SMS47GR02

更新时间:2024-09-18 05:36:41
品牌:SUMMIT
描述:Quad Programmable Precision Cascade Sequencer and Supervisory Controller

SMS47GR02 概述

Quad Programmable Precision Cascade Sequencer and Supervisory Controller 四可编程精密梯级定序和监控器

SMS47GR02 数据手册

通过下载SMS47GR02数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
SUMMIT  
SMS47  
MICROELECTRONICS, Inc.  
PRELIMINARY INFORMATION1 (SEELASTPAGE)  
Quad Programmable Precision Cascade Sequencer and Supervisory  
Controller  
FEATURES  
INTRODUCTION  
The SMS47 is a nonvolatile user-programmable voltage  
supply cascade sequencer and supervisory circuit de-  
signed specifically for advanced systems that need to  
monitor multiple voltages. The SMS47 can monitor four  
separatevoltageswithouttheneedofanyexternalvoltage  
divider circuitry unlike other devices that need factory-  
trimmed threshold voltages and external components to  
accommodate different supply voltages and tolerances.  
z Operational from any of four Voltage Monitoring  
Inputs  
z ProgrammablePower-upCascadeSequencing  
z Programmability allows monitoring any voltage  
between 0.6V and 5.6V with no external  
components  
z Programmable 5mV steps in the low range  
z ProgrammableWatchdogTimer  
TheSMS47canalsobeusedtoenableDC/DCconverters  
orLDOstoprovideaclosedloopcascadingofthesupplies  
duringpower-up.  
z Programmable Reset Pulse Width  
z ProgrammableNonvolatileCombinatorialLogic  
forgenerationofReset  
z FaultStatusRegister  
The SMS47 watchdog timer has a user programmable  
time-out period and it can be placed in an idle mode for  
system initialization or system debug. All of the functions  
areuseraccessiblethroughanindustrystandardI2C2-wire  
serial interface.  
APPLICATIONS  
z Desktop/Notebook/TabletComputers  
z Multi-voltageSystems  
z Telecom/NetworkServers  
z PortableBattery-poweredEquipment  
z Set-topBoxes  
Programming of configuration, control and calibration  
valuesbytheuserissimplifiedwiththeSMX3200program-  
mingadapterandWindowsGUIsoftwareobtainablefrom  
Summit Microelectronics.  
z Data-storageEquipment  
SIMPLIFIED APPLICATION DRAWING  
5V  
2
I C  
7
6
9
10  
12  
SCL  
PUP#1  
SDA  
A2 A1  
VDD_CAP  
4
DC/DC  
3.3V  
2.5V  
1.8V  
16  
2
3
14  
V
V
V
V
0
1
2
3
0.1µF  
5
PUP#2  
PUP#3  
DC/DC  
SMS47  
1
MR#  
WLDI  
GND  
Reset#  
15  
13  
LDO  
RESET#  
11  
8
2047 SAD 2.0  
Applications Schematic using the SMS47 Controller to provide closed loop power-up cascade sequenc-  
ingandsupervisoryfunctions.  
NOTE: THIS IS AN APPLICATIONS EXAMPLE ONLY. SOME PINS, COMPONENTS AND VALUES ARE NOT SHOWN.  
©SUMMIT MICROELECTRONICS, Inc., 2005  
Characteristics subject to change without notice  
• 1717 Fox Dr. • San Jose, CA 95131 • Phone 408-436-9890 • FAX 408-436-9897 •  
www.summitmicro.com  
1
2087 1.1 04/11/05  
SMS47  
PreliminaryInformation  
INTERNAL BLOCK DIAGRAM  
VDD_CAP  
CONFIGURATION  
REGISTER  
50k  
11  
RESET#  
MR#  
1
V
0
16  
PROGRAMMABLE  
RESET PULSE  
GENERATOR  
NV DAC  
REF  
+
4
5
PUP#1  
PUP#2  
PUP#3  
PROGRAMMABLE  
POWER  
CASCADING  
V
1
2
3
13  
NV DAC  
REF  
+
9
SDA  
SERIAL  
BUS  
V
2
10 SCL  
CONTROL  
LOGIC  
7
A2  
A1  
NV DAC  
REF  
6
+
PROGRAMMABLE  
WATCHDOG  
TIMER  
V
3
14  
NV DAC  
REF  
VDD_CAP  
+
50kΩ  
15  
WLDI  
V
0
CONFIGURATION  
REGISTER  
SUPPLY  
ARBITRATION  
V
1
2
V
V
3
12  
8
VDD_CAP  
GND  
CASCADE SEQUENCING  
Time basedsequencinghastheabilitytoturnsupplieson  
inaspecificorder. However,itcannotguaranteethateach  
supply has reached valid voltage levels before the next  
supplyissequencedon. Cascadesequencingguarantees  
thesuppliesareenabledaprogrammedperiodoftimeafter  
the previous voltage has reached its minimum pro-  
grammedvalidlevel. Figure1showsthateachsucceeding  
voltagemustreachitsminimumvalidlevelbeforethetimer  
is started to time the interval, t, for the next voltage. The  
duration of each t is programmable for each supply to  
supply transition. The next supply is not enabled until the  
timer has elapsed. See also Figure 5.  
