HV7351 [SUPERTEX]

Eight Channel Programmable High Voltage Ultrasound Transmit Beamformer;
HV7351
型号: HV7351
厂家: Supertex, Inc    Supertex, Inc
描述:

Eight Channel Programmable High Voltage Ultrasound Transmit Beamformer

文件: 总15页 (文件大小:924K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Supertex inc.  
HV7351  
Eight Channel Programmable  
High Voltage Ultrasound Transmit Beamformer  
Features  
General Description  
Eight channels with return to zero  
Up to ±70V output voltage  
±3.0A output current  
The Supertex HV7351 is an 8-channel programmable high  
voltage ultrasound transmit beamformer. Each channel is  
capable of swinging up to ±70V with an active discharge back  
to 0V. The outputs can source and sink more than 3.0A to  
achieve fast output rise and fall times. The active discharge is  
also capable of sourcing and sinking 3.0A for a fast return to  
ground. The topology of the HV7351 will significantly reduce  
the number of I/O logic control lines needed.  
Store up to four different patterns  
Independent programmable delays  
Single 11x11 QFN-80 package  
Application  
Each pulser has four associated 64-bit shift registers for  
storing pre-determined transmit patterns and a 10-bit delay  
counter for controlling the transmit time. One of four arbitrary  
patterns can be transmitted with adjustable delay, depending  
on the data loaded into these shift registers and the delay  
counter. The delay counter can be clocked up to 200MHz,  
allowing incremental delays down to 5ns.  
Medical ultrasound imaging  
NDT, non-destructive testing  
Arbitrary pattern generator  
High speed PIN diode driver  
Typical Application Circuit  
Array  
Probe  
tDELAY1  
tDELAY2  
tDELAY3  
Tx1  
E1  
E2  
E3  
HV7351  
8-channel  
Tx2  
U1  
Tx3  
HV7351  
8-channel  
U2  
Trigger  
tDELAY127  
Tx127  
HV7351  
8-channel  
U16  
E127  
E128  
tDELAY128  
Tx128  
Trigger  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
HV7351  
Pin Configuration  
Ordering Information  
80  
Part Number  
Package Option  
Packing  
1
HV7351K6-G  
80-Lead QFN (11x11)  
176/Tray  
-G denotes a lead (Pb)-free / RoHS compliant package  
Absolute Maximum Ratings  
Parameter  
Value  
VLL, Positive logic supply  
-0.5V to 5.5V  
-0.5V to 5.5V  
-0.5V to 5.5V  
-0.5V to 5.5V  
+0.5V to -5.5V  
-0.5V to +80V  
+0.5V to -80V  
+160V  
DVDD, Positive logic supply voltage  
PVDD, Positive gate drive supply voltage  
AVDD, Positive analog supply voltage  
PVSS, Negative gate drive supply voltage  
VPP, High voltage positive supply voltage  
VNN, High voltage negative supply voltage  
(VPP - VNN), Differential high voltage supply  
VPF, Positive floating supply voltage  
VNF, Negative floating supply voltage  
VRP, Positive supply for VNF regulator  
VRN, Negative supply for VPF regulator  
Operating temperature  
80-Lead QFN  
(top view)  
Package Marking  
L = Lot Number  
HV7351K6  
LLLLLLLLL  
YYWW  
YY = Year Sealed  
WW = Week Sealed  
A = Assembler ID  
C = Country of Origin  
AAA CCC  
VPP - 6.0V to VPP  
VNN to VNN +6.0V  
0V to 15V  
= “Green” Packaging  
Package may or may not include the following marks: Si or  
80-Lead QFN  
0V to -15V  
Typical Thermal Resistance  
-40°C to +125°C  
-65°C to +150°C  
Package  
θja  
80-Lead QFN  
14OC/W  
Storage temperature  
Absolute Maximum Ratings are those values beyond which damage to the  
device may occur. Functional operation under these conditions is not implied.  
Continuous operation of the device at the absolute rating level may affect  
device reliability. All voltages are referenced to device ground.  
Operating Supply Voltages  
(TJ = 25°C unless otherwise specified)  
Sym Parameter  
Min  
3.0  
Typ  
Max  
70  
Units Conditions  
VPP  
VNN  
VLL  
Positive high voltage supply  
-
-
V
V
V
---  
---  
---  
Negative high voltage supply  
Logic interface voltage  
-70  
-3.0  
3.6  
2.85  
3.30  
Low voltage positive analog  
supply voltage  
AVDD  
DVDD  
PVDD  
PVSS  
4.75  
4.75  
4.75  
-5.25  
5.00  
5.00  
5.00  
-5.00  
5.25  
5.25  
5.25  
-4.75  
V
V
V
V
---  
---  
---  
---  
Low voltage positive digital  
supply voltage  
Low voltage positive gate drive  
supply voltage  
