ZPSD403A2-C-90JI [STMICROELECTRONICS]

Low Cost Field Programmable Microcontroller Peripherals; 低成本现场可编程微控制器外设
ZPSD403A2-C-90JI
型号: ZPSD403A2-C-90JI
厂家: ST    ST
描述:

Low Cost Field Programmable Microcontroller Peripherals
低成本现场可编程微控制器外设

微控制器 外围集成电路
文件: 总123页 (文件大小:649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PSD4XX  
ZPSD4XX  
Low Cost Field Programmable Microcontroller Peripherals  
NOT FOR NEW DESIGN  
FEATURES SUMMARY  
Single Supply Voltage:  
– 5 V±10% for PSD4XX  
– 2.7 to 5.5 V for PSD4XX-V  
Up to 1 Mbit of UV EPROM  
Up to 16 Kbit SRAM  
Input Latches  
Figure 1. Packages  
Programmable I/O ports  
Page Logic  
Programmable Security  
PLDCC68 (J)  
CLDCC68 (L)  
TQFP68 (U)  
January 2002  
1/3  
This is information on a product still in production but not recommended for new designs.  
PSD4XX Family  
PSD4XX/ZPSD4XX  
Field-Programmable Microcontroller Peripherals  
Table of Contents  
1
2
3
4
5
6
7
8
9
Introduction...........................................................................................................................................................1  
Key Features ........................................................................................................................................................2  
Notation ................................................................................................................................................................3  
Zero-Power Background.......................................................................................................................................3  
Integrated Power ManagementTM Operation........................................................................................................5  
Design Flow..........................................................................................................................................................6  
PSD4XX Family....................................................................................................................................................7  
Table 2. PSD4XX Pin Descriptions......................................................................................................................8  
The PSD4XX Architecture ..................................................................................................................................10  
9.1 The ZPLD Block..........................................................................................................................................10  
9.1.1 The PSD4XXA1 ZPLD Block............................................................................................................10  
9.1.1.1 The DPLD ..........................................................................................................................12  
9.1.1.2 The GPLD ..........................................................................................................................13  
9.1.1.3 TPA Macrocell Structure ...................................................................................................13  
9.1.1.4 Port B Macrocell Structure .................................................................................................17  
9.1.1.5 The ZPLD Power Management..........................................................................................18  
9.1.2 The PSD4XXA2 ZPLD Block............................................................................................................22  
9.1.2.1 The DPLD ..........................................................................................................................24  
9.1.2.2 The GPLD ..........................................................................................................................26  
9.1.2.3 Port A Macrocell Structure .................................................................................................26  
9.1.2.4 Port B Macrocell Structure .................................................................................................30  
9.1.2.5 Port E Macrocell Structure .................................................................................................33  
9.1.2.6 The ZPLD Power Management..........................................................................................34  
9.2 Bus Interface...............................................................................................................................................37  
9.2.1 Bus Interface Configuration..............................................................................................................37  
9.2.2 PSD4XX Interface to a Multiplexed Bus...........................................................................................38  
9.2.3 PSD4XX Interface to Non-Multiplexed Bus ......................................................................................38  
9.2.4 Data Byte Enable..............................................................................................................................42  
9.2.5 Optional Features.............................................................................................................................43  
9.2.6 Bus Interface Examples....................................................................................................................43  
9.3 I/O Ports......................................................................................................................................................48  
9.3.1 Standard MCU I/O............................................................................................................................48  
9.3.2 PLD I/O ...........................................................................................................................................48  
9.3.3 Address Out......................................................................................................................................49  
9.3.4 Address In ........................................................................................................................................49  
9.3.5 Data Port ..........................................................................................................................................49  
9.3.6 Alternate Function In ........................................................................................................................49  
9.3.7 Peripheral I/O ...................................................................................................................................50  
9.3.8 Open Drain Outputs..........................................................................................................................50  
9.3.9 Port Registers...................................................................................................................................51  
9.3.10 Port A – Functionality and Structure.................................................................................................54  
9.3.11 Port B – Functionality and Structure.................................................................................................54  
9.3.12 Port C and Port D – Functionality and Structure ..............................................................................57  
9.3.13 Port E – Functionality and Structure.................................................................................................57  
9.4 Memory Block .............................................................................................................................................61  
9.4.1 EPROM ............................................................................................................................................61  
9.4.2 SRAM ...............................................................................................................................................61  
i
PSD4XX Family  
PSD4XX/ZPSD4XX  
Field-Programmable Microcontroller Peripherals  
Table of Contents (cont.)  
9.4.3 Memory Select Map..........................................................................................................................61  
9.4.4 Memory Select Map for 8031 Application.........................................................................................62  
9.4.5 Peripheral I/O ...................................................................................................................................65  
9.5 Power Management Unit ............................................................................................................................67  
9.5.1 Standby Mode ..................................................................................................................................67  
9.5.2 Other Power Saving Options............................................................................................................70  
10.0 Page Register.....................................................................................................................................................72  
11.0 Security Protection..............................................................................................................................................72  
12.0 System Configuration .........................................................................................................................................73  
12.1 Reset Input ..............................................................................................................................................76  
12.2 ZPLD and Memory During Reset.............................................................................................................76  
12.3 Register Values During and After Reset..................................................................................................76  
12.4 ZPLD Macrocell Initialization ...................................................................................................................76  
13.0 Specifications......................................................................................................................................................77  
13.1 Absolute Maximum Ratings.....................................................................................................................77  
13.2 Operating Range .....................................................................................................................................77  
13.3 Recommended Operating Conditions......................................................................................................77  
13.4 AC/DC Parameters..................................................................................................................................78  
13.5 Example of ZPSD4XX Typical Power Calculation at V = 5.0 V...........................................................80  
CC  
13.6 DC Characteristics (5 V ± 10% versions) ................................................................................................81  
13.7 AC/DC Parameters – ZPLD Timing Parameters .....................................................................................82  
13.8 Microcontroller Interface – AC/DC Parameters .......................................................................................84  
13.9 DC Characteristics (ZPSD4XXV Versions) (3.0 V ± 10% versions)........................................................88  
13.10 AC/DC Parameters – ZPLD Timing Parameters (3.0 V ± 10% versions)................................................89  
13.11 Microcontroller Interface – AC/DC Parameters (3.0 V± 10% versions)...................................................91  
14.0 Timing Diagrams.................................................................................................................................................95  
15.0 Pin Capacitance................................................................................................................................................102  
16.0 AC Testing........................................................................................................................................................102  
17.0 Erasure and Programming................................................................................................................................102  
18.0 PSD4XX Pin Assignments................................................................................................................................103  
19.0 Package Information.........................................................................................................................................105  
20.0 PSD4XX Product Ordering Information ............................................................................................................110  
20.1 PSD4XX Family – Selector Guide .........................................................................................................110  
20.2 Part Number Construction .....................................................................................................................111  
20.3 Ordering Information..............................................................................................................................111  
ii  
Programmable Peripheral  
PSD4XX Family  
Field-Programmable Microcontroller Peripherals  
The PSD4XX family is a microcontroller peripheral that integrates high-performance and  
user-configurable blocks of EPROM, programmable logic, and SRAM into one part.  
The PSD4XX products also provide a powerful microcontroller interface that eliminates the  
need for external “glue logic”. The no “glue logic” concept provides a user-programmable  
interface to a variety of 8- and 16-bit (multiplexed or non-multiplexed) microcontrollers that  
is easy to use. The part’s integration, small form factor, low power consumption, and ease  
of use make it the ideal part for interfacing to virtually any microcontroller.  
1.0  
Introduction  
The PSD4XX provides two Zero-power PLDs (ZPLD): a Decode PLD (DPLD) and a  
General-purpose PLD (GPLD). A configuration bit (Turbo) can be set by the MCU, and will  
automatically place the ZPLDs into Standby Mode if no inputs are changing. The ZPLDs are  
designed to consume minimum power using Zero-power CMOS technology that uses only  
10 µA (typical) standby current. Unused product terms are automatically disabled, also  
reducing power, regardless of the Turbo bit setting.  
The main function of the DPLD is to perform address decoding for the internal I/O ports,  
EPROM, and SRAM. The address decoding can be based on up to 24 bits of address  
inputs, control signals (RD, WR, PSEN, etc.), and internal page logic. The DPLD supports  
separate program and data spaces (for 8031 compatible MCUs).  
The General-purpose PLD (GPLD) can be used to implement various logic functions  
defined by the user, such as:  
State machines  
Loadable counters and shift registers  
Inter-processor mailbox  
External control logic (chip selects, output enables, etc.).  
The GPLD has access to up to 59 inputs, 118 product terms, 24 macrocells, and 24 I/O  
pins.  
1
PSD4XX Family  
The PSD4XX has 40 I/O pins that are divided among 5 ports. Each I/O pin can be  
individually configured to provide many functions, including the following:  
1.0  
Introduction  
(cont.)  
MCU I/O  
GPLD I/O  
Latched address output (for MCUs with multiplexed data bus)  
Data bus (for MCUs with non-multiplexed data bus).  
The PSD4XX can easily interface with virtually any 8- or 16-bit microcontroller with a  
multiplexed or non-multiplexed bus. All of the MCU control signals are connected to the  
ZPLDs, enabling the user to generate signals for external devices.  
The PSD4XX provides between 256 Kbits and 1 Mbit of EPROM that is divided in to four  
equal-sized blocks. Each block can occupy a different address location, allowing for  
versatile address mapping. The access time of the EPROM includes the address latching  
and DPLD decoding.  
The PSD4XX has an optional 16 Kbit SRAM that can be battery-backed by connecting a  
battery to the Vstby pin. The battery will protect the contents of the SRAM in the event of a  
power failure. Therefore, you can place data in the SRAM that you want to keep after the  
power is switched off. Power switchover to the battery automatically occurs when VCC drops  
below Vstby  
.
A four-bit Page Register enables easy access to the I/O section, EPROM, and SRAM for  
microcontrollers with limited address space. The Page Register outputs are connected to  
both ZPLDs and thus can also be used for external paging schemes.  
The Power Management Unit (PMU) of the PSD4XX enables the user to control the  
power consumption on selected functional blocks, based on system requirements.  
For microcontrollers that do not generate a chip select input for the PSD, the Automatic  
Power-Down (APD) unit of the PMU can be setup to enable the PSD to enter Power Down  
Mode or Sleep Mode, based on the inactivity of ALE (or AS).  
Implementing your design has never been easier than with PSDsoft—ST’s software  
development suite. Using PSDsoft, you can do the following:  
Configure your PSD4XX to work with virtually any microcontroller  
Specify what you want implemented in the programmable logic using a design file  
Simulate your design  
Download your design to the part using a programmer.  
2.0  
Key Features  
Single-chip programmable peripheral for microcontroller-based applications  
256K to 1 Mbit of UV EPROM with the following features:  
Configurable as 32, 64, or 128 K x 8; or as 16, 32, or 64 K x 16  
Divided into four equally-sized mappable blocks for optimized address mapping  
As fast as 70 ns access time, which includes address decoding  
Built-in Zero-power technology  
16 Kbit SRAM is configurable as 2K x 8 or 1K x 16. The access time can be as  
quick as 70 ns, including address decoding. The contents of the SRAM can be  
battery-backed by connecting a battery to the Vstby pin. The SRAM also has built-in  
Zero-power technology.  
40 I/O pins (divided into five 8-bit ports) that can be individually configured for:  
Standard MCU I/O  
PLD/macrocell I/O  
Latched address output  
High-order address inputs  
Special function I/O  
Open-drain output  
2
PSD4XX Family  
2.0  