6V  
4V  
2V  
0V  
5V  
5V Valid  
3.3V Valid  
3.3V  
V
2.5V  
1.8V  
2.5V Valid  
t
t
t
T
2047 Fig01  
Figure 1. Cascading Power Supplies  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.1 04/11/05  
2
SMS47  
PreliminaryInformation  
PIN CONFIGURATION  
PIN NAMES  
Pin  
1
2
3
4
Name  
MR#  
V1  
Function  
Manual reset input  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
0
WLDI  
MR#  
Voltage supply and monitor input  
Voltage supply and monitor input  
Power up permitted output  
Power up permitted output  
Address input  
V
V
1
V2  
V
3
2
PUP#3  
VDD_CAP  
RESET#  
SCL  
PUP#1  
PUP#2  
A1  
A2  
GND  
PUP#1  
PUP#2  
A1  
5
6
SDA  
7
A2  
Address input  
8
9
GND  
SDA  
SCL  
Power supply return  
Serial data I/O  
Serial data clock  
2047 PCon 2.0  
10  
11  
12  
13  
14  
15  
16  
RESET#  
VDD_CAP Power supply output  
PUP#3  
V3  
WLDI  
V0  
Reset out  
Power up permitted  
Voltage supply and monitor input  
Watchdog Timer interrupt  
Voltage supply and monitor input  
2047 Pins Table 2.0  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.0 04/11/05  
3
SMS47  
PreliminaryInformation  
ABSOLUTE MAXIMUM RATINGS*  
RECOMMENDED OPERATING CONDITIONS  
Industrial Temperature Range............... –40ºC to +85ºC.  
Commercial Temperature Range..............–5ºC to +70ºC.  
VSUPPLY Supply Voltage............................2.7V to 5.5V  
Temperature Under Bias ...................... –55°C to 125°C  
StorageTemperature ............................. –65°Cto150°C  
LeadSolderTemperature(10s) ........................... 300°C  
Terminal Voltage with Respect to GND:  
VSUPPLY = Device supply voltage provided by the  
highest VX input.  
V , V , V , and V ......... –0.3V to 6.0V  
0
1
2
3
All Others ....................... –0.3V to 6.0V  
Junction Temperature.......................…….....…...150°C  
ESDRatingperJEDEC……………………..….…..2000V  
Latch-Up testing per JEDEC………..…….......…±100mA  
Package Thermal Resistance (θJA)  
16 Lead SSOP…………………….………….…23oC/W  
Moisture Classification Level 1 (MSL 1) per J-STD- 020  
*Note - Stresses beyond the listed Absolute Maximum Ratings may  
RELIABILITYCHARACTERISTICS  
cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions  
outside those listed in the operational sections of this specification is not  
implied. Exposure to any absolute maximum rating for extended  
periods may affect device performance and reliability.  
DataRetention………………….…………..…..100Years  
Endurance……………………….…..…….100,000Cycles  
DC OPERATING CHARACTERISTICS  
(OverRecommendedOperatingConditions;VoltagesarerelativetoGND)  
Symbol  
Parameter  
Notes  
Min.  
Typ.  
Max.  
Unit  
1V Min. refers to a valid reset out-  
put being generated  
1.0  
5.5  
V
VSUPPLY Operating supply voltage  
Read/Write operations: at  
least one of the V inputs must be  
at or above VSUPPLYX min.  
2.7  
5.5  
V
VDD_CAP = 5.5V; V0 trip point 4.7V; V1, V2,  
V3 = GND; MR# = VCC; all outputs  
floating  
200  
400  
µA  
ICC  
Supply current  
Configuration register access  
3
mA  
V
Reset threshold voltage range V0  
V
Programmable threshold  
RaPnTgHe range (low range)  
0.6  
1.8  
1.875  
to V3 (5mV increments)  
V
Programmable threshold  
Reset threshold voltage range V0  
to V3 (15mV increments)  
RaPnTgHe range (high range)  
5.625  
1.0  
V
Programmable threshold  
VPTH is the programmed threshold  
VPTHACC  
–1.0  
VPTH  
30  
%
Accuracy  
setpoint within the VPTH Range  
VHYST VRST hysteresis  
See Note 1 below  
mV  
V
ISINK = 1mA, VVDD_CAP 2.7V  
0.3  
0.3  
0.6  
VOL  
Low voltage output  
I
SINK = 200µA, VVDD_CAP = 1.0V  
V
VIL  
VIH  
V
Input threshold  
0.7 ´ VCC  
V
Note 1: Low Range Hysteresis = 4.2 X (Vtrip - 0.5 volts) mV. For Vtrip = 1.0 volts, Hysteresis = 2.1 mV (0.21 %),  
High Range Hysteresis = 12.6 X (Vtrip -0.5 volts) mV. For Vtrip = 5.0 volts, Hysteresis = 56.7 mV (1.13%).  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.1 04/11/05  
4
SMS47  
PreliminaryInformation  
AC OPERATING CHARACTERISTICS  
(OverRecommendedOperatingConditions;VoltagesarerelativetoGND, alsoseeconfigurationregisters)  
Symbol  
Parameter  
Notes  
Min.  
Typ.  
Max.  