Low voltage negative gate drive  
supply voltage  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
2
HV7351  
Operating Supply Voltages (cont.)  
(TJ = 25°C unless otherwise specified)  
Sym Parameter  
Min  
Typ  
Max  
Units Conditions  
Low voltage positive supply for  
VNF regulator  
VRP  
VRN  
4.75  
-12  
-
12  
V
V
V
---  
---  
---  
Low voltage negative supply for  
VPF regulator  
-
-4.75  
Reference voltage logic trip  
point for TCK pin  
TCK  
ITCK  
0.4VLL  
-
0.5VLL  
-
0.6VLL  
±10  
TCK input current  
μA VTCK = 0 to VLL  
Regulator Outputs  
(Operating conditions unless otherwise specified, VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TJ =25ºC)  
Sym Parameter  
Min  
Typ  
Max  
Units Conditions  
Positive floating gate drive  
voltage  
4.0µF ceramic capacitor across  
VPF and VPP  
VPF  
VNF  
VPP -5.25 VPP -5.00 VPP -4.00  
VNN +4.00 VNN +5.00 VNN +5.25  
V
V
Negative floating gate drive  
voltage  
4.0µF ceramic capacitor across  
VNF and VNN  
Electrical Characteristics  
(Operating conditions unless otherwise specified, VLL =3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TJ = 25ºC)  
Sym Parameter  
Min  
Typ  
384  
12  
Max  
500  
30  
Units Conditions  
IVLLQ  
VLL quiescent current  
-
µA EN = Low, all inputs are static  
IAVDDQ AVDD quiescent current  
IDVDDQ DVDD quiescent current  
IPVDDQ PVDD quiescent current  
IVRPQ VRP quiescent current  
-
-
12  
30  
µA EN = Low, all inputs are static  
-
70  
100  
6.0  
6.0  
-
-
0.3  
µA EN = Low, all inputs are static  
µA EN = Low, all inputs are static  
µA EN = Low, all inputs are static  
µA EN = High, all inputs are static  
µA EN = High, all inputs are static  
µA EN = High, all inputs are static  
µA EN = High, all inputs are static  
µA EN = High, all inputs are static  
µA EN = High, all inputs are static  
IVRNQ VRN quiescent current  
-
-0.01  
-45  
2.6  
IPVSSQ PVSS quiescent current  
IVPPQ VPP quiescent current  
-85  
-
6.0  
6.0  
500  
800  
55  
IVNNQ VNN quiescent current  
-
-1.6  
390  
600  
22  
IVLLEN VLL enabled quiescent current  
IAVDDEN AVDD enabled quiescent current  
IDVDDEN DVDD enabled quiescent current  
IPVDDEN PVDD enabled quiescent current  
IVRPEN VRP enabled quiescent current  
IVRNEN VRN enabled quiescent current  
IPVSSEN PVSS enabled quiescent current  
IVPPEN VPP enabled quiescent current  
IVNNEN VNN enabled quiescent current  
-
-
-
-
44  
100  
650  
-
-
450  
-350  
-44  
370  
-420  
-650  
-100  
-
-
620  
-
-620  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
3
HV7351  
Electrical Characteristics (cont.)  
(Operating conditions unless otherwise specified, VLL =3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TJ = 25ºC)  
Sym Parameter  
Min  
Typ  
500  
25  
Max  
Units Conditions  
IVLLCW VLL current at TCK = 80MHz  
IDVDDCW DVDD current at CW = 5MHz  
IVPPCW VPP current at CW = 5MHz  
IVNNCW VNN current at CW = 5MHz  
-
-
-
-
-
-
-
-
µA  
VPP = +5.0V, VNN = -5.0V, EN = High,  
mA  
mA  
mA  
CW = High, 80MHz on TCK, 0.5VLL  
on TCK, all 8 channels active at  
5.0MHz, No load  
141  
98  
AC Electrical Characteristics  
(Operating conditions unless otherwise specified, VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TJ = 25ºC)  
Sym Parameter  
fTCK Transmit clock frequency  
Min  
0
Typ  
Max  
200  
80  
70  
-
Units Conditions  
-
-
MHz ---  
0
No daisy chain  
MHz  
fSCK  
Serial clock frequency  
0
-
Daisy chained  
tSU-DIN Set-up time data in to SCK  
tH-DIN Hold time SCK to data in  
tSU-CS1 Set-up time CS1 low to SCK  
tSU-CS2 Set-up time CS2 low to SCK  
tSU-TRIG Set-up time TRIG low to TCK  
tW-TRIG TRIG pulse width  
2.0  
1.0  
1.0  
-
ns  
ns  
ns  
ns  
ns  
-
---  
2.0  
-
---  
2.0  
-
---  
2.0  
-
-
---  
2.0  
-
-
---  
2TCK  
3.0  
-
-
---  
9.0  
9.0  
9.0  
9.0  
-
12  
10  
12  
10  
-
For DOUT  
For DOUT  
For DOUT  
For DOUT  
1
2
1
2
SCK to data out low to high  
delay time  
tLHDO  
ns  
ns  
3.0  
3.0  
SCK to data out high to low  
delay time  
tHLDO  
3.0  
tWA1A0 A1A0 pulse width  
tW-TRIG +40  
Set-up time A1A0 to TRIG rising  
tSUA1A0  
edge  
-
-
-
20  
20  
-
-
-
ns  
---  
Hold time A1A0 to TRIG falling  
tHA1A0  
edge  