Key Features  
Two Zero-power Programmable Logic Devices (ZPLDs): the Decode PLD (DPLD) and  
the General-purpose PLD (GPLD) can be used for:  
Up to 59 Input and 126 output product terms  
24 Macrocells and I/O  
Decode up to 16 MB of address  
State machines and state logic  
Generate external signals (chip selects, bus interface, etc.)  
Microcontroller logic that eliminates the need for external “glue logic” has the following  
features:  
Ability to interface to multiplexed and non-multiplexed buses  
Built-in address latches for multiplexed address/data bus  
ALE and Reset polarity are programmable  
Multiple configurations are possible for interface to many different microcontrollers  
Page logic is connected to the ZPLDs and expands the MCU address space to up to  
16 times  
Programmable power management allows:  
SRAM, EPROM, and ZPLDs to enter standby mode automatically  
Disabling of the clock input to the ZPLDs  
ZPLDs to enter a special low power mode (Sleep Mode), based on Turbo bit setting  
A security bit prevents reading the PSD4XX configuration and the ZPLD contents.  
Setting this bit will prevent the device from being copied on a device programmer.  
Built-in security enables the user to block read accesses from a device programmer  
Package choices include 68-pin PLCC, 68-pin CLDCC, and 80-pin TQFP  
Programmable polarity Reset output (includes hysteresis), based on Reset input  
Simple, menu-driven software (PSDsoft) allows configuration and design entry on a PC.  
Throughout this data sheet, references are made to the PSD4XX. In most cases, these  
references also cover the ZPSD4XX and ZPSD4XXV products. Exceptions will be noted.  
3.0  
Notation  
The main difference between the ZPSD4XX and the PSD4XX is the standby current (Isb).  
The ZPSD4XX devices have been rated for a lower standby current. Also, there is no  
low-voltage version of the PSD4XX. There is only the low-voltage version of the ZPSD4XX,  
which has a V suffix.  
Portable and battery powered systems have recently become major embedded control  
application segments. As a result, the demand for electronic components having extremely  
low power consumption has increased dramatically. Recognizing this need, ST  
has developed a new Zero Power technology. PSD4XX products virtually eliminate the DC  
component of power consumption reducing it to standby levels. Eliminating the DC  
component is the basis for the words “Zero Power”. PSD4XX products also minimize the  
AC power component when the chip is changing states. The result is a programmable  
microcontroller peripheral family that replaces discrete circuit functions while drawing  
minimal current.  
4.0  
Zero-Power  
Background  
3
 g
D
r
4
 m
ADDRESS/DATA/CONTROL BUS  
ZPLD  
INPUT  
BUS  
POWER  
MANAGER  
UNIT  
PAGE  
REG.  
VSTDBY  
256K1M BIT  
EPROM  
EPROM  
SELECTS  
PROG.  
BUS  
INTRF  
CONTROL  
RD, WR  
DECODE PLD  
(DPLD)  
SRAM  
SELECT  
16 K BITS  
SRAM  
PROG.  
PORT  
(NOTE 1)  
PERIPHERAL  
SELECTS  
PA0 – PA7  
PORT  
A
AD0 – AD15  
CSIOP  
I/O  
DECODER  
ADIO  
PORT  
GENERAL PLD  
(GPLD)  
24 MACROCELLS  
PROG.  
PORT PB0 – PB7  
27PT  
PORT A MACROCELLS  
PROG.  
PORT  
(NOTE 1)  
CLKIN  
PC0 – PC7  
80PT  
11PT  
PORT B MACROCELLS  
PORT  
B
PORT  
C
PORT E MACROCELLS  
(NOTE 2)  
PROG.  
PE0 – PE7  
PORT  
MACROCELL FEEDBACK OR PORT INPUT  
CLKIN  
PD0 – PD7  
PROG.  
PORT  
PORT  
E
PORT  
D
GLOBAL  
CONFIG.  
&
NOTES: 1. ZPLD INPUT BUS  
– A1 = 36 + CLOCK = 37 INPUTS  
– A2 = 58 + CLOCK = 59 INPUTS  
SECURITY  
CLKIN  
2. PORT E MACROCELLS AVAILABLE ON A2 VERSIONS ONLY.  
PSD4XX Family  
Upon each address or logic input change to the ZPSD, the device powers up from low  
power standby for a short time. Then the ZPSD consumes only the necessary power to  
deliver new logic or memory data to its outputs as a response to the input change. After the  
new outputs are stable, the ZPSD latches them and automatically reverts back to standby  
mode. The ICC current flowing during standby mode and during DC operation is identical  
and is only a few microamperes.  
5.0  
Integrated  
Power  
Management TM  
Operation  
The ZPSD automatically reduces its DC current drain to these low levels and does not  
require controlling by the CSI (Chip Select Input). Disabling the CSI pin unconditionally  
forces the ZPSD to standby mode independent of other input transitions.  
The only significant power consumption in the ZPSD occurs during AC operation.  
The ZPSD contains the first architecture to apply zero power techniques to memory and  
logic blocks.  
Figure 2 compares ZPSD Zero-power operation to the operation of a discrete solution.  
A standard microcontroller (MCU) bus cycle usually starts with an ALE (or AS) pulse and  
the generation of an address. The ZPSD detects the address transition and powers up for a  
short time. The ZPSD then latches the outputs of the PAD, EPROM and SRAM to the new  
values. After finishing these operations, the ZPSD shuts off its internal power, entering  
standby mode. The time taken for the entire cycle is less than the ZPSD’s “access time.”  
The ZPSD will stay in standby mode if inputs do not change between bus cycles. In an  
alternate system implementation using discrete EPROM, SRAM, and other discrete  
components, the system will consume operating power during the entire bus cycle. This is  
because the chip select inputs on the memory devices are usually active throughout the  
entire cycle. The AC power consumption of the ZPLD may be calculated using the  
composite frequency of the MCU address and control signals, as well as any other logic  
inputs to the ZPLD.  
NOTE: The ZPSD4XX is rated for lower standby current (ISB) than the PSD4XX.  
Figure 2. Zero-Power Operation vs. Discrete Implementation  
ALE  
SRAM  
ACCESS  
EPROM  
ACCESS  
EPROM  
ACCESS  
ADDRESS  
DISCRETE EPROM, SRAM & LOGIC  
ZPSD  
ICC  
ZPSD  
ZPSD  
TIME  
5
PSD4XX Family  
Shown in Figure 3 (below) is the software design flow for a PSD4XX device.  
PSDsoft—ST’s software development suite—is used throughout the design phase. You  
start with a design file that is written in PSDabel—a high-level hardware description  
language (HDL). Before you compile your design, you must also configure the PSD4XX so  
it knows what signals to expect from your microprocessor and what pre-runtime options  
should be set (such as the security bit).  
6.0  
Design Flow  
Once you have a design file and have configured the device, you are ready to run the Fitter  
and Address Translator. The Fitter accepts input from PSDabel and PSD Configuration,  
synthesizes this user logic and configuration, and fits the design to the PSD silicon. The  
Address Translator process allows the user to map the MCU firmware from a cross-  
compiler (in Intel HEX or S-Record format) into the NVM memory blocks within the PSD. As  
a result, the MCU firmware is merged with the logic and configuration definition of the PSD.  
The output of the Address Translator and the Fitter is the required object file that is used by  
a programmer to program the PSD device. The object file includes chip configuration, the  
PLD fusemap, and MCU firmware information.  
PSDsilosIII is an optional program that provides functional chip-level simulation of the  
PSD4XX. PSDsoft automatically creates files for input to the simulator. These files convey  
relevant design information to the simulator. As a result, the user only has to create a  
stimulus file since all of the signals and node names are taken from the design file.  
Figure 3. PSDsoft Development Tools  
PSDsoft  
Development Software  
PSD Configuration  
PSDabel™  
ZPLD DESCRIPTION  
(STATE MACHINE, DECODING)  
CHIP CONFIGURATION  
CODE FILE  
PSD Compiler  
THIRD PARTY  
(ZPLD FITTING, ADDRESS TRANSLATION)  
PROGRAMMERS  
PSD Programmer  
PSDsilos III™  
®
SILOSIII  
PSDpro/MagicPro  
CHIP SIMULATION  
CHIP PROGRAMMING  
6
PSD4XX Family  
There are 12 unique devices in the PSD4XX family. The part classifications are based on  
ZPLD configuration and size, EPROM size, and data bus width. The features of each part  
are listed in Table 1. See the ordering information section at the end of this document.  
7.0  
PSD4XX  
Family  
Table 1. PSD4XX Product Matrix  
DPLD + GPLD  
Part  
#
Bus  
Bit  
I/O  
Pins  
EPROM SRAM  
PMU  
Inputs  
Product Registered  
Terms  
K Bit  
K Bit  
Macrocells  
401A1  
411A1  
x8/x16  
x8  
37  
37  
113  
113  
8
8
40  
40  
Yes  
Yes  
256  
256  
16  
16  
402A1  
412A0  
412A1  
x8/x16  
x8  
37  
37  
37  
113  
113  
113  
8
8
8
40  
40  
40  
Yes  
Yes  
Yes  
512  
512  
512  
16  
x8  
16  
403A1  
413A1  
x8/x16  
x8  
37  
37  
113  
113  
8
8
40  
40  
Yes  
Yes  
1024  
1024  
16  
16  
401A2  
411A2  
x8/x16  
x8  
59  
59  
126  
126  
24  
24  
40  
40  
Yes  
Yes  
256  
256  
16  
16  
402A2  
412A2  
x8/x16  
x8  
59  
59  
126  
126  
24  
24  
40  
40  
Yes  
Yes  
512  
512  
16  
16  
403A2  
413A2  
x8/x16  
x8  
59  
59  
126  
126  
24  
24  
40  
40  
Yes  
Yes  
1024  
1024  
16  
16  
NOTE: PMU = Power Management Unit.  
7
PSD4XX Family  
The following table describes the pin names and pin functions of the PSD4XX. Pins that  
have multiple names and/or functions are defined by user configuration.  
8.0  
Table 2.  
PSD4XX Pin  
Descriptions  
Pin Name  
Pin Function  
Type  
Function Descriptions  
ADIO0 – ADIO15 Address/data bus  
I/O  
1. Address/data bus, multiplexed  
bus mode  
2. Address bus, non-multiplexed  
bus mode  
RD  
Multiple Names  
1. Read  
2. E  
3. DS  
4. LDS  
I
I
Multiple functions  
1. Read signal  
2. E signal (Clock)  
3. Data strobe signal  
4. Low byte data strobe  
WR  
Multiple Names  
1. WR  
Multiple functions  
1. Write signal  
2. R/W  
3. WRL  
2. Read-write signal  
3. Low byte write signal  
CSI  
Chip Select Input  
I
I
Active low, select PSD4XX  
standby mode if high.  
RESET  
Reset Input  
Reset I/O ports, ZPLD/macrocells,  
and Configuration Registers.  
Active low.  
CLKIN  
Input clock  
I/O Port A  
I
Clock input to ZPLD macrocells,  
ZPLD Array and APD counter.  
Connect to ground if Clock Input  
not used.  
PA0 – PA7  
I/O  
Multiple functions  
1. I/O port  
2. ZPLD/macrocell I/O port  
3. Latched address outputs  
(PA0 – PA7) (A0 – A7)  
4. High address inputs (A16 – A23)  
PB0 – PB7  
PC0 – PC7  
I/O Port B  
I/O Port C  
I/O  
Multiple functions  
1. I/O port  
2. ZPLD/macrocell I/O port  
3. Latched address outputs  
(PB0–PB7) (A0–A7) or (A8–A15)  
I/O  
CMOS  
or  
Multiple functions  
1. I/O port  
2. ZPLD input port*  
3. Latched address outputs  
(PC0 – PC7) (A0–A7)  
4. Data Port (D0 – D7,  
non-multiplexed bus)  
OD  
PD0 – PD7  
I/O Port D  
I/O  
CMOS  
or  
Multiple functions  
1. I/O port  
2. ZPLD input port*  
OD  
3. Latched address outputs  
(PD0–PD7) (A0–A7) or (A8–A15)  
4. Data Port (D8D15,  
non-multiplexed bus)  
*Available only in PSD4XXA2 and ZPSD4XXA2 Series.  
8
PSD4XX Family  
8.0  
Pin Name  
Pin Function  
Type  
Function Descriptions  
Table 2.  
PSD4XX Pin  
Descriptions  
(Cont.)  
PE0  
Port PE, pin 0  
1. BHE  
2. PSEN  
3. WRH  
4. UDS  
I/O  
Multiple functions  
1. High byte enable, 16 bit data  
2. Read program memory, 8031 signal  
3. Write high data byte  
4. Upper Data Strobe  
5. SIZ0  
6. PE0  
5. Byte enable, 68300 signal  
6. I/O pin  
7. PE0  
7. ZPLD I/O pin  
8. PE0  
8. Latched Address Out – A0  
PE1  
Port PE, pin 1  
1. ALE  
2. PE1  
I/O  
Multiple functions  
1. Address strobe  
2. I/O pin  
3. PE1  
3. ZPLD I/O pin  
4. PE1  
4. Latched Address Out – A1  
PE2  
PE3  
PE4  
PE5  
PE6  
PE7  
Port PE, pin 2  
1. PE2  
2. PE2  
Multiple functions  
1. I/O pin  
2. ZPLD I/O pin*  
3. Latched Address Out – A2  
I/O  
I/O  
I/O  
I/O  
I/O  
3. PE2  
Port PE, pin 3  
1. PE3  
2. PE3  
Multiple functions  
1. I/O pin  
2. ZPLD I/O pin*  
3. Latched Address Out – A3  
3. PE3  
Port PE, pin 4  
1. PE4  
2. PE4  
Multiple functions  
1. I/O pin  
2. ZPLD I/O pin*  
3. Latched Address Out – A4  
3. PE4  
Port PE, pin 5  
1. PE5  
2. PE5  
Multiple functions  
1. I/O pin  
2. ZPLD I/O pin*  
3. Latched Address Out – A5  
3. PE5  
Port PE, pin 6  
1. PE6  
2. PE6  
Multiple functions  
1. I/O pin  
2. ZPLD I/O pin*  
3. Latched Address Out – A6  
3. PE6  
Port PE, pin 7  
1. APD CLK  
2. PE7  
3. PE7  
4. PE7  
Multiple functions  
1. Automatic Power Down Clock Input  
2. I/O pin  
3. ZPLD I/O pin*  
4. Latched Address Out – A7  
I/O  
I
Vstdby  
Vstdby  
SRAM power pin for standby  
operation (battery backup)  
VCC  
VCC  
I
I
VCC power pin  
Ground pin  
GND  
GND  
*Available only in PSD4XXA2 and ZPSD4XXA2 Series.  
9
PSD4XX Family  
PSD4XX consists of five major functional blocks:  
ZPLD Blocks  
Bus Interface  
9.0  
The PSD4XX  
Architecture  
I/O Ports  
Memory Block  
Power Management Unit  
The functions of each block are described in the following sections. Many of the blocks  
perform multiple functions, and are user configurable. The chip configurations are specified  
by the user in the PSDsoft Development Software. Other configurations are specified by  
setting up the appropriate bits in the configuration registers during run time.  
9.1 The ZPLD Block  
The PSD4XX series devices provide two ZPLD configurations. The ZPLD in the  
PSD4XXA1 devices has 8 registered macrocells, 8 combinatorial macrocells, and up to 113  
product terms.  
The PSD4XXA2 has a full function ZPLD with 24 registered macrocells and up to 126  
product terms.  
9.1.1 The PSD4XXA1 ZPLD Block  
Key Features  
2 Embedded ZPLD devices  
8 registered and 8 combinatorial macrocells  
Combinatorial/registered outputs  
Maximum 113 product terms  
Programmable output polarity  
User configured register clear/preset  
User configured register clock input  
37 Inputs  
Accessible via 16 I/O pins  
Power Saving Mode  
UV-Erasable  
General Description  
The ZPLD block has 2 embedded PLD devices:  
DPLD  
The Address Decoding PLD, generating select signals to internal I/O or memory blocks.  
GPLD  
The General Purpose PLD provides 8 registered and combinatorial programmable  
macrocells for general or complex logic implementation; dedicated to user application.  
Figure 4 shows the architecture of the ZPLD. The PLD devices all share the same input  
bus. The true or complement of the 37 input signals are fed to the programmable  
AND-ARRAY. Names and sources of the input signals are shown in Table 3. The PB  
signals, depending on user configuration, can either be macrocell feedbacks or inputs from  
Port B.  
10  
PSD4XX Family  
Figure 4. ZPLD Block Diagram  
The PSD4XX  
Architecture  
(cont.)  
11  
PSD4XX Family  
Table 3. ZPLD Input Signals  
9.0  
The PSD4XX  
Architecture  
(cont.)  
Signal Name  
PA0 – PA7  
PB0 – PB7  
PE0 – PE1  
PGR0 – PGR3  
A8 – A15, A0, A1  
RD/E/DS  
From  
Port A inputs or Macrocell PA feedback  
Port B inputs or Macrocell PB feedback  
Port E inputs (signals ALE, PSEN/BHE)  
Page Mode Register  
MCU Address Lines  
MCU bus signal  
WR/R_W  
MCU bus signal  
CLKIN  
Input Clock  
RESET  
Reset input  
CSI  
CSI input (ORed with power down from PMU)  
9.1.1.1 The DPLD  
The DPLD is used for internal address decoding generating the following eight chip select  
signals:  
ES0 – ES3  
EPROM selects, block 0 to block 3  
RS0  
SRAM block select  
CSIOP  
I/O Decoder chip select  
PSEL0 – PSEL1  
Peripheral I/O mode select signals  
The I/O Decoder enabled by the CSIOP generates chip selects for on-chip registers or I/O  
ports based on address inputs A[7:0].  
As shown in Figure 4, the DPLD consists of a large programmable AND ARRAY. There are  
a total of 37 inputs and 8 outputs. Each output consists of a single product term. Although  
the user can generate select signals from any of the inputs, the select signals are typically  
a function of the address and Page Register inputs. The select signals are defined by the  
user in the ABEL file (PSDabel).  
The address line inputs to the DPLD include A0, A1 and A8 – A15. If more address lines  
are needed, the user can bring in the lines through Port A to the DPLD.  
12  
PSD4XX Family  
9.1.1.2 The GPLD  
9.0  
The structure of the General Purpose PLD consists of a programmable AND ARRAY  
and 2 sets of I/O Macrocells. The ARRAY has 37 input signals, same as the DPLD.  
From these inputs, “ANDed” functions are generated as product term inputs to the  
macrocells. The I/O Macrocell sets are named after the I/O Ports they are linked to,  
e.g., the macrocells connected to Port B are named PB Macrocells. The PB macrocells  
are registered macrocells with D-type flip-flops, where PA consists of combinatorial  
macrocells.  
The PSD4XX  
Architecture  
(cont.)  
9.1.1.3 TPA Macrocell Structure  
Figure 5 shows the PA Macrocell block, which consists of 8 identical combinatorial  
macrocells. Each macrocell output can be connected to its own I/O pin on Port A.  
There is one user programmable global product term that is output from the GPLD’s  
AND ARRAY which is shared by all the macrocells in Port A:  
PA.OE  
Enable or tri-state Port A output pins  
The circuit of a PA Macrocell is shown in Figure 6. There are 4 product terms from the  
GPLD’s AND ARRAY as inputs to the macrocell. Users can select the polarity of the  
output, and configure the macrocell to operate as:  
GPLD Input  
Use Port A pin as dedicated input  
GPLD Output  
Use Port A pin as dedicated output  
13  
PSD4XX Family  
Figure 5. DPLD Logic Array  
9.0  
The PSD4XX  
Architecture  
(cont.)  
14  
PSD4XX Family  
Figure 6. PA Macrocell Block Diagram  
9.0  
The PSD4XX  
Architecture  
(cont.)  
15  
PSD4XX Family  
Figure 7. PA Macrocell  
9.0  
The PSD4XX  
Architecture  
(cont.)  
16  
PSD4XX Family  
9.1.1.4 Port B Macrocell Structure  
9.0  
Figure 7 shows the PB Macrocell block, which consists of 8 identical macrocells. Each  
macrocell output can be connected to its own I/O pin on Port B. The two inputs, CLKIN and  
MACRO-RST, are used as clock and clear inputs to all the macrocells. The CLKIN comes  
directly from the CLKIN input pin. The MACRO-RST is the same as the Reset input pin  
except it is user configurable.  
The PSD4XX  
Architecture  
(cont.)  
The circuit of a PB Macrocell is shown in Figure 8. There are 10 product terms from the  
GPLDs AND ARRAY as inputs to the macrocell. Users can select the polarity of the output,  
and configure the macrocell to operate as:  
Registered Output  
Select output from D flip flop.  
Combinatorial Output  