Unit  
WD2  
WD1  
WD0  
0
0
1
1
1
1
0
1
0
0
1
1
X
1
0
1
0
1
OFF  
400  
300  
600  
500  
Programmable Watchdog  
timer period  
tPWDTO  
800  
1000  
2000  
4000  
8000  
1200  
2400  
4800  
1600  
3200  
6400  
ms  
PUP#X-1 PUP#X-0  
0
0
1
1
0
1
0
1
0ms  
25  
Programmable delay from  
VPTH to PUP# out  
t
PDLYX  
19  
38  
75  
31  
63  
50  
ms  
100  
100  
300  
125  
IMR  
MR# pullup current  
µA  
ns  
TMR  
MR# input pulse width  
Minimum  
Delay from MR# low to  
RESET# low  
TDMRRST  
200  
ns  
RTO1  
RTO0  
0
0
1
1
0
1
0
1
19  
38  
25  
50  
31  
63  
ms  
ms  
ms  
ms  
µs  
Programmable reset pulse  
width  
tPRTO  
75  
100  
200  
20  
125  
250  
150  
tDRST  
V in to RESET# delay  
100mV overdrive  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.0 04/11/05  
5
SMS47  
PreliminaryInformation  
PIN DESCRIPTIONS  
V0, V1, V2, V3 (16, 2, 3, 14)  
These inputs are used as the voltage monitor inputs and  
as the voltage supply for the SMS47. Internally they are  
diode ORed and the input with the highest voltage  
potential will be the default supply voltage (VDD_CAP).  
V
PTH-UV  
V
— V  
3
0
t
t
DRST  
PRTO  
TheRESET#outputwillbevalidifanyoneofthefourinputs  
isabove1V. However,forfulldeviceoperationatleastone  
of the inputs must be at 2.7V or higher.  
RESET#  
The sensing threshold for each input is independently  
programmable in 5mV increments from 0.6V to 1.875V or  
15mV increments from 1.8V to 5.625V. Also, the occur-  
renceofanunder-orover-voltageconditionthatisdetected  
asaresultofthethresholdsettingcanbeusedtogenerate  
a RESET#. The programmable nature of the threshold  
voltage eliminates the need for external voltage divider  
networks.  
Figure 3. RESET# Timing  
ration register 4). Refer to Figures 2 and 3 for a detailed  
illustrationoftherelationshipbetweenMR#,RESET#and  
the VIN levels.  
VDD_CAP(12)  
TheVDD_CAPpinconnectstotheinternalsupplyvoltage  
for the SMS47. A capacitor is placed on this pin to filter  
supply noise as well as hold up the device in the event of  
powerfailure. Thevoltageonthisnodeisdeterminedbythe  
highest input voltage. Loading of this pin should be  
minimized to prevent excessive power dissipation in the  
part.  
GND  
Power supply return.  
MR# (1)  
The manual reset input always generates a RESET#  
output whenever it is driven low. The duration of the  
RESET#outputpulsewillbeinitiatedwhenMR#goeslow  
and it will stay low for the duration of MR# low plus the  
programmed reset time-out period (tPRTO). If MR# is  
brought low during a power-on cascade of the PUP#s the  
cascade will be halted for the reset duration, and will then  
resume from the point at which it was interrupted. MR#  
mustbeheldlowduringaconfigurationregisterwrite. This  
signal is pulled up internally through a 50kresistor.  
WLDI(15)  
Watchdogtimer input. Ahigh-to-lowtransitionontheWLDI  
input will clear the watchdog timer, effectively starting a  
new time-out period. This signal is pulled up internally  
through a 50kresistor.  
If WLDI is stuck low and no high-to-low transition is  
received within the programmed tPWDTO period (pro-  
grammedwatchdogtime-out)RESET# willbedrivenlow.  
Refer to Figure 4 for a detailed illustration.  
RESET#(11)  
The reset output is an active low open drain output. It will  
be driven low whenever the MR# input is low or whenever  
anenabledunder-voltageorover-voltageconditionexists.  
Thefourvoltagemonitorinputsarealwaysfunctioning,but  
theirabilitytogeneratearesetisprogrammable(configu-  
Holding WLDI low will not block the watchdog from timing  
outandgeneratingareset. RefertoFigure4foradetailed  
illustrationoftherelationshipbetweenRESET#andWLDI.  
t
0
t
PWDTO  
t
t
t
t
0
0
0
0
t
MR#  
PRTO  
RESET#  
WLDI  
t
DMRRST  
t
t
PWDTO  
PRTO  
t
RESET#  
PRTO  
2047 Fig04 3.0  
Figure 4. Watchdog and WLDI Timing  
Figure 2. RESET# Timing with MR#  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.1 04/11/05  
6
SMS47  
PreliminaryInformation  
PIN DESCRIPTIONS (CONTINUED)  
A1,A2 (6, 7)  
A1 and A2 are the address inputs. When addressing the  
SMS47 configuration registers the address inputs distin-  
guish which one of four possible devices sharing the  
common bus is being addressed.  
SDA(9)  
SDA is the serial data input/output pin. It should be tied to  
VDD_CAP through a pull-up resistor.  
SCL(10)  
SCListheserialclockinput. ItshouldbetiedtoVDD_CAP  
through a pull-up resistor.  
