R6  
where  
Thermal Parameter  
R1  
Pd1  
2
C13  
R13  
C14  
Area/island (cm )  
R1=R7=R13=R15 (°C/W)  
R2=R8=R14=R16 (°C/W)  
R3=R9 (°C/W)  
0.5  
6
Tj_2  
0.15  
0.8  
R14  
Pd2  
R17  
R18  
4.5  
R4=R10 (°C/W)  
11  
Tj_3  
C7  
R7  
C8  
C9  
R9  
C10  
C11  
C12  
R5=R11 (°C/W)  
15  
Pd3  
R6=R12 (°C/W)  
5
13  
R8  
R10  
R11  
R12  
C1=C7=C13=C15 (W.s/°C)  
C2=C8=C14=C16 (W.s/°C)  
C3=C9 (W.s/°C)  
0.0006  
2.10E-03  
6.00E-03  
0.2  
C15  
R15  
C16  
Tj_4  
R16  
Pd4  
C4=C10 (W.s/°C)  
C5=C11 (W.s/°C)  
1.5  
T_amb  
C6=C12 (W.s/°C)  
5
8
R17=R18 (°C/W)  
150  
17/20  
VNQ830  
SO-28 MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
TYP  
MAX.  
2.65  
0.30  
0.49  
0.32  
MIN.  
MAX.  
0.104  
0.012  
0.019  
0.012  
A
a1  
b
0.10  
0.35  
0.23  
0.004  
0.013  
0.009  
b1  
C
c1  
D
E
0.50  
0.020  
45 (typ.)  
17.7  
18.1  
0.697  
0.393  
0.713  
0.419  
10.00  
10.65  
e
1.27  
0.050  
0.650  
e3  
F
16.51  
7.40  
0.40  
7.60  
1.27  
0.291  
0.016  
0.299  
0.050  
L
S
8 (max.)  
18/20  
VNQ830  
SO-28 TUBE SHIPMENT (no suffix)  
Base Q.ty  
28  
700  
532  
3.5  
Bulk Q.ty  
Tube length (± 0.5)  
C
B
A
B
13.8  
0.6  
C (± 0.1)  
All dimensions are in mm.  
A
TAPE AND REEL SHIPMENT (suffix “13TR”)  
REEL DIMENSIONS  
Base Q.ty  
1000  
1000  
330  
1.5  
Bulk Q.ty  
A (max)  
B (min)  
C (± 0.2)  
F
13  
20.2  
16.4  
60  
G (+ 2 / -0)  
N (min)  
T (max)  
22.4  
TAPE DIMENSIONS  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb 1986  
Tape width  
W
P0 (± 0.1)  
P
16  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
12  
D (± 0.1/-0) 1.5  
Hole Diameter  
D1 (min)  
F (± 0.05)  
K (max)  
1.5  
7.5  
6.5  
2
Hole Position  
Compartment Depth  
Hole Spacing  
P1 (± 0.1)  
End  
All dimensions are in mm.  
Start  
Top  
No components  
500mm min  
Components  
No components  
cover  
tape  
Empty components pockets  
saled with cover tape.  
500mm min  
User direction of feed  
19/20  
VNQ830  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectronics  
2002 STMicroelectronics - Printed in ITALY- All Rights Reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
20/20  

相关型号:

VNQ860

QUAD CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VNQ860-E

QUAD CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VNQ860-E_08

Quad channel high side driver
STMICROELECTR

VNQ86013TR

0.7A BUF OR INV BASED PRPHL DRVR, PDSO20, SO-20
STMICROELECTR

VNQ86013TR-E

Quad channel high side driver
STMICROELECTR

VNQ860SP

QUAD CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VNQ860SP-E

QUAD CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VNQ860SP13TR

0.7A BUF OR INV BASED PRPHL DRVR, PDSO10, LEAD FREE, POWER, SO-10
STMICROELECTR

VNQ860SP13TR-E

Quad channel high side driver
STMICROELECTR

VNQ860SPTR-E

Quad channel high-side driver
STMICROELECTR

VNQ860TR-E

Quad channel high-side driver
STMICROELECTR

VNS008A

TRANSISTOR | MOSFET | N-CHANNEL | 600V V(BR)DSS | 5.77A I(D) | TO-204AA
ETC