Select output from OR gate.  
GPLD Input  
Use Port B pin as dedicated input.  
GPLD Output  
Use Port B pin as dedicated output.  
GPLD I/O  
Use Port B pin as bidirectional pin.  
Macrocell Feedback  
Register feedback for state machine implementations or expander feedback from the  
combinatorial output, to possibly expand the number of product terms available to  
another macrocell.  
In case of "Buried Feedback", where the output of the macrocell is not connected to  
a Port B pin, Port B can be configured to perform other user defined I/O functions.  
Each D flip flop in the macrocells has its own dedicated asynchronous clear, preset and  
clock input. The signals are defined as follow:  
PRESET  
Active only if defined by a product term (PBi.PR)  
CLEAR  
Two selectable inputs: Reset input and/or user defined product term (PBi.RE)  
CLK  
Two selectable inputs – CLKIN input or user defined product term (PBi.CLK).  
The macrocell is operated in Synchronous Mode if the clock input is CLKIN, and is in  
Asynchronous Mode if the clock is a product-term clock defined by the user.  
Figure 9 shows the input/output path of a PB macrocell to the Port pin with which it is  
associated. If the Port pin is specified as a PB output pin in the PSDsoft, the MUX in the I/O  
Port Cell selects the PB Macrocell as an output of the Port pin. The output enable signal to  
the buffer in the I/O cell can be controlled by a product term from the AND Array.  
If the Port pin is specified as a ZPLD input pin, the MUX in the PB Macrocell selects the  
Port input signal to be one of the 61 signals in the ZPLD Input Bus.  
17  
PSD4XX Family  
9.1.1.5 The ZPLD Power Management  
9.0  
The ZPLD implements a Zero Power Mode, which provides considerable power savings  
for low to medium frequency operations. To enable this feature, the ZPLD Turbo bit in the  
Power Management Mode Register 0 (PMMR0) has to be turned off.  
The PSD4XX  
Architecture  
(cont.)  
If none of the inputs to the ZPLD are switching for a time period of 90ns, the ZPLD puts  
itself into Zero Power Mode and the current consumption is minimal. The ZPLD will  
resume normal operation as soon as one or more of the inputs change state.  
Two other features of the ZPLD provide additional power savings:  
1. Clock Disable:  
Users can disable the clock input to the ZPLD and/or macrocells,thereby reducing  
AC power consumption.  
2. Product Term Disable:  
Unused product terms in the ZPLD are disabled by the PSDsoft Software  
automatically for further power savings.  
The ZPLD power configuration is described in the Power Management Unit section.  
18  
PSD4XX Family  
Figure 8. PB Macrocell Block Diagram  
9.0  
The PSD4XX  
Architecture  
(cont.)  
19  
PSD4XX Family  
Figure 9. PB Macrocell  
9.0  
The PSD4XX  
Architecture  
(cont.)  
20  
PSD4XX Family  
Figure 10. PB Macrocell Input/Output Port  
9.0  
The PSD4XX  
Architecture  
(cont.)  
21  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.1.2 The PSD4XXA2 ZPLD Block  
Key Features  
2 Embedded ZPLD devices  
24 macrocells  
Combinatorial/registered outputs  
Maximum 126 product terms  
Programmable output polarity  
User configured register clear/preset  
User configured register clock input  
59 Inputs  
Accessible via 24 I/O pins  
Power Saving Mode  
UV-Erasable  
General Description  
The ZPLD block has 2 embedded PLD devices:  
DPLD  
The Address Decoding PLD, generating select signals to internal I/O or memory blocks.  
GPLD  
The General Purpose PLD provides 24 programmable macrocells for general  
or complex logic implementation; dedicated to user application.  
Figure 11 shows the architecture of the ZPLD. The PLD devices all share the same  
input bus. The true or complement of the 59 input signals are fed to the programmable  
AND-ARRAY. Names and source of the input signals are shown in Table 4. The PA, PB, PE  
signals, depending on user configuration, can either be macrocell feedbacks or inputs from  
Port A, B or E.  
22  
PSD4XX Family  
Figure 11. PSD4XXA2 ZPLD Block Diagram  
The PSD4XX  
Architecture  
(cont.)  
23  
PSD4XX Family  
Table 4. ZPLD Input Signals  
Signal Name  
The PSD4XX  
Architecture  
(cont.)  
From  
PA0 – PA7  
PB0 – PB7  
PE0 – PE7  
PC0 – PC7  
PD0 – PD7  
PGR0 – PGR3  
A8 – A15, A0, A1  
RD/E/DS  
Port A inputs or Macrocell PA feedback  
Port B inputs or Macrocell PB feedback  
Port E inputs or Macrocell PE feedback  
Port C inputs  
Port D inputs  
Page Mode Register  
MCU Address Lines  
MCU bus signal  
WR/R_W  
CLKIN  
MCU bus signal  
Input Clock  
RESET  
Reset input  
CSI  
CSI input (ORed with power down from PMU)  
9.1.2.1 The DPLD  
The DPLD is used for internal address decoding generating the following eight chip select  
signals:  
ES0 – ES3  
EPROM selects, block 0 to block 3  
RS0  
SRAM block select  
CSIOP  
I/O Decoder chip select  
PSEL0 – PSEL1  
Peripheral I/O mode select signals  
The I/O Decoder enabled by the CSIOP generates chip selects for on-chip registers or I/O  
ports based on address inputs A[7:0].  
As shown in Figure 12, the DPLD consists of a large programmable AND ARRAY. There  
are a total of 59 inputs and 8 outputs. Each output consists of a single product term.  
Although the user can generate select signals from any of the inputs, the select signals are  
typically a function of the address and Page Register inputs. The select signals are defined  
by the user in the ABEL file (PSDabel).  
The address line inputs to the DPLD include A0, A1 and A8 – A15. If more address lines  
are needed, the user can bring in the lines through Port A to the DPLD.  
24  
PSD4XX Family  
Figure 12. DPLD Logic Array  
The PSD4XX  
Architecture  
(cont.)  
25  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.1.2.2 The GPLD  
The structure of the General Purpose PLD consists of a programmable AND ARRAY and  
3 sets of I/O Macrocells. The ARRAY has 59 input signals, same as the DPLD. From these  
inputs, “ANDed” functions are generated as product term inputs to the macrocells. The I/O  
Macrocell sets are named after the I/O Ports they are linked to, e.g., the macrocells  
connected to Port A are named PA Macrocells. The 3 sets of macrocells, PA, PB and PE,  
are similar in structure and function.  
Figure 13 shows the output/input path of a GPLD macrocell to the Port pin with which it is  
associated. If the Port pin is specified as a GPLD output pin in PSDsoft, the MUX in the I/O  
Port Cell selects the GPLD macrocell as an output of the Port pin. The output enable signal  
to the buffer in the I/O cell can be controlled by a product term from the AND ARRAY.  
If the Port pin is specified as a ZPLD input pin, the MUX in the GPLD macrocell selects the  
Port input signal to be one of the 61 signals in the ZPLD Input Bus.  
9.1.2.3 Port A Macrocell Structure  
Figure 14 shows the PA Macrocell block, which consists of 8 identical macrocells.  
Each macrocell output can be connected to its own I/O pin on Port A. There are 3 user  
programmable global product terms output from the GPLD’s AND ARRAY which are  
shared by all the macrocells in Port A:  
PA.OE  
Enable or tri-state Port A output pins  
PA.PR  
Preset D flip flop in the macrocells  
PA.RE  
Reset/Clear D flip flop in the macrocells  
Two other inputs, CLKIN and MACRO-RST, are used as clock and clear inputs to the D flip  
flop. The CLKIN comes directly from the CLKIN input pin. The MACRO-RST is the same as  
the Reset input pin except it is user configurable.  
The circuit of a PA Macrocell is shown in Figure 15. There are 6 product terms from the  
GPLD’s AND ARRAY as inputs to the macrocell. Users can select the polarity of the  
output, and configure the macrocell to operate as:  
Registered Output  
Select output from D flip flop  
Combinatorial Output  
Select output from OR gate  
GPLD Input  
Use Port A pin as dedicated input  
GPLD Output  
Use Port A pin as dedicated output  
GPLD I/O  
Use Port A pin as bidirectional pin  
Macrocell Feedback  
Register feedback for state machine implementations or expander feedback from  
the combinatorial output, to expand the number of product terms available to another  
macrocell.  
In case of "Buried Feedback", where the output of the macrocell is not connected to a  
Port A pin, Port A can be configured to perform other user defined I/O functions.  
The two global product terms assigned for asynchronous clear (PA.RE) and preset (PA.PR)  
are mainly for proper PA Macrocell initialization. The macrocell flip-flop can also be cleared  
during reset by MACRO-RST, if such an option is chosen. The clock source is always the  
input clock CLKIN.  
26  
PSD4XX Family  
Figure 13. GPLD Macrocell Input/Output Port  
27  
PSD4XX Family  
Figure 14. PA Macrocell Block Diagram  
The PSD4XX  
Architecture  
(cont.)  
28  
PSD4XX Family  
Figure 15. PSD4XXA2 PA Macrocell  
The PSD4XX  
Architecture  
(cont.)  
29  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.1.2.4 Port B Macrocell Structure  
Figure 16 shows the PB Macrocell block, which consists of 8 identical macrocells. Each  
macrocell output can be connected to its own I/O pin on Port B. The two inputs, CLKIN and  
MACRO-RST, are used as clock and clear inputs to all the macrocells. The CLKIN comes  
directly from the CLKIN input pin. The MACRO-RST is the same as the Reset input pin  
except it is user configurable.  
The circuit of a PB Macrocell is shown in Figure 17. There are 10 product terms from the  
GPLD’s AND ARRAY as inputs to the macrocell. Users can select the polarity of the output,  
and configure the macrocell to operate as:  
Registered Output  
Select output from D flip flop.  
Combinatorial Output  
Select output from OR gate.  
GPLD Input  
Use Port B pin as dedicated input.  
GPLD Output  
Use Port B pin as dedicated output.  
GPLD I/O  
Use Port B pin as bidirectional pin.  
Macrocell Feedback  
Register feedback for state machine implementations or expander feedback  
from the combinatorial output, to possibly expand the number of product terms  
available to another macrocell.  
In case of "Buried Feedback", where the output of the macrocell is not  
connected to a Port B pin, Port B can be configured to perform other user  
defined I/O functions.  
Each D flip flop in the macrocells has its own dedicated asynchronous clear, preset and  
clock input. The signals are defined as follow:  
PRESET  
Active only if defined by a product term (PBx.PR)  
CLEAR  
Two selectable inputs: Reset input or user defined product term (PBx .RE)  
CLK  
Two selectable inputs – CLKIN input or user defined product term (PBx.CLK).  
The macrocell is operated in Synchronous Mode if the clock input is  
CLKIN, and is in Asynchronous Mode if the clock is a product-term clock  
defined by the user.  
30  
PSD4XX Family  
Figure 16. PSD4XXA2 PB Macrocell Block Diagram  
The PSD4XX  
Architecture  
(cont.)  
31  
PSD4XX Family  
Figure 17. PSD4XXA2 PB Macrocell  
The PSD4XX  
Architecture  
(cont.)  
32  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.1.2.5 Port E Macrocell Structure  
Figure 18 shows the PE Macrocell block, which consists of 8 identical macrocells. Each  
macrocell output can be connected to its own I/O pin on Port E. There are 3 user  
programmable global product terms output from the GPLD’s AND ARRAY which are shared  
by all the macrocells in Port E:  
PE.OE  
Enable or tri-state Port PE output pins  
PE.PR  
Preset D flip flop in the macrocells  
PE.RE  
Reset/Clear D flip flop in the macrocells  
Two other inputs, CLKIN and MACRO-RST, are used as clock and clear inputs to the D flip  
flop. The CLKIN comes directly from the CLKIN input pin. The MACRO-RST is the same as  
the Reset input pin except it is user configurable.  
The circuit of a PE Macrocell is shown in Figure 19. There is only one product term from  
the GPLD’s AND ARRAY as input to the macrocell. Users can select the polarity of the  
output and configure the macrocell to operate as:  
Registered Output  
Select output from D flip flop  
Combinatorial Output  
Select output from OR gate  
GPLD Input  
Use Port E pin as dedicated input  
GPLD Output  
Use Port E pin as dedicated output  
GPLD I/O  
Use Port E pin as bidirectional pin  
Macrocell Feedback  
Register feedback for state machine implementations or expander feedback from the  
combinatorial output, to possibly expand the number of product terms available to  
another macrocell.  
In case of "Buried Feedback", where the output of the macrocell is not connected  
to Port E pin, Port E can be configured to perform other user defined I/O functions.  
If pins PE0 and PE1 are used as bus control signal inputs (ALE, PSEN/BHE), the  
corresponding macrocells' feedbacks are disabled. The bus control signals are  
connected to the ZPLD Input Bus.  
The two global product terms assigned for asynchronous clear (PE.RE) and preset (PE.PR)  
are for proper PE Macrocell initialization.  
The macrocell flip-flop can also be cleared during reset by MACRO-RST as an option. The  
clock source is always the input clock CLKIN.  
33  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.1.2.6 The ZPLD Power Management  
The ZPLD implements a Zero Power Mode, which provides considerable power savings  
for low to medium frequency operations. To enable this feature, the ZPLD Turbo bit in the  
Power Management Mode Register 0 (PMMR0) has to be turned off.  
If none of the inputs to the ZPLD are switching for a time period of 70ns, the ZPLD puts  
itself into Zero Power Mode and the current consumption is minimal. The ZPLD will resume  
normal operation as soon as one or more of the inputs change state.  
Two other features of the ZPLD provide additional power savings:  
1. Clock Disable:  
Users can disable the clock input to the ZPLD and/or macrocells,  
thereby reducing AC power consumption.  
2. Product Term Disable:  
Unused product terms in the ZPLD are disabled by the PSDsoft Software automatically  
for further power savings.  
The ZPLD power configuration is described in the Power Management Unit section.  
34  
PSD4XX Family  
Figure 18. PE Macrocell Block Diagram  
The PSD4XX  
Architecture  
(cont.)  
35  
PSD4XX Family  
Figure 19. PE Macrocell  
The PSD4XX  
Architecture  
(cont.)  
36  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.2 Bus Interface  
The Bus Interface is very flexible and can be configured to interface to most  
microcontrollers with no glue logic. Table 5 lists some of the bus types to which the Bus  
Interface is able to interface.  
Table 5. Typical Microcontroller Bus Types  
Multiplexed  
Data Bus  
Width  
Bus Control  
Signals  
Microcontroller  
Mux  
8
WR, RD, PSEN, A0  
R/W, E, BHE, A0  
8031/80C51  
68HC11  
Mux/  
Non-mux  
8/16  
Mux  
8/16  
16  
WR, RD, BHE, A0  
WRL, RD, WRH, A0  
R/W, LDS, UDS  
R/W, DS, SIZ0, A0  
R/W, DS, BHE, BLE  
RD, WR  
80C196/80C186  
80C196SP  
68302  
Mux  
Non-mux  
Non-mux  
Non-mux  
Non-mux  
Non-mux  
Non-mux  
16  
8/16  
16  
68340  
68330, 68331  
68HC05C  
68HC12  
8
16  
R/W, E, LSTRB, A0  
R/W, DS  
16  
68HC16  
9.2.1 Bus Interface Configuration  
The Bus Interface Logic is user configurable. The type of bus interface is specified by  
the user in the PSDsoft software (PSD configuration). The bus control input pins have  
multi-function capabilities. By choosing the right configuration, the PSD4XX is able to  
interface to most microcontrollers, including the ones listed in Table 5. In Table 6, the  
names of the bus control input signal pins and their multiple functions are shown. For  
example, Pin PE0 can be configured by the PSD configuration software to perform any one  
of the five functions. Examples on the interface between the PSD4XX and some typical  
microcontrollers are shown in following sections.  
37  
PSD4XX Family  
Table 6. Alternate Pin Functions  
Pin  
The PSD4XX  
Architecture  
(cont.)  
Pin  
Function  
2
Pin  
Function  
3
Pin  
Function  
4
Pin  
Function  
5
Pin Name  
Function  
1
RD  
WR  
PE0  
PE1  
AD0  
RD  
WR  
BHE  
ALE  
A0  
E
DS  
LDS  
R/W  
PSEN  
WRL  
WRH  
UDS  
SIZ0  
BLE  
9.2.2 PSD4XX Interface To a Multiplexed Bus  
Figure 20 shows a typical connection to a microcontroller with a multiplexed bus. The  
ADIO port of the PSD4XX is connected directly to the microcontroller address/data bus  
(AD0-AD15 for 16 bit bus). The ALE input signal latches the address lines internally. In a  
read bus cycle, data is driven out through the ADIO Port transceivers after the specified  
access time. The internal ADIO Port connection for a 16 bit multiplexed bus is shown in  
Figure 21. The ADIO Port is in tri-state mode if none of the PSD4XX internal devices are  
selected.  
9.2.3 PSD4XX Interface To Non-Multiplexed Bus  
Figure 22 shows a PSD4XX interfacing to a microcontroller with a non-multiplexed  
address/data bus. The address bus is connected to the ADIO Port, and the data bus is  
connected to Port C and/or Port D, depending on the bus width. There is no need for the  
ADIO Port to latch the address internally, but the user is offered the option to do so in the  
PSD4XX PSDsoft Software. The data Ports are in tri-state mode when the PSD4XX is not  
accessed by the microcontroller.  
38  
PSD4XX Family  
Figure 20. Multiplexed Bus, 8 or 16-Bit Data Bus  
The PSD4XX  
Architecture  
(cont.)  
39  
PSD4XX Family  
Figure 21. ADIO Port, 16-Bit Multiplexed Bus Interface  
The PSD4XX  
Architecture  
(cont.)  
PSD4XX  
INTERNAL  
ADDRESS BUS  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
A0  
ADIO–0  
ADIO–1  
ADIO–2  
ADIO–3  
ADIO–4  
ADIO–5  
ADIO–6  
ADIO–7  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
LATCH  
G
AD8  
AD9  
A8  
A9  
ADIO–8  
ADIO–9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
A10  
A11  
A12  
A13  
A14  
A15  
ADIO–10  
ADIO–11  
ADIO–12  
ADIO–13  
ADIO–14  
ADIO–15  
LATCH  
G
PSD4XX  
INTERNAL  
DATA BUS  
ALE/AS  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
AD8  
D8  
AD9  
D9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
D10  
D11  
D12  
D13  
D14  
D15  
R_W  
40  
t
t
ThePSD4XX  
  8
PSD4XX  
[
]
D – 7 : 0  
[
]
]
D – 15 : 0  
PORT C  
PORT D  
ADIO  
PORT  
[
[
]
A – 15 : 0  
D – 15 : 8  
16-BIT DATA ONLY  
MICRO-  
CONTROLLER  
WR  
RD  
[
]
A 23:16  
RST  
PORT A  
PORT B  
(OPTIONAL)  
CSI  
PORT E  
BHE  
ALE  
PSD4XXFamilySD4XXFamily  
1
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.2.4 Data Byte Enable  
Microcontrollers have different data byte orientations with regard to the data bus. The  