PUP#1, PUP#2, PUP#3 (4, 5, 13)  
These are the power-up permitted (PUP) active low open  
drain outputs. The PUP pins are used when the SMS47 is  
programmed to provide the cascade sequencing of LDOs  
or DC/DC converters (see Figures 1 and 5 for illustra-  
tionsofcascading). Eachdelayisindependentlyenabled  
andprogrammableforitsduration(configurationregister  
7). If all PUP# outputs are enabled the order of events  
would be as follows: V0 above threshold then delay to  
PUP#1turningon;V1abovethresholdthendelaytoPUP#2  
turningon;V2abovethresholdthendelaytoPUP#3turning  
on. The delays are programmable.  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.0 04/11/05  
7
SMS47  
PreliminaryInformation  
DEVICE OPERATION  
V
PTH0  
V
0
t
PRTO  
RESET#  
PUP1#  
t
PDLY1  
V
PTH1  
V
1
t
PDLY2  
PUP2#  
V
PTH2  
V
2
t
PDLY3  
PUP3#  
V
3
2047 Fig05  
Figure 5. VX Input and Resulting PUP# Cascade (RESET# set to trip on V3 Undervoltage)  
V
PTH0  
V0  
50ms  
PUP1#  
V1  
PUP2#  
V
PTH2  
V2  
50ms  
PUP3#  
2047 Fig06  
Figure 6. Timing with Register 7 Contents 22HEX  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.1 04/11/05  
8
SMS47  
PreliminaryInformation  
DEVICE OPERATION (CONTINUED)  
Cascading  
Enabled  
No  
V
0
>V  
?
PTH  
Yes  
tPDLY1  
Turn On PUP#1  
No  
V1  
>V  
?
PTH  
Yes  
tPDLY2  
Turn On PUP#2  
No  
V2  
>V  
?
PTH  
Yes  
tPDLY3  
Turn On PUP#3  
2047 Fig07  
Figure 7. Cascade Flow Chart  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.0 04/11/05  
9
SMS47  
PreliminaryInformation  
CONFIGURATION REGISTERS  
If cascading is enabled, the designer must insure V0 is the  
primary supply and is the first to become active.  
SUPPLY AND MONITOR FUNCTIONS  
TheV0, V1, V2, andV3 inputsareinternallydiode-ORedso  
that any one of the four can act as the device supply. The  
RESET# output will be guaranteed true so long as one of  
the four pins is at or above 1V.  
Associatedwitheachinputisacomparatorwithaprogram-  
mable threshold for detection of under-voltage or over-  
voltage conditions on any of the four supply inputs. The  
threshold can be programmed in 5mV increments any-  
where within the range of 0.6V to 1.875V or 15mV incre-  
ments within the range of 1.8V to 5.625V. Configuration  
registers 0, 1, 2, and 3 adjust the thresholds for V0, V1, V2,  
and V3 respectively.  
Note: for performing a Read or Write to the con-  
figuration register contents, at least one supply  
input must be above 2.7V.  
Read/Write operations require a 0.1µF capacitor from the  
VDD_CAP node to GND. For optimum performance  
connect capacitors from each of the Vx inputs to GND.  
LocatethecapacitorsasphysicallyclosetotheSMS47as  
possible.  
If the value contained in any register is all zeroes, the  
correspondingthresholdwillbe0.6V. Ifthecontentswere  
lowrange 05HEX thethresholdwouldthenbe0.625V[0.6V  
+ (5 × 0.005V)]. All four registers are configured as 8-Bit  
registers.  
D7  
D0  
D6  
D5  
D4  
D3  
D2  
D1  
Action  
MSB  
LSB  
Highest threshold adjustment = 5.625V  
1
1
1
1
1
1
1
1
(High Range)  
Lowest threshold adjustment = 0.6V  
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
(Low Range)  
0
Threshold = 0.6V + (6×0.005V) = 0.625V (e.g.)  
Table 1. Configuration Registers 0, 1, 2, and 3  
RESET FUNCTION AND THRESHOLD RANGE  
conditiononV1. Whenthisconditionceases,theRESET#  
output will remain active for tPRTO (programmable reset  
time-out). This reset time-out interval takes priority over  
the PUP outputs for use of the timer.  
The reset output has four programmable sources for  
activation. Configurationregister4isusedforselectingthe  
activationsource(D7:4),whichcanbeanycombinationof  
V0, V1, V2 and V3. A monitor input can be programmed to  
activate on either an under-voltage or over-voltage condi-  
tion. The low-order four bits of configuration register 5  
programtheseoptions. Theresetthresholdvoltagerange  
for V0 to V3 can be set for 5mV increments below 1.875V  
(lowRange="0")orfor15mVincrementsabove1.8V(high  
range = "1") using Bits D3:0.  
TheRESET#outputhastwohardwiredsourcesforactiva-  
tion: the MR# input, and the expiration of the Watchdog  
timer. RESET# will remain active so long as MR# is low,  
and will continue driving the RESET# output for tPRTO  
(programmableresettimeout)afterMR#returnshigh. The  
MR# input cannot be bypassed or disabled.  
TheRESET#outputwillbecomeactivewhentriggeredby  
a selected activation source such as an under-voltage  
Refer to Figures 2, 3 and 4 for a detailed illustration of the  
relationships among the affected signals.  
D7  
D0  
D6  
D5  
D4  
D3  
D2  
D1  
Action  
MSB  
LSB  
X
X
X
X
V3  
V2  
V1  
V0  
Thestatusofthefoursuppliesisavailableatanytimeover  
theI2Cbusinthehighorderconfigurationbitsofregister5  
(Table 3). A "1" in a bit location indicates a fault on that  
supply.  