1.0µF capacitor on every VPF and  
VNF pin.  
tEN-ON Device enable time  
tEN-OFF Device disable time  
1.0  
ms  
ns  
-
-
-
-
100  
13  
---  
tr1  
tf1  
Output rise time from 0V to +HV  
Output fall time from 0V to -HV  
9.0  
9.0  
13  
Damping output rise time from  
-HV to 0V  
tr2  
tf2  
-
-
9.0  
9.0  
13  
13  
ns  
ns  
Load = 330pF//2.5kΩ  
Damping output fall time from  
+HV to 0V  
tr3  
tf3  
Output rise time from -HV to +HV  
Output fall time from +HV to -HV  
CW output rise time  
-
-
-
-
17  
17  
23  
23  
16  
16  
trcw  
tfcw  
9.0  
9.0  
VPP = +5.0V, VNN = -5.0V,  
Load = 330pF//2.5kΩ  
CW output fall time  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
4
HV7351  
AC Electrical Characteristics (cont.)  
(Operating conditions unless otherwise specified, VLL =3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TJ = 25ºC)  
Sym Parameter  
Output propagation delay rise  
Min  
Typ  
Max  
Units Conditions  
tdr1  
10.85  
13.35  
15.85  
time 1  
Output propagation delay fall  
time 1  
tdf1  
11.35  
11.25  
11.75  
11.35  
11.45  
10.45  
10.35  
13.85  
13.75  
14.25  
13.85  
13.95  
12.95  
12.85  
16.35  
16.25  
16.75  
16.35  
16.45  
15.45  
15.35  
Output propagation delay rise  
time 2  
tdr2  
ns  
No Load.  
Output propagation delay fall  
time 2  
tdf2  
Output propagation delay rise  
time 3  
tdr3  
Output propagation delay fall  
time 3  
tdf3  
CW output propagation delay  
time from low to high  
tdcwlh  
tdcwhl  
VPP = +5.0V, VNN = -5.0V,  
No Load  
ns  
CW output propagation delay  
time from high to low  
Δtdcwhl Delay time matching  
-
±0.7  
13  
-
ns  
ps  
-
P to N, channel-to-channel matching  
VPP = +5.0V, VNN = -5.0V, Load = 50Ω  
---  
tJCW  
Delay jitter on rise or fall  
Latency  
-
-
LAT  
3.5TCK  
3.5TCK  
3.5TCK  
Output P-channel MOSFET to VPP, CW = 0  
IOUT  
Output saturation current  
2.2  
3.2  
4.2  
62  
-
-
-
A
Ω
---  
RON  
Output ON-resistance  
-
-
IOUT = 100mA  
COSS Output capacitance  
pF  
VPP - VOUT = 25V, f = 1.0MHz  
Output N-channel MOSFET to VNN, CW = 0  
IOUT  
Output saturation current  
-
-
-
-3.2  
2.4  
50  
-2.2  
A
Ω
---  
RON  
Output ON-resistance  
-
-
IOUT = -100mA  
COSS Output capacitance  
pF  
VNN - VOUT = -25V, f = 1.0MHz  
Output P-channel MOSFET to VPP, CW = 1  
IOUT  
Output saturation current  
1.2  
1.5  
8.0  
62  
-
-
-
A
Ω
---  
RON  
Output ON-resistance  
-
-
IOUT = 100mA  
COSS Output capacitance  
pF  
VPP - VOUT = 25V, f = 1.0MHz  
Output N-channel MOSFET to VNN, CW = 1  
IOUT  
Output saturation current  
-
-
-
-1.5  
6.6  
50  
-1.2  
A
Ω
---  
RON  
Output ON-resistance  
-
-
IOUT = -100mA  
COSS Output capacitance  
pF  
VNN - VOUT = -25V, f = 1.0MHz  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
5
HV7351  
AC Electrical Characteristics (cont.)  
(Operating conditions unless otherwise specified, VLL =3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TJ = 25ºC)  
Sym Parameter  
Min  
Typ  
Max  
Units Conditions  
Damping P-channel MOSFET to PGND  
IOUT  
Output saturation current  
2.2  
3.2  
4.0  
62  
-
-
-
A
Ω
---  
RON  
Output ON-resistance  
-
-
IOUT = 100mA  
COSS Output capacitance  
pF  
VPP - VOUT = 25V, f = 1.0MHz  
Damping N-channel MOSFET to PGND  
IOUT  
Output saturation current  
-
-
-
-3.2  
2.3  
50  
-2.2  
A
Ω
---  
RON  
Output ON-resistance  
-
-
IOUT = -100mA  
COSS Output capacitance  
pF  
VNN - VOUT = -25V, f = 1.0MHz  
Logic Inputs  
ITCK  
Input current for TCK  
-
±1.0  
TCK  
-
µA VTCK = 0 to VLL  
TCK  
+0.15  
VIH  
Input logic high voltage for TCK  
VLL  
V
V
Only for TCK input, TCK = 0.5VLL  
TCK  
-0.15  
VIL  
Input logic low voltage for TCK  
0
TCK  
Only for TCK input, TCK = 0.5VLL  
VIH  
VIL  
IIH  
Input logic high voltage  
Input logic low voltage  
Input logic high current  
Input logic low current  
Output logic low voltage  
Output logic high voltage  
Input logic capacitance  
0.8VLL  
-
-
-
-
-
-
-
VLL  
0.2VLL  
1.0  
-
V
V
For all logic inputs except TCK  
For all logic inputs except TCK  
0
-
µA ---  
µA ---  
IIL  
-1.0  
VOL  
VOH  
CIN  
0
0.7  
VLL  
V
V
IOUT = 0 to -10mA  
VLL -0.7  
-
IOUT = 0 to 10mA  
---  
5.0  