following tables show how the PSD4XX handles the byte enable under different bus  
configurations. Even byte refers to locations with address A0 equal to “0”, and odd byte as  
locations with A0 equal to “1”.  
Table 7. 8-Bit Data Bus  
BHE  
A0  
D7 – D0  
X
0
Even Byte  
X
1
Odd Byte  
Table 8. 16-Bit Data Bus With BHE  
BHE  
A0  
0
D15 – D8  
Odd byte  
Odd byte  
D7 – D0  
Even byte  
0
0
1
1
0
Even byte  
Table 9. 16-Bit Data Bus With WRH and WRL  
WRH  
WRL  
D15 – D8  
Odd byte  
Odd byte  
D7 – D0  
Even byte  
0
0
1
0
1
0
Even byte  
Table 10. 16-Bit Data Bus With SIZ0, A0  
SIZ0  
A0  
0
D15 – D8  
Even byte  
Even byte  
D7 – D0  
Odd byte  
0
1
1
0
1
Odd byte  
Table 11. 16-Bit Data Bus With UDS, LDS  
LDS  
0
UDS  
D15 – D8  
Even byte  
Even byte  
D7 – D0  
Odd byte  
0
0
1
1
0
Odd byte  
42  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.2.5 Optional Features  
The PSD4XX provides two optional features to add flexibility to the Bus Interface:  
1. Address In  
Port A can be configured as high order address (A16-A23) inputs to the ZPLD for  
EPROM or other decoding. Inputs are latched by ALE/AS if Multiplexed Bus is selected.  
Other Ports can be configured as address input ports for the ZPLD. These inputs should  
not be used for EPROM decoding and are not latched internally.  
2. Address Out  
For multiplexed bus only. Latched address lines A0-A15 are available on  
Port A, B, C or D.  
Details on the optional features are described in the I/O Port section.  
9.2.6 Bus Interface Examples  
The next four figures show the PSD4XX interfacing with some popular microcontrollers.  
The examples show only the basic bus connections; some of the pin names on the  
PSD4XX parts change to reflect the actual pin functions.  
Figure 23 shows the interface to the 80C31. The 80C31 has a 16 bit address bus and an  
8-bit data bus. The lower address byte is multiplexed with the data bus. The RD and WR  
signals are used for accessing the data memory (SRAM) and the PSEN signal is for  
reading program memory (EPROM). The ALE signal is active high and is used to latch the  
address internally. Port C provides latched address outputs A[7:0]. Ports A, B, D, and E  
(PE2-PE7) can be configured to perform other functions. The RSTOUT reset to the 80C31  
is generated by the ZPLD from the RESET input. This configuration eliminates any reset  
race condition between the 80C31 and the PSD4XX.  
Figure 24 shows the 68HC11 interface, which is similar to the 80C31 except the PSD4XX  
generates internal RD and WR from the 68HC11’s E and R/W signals.  
In Figure 25, the Intel 80C196 microcontroller is interfaced to the PSD4XX. The 80C196  
has a multiplexed 16-bit address and data bus. The BHE signal is used for data byte  
selection. Ports C and D are used as output ports for latched address A[15:0]. Pins PE6  
and PE7 can be programmed as ZPLD outputs to provide the READY and BUSWIDTH  
control signals to the 80C196.  
Figure 26 shows Motorola’s MC68331 interfacing to the PSD4XX. The MC68331 has a  
16-bit data bus and a 24-bit address bus. D15 – D8 from the MC68331 are connected to  
Port D, and D7 – D0 are connected to Port C.  
43  
PSD4XX Family  
Figure 23. Interfacing PSD4XX With 80C31  
44  
PSD4XX Family  
Figure 24. Interfacing PSD4XX With 68HC11  
45  
PSD4XX Family  
Figure 25. Interfacing PSD4XX With 80C196  
46  
PSD4XX Family  
Figure 26. Interfacing PSD4XX With Motorola 68331  
47  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.3 I/O Ports  
There are 5 programmable 8-bit I/O ports: Port A, Port B, Port C, Port D and Port E. These  
ports all have multiple operating modes, depending on the configuration. Some of the basic  
functions are providing input/output for the ZPLD, or can be used for standard I/O. Each  
port pin is individually configurable, thus enabling a single 8-bit port to perform multiple  
functions. The I/O ports occupy 256 bytes of memory space as defined by “CSIOP”. Refer  
to the System Configuration section for I/O register address offset.  
To set up the port configuration the user is required to:  
1. Define I/O Port Chip Select (CSIOP) in the ABEL file.  
2. Initialize certain port configuration registers in the user’s program and/or  
3. Specify the configuration in the PSD4XX PSDsoft Software.  
4. Unused input pins should be tied to VCC or GND.  
The following is a description of the operating modes of the I/O ports. The functions of the  
port registers are described in later sections.  
9.3.1 Standard MCU I/O  
The Standard MCU I/O Mode provides additional I/O capability to the microcontroller. In this  
mode, the ports can perform standard I/O functions such as sensing or controlling various  
external I/O devices. Operation options of this mode are as follows:  
Configuration  
1. Declare pins or signals which are used as I/O in the ABEL file.  
2. Set the bit or bits in the Control Register to "1".  
3. As Output Port  
– Write output data to Data Out Register  
– Set Direction Register to output mode  
4. As Input Port  
– Set Direction Register to input mode  
– Read input from Data In Register  
The port remains an output or input port as long as the Direction Register is not changed.  
9.3.2 PLD I/O  
The PLD I/O mode enables the port to be configured as an input to the ZPLD, or as an  
output from the GPLD macrocell. The output can be tri-stated with a control signal defined  
by a product term from the ZPLD. This mode is configured by the user in the PSD4XX  
PSDsoft Software, and is enabled upon power up. For a detailed description, see the  
section on the ZPLD.  
Configuration  
1. Declare pins or signals in the ABEL file (PSDsoft).  
2. Write logic equations in the ABEL file.  
3. PSD Compiler maps the PLD functions to the PSD.  
48  
PSD4XX Family  
9.3.3 Address Out  
The PSD4XX  
Architecture  
(cont.)  
For microcontrollers with a multiplexed address/data bus, the I/O ports in Address-Out  
mode are able to provide latched address outputs (A0 – A15) to external devices. This  
mode of operation requires the user to:  
Configuration  
1. Declare the pins used as address line outputs in the ABEL file (PSDsoft).  
2. Write “0” to the corresponding bit in the Control Register associated with each  
I/O port.  
3. Set the Direction Register to Output Mode.  
9.3.4 Address In  
There are two Address In modes:  
1. For Port A - as other address line (A2-A7 and A16-A23) inputs to the DPLD. Additional  
address inputs included in the EPROM decoding must come from Port A. The address  
inputs are latched internally by ALE/AS if Multiplexed Bus is specified in PSDsoft.  
2. For Ports C and D – as address inputs to the ZPLD for general decoding,  
should not be used in EPROM decoding.  
Configuration  
1. Declare pins or signals used as Address In in the ABEL file (PSDsoft).  
2. Write latch equations in the .ABL file, e.g., A16.LE = ALE.  
3. Include latched address in logic equations.  
9.3.5 Data Port  
In this mode, the port is acting as a data bus port for a microcontroller which has a  
non-multiplexed address/data bus. The Data Port is connected to the data bus of the  
microcontroller and the ADIO port is connected to the address bus.  
Configuration  
Select the non-multiplexed bus option in PSD configuration (PSDsoft).  
9.3.6 Alternate Function In  
This mode is per-pin configurable and enables the user to define pin PE7 of Port E as  
Automatic Power Down (APD) CLK input.  
Configuration  
1. Select input functions in PSD configuration.  
2. PSD Compiler assigns pins for the selected options.  
49  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.3.7 Peripheral I/O  
This mode enables the microcontroller to read or write to a peripheral though Port A. When  
there is no read/write operation, Port A is tri-stated. One of the applications of Peripheral  
I/O is in a DMA based design.  
Configuration  
1. Declare the pins used as pheripheral I/O in the ABEL file.  
2. Write logic equations for PSEL0 and PSEL1.  
3. Write a “1” to the PIO bit in the VM Register to activate the Peripheral I/O operation.  
See the section on Peripheral I/O for a detailed description.  
9.3.8 Open Drain Outputs  
This mode enables the user to configure Ports C and D pins as open drain outputs. CMOS  
output is the default configuration. Writing “1” to the corresponding bit in the Open Drain  
Register changes the pin to open drain output.  
Table 12. Operating Modes of the I/O Ports  
Table 12 summarizes the operating modes of the I/O ports. Not all the functions are  
available to every port.  
Port Mode  
Port A  
Port B  
Port C  
Port D  
Port E  
Standard MCU I/O  
PLD I/O  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes*  
Yes  
Input Only* Input Only*  
Address Out  
Address In  
Yes  
Yes  
Yes**  
Yes  
Yes  
Yes**  
Yes  
Yes**  
Data Port  
Alternate Function In  
Peripheral I/O  
Open Drain  
Yes  
Yes  
Yes  
Yes  
*PSD4XXA2 and ZPSD4XXA2 Only.  
**For external decoding. Cannot be latched by ALE  
50  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.3.9 Port Registers  
There are two sets of registers per I/O port: the Port Configuration Registers (PCR) which  
consist of four 8-bit registers; and the Port Data Registers (PDR) which include three 8-bit  
registers. The PCR is used for setting up the port configuration, while the PDR enables the  
microcontroller to write or read port data or status bits. Tables 13 and 14 show the names  
and the registers and the ports to which they belong.  
All the registers in the PCR and PDR are 8-bits wide and each bit is associated with a  
pin in the I/O port. In Table 15, the LSB of the Data In Register of Port A is connected to  
pin PA0, and the MSB is connected to PA7. This pin configuration also applies to other  
registers and ports. For example, in the Direction Register of Port A, writing a hex value of  
07 to the register configures pins PA0 – PA2 as output pins, while PA3 – PA7 remain as  
input pins.  
Registers can be accessed by the microcontroller during normal read/write bus cycles.  
The I/O address offset of the registers are listed in the System Configuration section.  
Table 13. Port Configuration Registers (PCR)  
Register Name  
Port  
A,B,C,D,E  
A,B,C,D,E  
C,D  
Write/Read  
Write/Read  
Write/Read  
Write/Read  
Read  
Control Register  
Direction Register  
Open Drain Register  
PLD – I/O Register  
A,B,E  
Table 14. Port Data Registers (PDR)  
Register Name  
Data In Register  
Port  
Read/Write  
Read  
A,B,C,D,E  
A,B,C,D,E  
A,B,E  
Data Out Register  
Macrocell Out Register  
Write/Read  
Read  
Table 15.  
Data In Register – Port A  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PA7 Pin  
PA6 Pin  
PA5 Pin  
PA4 Pin  
PA3 Pin  
PA2 Pin  
PA1 Pin PA0 Pin  
Direction Register – Port A  
(Example: Pins PA0 – PA2 as Output, PA3 – PA7 as Input)  
Bit 7  
PA7 Pin  
= 0  
Bit 6  
PA6 Pin  
= 0  
Bit 5  
PA5 Pin  
= 0  
Bit 4  
PA4 Pin  
= 0  
Bit 3  
PA3 Pin  
= 0  
Bit 2  
PA2 Pin  
= 1  
Bit 1  
PA1 Pin PA0 Pin  
= 1 = 1  
Bit 0  
51  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.3.9.1 Control Register  
This register is used in both Standard MCU I/O Mode and Address Out modes. For setting  
a Standard MCU I/O Mode, a “1” must be written to the corresponding bit in the register.  
Writing a “0” to the register is required for the Address Out mode. The register has a default  
value of “0” after reset.  
9.3.9.2 Direction Register  
This register is used to control the direction of data flow in the I/O Ports. Writing a “1” to the  
corresponding bit in the register configures the port to be an output port, and a “0” forces  
the port to be an input port. The I/O configuration of the port pins can be determined by  
reading the Direction Register. After reset, the pins are in input mode.  
9.3.9.3 Open Drain  
This register determines whether the output pin driver of Ports C or D is a CMOS driver or  
an Open Drain driver. Writing a “0” to the register selects a CMOS driver, while a “1” selects  
an Open Drain driver.  
9.3.9.4 PLD I/O Register  
This is a read only status register. Reading a "1" indicates the corresponding pin is  
configured as a PLD pin. A "0" indicates the pin is an I/O pin.  
9.3.9.5 Data In Register  
This register is used in the Standard MCU I/O Mode configuration to read the input pins.  
9.3.9.6 Data Out Register  
This register holds the output data in the Standard MCU I/O Mode. The contents of the  
register can also be read.  
9.3.9.7 Macrocell Out Register  
This register enables the user to read the outputs of the GPLD macrocell  
(PA, PB, and PE macrocells).  
9.3.9.8 I/O Register Address Offset  
The I/O Register can be accessed by the microcontroller during normal read/write bus  
cycles. The address of a register is defined as:  
CSIOP + register address offset  
The CSIOP is the base address that is defined in the ABEL file and occupies a 256 byte  
space. The register address offset lies within this 256 byte space. Tables 16 and 16a are  
the address offset of the registers.  
52  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
Table 16. Register Address Offset  
Address Offset  
Port C  
Register Name  
Data In  
Port A  
00  
Port B  
01  
Port D  
11  
Port E  
20  
10  
12  
14  
16  
18  
Control  
02  
03  
13  
22  
Data Out  
04  
05  
15  
24  
Direction  
06  
07  
17  
26  
Open Drain  
PLD – I/O  
19  
0A  
0C  
0B  
0D  
2A  
2C  
Macrocell Out  
(PSD4XXA2/  
ZPSD4XXA2)  
Table 16a. Register Address Offset  
(For 16-bit Motorola Microcontrollers in 16-bit mode. Use Table 16 if 8-bit mode is  
selected.)  
Address Offset  
Register Name  
Data In  
Port A  
01  
Port B  
00  
Port C  
11  
Port D  
10  
Port E  
21  
Control  
03  
02  
13  
12  
23  
Data Out  
05  
04  
15  
14  
25  
Direction  
07  
06  
17  
16  
27  
Open Drain  
PLD – I/O  
19  
18  
0B  
0D  
0A  
0C  
2B  
2D  
Macrocell Out  
(PSD4XXA2/  
ZPSD4XXA2)  
53  
PSD4XX Family  
9.3.10 Port A – Functionality and Structure  
Port A is the most flexible of all the I/O ports. It can be configured to perform one or more  
of the following functions:  
The PSD4XX  
Architecture  
(cont.)  
Standard MCU I/O Mode  
PLD I/O  
Address Out – latched address lines A[0-7] are assigned to pins PA[0-7].  
Address In – input port for other address lines, inputs can be latched by ALE.  
Peripheral I/O  
Figure 27 shows the structure of a Port A pin. If the pin is configured as an output port,  
the multiplexer selects one of its three inputs as output. If the pin is configured as an input,  
the input connects to :  
1. Data In Register as input in Standard MCU I/O Mode  
or  
2. PA Macrocell as PLD input  
or  
3. PA Macrocell through a latch latched by ALE, as Address In input.  
9.3.11 Port B – Functionality and Structure  
Port B is similar to Port A in structure. It can be configured to perform one or more of the  
following functions:  
Standard MCU I/O Mode  
PLD I/O  
Address Out – address lines A[0-7] for 8-bit multiplexed bus or address lines  
A[8-15] for 16-bit multiplexed bus are assigned to pins PB[0-7].  
Figure 28 shows the structure of a Port B pin. If the pin is configured as an output port,  
the multiplexer selects one of its three inputs as output. If the pin is configured as input,  
the input connects to :  
Data In Register as input in Standard MCU I/O Mode  
or  
PB Macrocell as PLD input  
54  
PSD4XX Family  
Figure 27. Port A Pin Structure  
The PSD4XX  
Architecture  
(cont.)  
55  
PSD4XX Family  
Figure 28. Port B Pin Structure  
The PSD4XX  
Architecture  
(cont.)  
56  
PSD4XX Family  
9.3.12 Port C and Port D – Functionality and Structure  
Ports C and D are identical in function and structure and each can be configured to perform  
one or more of the following operating modes:  
The PSD4XX  
Architecture  
(cont.)  
Standard MCU I/O Mode  
PLD Input – direct input to ZPLD  
(PSD4XXA2 and ZPSD4XXA2 Only)  
Address Out – latched address outputs  
– Port C: A[0-7] are assigned to pins PC[0-7]  
– Port D: A[0-7] for 8-bit multiplexed bus or A[8-15] for 16-bit multiplexed  
bus are assigned to pins PD0-7]  
Data Port  
– Port C: D[0-7] for 8-bit non-multiplexed bus  
– Port D: D[8-15] for 16-bit non-multiplexed bus  
Open Drain – select CMOS or Open Drain driver  
Figures 29 and 30 show the structure of a Port C or D pin. If the pin is configured as output  
port, the multiplexer selects one of the two inputs as output. If the pin is configured as input,  
the input connects to :  
Data In Register as input in the Standard MCU I/O Mode  
or  
ZPLD input (PSD4XXA2 and ZPSD4XXA2 Only)  
9.3.13 Port E – Functionality and Structure  
Port E can be configured to perform one or more of the following functions:  
Standard MCU I/O Mode  
PLD I/O (PSD4XXA2 and ZPSD4XXA2 Only)  
Address Out – latched address lines A[0-7] are assigned to pins PE[0-7]  
Alternate Function In – in this mode, the inputs to Port E pins are:  
PE0  
BHE or PSEN or WRH or UDS or SIZ0  
PE1 – ALE  
PE7  
APD CLK :clock input for Automatic Power Down Counter  
Figure 31 shows the structure of a Port E pin. The Control Logic block selects one of four  
sources through the multiplexer for pin output. If the pin is configured as input, the input  
goes to:  
Data In Register as input in Standard MCU I/O Mode  
or  
PE Macrocell as PLD input (PSD4XXA2 and ZPSD4XXA2 Only)  
or  
Alternate Function In  
57  
8
t
t
4
PSD4XXFamilySD4XXFamily  
  n
DATA*  
[
]
D 0–7  
DATA OUT  
ADDRESS  
D
Q
Q
WR  
D
G
MUX  
PORT C PIN  
[
]
A
0–7  
ALE  
ALE  
INTERNAL  
ADDRESS /  
DATA BUS  
CONTROL  
PDR  
PCR  
PCR  
D
Q
WR  
GPLDINPUT **  
DIR. REG.  
*Data Bus D [0 –7] is not connected to GPLD–Input.  
**GPLD–Input is available on A2 versions only.  
t
t
ThePSD4XX  
  n
DATA*  
D [815]  
DATA OUT  
ADDRESS  
D
Q
Q
WR  
PORT D PIN  
D
G
MUX  
[
]
A 0–7  
ALE  
ALE  
OR  
A [815]  
INTERNAL  
ADDRESS /  
DATA BUS  
CONTROL  
PDR  
PCR  
PCR  
PSD4XXFamilySD4XXFamily  
D
Q
GPLDINPUT **  
WR  
DIR. REG.  
*Data Bus D [8–15] is not connected to GPLD–Input.  
**GPLD–Input is available on A2 versions only.  
9
PSD4XX Family  
Figure 31. Port E Pin Structure  
The PSD4XX  
Architecture  
(cont.)  
60  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.4 Memory Block  
The PSD4XX provides EPROM memory for code storage and SRAM memory for scratch  
pad usage. Chip selects for the memory blocks come from the DPLD decoding logic and  
are defined by the user in the PSDsoft Software. Figure 32 shows the organization of the  