Voltage Threshold Range  
Select  
Low  
RESET Trigger Enable  
0
0
0
0
Range  
High  
1
1
1
1
Range  
Table 2. Configuration Register 4  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.1 04/11/05  
10  
SMS47  
PreliminaryInformation  
CONFIGURATION REGISTERS (CONTINUED)  
D3  
MSB  
D0  
LSB  
D2  
D1  
D7  
D6  
D5  
D4  
D3  
Action  
MSB  
V3  
0
V2  
V1  
V0  
0
Read1  
Read Read  
Only Only  
x
x
x
x
Writing a 0 enables  
undervoltage detection for  
the selected V input  
RTO1 RTO0  
Action  
Only  
0
1
0
1
0
0
0
0
0
0
1
1
0
1
0
1
x
x
x
x
tPRTO = 25ms  
tPRTO = 50ms  
PRTO = 100ms  
PRTO = 200ms  
Writing a 1 enables  
overvoltage detection for  
the selected V input  
1
1
t
t
Table 3. Configuration Register 5 (D0 through D3)  
WATCHDOG TIMER  
The Watchdog Timer will generate a reset if it times out. It  
can be cleared by a high-to-low transition on WLDI and  
restarted.  
Table 5. Configuration Register 6 (D3 through D7)  
Note 1 - Read Only bit D7 is set to a 0. Read only bits  
D4 and D3 are revision control and the value indi-  
cates the status code of the device (ie. 01 is status  
code 1).  
If the Watchdog times out RESET# will be driven low until  
tPRTO at which time it will return high. Refer to Figure 4  
which illustrates the action of RESET# with respect to the  
Watchdog timer and the WLDI input.  
D0  
LSB  
D2  
D1  
Action  
OFF  
WD2  
WD1 WD0  
IfWLDIisheldlowthetimerwillfree-rungeneratingaseries  
of resets.  
0
0
1
1
1
1
0
1
0
0
1
1
0
1
0
1
0
1
D7  
D4  
400ms  
800ms  
1600ms  
3200ms  
6400ms  
D6  
D5  
MSB  
LSB  
Action  
V3  
V2  
0
V1  
0
V0  
0
0
Reading a 1 indicates a  
supply fault  
1
1
1
1
Table 6. Configuration Register 6 (D0, D1, D2)  
Table 4. Configuration Register 5 (D4 through D7)  
The delay from VPTH0 until PUP#1 low is tPDLY1. There is  
a similar tPDLYX delay for V1 to PUP#2 and for V2 to  
PUP#3. Theyareprogrammedinregister7. Cascadingwill  
always occur as indicated in the flow chart (Figure 7).  
WhentheWatchdogtimesoutRESET#willbegenerated.  
WhenRESET#returnshigh(aftertPRTO)thetimerisreset  
to time zero.  
Register6isalsousedtosettheprogrammableresettime-  
out period (tPRTO) and to select the cascade option.  
CascadeDelayProgramming  
Thecascadedelaysareprogrammedinregister7. Bit7of  
register6mustbesettoa0inordertoenablethecascading  
of the PUP# outputs. Cascading will not commence until  
V0 is above its programmed threshold.  
EachPUP#(-3,-2and-1)isdelayedaccordingtothestates  
ofitsBit1andBit0asindicatedinTable9. RefertoFigures  
1 and 5 for the detailed timing relationship of the program-  
mablepower-oncascading.  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.0 04/11/05  
11  
SMS47  
PreliminaryInformation  
CONFIGURATION REGISTERS (CONTINUED)  
D0  
LSB  
D7  
D6  
D5  
D4  
D3  
PUP#2  
Bit 1 Bit 0  
D2  
D1  
MSB  
PUP#3  
PUP#1  
Action  
Bit 1  
Bit 0  
Bit 1  
Bit 0  
2047 Table08 3.0  
Lock AS0  
Table 8. Configuration Register 7 (D5 through D0)  
x
0
1
x
x
x
Config. Reg. Read/Write enabled  
Config. Reg. Read/Write locked out 1  
Bit 1  
Bit 0  
tPDLYX  
0
0
1
1
0
1
0
1
0ms (no) Delay  
25ms Delay  
50ms Delay  
100ms Delay  
Note 1 - Setting this bit will cause a permanent Read/Write Lock out.  
Table 7. Configuration Register 7 (D7, D6)  
2047 Table09 1.0  
Table 9. PUP Delays, Configuration Register 7  
DEVELOPMENT HARDWARE & SOFTWARE  
SMX3200 PROGRAMMER  
TheendusercanusethesummitSMX3200programming  
cable and software that have been developed to operate  
with a standard personal computer. The programming  
cable interfaces directly between a PC’s parallel port and  
TheWindowsGUIsoftwarewillgeneratethedataandsend  
it in I2C serial bus format so that it can be directly  
downloaded to the SMS47 via the programming Dongle  
and cable. An example of the connection interface is  
shown in Figure 8.  
thetargetapplication. Theapplication’svaluesareentered  
via an intuitive graphical user interface employing drop-  
downmenus.  
When design prototyping is complete, the software can  
generate a HEX data file that should be transmitted to  
Summit for approval. Summit will then assign a unique  
customer ID to the HEX code and program production  
devicesbeforethefinalelectricaltestoperations. Thiswill  
Thelatestrevisionsofallsoftwareandanapplicationbrief  
describing the SMX3200 is available from the website  
(www.summitmicro.com).  
ensure proper device operation in the end application.  
Top view of straight 0.1" x 0.1 closed-side  
connector. SMX3200 interface cable connector.  