pF  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
6
HV7351  
Logic Truth Table  
Inputs  
10-bit  
Counter  
Outputs  
Mode  
Comments  
EN CW  
INV NIN PIN N-ch P-ch RTZ  
RTZ (return-to-zero) is activat-  
ed when NIN and PIN are both  
low. Output is pulled to ground  
through a series diode.  
1
0
X
X
0
0
OFF OFF ON  
Not inverted. Logic 1 in the  
OFF ON OFF P-channel register turns on the  
output P-channel MOSFET.  
Non-CW mode.  
1
1
0
0
X
X
0
0
0
1
1
0
Outputs not inverted.  
Outputs are con-  
trolled by data in the  
shift registers  
Not inverted. Logic 1 in the  
ON OFF OFF N-channel register turns on the  
output N-channel MOSFET.  
Avoids cross over current. A  
logic 1 in both P- and N-chan-  
nel registers will put the output  
in a Hi-Z state.  
1
0
1
1
0
0
X
X
X
1
1
1
OFF OFF OFF  
Non-CW mode.  
ON OFF OFF Inverted, for harmonic imaging  
Outputs are inverted.  
Outputs are con-  
trolled by data in the  
shift registers  
1
1
0
X
1
1
0
OFF ON OFF Inverted, for harmonic imaging  
Off channels are the ones with  
X
All 1  
X
X
X
OFF OFF OFF  
all 1’s in their respective 10-bit  
counters. Output follows the fCW  
signal. Shift registers for NIN  
and PIN should remain static to  
save power.  
CW mode.  
Output follows fcw  
OFF/ ON/  
OFF  
1
0
1
Not all 1  
X
X
X
X
X
X
X
ON OFF  
Device Disabled  
X
OFF OFF OFF Hi-Z state  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
7
HV7351  
Block Diagram  
VLL  
AVDD  
DVDD  
EN  
VPP  
VPF  
VRN  
VPP  
SIZE  
CS1  
P-ch Registers  
16/32-bit Register  
Pattern 1  
N-ch Registers  
Linear  
16/32-bit Register  
Regulator  
Pattern 1  
VPF  
SCK  
D 1  
VRN  
DOUINT1  
16/32-bit Register  
Pattern 2  
16/32-bit Register  
Pattern 2  
16/32-bit Register  
Pattern 3  
16/32-bit Register  
Pattern 3  
A0  
A1  
VRP  
VNF  
VNN  
VRP  
16/32-bit Register  
Pattern 4  
16/32-bit Register  
Pattern 4  
Linear  
Regulator  
VNF  
VNN  
DIN2  
OUT2  
8 10-bit Registers  
for Delay Counters  
6-bit for  
Divide by N  
D
CS2  
VPP  
Tx1  
CW  
INV  
CW  
fCW  
VPF  
VNF  
Divide  
by 2  
EN  
10-bit Delay  
Counter  
EN  
TRIG  
6-bit Counter  
Divide by N  
N = 1 to 64  
Control  
Logic  
INV  
VNN  
16/32 bit  
Serial  
EN/LD  
CW  
PIN  
Shift Reg.  
CLK  
PGND  
INV  
PVSS  
PVDD  
16/32 bit  
Serial  
EN/LD  
CW  
NIN  
Shift Reg.  
CLK  
PGND  
PVDD  
PVSS  
RTZ GATE Driver  
Supply Voltages  
VPP  
CW  
fCW  
Divide  
by 2  
VPF  
VNF  
EN  
EN  
Tx8  
6-bit Counter  
Divide by N  
N = 1 to 64  
10-bit Delay  
Counter  
Control  
Logic  
INV  
16/32 bit  
Serial  
EN/LD  
CW  
PIN  
VNN  
Shift Reg.  
CLK  
-
+
TCK  
TCK  
PGND  
INV  
VLL to VDD  
Translator  
16/32 bit  
Serial  
EN/LD  
CW  
PVSS  
PVDD  
NIN  
Shift Reg.  
CLK  
DGND  
AGND  
VSUB  
PGND  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
8
HV7351  
Timing Diagram 1  
TCk = 1.65V (0.5VLL  
)
3.5 TCk cycles  
3.3V  
TCk  
0V  
3.3V  
Internal CLK  
(for N=2)  
0V  
tSU-TRIG  
3.3V  
Trig  
0V  
tWTRIG  
tdr1  
tdf2  
+70V  
90%  
90%  
tWTRIG needs to be at least  
2 rising edges of TCk  
Delay time set by  
Tx1 10-bit counter  
tdf1  
tdr2  
10%  
tr1  
10%  
tf2  
0V  
Tx1  
10%  
10%  
90%  
tf1  
90%  
tr2  
-70V  
+70V  
Delay time set by  
Tx2 10 bit counter  
0V  
Tx2  
Example with Tx2 delay having  
two TCk cycles more than Tx1  
-70V  
Timing Diagram 2  
TCk = 1.65V (0.5VLL  
)
3.5 TCk cycles  
3.3V  
TCk  
0V  
3.3V  
Internal CLk  
(for N=2)  
0V  
tSU-TRIG  
3.3V  
Trig  
0V  
tWTRIG  
tdf3  
tdr3  
+70V  
90%  
90%  
tWTRIG needs to be at least  
2 rising edges of TCk  
Delay time set by  
Tx1 10-bit counter  
0V  
Tx1  
10%  
10%  
-70V  
tf3  
tr3  
+70V  
0V  
Tx2  
Delay time set by  
Tx2 10 bit counter  
Example with Tx2 delay having  
one TCk cycle more than Tx1  
-70V  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
9
HV7351  
Pattern Register Circuit Diagram  
SIZE  
SIZE  
EN  
DIN  
SCK  
A1 A0 CS1  
16/32 bits  
Shift Register  
P-ch. Pattern 1  
16/32 bits  
Shift Register  
N-ch. Pattern 1  
A1 A0 CS1  
SIZE  
EN  
A1 A0 CS1  
A1 A0 CS1  
A1 A0 CS1  
16/32 bits  
16/32 bits  
CS1  
A1  
Shift Register  
P-ch. Pattern 2  
Shift Register  
N-ch. Pattern 2  
DIN  
A1 A0 CS1  