Memory Block.  
The PSD4XX family uses Zero-power memory techniques that place memory into Standby  
Mode between MCU accesses. The memory becomes active briefly after an address  
transition, then delivers new data to the outputs, latches the outputs, and returns to standby.  
This is done automatically and the designer has to do nothing special to benefit from this  
feature. Both the EPROM and SRAM have this feature.  
9.4.1 EPROM  
The PSD4XX provides three EPROM densities: 256Kbit, 512Kbit, or 1Mbit. The EPROM  
is divided into four 8K, 16K or 32K byte blocks. Each block has its own chip select signals  
(ES0 – ES3). The EPROM can be configured as 32K x 8, 64K x 8 or 128K x 8 for  
microcontrollers with an 8-bit data bus. For 16-bit data buses, the EPROM is configured as  
16K x 16, 32K x 16 or 64K x 16.  
9.4.2 SRAM  
The SRAM has 16Kbits of memory, organized as 2K x 8 or 1K x 16. The SRAM is enabled  
by chip select signal RS0 from the DPLD. The SRAM has a battery back-up (STBY) mode.  
This back-up mode is invoked when the VCC voltage drops under the Vstdby voltage by  
approximately 0.7 V. The Vstdby voltage is connected only to the SRAM and cannot be  
lower than 2.7 volts.  
9.4.3 Memory Select Map  
The EPROM and SRAM chip select equations are defined in the ABEL file in terms of  
address and other DPLD inputs. The memory space for the EPROM chip select  
(ES0 – ES3) should not be larger than the EPROM block (8KB, 16KB, or 32KB) it is  
selecting.  
The following rules govern how the internal PSD4XX memory selects/space are defined:  
The EPROM blocks address space cannot overlap  
SRAM, internal I/O and Peripheral I/O space cannot overlap  
SRAM, internal I/O and Peripheral I/O space can overlap EPROM space, with  
priority given to SRAM or I/O. The portion of EPROM which is overlapped  
cannot be accessed.  
The Peripheral I/O space refers to memory space occupied by peripherals when Port A is  
configured in the Peripheral I/O Mode.  
61  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.4.4 Memory Select Map For 8031 Application  
The 8031 family of microcontrollers has separate code memory space and data memory  
space. This feature requires a different Memory Select Map. Two modes of operation are  
provided for 8031 applications. The selection of the modes is specified in the PSD4XX  
PSDsoft Software (PSDconfiguration):  
Separate Space Mode  
In this mode, the PSEN signal is used to access code from EPROM, and the RD  
signal is used to access data from SRAM. The code memory space is separated from  
the data memory space.  
Combined Space Mode  
In this mode, the EPROM can be accessed by PSEN or RD. The EPROM is used for  
code and data storage. The memory block's address space cannot overlap.  
If data and code memory blocks must overlap each other, the RD signal can be included as  
an additional address input in generating the EPROM chip select signals (ES0 – ES3). In  
this case the EPROM access time is from the RD valid to data valid. Figures 32a and 32b  
show the memory configuration in the two modes.  
In some applications it is desirable to execute program codes in SRAM. The PSD4XX  
provides this option by enabling PSEN to access SRAM. To activate this option, the  
SRCODE bit of the VM Register must be set to “1” (see Table 17). SRAM space can  
overlap EPROM space and has priority when PSEN is used.  
Table 17. VM Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PIO  
SRCODE  
1 = ON  
*
*
*
*
*
*
1 = ON  
= Reserved for future use, bits set to zero.  
*
62  
PSD4XX Family  
Figure 32. Memory Block Diagram (128KB EPROM)  
The PSD4XX  
Architecture  
(cont.)  
63  
PSD4XX Family  
Figure 33a. 8031 Memory Modes  
The PSD4XX  
Architecture  
(cont.)  
ES0  
ES1  
ES2  
ES3  
RS0  
SRAM  
OE  
EPROM  
OE  
DPLD  
PSEN  
RD  
SRCODE–EN  
SEPARATE SPACE MODE  
Figure 33b. 8031 Memory Modes  
ES0  
ES1  
ES2  
ES3  
RS0  
EPROM  
OE  
SRAM  
DPLD  
RD  
PSEN  
OE  
RD  
PSEN  
RD  
SRCODE–EN  
COMBINED SPACE MODE  
64  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.4.5 Peripheral I/O  
The Peripheral I/O Mode is one of the operating modes of Port A. In this mode, Port A  
is connected to the data bus of peripheral devices. Port A is enabled only when  
the microcontroller is accessing the devices, otherwise the Port is tri-stated. This feature  
enables the microcontroller to access external devices without requiring buffers and  
decoders. Figure 34 shows the structure of Port A in the Peripheral I/O Mode.  
The memory address space occupied by the devices are defined by two signals: PSEL0  
and PSEL1. The signals are direct outputs from the Decoding PLD (DPLD). Whenever any  
of the signals is active, the Port A driver is enabled, and the direction of the data flow is  
determined by the RD/WR signals.  
The Peripheral I/O Mode and the peripheral select signals are configured and defined in the  
PSDsoft Software (see the section on I/O Port for configuration). The PIO bit in the VM  
Register (see Table 17) also needs to be set to “1” by the user to initialize the Peripheral I/O  
Mode.  
The Peripheral I/O mode can be used, for example, in DMA applications where the  
microcontroller does not support DMA operations, such as tri-stating the address/data bus.  
Figure 35 shows a block diagram of a microcontroller and PSD4XX based design that  
makes use of this mode. In this application, the microcontroller has a multiplexed bus which  
is connected to the ADIO port. The C and D ports connect to the peripheral address bus  
and are both configured in Address Out Mode. Port A is configured in the Peripheral I/O  
mode and is connected to the peripheral data bus. Ports B and E are used to generate  
control signals.  
During normal activity, the microcontroller has access to any peripheral (memory or I/O  
device) through the PSD4XX device. When there is a DMA request, the  
microcontroller tri-states the address bus on Ports C and D by writing a “0” to the port  
Direction Registers. The DMA controller then takes over the data and address buses after  
receiving acknowledgement from the microcontroller.  
Figure 34. Port A In Peripheral I/O Mode  
RD  
PSEL0  
PSEL1  
PA0 – PA7  
D0 – D7  
WR  
65  
PSD4XX Family  
Figure 35. PSD4XX Peripheral I/O Configuration  
The PSD4XX  
Architecture  
(cont.)  
66  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
9.5 Power Management Unit  
The PSD4XX provides many power saving options. By configuring the PMMRs  
(Power Management Mode Registers), the user can reduce power consumption. Table 18  
shows the bit configuration of the PMMR0 and PMMR1. The microcontroller is able to  
control the power consumption by changing the PMMR bits at run time.  
9.5.1 Standby Mode  
There are two Standby Modes in the PSD4XX:  
Power Down Mode  
Sleep Mode  
9.5.1.1 Power Down Mode  
In this mode, the internal devices are shut down except for the I/O ports and the ZPLD.  
There are three ways the PSD4XX can enter into the Power Down Mode: by controlling  
the CSI input, by activating the Automatic Power Down (APD) Logic and the ZPLD, or when  
none of the inputs are changing and the Turbo bit is off.  
The CSI  
The CSI input pin is an active low signal. When low, the signal selects and enables the  
PSD4XX. The PSD4XX enters into Power Down Mode immediately when the signal  
turns high. This signal can be controlled by the microcontrollers, external logic or it can  
be grounded. The CSI input turns off the internal bus buffers in Standby Mode. The  
address and control signals from the microcontroller are blocked from entering the ZPLD  
as inputs.  
The APD Logic  
The APD unit enables the user to enter a power down mode independent of controlling  
the CSI input. This feature eliminates the need for external logic (decoders and latches)  
to power down the PSD. The APD unit concept is based on tracking the activity on the  
ALE pin. If the APD unit is enabled and ALE is not active, the 4-bit APD counter starts  
counting and will overflow after 15 clocks, generating a PD (Power Down) signal  
powering down the PSD. If sleep mode is enabled, then PD signal will also activate the  
sleep mode. Immediately after ALE starts pulsing the PSD will get out of the power down  
or sleep mode.  
The operation of APD is controlled by the PMMR (see Figure 36a). PMMR1 bit 0 selects  
the source of the APD counter clock. After reset the APD counter clock is connected to  
PE7 (APD CLK) on the PSD. In order to guarantee that the APD will not overflow there  
should be less than 15 APD clocks between two ALE pulses. If CLKIN frequency is  
adequate, then it can be connected to the APD and PE7 is used for other functions.  
The next step is to select the ALE power down polarity. Usually, MCUs entering power  
down will freeze their ALE at logic high or low. By programming bit 1 of PMMR0 the  
power down polarity can be defined for the APD. If the APD detects that the ALE is in  
the power down polarity for 15 APD counter clocks then the PSD will enter a power  
down mode. To enable the APD operation, bit 2 in the PMMR0 should be set high.  
9.5.1.2 Sleep Mode  
The Sleep Mode is activated if the SLEEP EN bit, the APD EN bit, and the ALE Polarity bit  
in the PMMR are set, and the APD Counter has overflowed after 15 clocks (see Figure 36).  
In Sleep Mode the PSD4XX consumes less power than the Power Down Mode.  
In this mode, the ZPLD still monitors the inputs and responds to them. As soon as the ALE  
starts pulsing, the PSD4XX exits the Sleep Mode.  
The PSD access time from Sleep Mode is specified by tLVDV1. The ZPLD response time to  
an input transition is specified by tLVDV2  
.
67  
PSD4XX Family  
Figure 36. Power Management Unit  
The PSD4XX  
Architecture  
(cont.)  
TO OTHER  
CIRCUITS  
SLEEPENABLE  
PMMR1 - BIT 1  
APD ENABLE  
PMMR0 - BIT 2  
ALE POLARITY  
PMMR0 - BIT 1  
SLEEP  
MODE  
APD  
CLEAR  
LOGIC  
ALE  
CLR  
APD  
PD  
EPROM  
SELECT  
COUNTER  
Z
P
L
D
RESET  
CLK  
SRAM  
SELECT  
APD CLK  
CLKIN  
I/O  
SELECT  
MUX  
POWER  
DOWN  
CSI  
APD CLK  
PMMR1 - BIT 0  
Figure 36a. Automatic Power Down Unit (APD) Flow Chart  
RESET  
CSI = "1"  
APD DISABLED  
YES  
NEED  
APD CLK  
SET APD CLK IN PMMR1 BIT 0  
NO  
SET ALE PD POLARITY  
IN PMMRO BIT 1  
NEED  
SLEEP  
MODE  
YES  
SET SLEEP MODE IN PMMR1 BIT 1  
NO  
• SET ENABLE APD IN PMMR0 BIT 2  
• SET PMMR0 BIT 0  
• SET ENABLE APD IN PMMR0 BIT 2  
• SET PMMR0 BIT 0  
DISABLE CLOCKS  
ZPLD ACLK, ZPLD RCLK, TMR ZPLD  
DISABLE CLOCKS  
ZPLD ACLK, ZPLD RCLK, TMR ZPLD  
ALE IDLE and  
15 APD CLOCK  
ALE IDLE and  
15 APD CLOCK  
PSD IN POWER DOWN MODE  
PSD IN SLEEP MODE  
68  
PSD4XX Family  
Table 18. Power Management Mode Registers (PMMR0, PMMR1)  
PMMR0  
The PSD4XX  
Architecture  
(cont.)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR CLK  
ZPLD  
RCLK  
ZPLD  
ACLK  
ZPLD  
TURBO  
APD  
ENABLE  
ALE PD  
Polarity  
*
CMISER  
1 = ON  
1 = OFF  
1 = OFF  
1 = OFF  
1 = OFF  
1 = ON  
1 = HIGH  
Bit 0  
= Should be set to High (1) to operate the APD.  
*
Bit 1 0 = ALE Power Down (PD) Polarity Low.  
1 = ALE Power Down (PD) Polarity High.  
Bit 2 0 = Automatic Power Down (APD) Disable.  
1 = Automatic Power Down (APD) Enable.  
Bit 3 0 = EPROM/SRAM CMiser is OFF.  
1 = EPROM/SRAM CMiser is ON.  
Bit 4 0 = ZPLD Turbo is ON. ZPLD is always ON.  
1 = ZPLD Turbo is OFF. ZPLD will Power Down when inputs are not changing.  
Bit 5 0 = ZPLD Clock Input into the Array from the CLKIN pin input is connected.  
Every Clock change will Power Up the ZPLD when Turbo bit is OFF.  
1 = ZPLD Clock Input into the Array from the CLKIN pin input is disconnected.  
Bit 6 0 = ZPLD Clock Input into the the MacroCell registers from the CLKIN pin input  
is connected.  
1 = ZPLD Clock Input into the the MacroCell registers from the CLKIN pin input  
is disconnected.  
Bit 7  
= In the PSD4XX should be set to High (1)  
*
PMMR1  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Sleep  
Mode  
APD CLK  
*
*
*
*
*
*
1 = ON 1 = CLKIN  
Bit 0  
0 = Automatic Power Down Unit Clock is connected to Port E7 (PE7) alternate  
function input.  
1 = Automatic Power Down Unit Clock is connected to the PSD Clock  
input (CLKIN).  
Bit 1  
0 = Sleep Mode Disabled.  
1 = Sleep Mode Enabled.  
Bit 2–7 0 = Reserved for future use, should be set to zero.  
Table 19. APD Counter Operation  
ALE Power  
APD EN Bit  
ALE Status  
APD Counter  
Down Polarity  
0
1
X
X
Not Counting  
X
Pulsing  
Not Counting  
Counting (Activates Standby  
Mode After 15 Clocks)  
1
1
1
0
1
0
Counting (Activates Standby  
Mode After 15 Clocks)  
69  
PSD4XX Family  
9.5.2 Other Power Saving Options  
The PSD4XX provides additional power saving options. These options, except the SRAM  
Standby Mode, can be enabled/disabled by setting up the corresponding bit in the PMMR.  
The PSD4XX  
Architecture  
(cont.)  
EPROM  
The EPROM power consumption in the PSD is controlled by bit 3 in the  
PMMR0 – EPROM CMiser. Upon reset the CMiser bit is OFF. This will cause the  
EPROM to be ON at all times as long as CSI is enabled (low). The reason this mode is  
provided is to reduce the access time of the EPROM by 10 ns relative to the low power  
condition when CMiser is ON. If CSI is disabled (high) the EPROM will be deselected  
and will enter standby mode (OFF) overriding the state of the CMiser.  
If CMiser is set (ON) then the EPROM will enter the standby mode when not selected.  
This condition can take place when CSI is high or when CSI is low and the EPROM is  
not accessed. For example, if the MCU is accessing the SRAM, the EPROM will be  
deselected and will be in low power mode.  
An additional advantage of the CMiser is achieved when the PSD is configured in the  
by 8 mode (8 bit data bus). In this case an additional power savings is achieved in the  
EPROM (and also in the SRAM) by turning off 1/2 of the array even when the EPROM  
is accessed (the array is divided internally into odd and even arrays).  
The power consumption for the different EPROM modes is given in the DC  
Characteristics table under ICC (DC) EPROM Adder.  
SRAM Standby Mode  
The SRAM has a dedicated supply voltage VSTBY that can be used to connect a battery.  
When VCC becomes lower than VSTBY –0.6 then the PSD will automatically connect  
the VSTBY as a power source to the SRAM. The SRAM Standby Current (ISTBY) is  
typically 0.5 µA.  
SRAM data retention voltage VDF is 2 V minimum.  
Zero Power ZPLD  
ZPLD power/speed is controlled by the ZPLD_Turbo bit (bit 4) in the PMMR0.  
After reset the ZPLD is in Turbo mode and runs at full power and speed. By setting the  
bit to “1”, the Turbo mode is disabled and the ZPLD is consuming Zero Power current if  
the inputs are not switching for an extended time of 70 ns. The propagation delay time  
will be increased by 10ns after the Turbo bit is set to “1” (turned off) if the inputs change  
at a frequency of less than 15 MHz.  
70  
PSD4XX Family  
The PSD4XX  
Architecture  
(cont.)  
Input Clock  
The PSD4XX provides the option to turn off the clock inputs to save AC power  
consumption. The clock input (CLKIN) is used as a source for driving the following  
modules:  
ZPLD Array Clock Input  
ZPLD MacroCell Clock Flip Flop  
APD Counter Clock  
During power down or if any of the modules are not being used the clock to these  
modules should be disabled. To reduce AC power consumption, it is especially  
important to disable the clock input to the ZPLD array if it is not used as part of a logic  
equation.  
The ZPLD Array Clock can be disabled by setting PMMR0 bit 5 (ZPLD ACLK).  
The ZPLD MacroCell Clock Input can be disabled by setting PMMR0 bit 6  
(ZPLD RCLK). The Timer Clock can be disabled by setting PMMR0 bit 7  
(TMR CLK). The APD Counter Clock will be disabled automatically if Power Down or  
Sleep Mode is entered through the APD unit. The input buffer of the CLKIN input will be  
disabled if bits 5 – 7 PMMR0 are set and the APD has overflowed.  
Summary of PSD4XX Timing and Standby Current During Power Down  
and Sleep Modes  
PLD  
Propagation  
Delay  
PLD  
Access  
Time  
Access  
Recovery  
Time To  
Normal  
Recovery  
Time To  
Normal  
Operation  
Access  
Power Down  
Sleep  
Normal tPD  
(Note 1)  
0
No Access  
No Access  
tLVDV  
tLVDV2  
tLVDV3  
tLVDV1  
(Note 2)  
(Note 3)  
NOTES: 1. Power Down does not affect the operation of the ZPLD. The ZPLD operation in this mode is based  
only on the ZPLD_Turbo Bit.  
2. In Sleep Mode any input to the ZPLD will have a propagation delay of tLVDV2  
3. PLD recovery time to normal operation after exiting Sleep Mode. An input to the ZPLD during the  
transition will have a propagation delay time of tLVDV3  
.
.
Table 20. I/O Pin Status During Power Down And Sleep Mode  
Port Configuration  
Pin Status  
I/O Port  
Unchanged  
ZPLD Output  
Address Out  
Data Port  
Depend on Inputs to the ZPLD  
Undefined  
Tri-stated  
Peripheral I/O  
Tri-stated  
71  
PSD4XX Family  
The Page Register is 4 bits wide and consists of four D flip flops.The outputs of the Register  
(PGR0 – PGR3) are connected to the input bus of the ZPLD. By including the four outputs  
as inputs to the DPLD, the addressing capability of the microcontroller is increased by a  
factor of 16.  
10.0  
Page  
Register  
Figure 37 shows the Page Register block diagram. Inputs to the four flip flops are connected  
to data bus D0-D3. The output of the Register can be read by the microcontroller. The  
Register can operate as an independent register to the microcontroller if page mode is not  
implemented.  
Figure 35. Page Register  
RESET  
ES0 – 3  
DPLD  
RS0  
PGR0  
D0  
D1  
D2  
D3  
Q0  
Q1  
Q2  
Q3  
PGR1  
PGR2  
PGR3  
D0 – D3  
R/W  
GPLD  
ZPLD  
PAGE  
REG.  
The PSD4XX has a programmable security bit which offers protection from unauthorized  
duplication. When the security bit is set, the contents of the EPROM, the PSD4XX  
non-volatile configuration bits and ZPLD data cannot be read by EPROM programmers.  
11.0  
Security  
Protection  
The security bit is set through the PSDsoft Software and is embedded in the compiled  
output file. The security bit is UV erasable and a secured part can be erased and then  
re-programmed.  
72  
PSD4XX Family  
The CSIOP signal, which is generated by the DPLD, selects the internal I/O devices or  
registers. The CSIOP signal takes up 256 bytes of address space and is defined by the  