D1  
Pin 10, Reserved  
Pin 8, Reserved  
Pin 6, MR#  
Pin 9, 5V  
Pin 7, 10V  
1N4148  
Pin 5, Reserved  
Pin 3, GND  
Pin 1, GND  
Pin 4, SDA  
VDD_CAP  
Pin 2, SCL  
10  
9
7
5
3
1
8
C1  
0.1µF  
SMS47  
6
MR#  
4
2
SDA  
SCL  
GND  
Figure 8. SMX3200 Programmer I2C serial bus connections to program the SMS47.  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.1 04/11/05  
12  
SMS47  
PreliminaryInformation  
2
I C PROGRAMMING INFORMATION  
InputDataProtocol  
CONFIGURATION REGISTER OPERATION  
The protocol defines any device that sends data onto the  
bus as a transmitter and any device that receives data as  
a receiver. The device controlling data transmission is  
called the Master and the controlled device is called the  
Slave. InallcasestheSMS47willbeaSlavedevice,since  
it never initiates any data transfers.  
Data for the configuration registers is read and written via  
theI2Cindustrystandardtwo-wireinterface. Thebuswas  
designed for two-way, two-line serial communication be-  
tween different integrated circuits. The two lines are a  
serial data line (SDA) and a serial clock line (SCL). The  
SDA line must be connected to a positive supply by a pull-  
upresistor,locatedsomewhere onthebus. See Operating  
Characteristics: Table 10 and Figure 9 below.  
One data bit is transferred during each clock pulse. The  
data on the SDA line must remain stable during clock high  
time because changes on the data line while SCL is high  
will be interpreted as start or stop condition.  
Symbol  
fSCL  
Parameter  
SCL clock frequency  
Clock low period  
Conditions  
MIN  
0
TYP  
MAX  
Units  
kHz  
µs  
100  
tLOW  
tHIGH  
tBUF  
4.7  
4.0  
4.7  
4.7  
4.0  
4.7  
0.2  
0.2  
Clock high period  
µs  
Bus free time (1)  
Before new transmission  
µs  
tSU:STA  
tHD:STA  
tSU:STO  
tAA  
Start condition setup time  
Start condition hold time  
Stop condition setup time  
Clock edge to valid output  
Data Out hold time  
µs  
µs  
µs  
SCL low to valid SDA (cycle n)  
3.5  
µs  
tDH  
SCL low (cycle n+1) to SDA change  
µs  
tR  
SCL and SDA rise time (1)  
SCL and SDA fall time (1)  
Data In setup time  
1000  
300  
ns  
tF  
ns  
tSU:DAT  
tHD:DAT  
TI  
250  
0
ns  
Data In hold time  
ns  
Noise filter SCL and SDA  
Write cycle time  
Noise suppression  
100  
ns  
tWR  
5
ms  
Note (1): These values are guaranteed by design.  
Table 10. I2C Operating Characteristics  
t
t
LOW  
HIGH  
t
t
R
F
SCL  
t
t
t
t
SU:STO  
t
HD:DAT  
SU:STA  
SU:DAT  
HD:STA  
t
BUF  
SDA In  
t
t
AA  
DH  
SDA Out  
2047 Fig09  
Figure 9. I2C Operating Characteristics  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.0 04/11/05  
13  
SMS47  
PreliminaryInformation  
2
I C PROGRAMMING INFORMATION (CONTINUED)  
START and STOP Conditions  
Whenboththedataandclocklinesarehighthebusissaid  
D7  
D0  
D6  
D5  
D4  
D3  
D2  
D1  
to be not busy. A high-to-low transition on the data line,  
MSB  
LSB  
while the clock is high, is defined as the Start condition.  
A low-to-high transition on the data line, while the clock  
is high, is defined as the Stop condition. See Figure 10.  
Address Bits  
Device Type  
SMS47  
Bus  
MSB R/W  
x
x
x
x
1
0
0
1
Configuration Register  
START  
STOP  
Condition  
Condition  
2047 Table11 1.0  
Table 11. Slave Addresses  
Read/WriteBit  
SCL  
SDA In  
The last bit of the data stream defines the operation to be  
performed. When set to 1 a Read operation is selected;  
when set to 0 a Write operation is selected.  
2047 Fig10  
Figure 10. START and STOP Conditions  
WRITE OPERATIONS  
The SMS47 uses byte Write operations. A byte Write  
operation writes a single byte during the nonvolatile write  
period(tWR).  
Acknowledge (ACK)  
Acknowledge is a software convention used to indicate  
successful data transfers. The transmitting device,  
either the Master or the Slave, will release the bus after  
transmitting eight bits. During the ninth clock cycle the  
receiver will pull the SDA line low to Acknowledge that it  
received the eight bits of data. The Master will leave the  
SDA line high (NACK) when it terminates a read function.  
ByteWrite  
AftertheSlaveaddressissent(toidentifytheSlavedevice  
andselecteitheraReadorWriteoperation),asecondbyte  
is transmitted which contains the low order 8 bit address  
of any one of the 256 words in the array. Upon receipt of  
the word address the SMS47 responds with an Acknowl-  
edge. After receiving the next byte of data it again  
responds with an Acknowledge. The Master then termi-  
natesthetransferbygeneratingaStopcondition,atwhich  
timetheSMS47beginstheinternalWritecycle. Whilethe  
internal Write cycle is in progress the SMS47 inputs are  
disabled and the device will not respond to any requests  
from the Master.  