A1 A0 CS1  
2 to 4  
SCK  
Decoder  
DOUT  
1
Size  
EN  
A0  
16/32 bits  
Shift Register  
N-ch. Pattern 3  
16/32 bits  
Shift Register  
P-ch. Pattern 3  
DIN  
SCK  
Size  
EN  
16/32 bits  
Shift Register  
P-ch. Pattern 4  
16/32 bits  
Shift Register  
N-ch. Pattern 4  
SCK  
DIN1  
DIN  
A1 A0 CS1  
SCK  
Loading Data into the Four 16/32 bit Pattern Registers  
A detailed circuit diagram of the pattern registers is shown  
DIN1  
32 bits for  
32 bits for  
above. There are 4 programmable patterns that can be  
stored. One of four patterns can be selected via the two in-  
put logic decoder pins, A1 and A0. Data can be loaded on  
the selected pattern. Each pattern can be either 16 or 32  
bits wide. The SIZE pin determines whether they are 16 or  
32 bits wide. SIZE = H will set the pattern to be 32 bits wide  
while SIZE = L will set it to 16 bits wide. DIN1 is the input data  
for the register. When CS1 is high, data will not be shifted in.  
Data is shifted in only when CS1 is low.  
DOUT  
1
P-ch Pattern 1  
N-ch Pattern 1  
SCK  
32 bits for P-ch Pattern 1  
32 bits for N-ch Pattern 1  
S64  
S63  
S34  
S33  
S32 S31  
S2  
S1  
A 2-to-4 decoder is provided to select which of the four pat-  
terns is to be used for all of the outputs. Logic inputs A1 and  
A0 determine which patterns are selected per the decoder  
truth table shown below. Once A1 and A0 are set, a rising  
edge on the trigger logic input pin will automatically load the  
With SIZE = H, the circuit is effectively a 64-bit serial shift  
register. The data first enters into the P-channel register and selected pattern to all of the outputs.  
continues to be shifted though to the N-channel register.  
Data is clocked in during the rising edge of the clock. There  
Decoder Truth Table  
is no activity during the falling edge of the clock. The data,  
DIN1, enters from the P-channel register and exits from the  
N-channel register from DOUT1.  
Logic Decoder Input  
Pattern Selected  
A1  
0
A0  
0
1
2
3
4
For size = High, 32 bits wide (size = Low, 16-bits wide)  
A1 = A0 = Low, Pattern 1 selected  
0
1
1
0
CS1 = Low, data can be shifted in  
1
1
64-bit serial shift register: 32 bits for the P-channel and  
32 bits for the N-channel  
Data is shifted in during the rising edge of the clock. S1 is  
the first bit shifted in, entering the P-channel register. After  
64 clock cycles, S1 will be located in the N-channel register  
as shown below. It will also be clocked out to DOUT1.  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
10  
HV7351  
though to the 6-bit register for the divide by N counter. Data  
is clocked in during the rising edge of the clock. There is no  
activity during the falling edge of the clock. The MSB bit in  
the 6-bit divide-by-N register is clocked out into DOUT2 for  
cascading multiple devices if desired.  
Loading Data into the Delay Counters  
and the Divide-by-N Counter  
Each output channel, TX, has its own programmable 10-bit  
delay counter. For 8 channels, 80 bits are needed. A 6-bit  
divide-by-N counter is also provided to program the desired  
TX frequency. To program all the individual delay counters  
and the divide-by-N counter, an 86-bit serial shift register  
is provided. It uses the same clock input that the pattern  
registers uses. DIN2 is the input data for this register. When  
CS2 is high, data will not be shifted in. Data is shifted in only  
when CS2 is low.  
10-Bit Delay Counter  
The input clock for the 10-bit delay counter is the TCK pin.  
The TCK pin is the only pin that is capable of high frequency,  
200MHz. This helps maximum delay time resolution. The  
counter counts upward. Please refer to the table below.  
As shown below, the data first enters into the 10-bit regis-  
ter for the TX8 delay counter and continues to be shifted  
86-bit Serial Shift Register: 80 bits for the delay counters and 6 bits for the divide by N  
10 bits Tx8 10 bits Tx7 10 bits Tx6 10 bits Tx5 10 bits Tx4 10 bits Tx3 10 bits Tx2  
6 bits  
divide by N  
DIN2  
SCK  
DOUT  
2
10 bits Tx1  
10 bits for Tx8 delay Counter  
10 bits for Tx7 delay Counter  
6 bits for divide by N  