user in the PSDSoft Software. The following is an address offset map for the various  
devices relative to the CSIOP base address.  
12.0  
System  
Configuration  
Some Motorola 16-bit microcontrollers have a different data bus/data byte orientation. This  
requires a different address offset for the internal PSD4XX I/O devices or registers. Tables  
21a and 22a in this section are for this group of microcontrollers which include the  
M68HC16, M68302 and M683XX.  
Table 21. Register Address Offset  
Register  
Name  
Address  
Offset  
Register  
Name  
Address  
Offset  
PAGE REGISTER  
VM  
E0  
C0  
B0  
PMMR1  
B1  
PMMR0  
Table 21a. Register Address Offset  
(For 16-bit Motorola Microcontrollers in 16-bit mode. Use Table 21 if 8-bit mode is selected.)  
Register  
Name  
Address  
Offset  
Register  
Name  
Address  
Offset  
PAGE REGISTER  
VM  
E1  
C1  
B1  
PMMR1  
B0  
PMMR0  
73  
PSD4XX Family  
The following table is the address map offset of the I/O port registers.  
12.0  
System  
Configuration  
(cont.)  
Table 22. I/O Register Address Offset  
Address Offset  
Register Name  
Data In  
Port A  
00  
Port B  
01  
Port C  
10  
Port D  
11  
Port E  
20  
Control  
02  
03  
12  
13  
22  
Data Out  
04  
05  
14  
15  
24  
Direction  
06  
07  
16  
17  
26  
Open Drain  
PLD – I/O  
18  
19  
0A  
0C  
0B  
0D  
2A  
2C  
Macrocell Out  
(PSD4XXA2/  
ZPSD4XXA2)  
Table 22a. Register Address Offset  
(For 16-bit Motorola Microcontrollers in 16-bit mode. Use Table 22 if 8-bit mode is selected.)  
Address Offset  
Register Name  
Data In  
Port A  
01  
Port B  
00  
Port C  
11  
Port D  
10  
Port E  
21  
Control  
03  
02  
13  
12  
23  
Data Out  
05  
04  
15  
14  
25  
Direction  
07  
06  
17  
16  
27  
Open Drain  
PLD – I/O  
19  
18  
0B  
0D  
0A  
0C  
2B  
2D  
Macrocell Out  
(PSD4XXA2/  
ZPSD4XXA2)  
74  
PSD4XX Family  
Table 23. Register Function  
Register Name  
System  
Configuration  
(cont.)  
Register Function  
Data In  
Control  
Data Out  
This Register is used to read the inputs on the port pins.  
A 0sets the corresponding port pin in Address Out Mode.  
A 1sets the pin in MCU I/O Mode.  
Holds the output data in the MCU I/O Mode.  
This register is used to control the data flow in the I/O ports.  
A 0sets the corresponding pin as an input pin.  
A 1sets the pin as an output pin.  
Direction  
A 0sets the corresponding pin driver as a CMOS driver.  
A 1sets the pin driver as an Open Drain Driver.  
Open Drain  
PLD – I/O  
A read only status register; a 1indicates the corresponding pin  
is configured as a PLD pin.  
Macrocell Out  
Page Register  
This register holds the outputs of the GPLD macrocells.  
A 4-bit register that supports paging.  
1. Configures the PSD4XX SRAM to be accessed by PSENas  
VM  
program space (8031 design).  
2. Enables the Peripheral I/O Mode of Port A.  
PMMR0  
PMMR1  
Power management registers; enables the PSD4XX Power Down  
Mode and other power saving configurations.  
75  
PSD4XX Family  
12.1 Reset Input  
System  
The reset input to the PSD4XX (RESET) is an active low signal which resets some of the  
internal devices and configuration registers. The Timing Diagram in the AC/DC  
characterization section shows the reset signal timing requirement. The active low range  
has a minimum T1 duration. After the rising edge of RESET, the PSD4XX remains in  
reset during T2 range. (See Figure 48). The PSD4XX must be reset at power up before it  
can be used.  
Configuration  
(cont.)  
12.2 ZPLD and Memory During Reset  
While the Reset Input is active, the ZPLD generates outputs as defined in the PSDabel  
equations. The EPROM and SRAM blocks respond to the microcontroller bus cycle during  
reset, but the data is not guaranteed.  
12.3 Register Values During and After Reset  
Table 24 summarizes the status of the volatile register values during and after reset.  
The default values of the volatile registers are “0” after reset.  
12.4 ZPLD Macrocell Initialization  
The D flip flops in the macrocells in the GPLD can be cleared by:  
A product term (.RE) defined by the user in PSDabel, or  
The MACRO-RST (Reset) input, enabled and defined in PSDabel.  
Table 24. Registers Reset Values  
Register Name  
Device  
Reset State  
Control  
Port A, B, C, D, E  
Set to “0”  
(Address Out Mode)  
Data Out  
(data or address)  
Port A, B, C, D, E  
Set to “0”  
Direction  
Port A, B, C, D, E  
Port C, D  
Set to “0” – Input Mode  
Set to “0” – CMOS Outputs  
Set to “0”  
Open Drain  
Page Register  
PMMR0, PMMR1  
VM  
Page Logic  
Power Management Unit  
Volatile Memory  
Set to “0”  
Set to “0”  
Table 25. I/O Pin Status During Reset and Standby Mode  
Port Configuration  
Port I/O  
Reset  
Stand-by Mode  
Input  
Unchanged  
ZPLD Output  
Address Out  
Data Port  
Active  
Depend on Inputs to the ZPLD  
Not Defined  
Tri-stated  
Tri-stated  
Tri-stated  
Tri-stated  
Peripheral I/O  
Tri-stated  
76  
PSD4XX Family  
13.1 Absolute Maximum Ratings  
13.0  
Specifications  
Symbol  
Parameter  
Condition  
CLDCC  
Min  
– 65  
– 65  
0
Max  
Unit  
°C  
°C  
°C  
°C  
V
+ 150  
+ 125  
+ 70  
+ 85  
+ 7  
TSTG  
Storage Temperature  
PLDCC  
Commercial  
Industrial  
Operating Temperature  
Voltage on any Pin  
– 40  
– 0.6  
With Respect to GND  
Programming  
Supply Voltage  
VPP  
VCC  
With Respect to GND  
With Respect to GND  
– 0.6  
+ 14  
+ 7  
V
Supply Voltage  
ESD Protection  
– 0.6  
V
V
>2000  
NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to Absolute Maximum Rating conditions for extended  
periods of time may affect device reliability.  
13.2 Operating Range  
Speed Grades Available  
-70 -90 -15 -20 -25  
Type  
Temperature  
0° C to +70°C  
–40° C to +85°C  
V
V Tolerance  
CC  
CC  
+ 5 V  
+ 3 V  
+ 5 V  
+ 3 V  
± 10%  
± 10%  
± 10%  
± 10%  
X
X
Commercial  
Industrial  
X
X
X
X
13.3 Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
Min  
Typ Max  
Unit  
VCC  
Supply Voltage  
All Speeds  
4.5  
5.0  
3.0  
5.5  
5.5  
V
V
ZPSD4XXV Versions  
Only, All Speeds  
VCC  
Supply Voltage  
2.7  
77  
PSD4XX Family  
Specifications  
(cont.)  
13.4 AC/DC Parameters  
The following tables describe the AD/DC parameters of the PSD4XX family:  
DC Electrical Specification  
AC Timing Specification  
ZPLD Timing  
– Combinatorial Delays  
– Synchronous Clock Mode  
– Asynchronous Clock Mode  
Microcontroller Timing  
– Read Timing  
– Write Timing  
– Peripheral Mode Timing  
– Power Down and Reset Timing  
Following are some issues concerning the parameters presented:  
In the DC specification the Supply Current is given for different modes of operation.  
Before calculating the total power consumption, determine the percentage of time that  
the PSD4XX is in each mode. Also the supply power is considerably different if the  
ZPLD_TURBO bit is "OFF" and EPROM_CMISER is "ON".  
The AC power component gives the ZPLD, EPROM, and SRAM mA/MHz specification.  
Figure 38 shows the ZPLD mA/MHz as a function of the number of Product Terms (PT)  
used.  
In the ZPLD timing parameters add the required delay when ZPLD_TURBO is "OFF".  
In the MCU timing specification add the required time delay when EPROM_CMISER  
is "ON".  
Figure 38a. Typical ICC /Frequency Consumption (PSD4XXA1 and ZPSD4XXA1  
Versions)  
VCC = 5 V  
PT100%  
PT25%  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
COMPOSITE FREQUENCY AT PLD INPUTS (MHz)  
78  
PSD4XX Family  
Figure 38b. Typical ICC /Frequency Consumption (PSD4XXA2 and ZPSD4XXA2  
Specifications  
(cont.)  
Versions)  
VCC = 5 V  
PT100%  
PT25%  
120  
100  
80  
60  
40  
20  
0
0
5
10  
15  
20  
25  
COMPOSITE FREQUENCY AT PLD INPUTS (MHz)  
Figure 38c. Typical ICC /Frequency Consumption (PSD4XXA1V and ZPSD4XXA2V  
Versions)  
V
CC = 3 V  
PT100%  
PT25%  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
COMPOSITE FREQUENCY AT PLD INPUTS (MHz)  
79  
PSD4XX Family  
Specifications  
(cont.)  
13.5 Example of ZPSD4XX Typical Power Calculation at V = 5.0 V  
CC  
Conditions  
Composite PLD input frequency (Freq PLD)  
MCU ALE frequency (Freq ALE)  
= 8 MHz  
= 4 MHz  
% EPROM Access  
% SRAM access  
% I/O access  
= 80%  
= 15%  
= 5% (no additional power above base)  
Operational Modes  
% Normal  
= 10%  
= 90%  
% Sleep  
Number of product terms used (from fitter report) = 29 PT  
% of total product terms = 29/118 = 24.6%  
Turbo = off  
CMiser = on  
8-bit bus mode  
Calculation (typical numbers used)  
ICC total = Isleep x %sleep + %normal x (ICC (ac) + ICC (dc))  
= Isleep x %sleep + %normal x (%EPROM x 0.8 mA/MHz x Freq ALE  
+ %SRAM x 1.4 mA/MHz x Freq ALE  
+ %PLD x 2.5 mA/MHz x Freq PLD + #PT x 400 µA/PT)  
= 10 µA x 0.90 + 0.1 x (0.8 x 0.8 mA/MHz x 4 MHz  
+ 0.15 x 1.4 mA/MHz x 4 MHz + 0.95 x 2.5 x 8 + 29 x 0.4 mA/PT)  
= 0.9 µA + 0.1 x (2.56 + 0.84 + 19 + 11.6 mA)  
= 0.9 µA + 0.1 x 34  
= 0.9 µA + 3.4 mA  
= 3.4 mA  
Notes: Standby current consumption is handled similarly to Sleep Mode shown above.  
Calculation assumes IOUT = 0 mA.  
80  
PSD4XX Family  
13.6 DC Characteristics (5 V ± 10% Versions)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCC  
VIH  
Supply Voltage  
All Speeds  
4.5  
2
5
5.5  
VCC + 0.5  
0.8  
V
V
V
V
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Reset High Level Input Voltage  
Reset Low Level Input Voltage  
Reset Pin Hysteresis  
4.5 V < VCC < 5.5 V  
4.5 V < VCC < 5.5 V  
(Note 1)  
VIL  
–0.5  
0.8 VCC  
–0.5  
0.3  
VIH1  
VIL1  
VHYS  
VCC + 0.5  
0.2 VCC –0.1  
(Note 1)  
IOL = 20 µA, VCC = 4.5 V  
0.01  
0.1  
VOL  
Output Low Voltage  
Output High Voltage  
IOL = 8 mA, VCC = 4.5 V  
IOH = –20 µA, VCC = 4.5 V  
0.15  
4.49  
0.45  
V
V
4.4  
VOH  
IOH = –2 mA, VCC = 4.5 V  
2.4  
2.7  
3.9  
V
V
VSBY  
ISBY  
IIDLE  
VDF  
SRAM Standby Voltage  
SRAM Standby Current  
Idle Current (VSTDBY Pin)  
SRAM Data Retention Voltage  
VCC  
1
VCC = 0 V  
0.5  
µA  
µA  
V
VCC > VSBY  
–0.1  
2
0.1  
Only on VSTBY  
CSI >VCC –0.3 V (Note 2)  
Power Down Mode  
50  
30  
25  
100  
40  
µA  
Standby Supply  
Current  
ISB1  
(PSD4XX)  
Sleep Mode  
CSI >VCC –0.3 V (Note 3)  
CSI >VCC –0.3 V (Note 2)  
µA  
µA  
Power Down Mode  
Sleep Mode  
50  
Standby Supply  
Current  
ISB2  
(ZPSD4XX)  
CSI >VCC –0.3 V (Note 3)  
VSS < VIN < VCC  
10  
±0.1  
± 5  
20  
1
µA  
µA  
µA  
ILI  
Input Leakage Current  
–1  
ILO  
Output Leakage Current  
0.45 < VIN < VCC  
–10  
10  
ZPLD_TURBO = OFF,  
f = 0 MHz (Note 4)  
See ISB1  
and ISB2  
ZPLD Adder  
ZPLD_TURBO = ON,  
f = 0 MHz  
ICC (DC)  
(Note 4a)  
Operating  
Supply Current  
400  
700  
µA/PT  
EPROM Adder  
SRAM Adder  
f = 0 MHz  
f = 0 MHz  
0
0
mA  
mA  
See  
Fig. 38  
ZPLD AC Adder  
4
mA/MHz  
CMiser = ON and  
(8-bit bus mode)  
0.8  
1.8  
1.4  
2
4
mA/MHz  
mA/MHz  
mA/MHz  
EPROM AC Adder  
All other cases  
ICC (AC)  
(Note 4a)  
CMiser = ON and  
(8-bit bus mode)  
2.7  
SRAM AC Adder  
CMiser = ON and  
(16-bit bus mode)  
2
4
mA/MHz  
mA/MHz  
CMiser = OFF  
3.8  
7.5  
NOTES: 1. Reset input has hysteresis. VIL1 is valid at or below 0.2VCC –0.1. VIH1 is valid at or above 0.8VCC  
2. CSI is high or internal Power Down mode is active.  
.
3. Sleep mode bit is set and internal Power Down is active.  
4. See ZPLD ICC/Frequency Power Consumption graph for details.  
4a. IOUT = 0 mA.  
81  
PSD4XX Family  
13.7 AC/DC Parameters – ZPLD Timing Parameters (5 V ± 10% Versions)  
Combinatorial Delays (5 V ± 10% Versions)  
-70  
-90**  
-15  
ZPLD_TURBO  
OFF*  
Symbol  
Parameter  
Conditions  
Min Max Min Max Min Max  
Unit  
I/O Input or Feedback to  
Combinatorial Output  
tPD  
Port B, E  
25  
27  
30  
32  
34  
36  
Add 10  
Add 10  
ns  
Registered Input to  
Combinatorial Output  
tRPD  
(Note 1)  
ns  
tEA  
tER  
Input to Output Enable  
Input to Output Disable  
Any Input  
Any Input  
25  
25  
28  
28  
32  
32  
Add 10  
Add 10  
ns  
ns  
Register Clear or Preset  
Delay  
tARP  
Any Input  
Any Input  
27  
30  
34  
Add 10  
ns  
Register Clear or Preset  
Pulse Width  
tARPW  
tARD  
20  
25  
29  
ns  
ns  
Array Delay  
16  
18  
22  
NOTE: 1. Port A and latched address from ADIO (A0, A1, A8 – A15).  
**If ZPLD_TURBO is off and the ZPLD is operating above 15 MHz, there is no need to add 10 ns to the timing parameters.  
**The -90 speed is available only on Industrial Temperature Range product.  
Synchronous Clock Mode (5 V ± 10%)  
-70  
-90**  
-15  
ZPLD_TURBO  
OFF*  
Symbol  
Parameter  
Conditions  
Min Max Min Max Min Max  
Unit  
Maximum Frequency  
External Feedback  
1/(tS + tCO  
)
30.30  
43.48  
50.00  
27.03  
37.04  
41.67  
23.81  
31.25  
33.33  
MHz  
Maximum Frequency  
Internal Feedback (fCNT)  
1/(tS+tCO–10)  
MHz  
MHz  
fMAX  
Maximum Frequency  
Pipelined Data  
1/(tCH + tCL  
)
tS  
Input Setup Time  
Input Hold Time  
Any Input  
15  
0
17  
0
20  
0
Add 10  
ns  
ns  
ns  
ns  
ns  
tH  
Any Input  
0
0
0
0
tCH  
tCL  
tCO  
tARD  
Clock High Time  
Clock Low Time  
Clock to Output Delay  
Clock Input  
Clock Input  
Clock Input  
10  
10  
12  
12  
15  
15  
18  
16  
20  
18  
22  
22  
Array Delay for Product  
Term Expansion  
Any Macrocell  
tCH + tCL  
0
0
ns  
ns  
tMIN  
Minimum Clock Period  
20  
24  
29  
**If ZPLD_TURBO is off and the ZPLD is operating above 15 MHz, there is no need to add 10 ns to the timing parameters.  
**The -90 speed is available only on Industrial Temperature Range product.  
82  
PSD4XX Family  
AC/DC Parameters ZPLD Timing Parameters (5 V ± 10% Versions)  
Asynchronous Clock Mode (5 V ± 10% , Note 1)  
-70  
-90**  
-15  
ZPLD_TURBO  
Symbol  
Parameter  
Conditions  
Min Max Min Max Min Max  
OFF*  
Unit  
Maximum Frequency  
External Feedback  
1/(tSA + tCOA  
)
26.32  
35.71  
41.67  
25.00  
33.33  
41.67  
20.41  
25.64  
33.33  
MHz  
Maximum Frequency  
Internal Feedback  
1/(tSA+tCOA–10)  
(Note 1)  
fMAXA  
MHz  
MHz  
(fCNTA  
)
Maximum Frequency  
Pipelined Data  
1/(tCH + tCL  
)
tSA  
Input Setup Time  
Input Hold Time  
Clock High Time  
Clock Low Time  
Any Input  
Any Input  
Any Input  
Any Input  
8
8
8
8
12  
12  
15  
15  
Add 10  
ns  
ns  
ns  
ns  
tHA  
0
0
0
tCHA  
tCLA  
tCOA  
12  
12  
12  
12  
Clock to Output  
Delay  
Any Input  
to Port B  
30  
16  
32  
18  
37  
22  
Add 10  
ns  
ns  
ns  
tARD  
Array Delay for  
Product Term  
Expansion  
Any Macrocell  
1/fCNT  
0
0
tMINA  
Minimum Clock  
Period  
28  
30  
43  
NOTE: 1. Only Port B has asynchronous outputs. Clock into Macrocell Flip Flop is generated by a product term.  
**If ZPLD_TURBO is off and the ZPLD is operating above 15 MHz, there is no need to add 10 ns to the timing parameters.  
**The -90 speed is available only on Industrial Temperature Range product.  
83  
PSD4XX Family  
13.8 Microcontroller Interface – AC/DC Parameters (5 V ± 10% Versions)  
Explanation of AC Symbols for Non ZPLD Timing.  
Example:  
tAVLX Time from Address Valid to ALE Invalid.  
A – Address  
C – Power Down  
D– Input Data  
E – E  
H – Logic Level High  
I – Interrupt  
L – Logic Level Low or ALE  
N – Reset  
P – Port Signal  
Q – Output Data  
R – WR, UDS, LDS, DS, IORD, PSEN  
S – Chip Select  
T – R/W  
t – Time  
V – Valid  
X – No Longer a Valid Logic Level  
Z – Float  
Read Timing (5 V ± 10% Versions)  
-70  
-90*  
-15  
EPROM_CMiser  
ON  
Symbol  
Parameter  
Conditions Min Max Min Max Min Max  
Unit  
tLVLX  
tAVLX  
tLXAX  
tAVQV  
ALE or AS Pulse Width  
Address Setup Time  
Address Hold Time  
18  
5
20  
6
28  
10  
11  
0
0
0
ns  
ns  
ns  
(Note 3)  
(Note 3)  
7
8
Address Valid to Data  
Valid  
(Note 3)  
70  
80  
20  
90  
100  
32  
150  
150  
40  
Add 10  
Add 10  
0
ns  
ns  
ns  
tSLQV  
CS Valid to Data Valid  
RD to Data Valid  
8/16-Bit Bus  
(Note 1)  
(Note 2)  
tRLQV  
RD to Data Valid 8-Bit  
Bus, 8031 Separate  
Mode  
32  
38  
45  
0
ns  
tRHQX  
tRLRH  
tRHQZ  
tEHEL  
tTHEH  
RD Data Hold Time  
RD Pulse Width  
RD to Data High-Z  
E Pulse Width  
(Note 1)  
(Note 1)  
(Note 1)  
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
30  
32  
38  
22  
25  
33  
30  
8
32  
10  
38  
18  
R/W Setup Time  
to Enable  
0
0
0
0
ns  
ns  
ns  
ns  
tELTL  
R/W Hold Time After  
Enable  
0
0
0
In 16-Bit Data Bus  
20  
22  
30  
32  
38  
48  
tAVPV  
Address Input Valid to Mode (Note 9)  
Address Output Delay In 8-Bit Data Bus  
Mode (Note 9)  
NOTES: 1. RD timing has the same timing as PSEN, DS, LDS, UDS signals.  
2. RD and PSEN have the same timing for 8031 mode.  
3. Any input used to select an internal PSD4XX function.  
4. In multiplexed mode latched address generated from ADIO delay to address output on any Port.  
*The -90 speed is available only on Industrial Temperature Range product.  
84  
PSD4XX Family  
Microcontroller Interface AC/DC Parameters (5 V ± 10% Versions)  
Write Timing (5 V ± 10%)  
-70  
-90*  
-15  
EPROM_CMiser  
ON  
Symbol  
tLVLX  
Parameter  
ALE or AS Pulse Width  
Address Setup Time  
Address Hold Time  
Conditions Min Max Min Max Min Max  
Unit  
ns  
18  
5
20  
6
28  
10  
11  
tAVLX  
(Note 1)  
(Note 1)  
ns  
tLXAX  
7
8
ns  
Address Valid to  
Leading Edge of WR  
tAVWL  
tSLWL  
(Notes 1 and 3)  
(Note 3)  
18  
22  
20  
25  
30  
35  
ns  
ns  
CS Valid to Leading  
Edge of WR  
tDVWH  
tWHDX  
tWLWH  
WR Data Setup Time  
WR Data Hold Time  
WR Pulse Width  
(Note 3)  
(Note 3)  
(Note 3)  
12  
5
15  
5
22  
5
ns  
ns  
ns  
18  
20  
28  
Trailing Edge of WR to  
Address Invalid  
tWHAX  
tWHPV  
(Note 3)  
(Note 3)  
0
0
0
ns  
ns  
ns  
ns  
Trailing Edge of WR to  
Port Output Valid  
25  
20  
22  
30  
30  
32  
38  
38  
48  
In 16-Bit Data Bus  
Mode (Note 2)  
Address Input Valid to  
Address Output Delay  
tAVPV  
In 8-Bit Data Bus  
Mode (Note 2)  
NOTES: 1. Any input used to select an internal PSD4XX function.  
2. In multiplexed mode latched address generated from ADIO delay to address output on any Port.  
3. WR timing has the same timing as E, DS, LDS, UDS, WRL, WRH signals.  
*The -90 speed is available only on Industrial Temperature Range product.  
85  
PSD4XX Family  
Microcontroller Interface AC/DC Parameters (5 V ± 10% Versions)  
Port A Peripheral Data Mode Read Timing (5 V ± 10%)  
-70  
-90**  
-15  
ZPLD_TURBO  
OFF*  
Symbol  
Parameter  
Conditions  
Min Max Min Max Min Max  
Unit  
tAVQV (PA) Address Valid to  
Data Valid  
(Note 3)  
45  
55  
62  
Add 10  
ns  
tSLQV (PA)  
CS Valid to Data  
Valid  
55  
22  
32  
55  
26  
38  
62  
45  
45  
Add 10  
ns  
ns  
ns  
RD to Data Valid  
(Notes 1 and 4)  
0
0
tRLQV (PA)  
RD to Data Valid  
8031 Mode  