TheSMS47willrespondwithanAcknowledgeafterrecog-  
nitionofaStartconditionanditsslaveaddressbyte. Ifboth  
the device and a write operation are selected the SMS47  
willrespondwithanAcknowledgeafterthereceiptofeach  
subsequent 8-Bit word. In the READ mode the SMS47  
transmitseightbitsofdata,thenreleasestheSDAline,and  
monitorsthelineforanAcknowledgesignal. IfanAcknowl-  
edgeisdetectedandnoStopconditionisgeneratedbythe  
Master, the SMS47 will continue to transmit data. If a  
NACK is detected the SMS47 will terminate further data  
transmissionsandawaitaStopconditionbeforereturning  
to the standby power mode.  
AcknowledgePolling  
WhentheSMS47isperforminganinternalWriteoperation  
itwillignoreanynewStartconditions. Sincethedevicewill  
only return an acknowledge after it accepts the Start the  
part can be continuously queried until an acknowledge is  
issued,indicatingthattheinternalWritecycleiscomplete.  
Seetheflowchartforthepropersequenceofoperationsfor  
polling.  
Device Addressing  
Following a Start condition the Master must output the  
address of the Slave it is accessing. The most significant  
four bits of the Slave address are the device type  
identifier/address. For the SMS47 the default is 1001BIN  
.
The next two bits are the Bus Address. The next bit (the  
7th) is the MSB of the configuration register address.  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.1 04/11/05  
14  
SMS47  
PreliminaryInformation  
2
I C PROGRAMMING INFORMATION (CONTINUED)  
READ OPERATIONS  
Write Cycle  
In Progress  
Read operations are initiated with the R/W bit of the  
identification field set to 1. There are two different Read  
options: 1. Current Address Byte Read, and 2. Random  
Address Byte Read.  
Issue Start  
Issue Stop  
RandomAddressRead  
Issue Slave  
Address and  
R/W = 0  
Random address Read operations allow the Master to  
access any register location in a random fashion. This  
operation involves a two-step process. First, the Master  
issuesawritecommandwhichincludesthestartcondition  
and the Slave address field (with the R/W bit set to Write),  
followed by the address of the word it is to Read. This  
proceduresetstheinternaladdresscounteroftheSMS47  
to the desired address. After the word address acknowl-  
edge is received by the Master it immediately reissues a  
Start condition, followed by another Slave address field  
withtheR/WbitsettoREAD. TheSMS47willrespondwith  
anAcknowledgeandthentransmitthe8databitsstoredat  
the addressed location. At this point the Master sets the  
SDA line to NACK and generates a Stop condition. The  
SMS47 discontinues data transmission and reverts to its  
standbypowermode.  
No  
ACK  
Returned  
Yes  
Next  
Operation  
a Write?  
No  
Yes  
Issue Stop  
Issue  
Address  
Proceed  
With  
Write  
Await  
Next  
Command  
Figure 12. Write Flow Chart  
S
S
T
O
P
T
Writing Configuration Registers  
A
Master  
R
T
R
/
W
B B  
A A  
D D D D D D D D  
C C C C C C C C  
SDA  
X
0 1  
1 0  
7
6 5 4 3 2 1 0  
7
6
5
4
3
2
1
0
2
1
A
C
K
A
C
K
A
C
K
Slave  
S
T
A
R
T
S
T
A
R
T
N
A
C
K
S
T
O
P
A
C
K
Reading the Configuration Register  
Master  
SDA  
B B  
A A  
R
B B  
A A  
R
/
W
D D D D D D D D  
C C C C C C C C  
X
/
X
0 1  
1 0  
0 1  
1 0  
7
6 5 4 3 2 1 0  
7
6 5 4 3 2 1 0  
2
1
W
2
1
A
C
K
A
C
K
Slave  
Figure 11. Read and Write Operations  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.0 04/11/05  
15  
SMS47  
PreliminaryInformation  
APPLICATIONS  
MR#  
VDD_CAP  
VDD_CAP  
D6  
DIODE  
J1  
1
3
5
7
9
2
Gnd  
SCL  
SDA  
MR#  
4
R4  
Gnd3  
Rsrv5  
6
10K  
8
+10V Rsrv 8  
+5V Rsrv 10  
10  
RESET#  
WLDI  
I2C SMX3200  
VDD_CAP  
U1  
R2  
10K  
R1  
R3  
10K  
10K  
16  
4
PUP#1  
PUP#2  
PUP#3  
V0  
V0  
V1  
V2  
V3  
PUP#1  
PUP#2  
PUP#3  
2
3
5
SMS47  
V1  
13  
V2  
V3  
14  
C1  
C2  
C3  
C4  
VDD_CAP  
0.01uF 0.01uF 0.01uF 0.01uF  
0.1uF  
C5  
Figure 13. Typical applications schematic, the SMX3200 programmer has internal SDA and SCL pull-up  
resistors.  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.1 04/11/05  
16  
SMS47  
PreliminaryInformation  
DEFAULT CONFIGURATION REGISTER SETTINGS - SMS47GC-359  
Register  
Contents  
Function  
R00  
56  
V0 threshold set to 3.090V  
R01  
R02  
28  
V1 threshold set to 2.400V  
V2 threshold set to 1.400V  
A0  
R03  
R04  
14  
F3  
V3 threshold set to 0.700V  
Reset Trigger source set for all channels, V0, V1 set to high range and V2, V3  
set to low range  
R05  
R06  
R07  
X0  
4D  
6A  
Upper bits are volatile status indication of input supply condition. V0, V1, V2  
and V3 set to m onitor UV Under Voltage.  