S86 S85 S84 S83 S82 S81 S80 S79 S78 S77 S76 S75 S74 S73 S72 S71 S70 S69 S68 S67  
S6 S5 S4 S3 S2 S1  
LSB  
MSB LSB  
MSB  
LSB  
MSB  
Delay Counter Table  
MSB  
LSB  
Delay Time  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1023 TCK cycles  
1022 TCK cycles  
1021 TCK cycles  
1020 TCK cycles  
0
0
0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
3 TCK cycles  
2 TCK cycles  
1 TCK cycle  
No trigger  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
11  
HV7351  
clock cycle will set the TX output to be either at VPP, VNN,  
ground, or high impedance depending on what was prepro-  
grammed in their corresponding registers.  
6-Bit Divide-by-N Counter  
The input clock for the 6-bit divide-by-N counter is the TCK  
pin. It generates the clock frequency for the 16/32 bit serial  
shift register for the output P- and N-channel patterns. Each  
Output Shift Register  
MSB  
LSB  
Clock Frequency  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
f
TCK ÷ 64  
fTCK ÷ 63  
fTCK ÷ 62  
fTCK ÷ 61  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
fTCK ÷ 4  
fTCK ÷ 3  
fTCK ÷ 2  
fTCK ÷ 1  
Pin Description  
Pin  
Name  
AVDD  
DIN2  
CS2  
Description  
1
Positive analog supply voltage (+5.0V).  
2
Serial data in for delay counters and frequency divider.  
Activates DIN2. Input logic high = off, input logic low = on.  
3
4
SIZE  
INV  
Sets pattern width to either 16-bits or 32-bits. Logic low = 16-bits, logic high = 32-bits.  
Inverts the TX output waveform. See logic truth table for details.  
5
6
CW  
Activates CW mode. Logic low = non-CW mode, logic high = CW mode. See logic truth table for details.  
7
DOUT2 Data out for delay counters and frequency divider.  
8
EN  
Enables and disables device. Logic low = off, logic high = on.  
Serial clock input for serial shift registers.  
9
SCK  
10  
11  
DVDD  
Positive digital supply voltage (+5.0V).  
DGND Digital ground.  
Toggles all TX outputs to transmit. Needs to be high for 2 rising edges of TCK. Delay counters will  
12  
13  
TRIG  
start on the rising edge of the TCK pin right after the falling edge of the TRIG signal. See timing  
diagram for details.  
Transmitter clock for the delay counters and input frequency for the divide by N. Can be CMOS,  
LVDS, or SSTL.  
TCK  
14  
15  
16  
17  
TCK  
VLL  
CS1  
Logic trip point TCK. Can be set to a DC value from 0.4VLL to 0.6VLL or driven differentially with TCK.  
Logic interface supply voltage (3.0V or 3.3V).  
Activates DIN1. Input logic high = off, input logic low = on.  
DOUT1 Data out for P-channel and N-channel pattern registers.  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
12  
HV7351  
Pin Description (cont.)  
Pin  
18  
19  
20  
21  
22  
23  
24  
25  
Name  
Description  
A0  
Decoded to select 1 of 4 patterns to be loaded.  
A1  
DIN1  
VRN  
PVDD  
PGND  
PGND  
PVSS  
Serial data in for P-channel and N-channel pattern registers.  
Negative supply for VPF regulator (-5.0V).  
Positive gate drive supply voltage for RTZ output transistors (+5.0V).  
Power ground path for RTZ output transistors.  
Negative gate drive supply voltage for RTZ output transistors (-5.0V).  
Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF  
ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total.  
26  
27  
28  
VPF  
NC  
No connection.  
Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF  
ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total.  
VNF  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
VNN  
TX1  
VPP  
VPP  
TX2  
VNN  
VNN  
TX3  
VPP  
VPP  
TX4  
VNN  
VNN  
Negative high voltage supply (-3.0V to -70V).  
Transmit pulser outputs for channel 1.  
Positive high voltage supply (+3.0V to +70V).  
Transmit pulser outputs for channel 2.  
Negative high voltage supply (-3.0V to -70V).  
Transmit pulser outputs for channel 3.  
Positive high voltage supply (+3.0V to +70V).  
Transmit pulser outputs for channel 4.  
Negative high voltage supply (-3.0V to -70V).  
Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF  
ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total.  
42  
VNF  
43  
44  
DGND Digital ground.  
VPP  
VPF  
Positive high voltage supply (+3.0V to +70V).  
Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF  
ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total.  
45  
46  
47  
48  
49  
PGND  
PVSS  
PGND  
PVDD  
Power ground path for RTZ output transistors.  
Negative gate drive supply voltage for RTZ output transistors (-5.0V).  
Power ground path for RTZ output transistors.  
Positive gate drive supply voltage for RTZ output transistors (+5.0V).  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
13  
HV7351  
Pin Description (cont.)  
Pin  
50  
51  
52  
53  
54  
55  
Name  
Description  
DVDD  
Positive digital supply voltage (+5.0V).  
DGND Digital ground.  
PVDD  
PGND  
PVSS  
PGND  
Positive gate drive supply voltage for RTZ output transistors (+5.0V).  
Power ground path for RTZ output transistors.  
Negative gate drive supply voltage for RTZ output transistors (-5.0V).  
Power ground path for RTZ output transistors.  
Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF  
ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total.  
56  
VPF  
VPP  
57  
58  
Positive high voltage supply (+3.0V to +70V).  
DGND Digital ground.  
Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF  
59  
VNF  
ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total.  
Negative high voltage supply (-3.0V to -70V).  
Transmit pulser outputs for channel 5.  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
VNN  
VNN  
TX5  
VPP  
VPP  
TX6  
VNN  
VNN  
TX7  
VPP  
VPP  
TX8  
VNN  
Positive high voltage supply (+3.0V to +70V).  
Transmit pulser outputs for channel 6.  
Negative high voltage supply (-3.0V to -70V).  
Transmit pulser outputs for channel 7.  
Positive high voltage supply (+3.0V to +70V).  
Transmit pulser outputs for channel 8.  
Negative high voltage supply (-3.0V to -70V).  
Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF  
ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total.  
73  
74  
75  
VNF  
NC  
No connection.  
Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF  
ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total.  
VPF  
76  
77  
78  
79  
80  
PVSS  
PGND  
PGND  
PVDD  
VRP  
Negative gate drive supply voltage for RTZ output transistors (-5.0V).  
Power ground path for RTZ output transistors.  
Positive gate drive supply voltage for RTZ output transistors (+5.0V).  
Positive supply for VNF regulator (+5.0V).  
VSUB  
Exposed center pad. Needs to be externally connected to digital ground, DGND.  
Doc.# DSFP-HV7351  
NR050213  
Supertex inc.  
www.supertex.com  
14  
HV7351  
80-Lead QFN Package Outline (K6)  
11.00x11.00mm body, 1.00mm height (max), 0.50mm pitch  
D
D2  
80  
1
80  
1
Note 1  
(Index Area  
D/2 x E/2)  
Note 1  
(Index Area  
D/2 x E/2)  
e
b
E2  
E
View B  
Top View  
Bottom View  
Note 3  
θ
L
A3  
A
Seating  
Plane  
L1  
Note 2  
A1  
View B  
Side View  
Notes:  
1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded  
metal marker; or a printed indicator.  
2. Depending on the method of manufacturing, a maximum of 0.15mm pullback (L1) may be present.  
3. The inner tip of the lead may be either rounded or square.  
Symbol  
A
A1  
A3  
b
D
D2  
E
E2  
e
L
L1  
0.00  
-
θ
0O  
-
MIN  
NOM  
MAX  
0.80  
0.90  
1.00  
0.00  
0.02  
0.05  
0.18 10.90 9.50 10.90 9.50  
0.30  
0.40  
0.50  
Dimension  
(mm)  
0.20  
REF  
0.50  
BSC  
0.25  
0.30  
11.00  
11.10  
9.65  
9.75  
11.00  
11.10  
9.65  
9.75  
0.15  
14O  
Drawings are not to scale.  
Supertex Doc.#: DSPD-80QFNK611X11P050, Version A111511  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline  
information go to http://www.supertex.com/packaging.html.)  
Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives  
an adequate “product liability indemnification insurance agreement.” Supertex inc. does not assume responsibility for use of devices described, and limits its liability  
to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and  
specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)  
©2013 Supertex inc.All rights reserved. Unauthorized use or reproduction is prohibited.  
Supertex inc.  
1235 Bordeaux Drive, Sunnyvale, CA 94089  
Tel: 408-222-8888  
www.supertex.com  
Doc.# DSFP-HV7351  
NR050213  
15  

相关型号:

HV7351K6-G

8-Channel, ±70V, 3A Programmable High-Voltage
MICROCHIP

HV7351K6-G

Eight Channel Programmable High Voltage Ultrasound Transmit Beamformer
SUPERTEX

HV7355

Eight Channel, High Speed, Unipolar, Ultrasound Pulser 1.5A 150V
SUPERTEX

HV7355K6-G

Eight Channel, High Speed, Unipolar, Ultrasound Pulser 1.5A 150V
SUPERTEX

HV7355K6-GM937

Eight Channel, High Speed, Unipolar, Ultrasound Pulser 1.5A 150V
SUPERTEX

HV7358-V/AFA

Consumer IC
MICROCHIP

HV7360

High Speed, 100V 2.5A, Two or Three Level Ultrasound Pulser
SUPERTEX

HV7360

High-Speed ±100V 2.5A Two-or-Three-Level Ultrasound Pulsers
MICROCHIP

HV7360GA-G

High-Speed ±100V 2.5A Two-or-Three-Level Ultrasound Pulsers
MICROCHIP

HV7360LA-G

High Speed, 100V 2.5A, Two or Three Level Ultrasound Pulser
SUPERTEX

HV7361GA-G

High-Speed ±100V 2.5A Two-or-Three-Level Ultrasound Pulsers
MICROCHIP

HV7370

Quad, High Speed, 【100V 850mA, Ultrasound Damper
SIRECTIFIER