tDVQV (PA) Data In to Data Out  
Valid  
22  
22  
26  
0
ns  
tQXRH (PA) RD Data Hold Time (Note 1)  
0
0
0
0
0
0
ns  
ns  
ns  
tRLRH (PA) RD Pulse Width  
tRHQZ (PA) RD to Data High-Z  
(Note 1)  
(Note 1)  
25  
30  
38  
20  
25  
33  
Port A Peripheral Data Mode Write Timing (5 V ± 10%)  
-70  
-90**  
-15  
ZPLD_TURBO  
OFF  
Symbol  
Parameter  
Conditions  
Min Max Min Max Min Max  
Unit  
tWLQV (PA) WR to Data  
Propagation Delay  
(Note 2)  
25  
22  
20  
27  
22  
25  
35  
26  
33  
0
0
ns  
Data to Port A Data  
Propagation Delay  
tDVQV (PA)  
(Note 5)  
(Note 2)  
ns  
ns  
tWHQZ (PA) WR Invalid to  
Port A Tri-state  
NOTES: 1. RD timing has the same timing as PSEN, DS, LDS, UDS signals.  
2. WR timing has the same timing as E, DS, LDS, UDS, WRL, WRH signals.  
3. Any input used to select Port A Data Peripheral Mode.  
4. Data is already stable on Port A.  
5. Data stable on ADIO pins to data on Port A.  
**If ZPLD_TURBO is off and the ZPLD is operating above 15 MHz, there is no need to add 10 ns to the timing parameters.  
**The -90 speed is available only on Industrial Temperature Range product.  
86  
PSD4XX Family  
Microcontroller Interface – AC/DC Parameters (5 V ± 10% Versions)  
Power Down and Reset Timing (5 V ± 10%)  
-70  
-90*  
-15  
ZPLD_TURBO  
Symbol  
Parameter  
Conditions Min Max Min Max Min Max  
OFF  
Unit  
tLVDV  
ALE Access Time from  
Power Down  
100  
120  
600  
250  
120  
150  
600  
250  
150  
200  
600  
250  
Add 10  
ns  
ALE or CSI Access Time  
from Sleep  
tLVDV1  
tLVDV2  
tLVDV3  
0
0
0
ns  
ns  
ns  
ZPLD Propagation Delay  
in Sleep Mode  
ZPLD Recovery Time  
after Sleep Mode  
tCHCL  
tCLCH  
fMAX  
t1  
APD Clock High Time  
APD Clock Low Time  
Using PE7  
Using PE7  
10  
10  
12  
12  
15  
15  
0
0
0
0
ns  
ns  
APD Maximum Frequency Using PE7  
RESET Active Low Time  
35.00  
150  
30.00  
200  
22.00  
300  
MHz  
ns  
150  
200  
300  
RESET High to  
Operational Device  
t2  
0
ns  
*The -90 speed is available only on Industrial Temperature Range product.  
87  
PSD4XX Family  
13.9 DC Characteristics (ZPSD4XXV Versions)  
(3.0 V ± 10% Versions)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCC  
VIH  
Supply Voltage  
All Speeds  
2.7  
.7 VCC  
–0.5  
.8 VCC  
–.5  
3
5.5  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Reset High Level Input Voltage  
Reset Low Level Input Voltage  
Reset Pin Hysteresis  
2.7 V < VCC < 5.5 V  
2.7 V < VCC < 5.5 V  
(Note 1)  
VCC +.5  
.3 VCC  
VIL  
V
VIH1  
VIL1  
VHYS  
VCC +.5  
.2 VCC –.1  
V
(Note 1)  
V
0.3  
V
IOL = 20 µA, VCC = 2.7 V  
IOL = 4 mA, VCC = 2.7 V  
IOH = –20 µA, VCC = 2.7 V  
IOH = –1 mA, VCC = 2.7 V  
0.01  
0.15  
2.99  
2.6  
0.1  
V
VOL  
Output Low Voltage  
Output High Voltage  
0.45  
V
2.9  
2.4  
2.7  
V
VOH  
V
VSBY  
ISBY  
IIDLE  
VDF  
SRAM Standby Voltage  
SRAM Standby Current  
Idle Current (VSTBY Pin)  
SRAM Data Retention Voltage  
VCC  
1
V
VCC = 0 V  
0.5  
µA  
µA  
V
VCC > VSBY  
–0.1  
2
0.1  
Only on VSTBY  
Power Down Mode  
Sleep Mode  
CSI >VCC –.3 V (Note 2)  
CSI >VCC –.3 V (Note 3)  
VSS < VIN < VCC  
0.45 < VIN < VCC  
5
1
15  
5
µA  
µA  
µA  
µA  
Standby Supply  
Current  
ISB  
ILI  
Input Leakage Current  
Output Leakage Current  
–1  
±.1  
± 5  
1
ILO  
–10  
10  
ZPLD_TURBO = OFF,  
f = 0 MHz (Note 4)  
See ISB  
µA  
ICC (DC)  
(Note 5)  
Operating  
ZPLD Only  
Supply Current  
ZPLD_TURBO = ON,  
f = 0 MHz  
200  
400  
2.0  
µA/PT  
ZPLD AC Base  
See  
(Note 4)  
mA/MHz  
Fig 38c  
CMiser = ON  
(8-Bit Bus Mode)  
0.4  
0.9  
0.7  
1.0  
1.7  
1.3  
mA/MHz  
mA/MHz  
mA/MHz  
EPROM AC Adder  
SRAM AC Adder  
All Other Cases  
ICC (AC)  
(Note 5)  
CMiser = ON and  
8-Bit Bus Mode  
CMiser = ON and  
16-Bit Bus MoDe  
1
2
mA/MHz  
mA/MHz  
CMiser = OFF  
1.9  
.
3.8  
NOTES: 1. Reset input has hysteresis. VIL1 is valid at or below .2VCC –.1. VIH1 is valid at or above .8VCC  
2. CSI deselected or internal PD is active.  
3. Sleep mode bit is set and internal PD is active.  
4. See ZPLD ICC/Frequency Power Consumption graph for details.  
5. IOUT = 0 mA.  
88  
PSD4XX Family  
13.10 AC/DC Parameters – ZPLD Timing Parameters (ZPSD4XXV Versions)  
(3.0 V ± 10%)  
Combinatorial Delays (3.0 V ± 10%)  
-20  
-25  
ZPLD_TURBO  
Symbol  
Parameter  
Conditions  
Min Max Min Max  
OFF*  
Unit  
I/O Input or Feedback to  
Combinatorial Output  
tPD  
Port B, E  
55  
55  
80  
85  
Add 20  
ns  
Registered Input to  
Combinatorial Output  
tRPD  
(Note 1)  
Add 20  
ns  
tEA  
Input to Output Enable  
Any Input  
Any Input  
Any Input  
50  
50  
55  
80  
80  
80  
Add 20  
Add 20  
Add 20  
ns  
ns  
ns  
tER  
Input to Output Disable  
tARP  
Register Clear or Preset Delay  
Register Clear or Preset  
Pulse Width  
tARPW  
tARD  
Any Input  
30  
60  
ns  
ns  
Array Delay  
33  
35  
NOTE: 1. Port A and latched address from ADIO (A0, A1, A8 – A15).  
Synchronous Clock Mode (3.0 V ± 10%)  
-20  
-25  
ZPLD_TURBO  
OFF*  
Symbol  
Parameter  
Conditions  
Min Max Min Max  
Unit  
Maximum Frequency  
External Feedback  
1/(tS + tCO  
)
28.57  
17.24  
31.25  
11.11  
12.50  
18.52  
MHz  
Maximum Frequency  
Internal Feedback (fCNT)  
1/(tS+tCO–10)  
MHz  
MHz  
fMAX  
Maximum Frequency  
Pipelined Data  
1/(tCH + tCL  
)
tS  
Input Setup Time  
Input Hold Time  
Any Input  
45  
0
60  
0
Add 20  
ns  
ns  
ns  
ns  
ns  
tH  
Any Input  
0
0
0
0
tCH  
tCL  
tCO  
tARD  
Clock High Time  
Clock Low Time  
Clock to Output Delay  
Clock Input  
Clock Input  
Clock Input  
16  
16  
27  
27  
30  
24  
33  
35  
Array Delay for Product  
Term Expansion  
Any Macrocell  
tCH + tCL  
0
0
ns  
ns  
tMIN  
Minimum Clock Period  
30  
30  
*NOTE: If ZPLD_TURBO is off and the ZPLD is operating above 15 MHz, there is no need to add 20 ns to the timing parameters.  
89  
PSD4XX Family  
AC/DC Parameters ZPLD Timing Parameters (ZPSD4XXV Versions)  
(3.0 V ± 10%)  
Asynchronous Clock Mode (3.0 V ± 10%, Note 1)  
-20  
-25  
ZPLD_TURBO  
OFF*  
Symbol  
Parameter  
Conditions  
Min Max Min Max  
Unit  
Maximum Frequency  
External Feedback  
1/(tSA + tCOA  
)
14.49  
16.95  
31.25  
11.11  
12.50  
18.52  
MHz  
Maximum Frequency  
Internal Feedback (fCNTA)  
1/(tSA+tCOA–10)  
(Note 1)  
MHz  
MHz  
fMAXA  
Maximum Frequency  
Pipelined Data  
1/(tCH + tCL  
)
tSA  
Input Setup Time  
Input Hold Time  
Any Input  
Any Input  
Any Input  
Any Input  
13  
13  
25  
16  
30  
30  
27  
27  
Add 20  
ns  
ns  
ns  
ns  
ns  
tHA  
0
tCHA  
tCLA  
tCOA  
tARD  
Clock High Time  
Clock Low Time  
Clock to Output Delay  
0
0
Any Input to Port B  
Any Macrocell  
1/fCNT  
56  
60  
35  
Add 20  
Array Delay for Product  
Term Expansion  
33  
59  
0
0
ns  
ns  
tMINA  
Minimum Clock Period  
80  
NOTE: 1. Only Port B has asynchronous outputs. Clock into macrocell Flip Flop is generated by a product term.  
*If ZPLD_TURBO is off and the ZPLD is operating above 15 MHz, there is no need to add 20 ns to the timing parameters.  
90  
PSD4XX Family  
13.11 Microcontroller Interface – AC/DC Parameters (ZPSD4XXV Versions)  
(3.0 V ± 10%)  
Explanation of AC Symbols for Non ZPLD Timing.  
Example:  
tAVLX Time from Address Valid to ALE Invalid.  
A – Address  
C – Power Down  
D– Input Data  
E – E  
H – Logic Level High  
I – Interrupt  
L – Logic Level Low or ALE  
N – Reset  
P – Port Signal  
Q – Output Data  
R – WR, UDS, LDS, DS, IORD, PSEN  
S – Chip Select  
T – R/W  
t – Time  
V – Valid  
X – No Longer a Valid Logic Level  
Z – Float  
Read Timing (3.0 V ± 10%)  
-20  
-25  
EPROM_CMiser  
ON  
Symbol  
tLVLX  
Parameter  
Conditions  
Min Max Min Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ALE or AS Pulse Width  
Address Setup Time  
30  
12  
12  
30  
15  
17  
0
tAVLX  
(Note 3)  
(Note 3)  
(Note 3)  
0
0
tLXAX  
tAVQV  
tSLQV  
Address Hold Time  
Address Valid to Data Valid  
CS Valid to Data Valid  
RD to Data Valid 8/16-Bit Bus  
200  
200  
50  
250  
275  
80  
Add 20  
Add 20  
0
(Note 1)  
(Note 2)  
tRLQV  
RD to Data Valid 8-Bit Bus,  
8031 Separate Mode  
57  
90  
0
ns  
tRHQX  
tRLRH  
tRHQZ  
tEHEL  
tTHEH  
tELTL  
RD Data Hold Time  
RD Pulse Width  
(Note 1)  
(Note 1)  
(Note 1)  
0
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
40  
70  
RD to Data High-Z  
45  
45  
E Pulse Width  
40  
20  
0
70  
15  
0
R/W Setup Time to Enable  
R/W Hold Time After Enable  
In 16-Bit Data Bus  
Mode (Note 4)  
40  
50  
60  
60  
0
0
ns  
ns  
Address Input Valid to  
Address Output Delay  
tAVPV  
In 8-Bit Data Bus  
Mode (Note 4)  
NOTES: 1. RD timing has the same timing as PSEN, DS, LDS, UDS signals.  
2. RD and PSEN have the same timing for 8031 mode.  
3. Any input used to select an internal PSD4XX function.  
4. In multiplexed mode latched address generated from ADIO delay to address output on any Port.  
91  
PSD4XX Family  
Microcontroller Interface AC/DC Parameters (ZPSD4XXV Versions)  
(3.0 V ± 10%)  
Write Timing (3.0 V ± 10%)  
-20  
-25  
EPROM_CMiser  
ON  
Symbol  
tLVLX  
Parameter  
ALE or AS Pulse Width  
Address Setup Time  
Address Hold Time  
Conditions Min Max Min Max  
Unit  
ns  
30  
12  
12  
30  
15  
17  
tAVLX  
(Note 1)  
(Note 1)  
ns  
tLXAX  
ns  
Address Valid to Leading  
Edge of WR  
tAVWL  
(Notes 1 and 3)  
35  
50  
ns  
tSLWL  
CS Valid to Leading Edge of WR (Note 3)  
40  
25  
5
60  
35  
10  
30  
ns  
ns  
ns  
ns  
tDVWH WR Data Setup Time  
tWHDX WR Data Hold Time  
tWLWH WR Pulse Width  
(Note 3)  
(Note 3)  
(Note 3)  
30  
Trailing Edge of WR to Address  
Invalid  
tWHAX  
tWHPV  
(Note 3)  
(Note 3)  
0
0
ns  
ns  
ns  
ns  
Trailing Edge of WR to Port  
Output Valid  
50  
40  
50  
60  
60  
60  
In 16-Bit Data Bus  
Mode (Note 2)  
Address Input Valid to  
Address Output Delay  
tAVPV  
In 8-Bit Data Bus  
Mode (Note 2)  
NOTES: 1. Any input used to select an internal PSD4XX function.  
2. In multiplexed mode latched address generated from ADIO delay to address output on any Port.  
3. WR timing has the same timing as E, DS, LDS, UDS, WRL, WRH signals.  
92  
PSD4XX Family  
Microcontroller Interface AC/DC Parameters (ZPSD4XXV Versions)  
(3.0 V ± 10%)  
Port A Peripheral Data Mode Read Timing (3.0 V ± 10%)  
-20  
-25  
ZPLD_TURBO  
Symbol  
Parameter  
Address Valid to Data Valid  
CS Valid to Data Valid  
RD to Data Valid  
Conditions  
Min Max Min Max  
OFF  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVQV (PA)  
tSLQV (PA)  
tRLQV (PA)  
tDVQV (PA)  
tQXRH (PA)  
tRLRH (PA)  
tRHQZ (PA)  
(Note 3)  
95  
100  
50  
120  
120  
90  
Add 20  
Add 20  
(Notes 1 and 4)  
0
0
0
0
0
Data In to Data Out Valid  
RD Data Hold Time  
RD Pulse Width  
35  
50  
(Note 1)  
(Note 1)  
(Note 1)  
0
0
40  
70  
RD to Data High-Z  
35  
60  
Port A Peripheral Data Mode Write Timing (3.0 V ± 10%)  
-20  
-25  
ZPLD_TURBO  
OFF  
Symbol  
Parameter  
Conditions  
Min Max Min Max  
Unit  
tWLQV (PA) WR to Data Propagation Delay  
(Note 2)  
60  
60  
0
ns  
Data to Port A Data  
tDVQV (PA)  
Propagation Delay  
(Note 5)  
(Note 2)  
40  
35  
50  
60  
0
0
ns  
ns  
tWHQZ (PA) WR Invalid to Port A Tri-state  
NOTES: 1. RD timing has the same timing as PSEN, DS, LDS, UDS signals.  
2. WR timing has the same timing as E, DS, LDS, UDS, WRL, WRH signals.  
3. Any input used to select Port A Data Peripheral Mode.  
4. Data is already stable on Port A.  
5. Data stable on ADIO pins to data on Port A.  
93  
PSD4XX Family  
Microcontroller Interface AC/DC Parameters  
(3.0 V ± 10%)  
Power Down and Reset Timing (3.0 V ± 10%)  
-20  
-25  
ZPLD_TURBO  
OFF  
Symbol  
Parameter  
Conditions  
Min Max Min Max  
Unit  
ALE Access Time from  
Power Down  
tLVDV  
170  
200  
600  
250  
250  
250  
900  
400  
Add 20  
ns  
ALE or CSI Access Time  
from Sleep  
tLVDV1  
tLVDV2  
tLVDV3  
0
0
0
ns  
ns  
ns  
ZPLD Propagation Delay  
in Sleep Mode  
ZPLD Recovery Time after  
Sleep Mode  
tCHCL  
tCLCH  
fMAX  
t1  
APD Clock High Time  
APD Clock Low Time  
Using PE7  
Using PE7  
Using PE7  
16  
16  
27  
27  
0
0
0
0
ns  
ns  
APD Maximum Frequency  
RESET Active Low Time  
20.00  
300  
18.52  
400  
MHz  
ns  
300  
400  
t2  
RESET High to  
Operational Device  
0
ns  
94  
PSD4XX Family  
14.0 Timing Diagrams  
Figure 39. Read Timing  
t
t
LXAX  
AVLX  
ALE/AS  
t
LVLX  
A/D (BHE)  
MULTIPLEXED  
BUS  
ADDRESS  
VALID  
DATA  
VALID  
t
AVQV  
ADDRESS  
(BHE/SIZ0)  
NON-MULTIPLEXED  
BUS  
ADDRESS  
VALID  
DATA  
NON-MULTIPLEXED  
BUS  
DATA  
VALID  
t
SLQV  
CSI  
t
t
RLQV  
t
RHQX  
RLRH  
RD  
(PSEN, DS)  
(LDS, UDS)  
tRHQZ  
t
EHEL  
E
t
THEH  
t
ELTL  
R/W  
t
AVPV  
ADDRESS OUT  
95  
PSD4XX Family  
Figure 40. Write Timing  
t
t
LXAX  
AVLX  
ALE/AS  
t
LVLX  
A/D (BHE)  
MULTIPLEXED  
BUS  
ADDRESS  
VALID  
DATA  
VALID  
t
AVWL  
ADDRESS  
(BHE, SIZ0)  
NON-MULTIPLEXED  
BUS  
ADDRESS  
VALID  
DATA  
NON-MULTIPLEXED  
BUS  
DATA  
VALID  
t
SLWL  
CSI  
t
t
DVWH  
WHDX  
WR  
(WRH, WRL)  
(LDS, UDS)  
(DS)  
t
WLWH  
t
WHAX  
t
EHEL  
E
t
t
THEH  
ELTL  
R/ W  
t
t
AVPV  
WHPV  
STANDARD  
MCU I/O OUT  
ADDRESS OUT  
96  
PSD4XX Family  
Figure 41. Peripheral I/O Read Timing  
ALE/AS  
ADDRESS  
DATA VALID  
A/D BUS  
t
(PA)  
(PA)  
AVQV  
t
SLQV  
CSI  
RD  
t
t
(PA)  
(PA)  
RLQV  
t
t
(PA)  
(PA)  
QXRH  
RHQZ  
RLRH  
t
(PA)  
DVQV  
DATA ON PORT A  
Figure 42. Peripheral I/O Write Timing  
ALE/AS  
ADDRESS  
DATA OUT  
A/D BUS  
tWHQZ (PA)  
tWLQV (PA)  
WR  
tDVQV (PA)  
PORT A  
DATA OUT  
97  
PSD4XX Family  
Figure 43. Combinatorial Timing ZPLD  
INPUT  
(FROM PORT B, C, D, E)  
tPD  
ANY OUTPUT  
INPUT  
(FROM PORT A)  
tRPD  
ANY  
OUTPUT  
98  
PSD4XX Family  
Figure 44.  
Synchronous  
Clock Mode  
Timing – ZPLD  
t
t
CL  
CH  
CLKIN  
INPUT  
t
S
t
H
t
CO  
REGISTERED  
OUTPUT  
Figure 45.  
Asynchronous  
Clock Mode  
Timing  
(Product-Term  
Clock, PB  
tCHA  
tCLA  
CLOCK  
INPUT  
tSA  
tHA  
Macrocell Only)  
tCOA  
REGISTERED  
OUTPUT  
99  
PSD4XX Family  
Figure 46.  
Input to Output  
Disable /Enable  
INPUT  
tER  
tEA  
INPUT TO  
OUTPUT  
ENABLE/DISABLE  
Figure 47.  
Asynchronous  
Reset /Preset  
tARPW  
RESET/PRESET  
INPUT  
tARP  
REGISTER  
OUTPUT  
100  
PSD4XX Family  
Figure 48.  
Reset Timing  
T1  
T2  
Figure 49.  
Key to  
Switching  
Waveforms  
INPUTS  
OUTPUTS  
WAVEFORMS  
STEADY INPUT  
STEADY OUTPUT  
MAY CHANGE FROM  
HI TO LO  
WILL BE CHANGING  
FROM HI TO LO  
MAY CHANGE FROM  
LO TO HI  
WILL BE CHANGING  
LO TO HI  
DON'T CARE  
CHANGING, STATE  
UNKNOWN  
OUTPUTS ONLY  
CENTER LINE IS  
TRI-STATE  
101  
PSD4XX Family  
TA = 25 °C, f = 1 MHz  
15.0  
Pin Capacitance  
Symbol  
Parameter14  
Conditions Typical15 Max Unit  
CIN  
Capacitance (for input pins only)  
Capacitance (for input/output pins)  
Capacitance (for WR/VPP or R/W/VPP  
VIN = 0 V  
VOUT = 0 V  
VPP = 0 V  
4
8
6
pF  
pF  
pF  
COUT  
CVPP  
12  
25  
)
18  
NOTES: 14.These parameters are only sampled and are not 100% tested.  
15.Typical values are for TA = 25°C and nominal supply voltages.  
Figure 50. AC Testing Input/Output Waveform  
16.0  
AC Testing  
3.0V  
TEST POINT  
1.5V  
0V  
Figure 51. AC Testing Load Circuit  
2.01 V  
195  
DEVICE  
UNDER TEST  
CL = 30 pF  
(INCLUDING  
SCOPE AND JIG  
CAPACITANCE)  
To clear all locations of their programmed contents, expose the window packaged device  
to an ultra-violet light source. A dosage of 30 W second/cm2 is required (40 W second/cm2  
for ZPSD4XXV versions). This dosage can be obtained with exposure to a wavelength of  
2537 Å and intensity of 12000 µW/cm2 for 40 to 45 minutes (55 to 60 minutes for  
ZPSD4XXV versions). The device should be about 1 inch from the source, and all filters  
should be removed from the UV light source prior to erasure.  
17.0  
Erasure and  
Programming  
The PSD4XX and similar devices will erase with light sources having wavelengths shorter  
than 4000 Å. Although the erasure times will be much longer than with UV sources at 2537  
Å, exposure to fluorescent light and sunlight eventually erases the device. For maximum  
system reliability, these sources should be avoided. If used in such an environment, the  
package windows should be covered by an opaque substance.  
Upon delivery from ST, or after each erasure, the PSD4XX device has all bits in the PAD  
and EPROM in the “1” or high state. The configuration bits are in the “0” or low state. The  
code, configuration, and PAD MAP data are loaded through the procedure of programming  
Information for programming the device is available directly from ST. Please contact your  
local sales representative.  
102  
PSD4XX Family  
18.0  
PSD4XX  
Pin  
68-Pin  
PLDCC/CLDCC  
Package  
68-Pin  
PLDCC/CLDCC  
Package  
Pin No.  
Pin No.  
Assignments  
1
GND  
ADIO_7  
ADIO_6  
ADIO_5  
ADIO_4  
ADIO_3  
ADIO_2  
ADIO_1  
ADIO_0  
PC7  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
GND  
2
PE2  
3
PE1  
4
PE0  
5
CSI  
6
RESET  
RD  
7
8
CLKIN  
PB7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
PB6  
PC6  
PB5  
PC5  
PB4  
PC4  
PB3  
PC3  
PB2  
PC2  
PB1  
PC1  
PB0  
PC0  
GND  
VCC  
VCC  
GND  
PA7  
PD7  
PD6  
PA6  
PD5  
PA5  
PD4  
PA4  
PD3  
PA3  
PD2  
PA2  
PD1  
PA1  
PD0  
PA0  
ADIO_15  
ADIO_14  
ADIO_13  
ADIO_12  
ADIO_11  
ADIO_10  
ADIO_9  
ADIO_8  
Vstdby  
WR  
PE7  
PE6  
PE5  
PE4  
PE3  
103  
PSD4XX Family  
PSD4XX  
Pin  
Assignments  
80-Pin  
TQFP  
Package  
80-Pin  
TQFP  
Package  
Pin No.  
Pin No.  
1
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
VCC  
41  
42  
43  
44  
45  
46  
47  
48  
49  
59  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
PB7  
2
PB6  
3
PB5  
4
PB4  
5
PB3  
6
PB2  
7
PB1  
8
PB0  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
VCC  
GND  
GND  
GND  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
NC  
VCC  
VCC  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
NC  
NC  
ADIO_15  
ADIO_14  
ADIO_13  
ADIO_12  
ADIO_11  
ADIO_10  
ADIO_9  
ADIO_8  
GND  
Vstdby  
WR  
PE7  
PE6  
PE5  
PE4  
PE3  
GND  
GND  
PE2  
PE1  
PE0  
CSI  
GND  
ADIO_7  
ADIO_6  
ADIO_5  
ADIO_4  
ADIO_3  
ADIO_2  
ADIO_1  
ADIO_0  
NC  
RESET  
RD  
CLKIN  
NC  
NC  
104  
PSD4XX Family  
19.0  
Package  
Information  
Figure 52.  
Drawing J5 –  
68-Pin  
Plastic Leaded  
Chip Carrier  
(PLDCC)  
9
10  
8
7
6
5
4
3
2
68 67 66 65 64 63 62 61  
1
PC7  
PC6  
60  
PD0  
PD1  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
59  
PC5  
PC4  
58  
57  
PD2  
PD3  
PC3  
PC2  
56  
55  
PD4  
PD5  
PC1  
PC0  
54  
53  
52  
51  
50  
49  
48  
47  
46  
PD6  