Reset tim eout set to 100m s, W atchdog Tim er set to 1.6s. Bits D4 and D3  
indicate revision control.  
Configuration registers are unlocked, cascading delays are all 50m s  
The default device ordering number is SMS47GC-359, is programmed as described above and tested  
over the commercial temperature range.  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.0 04/11/05  
17  
SMS47  
PreliminaryInformation  
PACKAGE  
16 PIN SSOP PACKAGE  
0.189 - 0.197  
(4.80 - 5.00)  
Ref. JEDEC MO-137  
0.228 - 0.244  
(5.79 - 6.20)  
Pin 1  
Inches  
(Millimeters)  
0.150 - 0.157  
(3.81 - 3.99)  
0.053 - 0.069  
(1.35 - 1.75)  
0.059  
MAX  
(1.50)  
0.007 - 0.010  
(0.18 - 0.25)  
0” Min to  
8” Max  
0.016 - 0.050  
(0.41 - 1.27)  
0.004 - 0.010  
(0.10 - 0.25)  
0.025  
0.008 - 0.012  
(0.20 - 0.31)  
(0.635)  
16 Pin SSOP  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.1 04/11/05  
18  
SMS47  
PreliminaryInformation  
PART MARKING  
Summit Part Number  
SUMMIT  
SMS47G  
Status Tracking Code  
(Blank, MS, ES, 01, 02,...)  
(Summit Use)  
xx  
AYYWW  
Annn  
Pin 1  
Identifier  
Date Code (YYWW)  
Lot tracking code (Summit use)  
Part Number suffix  
(Contains Customer specific ordering requirements)  
Product Tracking Code (Summit use)  
Drawing not to scale  
ORDERING INFORMATION  
S M S 4 7  
G
C
n n n  
P a rt N u m b e r S u ffix (s e e p a g e 1 7 )  
S p e c ific re q u ire m e n ts a re c o n ta in e d in th e  
S u m m it P a rt  
N u m b e r  
s u ffix s u c h a s H e x c o d e , H e x c o d e re v is io n , e tc .  
P a c k a g e  
G = 1 6 L e a d S S O P  
T e m p R a n g e  
C = C o m m e rc ia l  
B la n k = In d u s tria l  
NOTICE  
NOTE 1 - This is a Preliminary Information data sheet that describes a Summit product currently in pre-production with limited  
characterization.  
SUMMIT Microelectronics, Inc. reserves the right to make changes to the products contained in this publication in order to improve design,  
performance or reliability. SUMMIT Microelectronics, Inc. assumes no responsibility for the use of any circuits described herein, conveys no license  
under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained  
herein reflect representative operating parameters, and may vary depending upon a user’s specific application. While the information in this  
publicationhasbeencarefullychecked,SUMMITMicroelectronics,Inc.shallnotbeliableforanydamagesarisingasaresultofanyerrororomission.  
SUMMIT Microelectronics, Inc. does not recommend the use of any of its products in life support or aviation applications where the failure or  
malfunction of the product can reasonably be expected to cause any failure of either system or to significantly affect their safety or effectiveness.  
Products are not authorized for use in such applications unless SUMMIT Microelectronics, Inc. receives written assurances, to its satisfaction,  
that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; and (c) potential liability of SUMMIT Microelectronics,  
Inc. is adequately protected under the circumstances.  
Revision 1.1 - This document supersedes all previous versions. Please check the Summit Microelectronics, Inc. web site at  
www.summitmicro.com for data sheet updates.  
© Copyright 2005 SUMMIT MICROELECTRONICS, Inc. PROGRAMMABLEANALOGFORADIGITALWORLD™  
2
I C is a trademark of Philips Corporation.  
SUMMIT MICROELECTRONICS, Inc.  
2087 1.0 04/11/05  
19  

SMS47GR02 相关器件

型号 制造商 描述 价格 文档
SMS47GR03 SUMMIT Quad Programmable Precision Cascade Sequencer and Supervisory Controller 获取价格
SMS47GR04 SUMMIT Quad Programmable Precision Cascade Sequencer and Supervisory Controller 获取价格
SMS47GR05 SUMMIT Quad Programmable Precision Cascade Sequencer and Supervisory Controller 获取价格
SMS47GR06 SUMMIT Quad Programmable Precision Cascade Sequencer and Supervisory Controller 获取价格
SMS47GR07 SUMMIT Quad Programmable Precision Cascade Sequencer and Supervisory Controller 获取价格
SMS48 SUMMIT Quad Programmable Precision Supervisory Controller With Independent Resets 获取价格
SMS48GCR00 SUMMIT Quad Programmable Precision Supervisory Controller With Independent Resets 获取价格
SMS48GCR01 SUMMIT Quad Programmable Precision Supervisory Controller With Independent Resets 获取价格
SMS48GCR02 SUMMIT Quad Programmable Precision Supervisory Controller With Independent Resets 获取价格
SMS48GCR03 SUMMIT Quad Programmable Precision Supervisory Controller With Independent Resets 获取价格

SMS47GR02 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6