PD7  
(Package  
Type J)  
V
V
CC  
CC  
GND  
PA7  
PA6  
PA5  
PA4  
PA3  
GND  
PB0  
PB1  
PB2  
PB3  
PB4  
23  
24  
PA2  
PA1  
25  
26  
45  
PB5  
PB6  
44  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
Figure 53.  
Drawing L5 –  
68-Pin  
Ceramic Leaded  
Chip Carrier  
(CLDCC)  
with Window  
(Package  
9
8
7
6
5
4
3
2
68 67 66 65 64 63 62 61  
1
10  
PC7  
PC6  
60  
PD0  
PD1  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
59  
PC5  
PC4  
58  
57  
PD2  
PD3  
PC3  
PC2  
56  
55  
PD4  
PD5  
Type L)  
PC1  
PC0  
54  
53  
52  
51  
50  
49  
48  
47  
46  
PD6  
PD7  
V
V
CC  
CC  
GND  
PA7  
PA6  
PA5  
PA4  
PA3  
GND  
PB0  
PB1  
PB2  
PB3  
PB4  
23  
24  
PA2  
PA1  
25  
26  
45  
PB5  
PB6  
44  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
105  
PSD4XX Family  
Figure 54.  
Drawing U2 –  
80-Pin  
Plastic Thin  
Quad Flatpack  
(TQFP)  
(Package  
Type U)  
PC7 1  
PC6 2  
PC5 3  
PC4 4  
PC3 5  
PC2 6  
PC1 7  
PC0 8  
60 PD0  
59 PD1  
58 PD2  
57 PD3  
56 PD4  
55 PD5  
54 PD6  
53 PD7  
V
V
9
52 V  
CC  
CC  
CC  
10  
51 V  
CC  
GND 11  
GND 12  
PA7 13  
PA6 14  
PA5 15  
PA4 16  
PA3 17  
PA2 18  
PA1 19  
PA0 20  
50 GND  
49 GND  
48 PB0  
47 PB1  
46 PB2  
45 PB3  
44 PB4  
43 PB5  
42 PB6  
41 PB7  
(TOP VIEW)  
106  
PSD4XX Family  
Drawing J5 – 68-Pin Plastic Leaded Chip Carrier (PLDCC) (Package Type J)  
D
D1  
3 2 1 68  
E1  
E
C
B1  
A
e1  
B
A2  
A1  
E3  
E2  
D3  
D2  
Family: Plastic Leaded Chip Carrier  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
A
4.19  
2.41  
4.57  
3.00  
0.165  
0.095  
0.146  
0.013  
0.026  
0.0077  
0.985  
0.950  
0.890  
0.180  
0.118  
0.154  
0.021  
0.032  
0.0083  
0.995  
0.954  
0.930  
A1  
A2  
B
3.71  
3.91  
0.33  
0.53  
B1  
C
0.66  
0.81  
0.196  
25.02  
24.13  
22.61  
0.262  
25.27  
24.23  
23.62  
D
D1  
D2  
D3  
E
20.32  
Reference  
0.800  
Reference  
25.02  
24.13  
22.61  
25.27  
24.23  
23.62  
0.985  
0.950  
0.890  
0.995  
0.954  
0.930  
E1  
E2  
E3  
e1  
N
20.32  
1.27  
68  
Reference  
Reference  
0.800  
0.050  
68  
Reference  
Reference  
030195R6  
107  
PSD4XX Family  
Drawing L5 68-Pin Pocketed Ceramic Leaded Chip Carrier (CLDCC) – CERQUAD (Package Type L)  
D
D1  
2 1 68  
3
To reduce lead damage,  
lead tips reside in  
pockets on the bottom  
of the package.  
E1  
E
View A  
B1  
C
A2  
View A  
e1  
B
D3  
D2  
E3  
E2  
A
A1  
Family: Ceramic Leaded Chip Carrier CERQUAD  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
A
3.94  
2.29  
4.57  
2.92  
0.155  
0.090  
0.120  
0.017  
0.026  
0.006  
0.985  
0.942  
0.880  
0.180  
0.115  
0.145  
0.021  
0.032  
0.010  
0.995  
0.956  
0.940  
A1  
A2  
B
3.05  
3.68  
0.43  
0.53  
B1  
C
0.66  
0.81  
0.15  
0.25  
D
25.02  
23.93  
22.35  
25.27  
24.28  
23.88  
D1  
D2  
D3  
E
20.32  
Reference  
0.800  
Reference  
25.02  
23.93  
22.35  
25.27  
24.28  
23.88  
0.985  
0.942  
0.880  
0.995  
0.956  
0.940  
E1  
E2  
E3  
e1  
N
20.32  
1.27  
68  
Reference  
Reference  
0.800  
0.050  
68  
Reference  
Reference  
030195R6  
108  
PSD4XX Family  
Drawing U2 80-Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U)  
D
D1  
D3  
80  
1
2
3
Index  
Mark  
E
E3  
E1  
Standoff:  
0.05 mm Min.  
C
A1 A2  
A
α
L
Load Coplanarity:  
0.102 mm Max.  
B
e1  
Family: Plastic Thin Quad Flatpack (TQFP)  
Millimeters  
Inches  
Symbol  
Min  
0°  
Max  
8°  
Notes  
Min  
0°  
Max  
8°  
Notes  
α
A
1.60  
0.063  
A1  
A2  
B
0.54  
1.15  
0.74  
1.55  
0.021  
0.045  
0.029  
0.061  
0.30  
Reference  
Reference  
0.012  
0.486  
Reference  
Reference  
C
0.09  
15.75  
13.90  
0.20  
16.25  
14.10  
0.004  
0.620  
0.547  
0.008  
0.640  
0.555  
D
D1  
D3  
E
12.35  
15.75  
13.90  
16.25  
14.10  
0.620  
0.547  
0.640  
0.555  
E1  
E3  
e1  
L
12.35  
0.65  
Reference  
Reference  
0.486  
0.026  
Reference  
Reference  
0.35  
0.75  
0.014  
0.030  
N
80  
80  
030195R1  
109  
t
r
d
4
2
0
 m
20.1 PSD4XX Family – Selector Guide  
Part #  
MCU  
PLDs/Decoders  
I/O  
Memory  
Other  
PSD  
ZPSD  
ZPSDV  
Data Path  
Inputs  
Ports EPROM SRAM Four 16-Bit Timer/Counters  
Interface  
Product Terms  
(w/BB)  
WatchDog (16-Bit)  
Inter. Contr.  
Input Micro Cells  
Output Micro Cells  
Periph. Mode  
Security  
APD  
Outputs  
Page  
Reg.  
PSD411A1 ZPSD411A1 ZPSD411A1V  
8
PLUS1  
37  
37  
37  
37  
37  
37  
37  
113  
113  
113  
113  
113  
113  
113  
8
8
8
8
8
8
8
16  
16  
16  
16  
16  
16  
16  
X
X
X
X
X
X
X
40  
40  
40  
40  
40  
40  
40  
256Kb 16Kb  
256Kb 16Kb  
512Kb 16Kb  
512Kb 16Kb  
512Kb 16Kb  
1024Kb 16Kb  
1024Kb 16Kb  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
PSD401A1 ZPSD401A1 ZPSD401A1V 16/8 PLUS1  
ZPSD412A0  
8
8
PLUS1  
PLUS1  
PSD412A1 ZPSD412A1 ZPSD412A1V  
PSD402A1 ZPSD402A1 ZPSD402A1V 16/8 PLUS1  
PSD413A1 ZPSD413A1 ZPSD413A1V PLUS1  
PSD403A1 ZPSD403A1 ZPSD403A1V 16/8 PLUS1  
PSD411A2 ZPSD411A2 ZPSD411A2V PLUS1  
PSD401A2 ZPSD401A2 ZPSD401A2V 16/8 PLUS1  
PSD412A2 ZPSD412A2 ZPSD412A2V PLUS1  
PSD402A2 ZPSD402A2 ZPSD402A2V 16/8 PLUS1  
PSD413A2 ZPSD413A2 ZPSD413A2V PLUS1  
PSD403A2 ZPSD403A2 ZPSD403A2V 16/8 PLUS1  
8
8
59  
59  
59  
59  
59  
59  
126  
126  
126  
126  
126  
126  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
X
X
X
X
X
X
40  
40  
40  
40  
40  
40  
256Kb 16Kb  
256Kb 16Kb  
512Kb 16Kb  
512Kb 16Kb  
1024Kb 16Kb  
1024Kb 16Kb  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
8
8
PSD4XX Family  
PSD4XX  
Product  
Ordering  
Information  
(cont.)  
20.2 Part Number Construction  
I
Z
PSD 413A2 V -A -20 J  
Temperature (Blank = Commercial,  
I = Industrial, M = Military)  
Package Type  
Speed (-70 = 70ns, -90 = 90ns, -15 = 150ns  
-20 = 200ns, -25 = 250ns)  
Revision (Blank = No Revision)  
Supply Voltage (Blank = 5V, V = 3 Volt)  
Base Part Number - see Selector Guide  
PSD (ST Programmable System Device) Fam.  
Power Down Feature (Blank = Standard,  
Z = Zero Power Feature)  
20.3 Ordering Information  
Operating  
Temperature  
Speed  
Part Number  
(ns)  
Package Type  
Range  
PSD401A1-C-70J  
PSD401A1-C-70L  
PSD401A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD401A1-C-90JI  
PSD401A1-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD401A1-C-12J  
120  
68 Pin PLDCC  
Comm’l  
PSD401A1-C-15J  
PSD401A1-C-15L  
PSD401A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD401A2-C-70J  
PSD401A2-C-70L  
PSD401A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD401A2-C-90JI  
PSD401A2-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD401A2-C-15J  
PSD401A2-C-15L  
PSD401A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
111  
PSD4XX Family  
PSD4XX  
Product  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
PSD402A1-C-70J  
PSD402A1-C-70L  
PSD402A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD402A1-C-90JI  
PSD402A1-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD402A1-C-15J  
PSD402A1-C-15L  
PSD402A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD402A2-C-70J  
PSD402A2-C-70L  
PSD402A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD402A2-C-90JI  
PSD402A2-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD402A2-C-15J  
PSD402A2-C-15L  
PSD402A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD403A1-C-70J  
PSD403A1-C-70L  
PSD403A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD403A1-C-90JI  
PSD403A1-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD403A1-C-15J  
PSD403A1-C-15L  
PSD403A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD403A2-C-70J  
PSD403A2-C-70L  
PSD403A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD403A2-C-90JI  
PSD403A2-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD403A2-C-15J  
PSD403A2-C-15L  
PSD403A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD411A1-C-70J  
PSD411A1-C-70L  
PSD411A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD411A1-C-90JI  
PSD411A1-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD411A1-C-15J  
PSD411A1-C-15L  
PSD411A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
112  
PSD4XX Family  
PSD4XX  
Product  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
PSD411A2-C-70J  
PSD411A2-C-70L  
PSD411A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD411A2-C-90JI  
PSD411A2-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD411A2-C-15J  
PSD411A2-C-15L  
PSD411A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD412A1-C-70J  
PSD412A1-C-70L  
PSD412A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD412A1-C-90JI  
PSD412A1-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD412A1-C-15J  
PSD412A1-C-15L  
PSD412A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD412A2-C-70J  
PSD412A2-C-70L  
PSD412A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD412A2-C-90JI  
PSD412A2-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD412A2-C-15J  
PSD412A2-C-15L  
PSD412A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD413A1-C-70J  
PSD413A1-C-70L  
PSD413A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD413A1-C-90JI  
PSD413A1-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD413A1-C-15J  
PSD413A1-C-15L  
PSD413A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD413A2-C-70J  
PSD413A2-C-70L  
PSD413A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
PSD413A2-C-90JI  
PSD413A2-C-90UI  
90  
90  
68 Pin PLDCC  
68 Pin TQFP  
Industrial  
Industrial  
PSD413A2-C-15J  
PSD413A2-C-15L  
PSD413A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
68 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
113  
PSD4XX Family  
PSD4XX  
Product  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD401A1-C-70J  
ZPSD401A1-C-70L  
ZPSD401A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD401A1-C-90JI  
ZPSD401A1-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD401A1-C-15J  
ZPSD401A1-C-15L  
ZPSD401A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD401A1V-C-20J  
ZPSD401A1V-C-20JI  
ZPSD401A1V-C-20L  
ZPSD401A1V-C-20U  
ZPSD401A1V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD401A1V-C-25J  
ZPSD401A1V-C-25L  
ZPSD401A1V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD401A2-C-70J  
ZPSD401A2-C-70L  
ZPSD401A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD401A2-C-90JI  
ZPSD401A2-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD401A2-C-15J  
ZPSD401A2-C-15L  
ZPSD401A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD401A2V-C-20J  
ZPSD401A2V-C-20JI  
ZPSD401A2V-C-20L  
ZPSD401A2V-C-20U  
ZPSD401A2V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD401A2V-C-25J  
ZPSD401A2V-C-25L  
ZPSD401A2V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD402A1-C-70J  
ZPSD402A1-C-70L  
ZPSD402A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD402A1-C-90JI  
ZPSD402A1-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD402A1-C-15J  
ZPSD402A1-C-15L  
ZPSD402A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
114  
PSD4XX Family  
PSD4XX  
Product  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD402A1V-C-20J  
ZPSD402A1V-C-20JI  
ZPSD402A1V-C-20L  
ZPSD402A1V-C-20U  
ZPSD402A1V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD402A1V-C-25J  
ZPSD402A1V-C-25L  
ZPSD402A1V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD402A2-C-70J  
ZPSD402A2-C-70L  
ZPSD402A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD402A2-C-90JI  
ZPSD402A2-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD402A2-C-15J  
ZPSD402A2-C-15L  
ZPSD402A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD402A2V-C-20J  
ZPSD402A2V-C-20JI  
ZPSD402A2V-C-20L  
ZPSD402A2V-C-20U  
ZPSD402A2V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD402A2V-C-25J  
ZPSD402A2V-C-25L  
ZPSD402A2V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD403A1-C-70J  
ZPSD403A1-C-70L  
ZPSD403A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD403A1-C-90JI  
ZPSD403A1-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD403A1-C-15J  
ZPSD403A1-C-15L  
ZPSD403A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD403A1V-C-20J  
ZPSD403A1V-C-20JI  
ZPSD403A1V-C-20L  
ZPSD403A1V-C-20U  
ZPSD403A1V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD403A1V-C-25J  
ZPSD403A1V-C-25L  
ZPSD403A1V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
115  
PSD4XX Family  
PSD4XX  
Product  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD403A2-C-70J  
ZPSD403A2-C-70L  
ZPSD403A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD403A2-C-90JI  
ZPSD403A2-C-90LI  
ZPSD403A2-C-90UI  
90  
90  
90  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Industrial  
Industrial  
Industrial  
ZPSD403A2-C-15J  
ZPSD403A2-C-15L  
ZPSD403A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD403A2V-C-20J  
ZPSD403A2V-C-20JI  
ZPSD403A2V-C-20L  
ZPSD403A2V-C-20U  
ZPSD403A2V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD403A2V-C-25J  
ZPSD403A2V-C-25L  
ZPSD403A2V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD411A1-C-70J  
ZPSD411A1-C-70L  
ZPSD411A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD411A1-C-90JI  
ZPSD411A1-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD411A1-C-15J  
ZPSD411A1-C-15L  
ZPSD411A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD411A1V-C-20J  
ZPSD411A1V-C-20JI  
ZPSD411A1V-C-20L  
ZPSD411A1V-C-20U  
ZPSD411A1V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD411A1V-C-25J  
ZPSD411A1V-C-25L  
ZPSD411A1V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD411A2-C-70J  
ZPSD411A2-C-70L  
ZPSD411A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD411A2-C-90JI  
ZPSD411A2-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD411A2-C-15J  
ZPSD411A2-C-15L  
ZPSD411A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
116  
PSD4XX Family  
PSD4XX  
Product  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD411A2V-C-20J  
ZPSD411A2V-C-20JI  
ZPSD411A2V-C-20L  
ZPSD411A2V-C-20U  
ZPSD411A2V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD411A2V-C-25J  
ZPSD411A2V-C-25L  
ZPSD411A2V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD412A0-C-70J  
ZPSD412A0-C-70L  
ZPSD412A0-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD412A0-C-90JI  
ZPSD412A0-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD412A0-C-15J  
ZPSD412A0-C-15L  
ZPSD412A0-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD412A1-C-70J  
ZPSD412A1-C-70L  
ZPSD412A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD412A1-C-90JI  
ZPSD412A1-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD412A1-C-15J  
ZPSD412A1-C-15L  
ZPSD412A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD412A1V-C-20J  
ZPSD412A1V-C-20JI  
ZPSD412A1V-C-20L  
ZPSD412A1V-C-20U  
ZPSD412A1V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD412A1V-C-25J  
ZPSD412A1V-C-25L  
ZPSD412A1V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD412A2-C-70J  
ZPSD412A2-C-70L  
ZPSD412A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD412A2-C-90JI  
ZPSD412A2-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD412A2-C-15J  
ZPSD412A2-C-15L  
ZPSD412A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
117  
PSD4XX Family  
PSD4XX  
Product  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD412A2V-C-20J  
ZPSD412A2V-C-20JI  
ZPSD412A2V-C-20L  
ZPSD412A2V-C-20U  
ZPSD412A2V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD412A2V-C-25J  
ZPSD412A2V-C-25L  
ZPSD412A2V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD413A1-C-70J  
ZPSD413A1-C-70L  
ZPSD413A1-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD413A1-C-90JI  
ZPSD413A1-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD413A1-C-15J  
ZPSD413A1-C-15L  
ZPSD413A1-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD413A1V-C-20J  
ZPSD413A1V-C-20JI  
ZPSD413A1V-C-20L  
ZPSD413A1V-C-20U  
ZPSD413A1V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD413A1V-C-25J  
ZPSD413A1V-C-25L  
ZPSD413A1V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD413A2-C-70J  
ZPSD413A2-C-70L  
ZPSD413A2-C-70U  
70  
70  
70  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD413A2-C-90JI  
ZPSD413A2-C-90UI  
90  
90  
68 Pin PLDCC  
80 Pin TQFP  
Industrial  
Industrial  
ZPSD413A2-C-15J  
ZPSD413A2-C-15L  
ZPSD413A2-C-15U  
150  
150  
150  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD413A2V-C-20J  
ZPSD413A2V-C-20JI  
ZPSD413A2V-C-20L  
ZPSD413A2V-C-20U  
ZPSD413A2V-C-20UI  
200  
200  
200  
200  
200  
68 Pin PLDCC  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
80 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
ZPSD413A2V-C-25J  
ZPSD413A2V-C-25L  
ZPSD413A2V-C-25U  
250  
250  
250  
68 Pin PLDCC  
68 Pin CLDCC  
80 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
118  
PSD4XX, ZPSD4XX  
REVISION HISTORY  
Table 1. Document Revision History  
Date  
Rev.  
Description of Revision  
Jul-1993  
Mar-1997  
May-1998  
1.0 PSD4XX: Document written in the WSI format. Initial release  
1.1 ZPSD4XX: Updated Specifications  
1.2  
1.3  
PSD4XX Updated Specifications, -12 Speed Grade Removed  
February, 1999 PSD4XXR, ZPSD4XXR Combined Data Sheets, Eliminated military parts,  
Eliminated various speed grades, Updated Specifications.  
Feb-1999  
PSD4XX, ZPSD4XX: Low Cost Field Programmable Microcontroller Peripherals  
Front page, and back two pages, in ST format, added to the PDF file  
Any references to Waferscale, WSI, EasyFLASH and PSDsoft 2000  
updated to ST, ST, Flash+PSD and PSDsoft Express  
31-Jan-2002  
1.4  
2/3  
PSD4XX, ZPSD4XX  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics group of companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -  
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
www.st.com  
3/3  

相关型号:

ZPSD403A2-C-90LI

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD403A2-C-90UI

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD403A2V-C-20J

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD403A2V-C-20JI

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD403A2V-C-20L

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD403A2V-C-20U

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD403A2V-C-20UI

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD403A2V-C-25J

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD403A2V-C-25L

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD403A2V-C-25U

Low Cost Field Programmable Microcontroller Peripherals

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

ZPSD411A1-12J

Field-Programmable Peripheral

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZPSD411A1-12JI

Field-Programmable Peripheral

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC