MQFL-270-06S-WC [SYNQOR]

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12;
MQFL-270-06S-WC
型号: MQFL-270-06S-WC
厂家: SYNQOR WORLDWIDE HEADQUARTERS    SYNQOR WORLDWIDE HEADQUARTERS
描述:

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12

输出元件
文件: 总17页 (文件大小:7728K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MQFL-270-06S  
Single Output  
HigH Reliability DC-DC ConveRteR  
155-400 V  
155-475 V  
6.0 V  
20 A  
86% @ 10A / 88% @ 20A  
Continuous Input  
Transient Input  
Output  
Output  
Efficiency  
Full PoweR oPeRation: -55ºC to +125ºC  
@
The MilQor series of high-reliability DC-DC converters  
brings SynQor’s field proven high-efficiency synchronous  
rectifier technology to the Military/Aerospace industry.  
TM  
SynQor’s innovative QorSeal packaging approach ensures  
survivability in the most hostile environments. Compatible  
with the industry standard format, these converters operate  
at a fixed frequency, have no opto-isolators, and follow  
conservative component derating guidelines. They are  
designed and manufactured to comply with a wide range of  
military standards.  
2
A
N
E
E
R
A
H
S
S
N
S
+
S
N
S
-
N
T
R
T
U
O
N
I
V
+
T
U
O
V
+
N
T
R
N
I
E
S
A
C
1
A
N
E
T
U
O
C
N
Y
S
N
I
C
N
Y
S
Design Process  
D
f
esigneD & ManufactureD in the usa  
MQFL series converters are:  
Designed for reliability per NAVSO-P3641-A guidelines  
eaturing or sseMbly  
Q
s
eal™  
hi-rel  
a
Designed with components derated per:  
— MIL-HDBK-1547A  
Features  
— NAVSO P-3641A  
Fixed switching frequency  
No opto-isolators  
Parallel operation with current share  
Remote sense  
Qualification Process  
MQFL series converters are qualified to:  
Clock synchronization  
MIL-STD-810F  
Primary and secondary referenced enable  
Continuous short circuit and overload protection  
with auto-restart feature  
— consistent with RTCA/D0-160E  
SynQor’s First Article Qualification  
— consistent with MIL-STD-883F  
SynQor’s Long-Term Storage Survivability Qualification  
SynQor’s on-going life test  
Input under-voltage and over-voltage shutdown  
Specification Compliance  
In-Line Manufacturing Process  
MQFL series converters (with MQME filter) are designed to meet:  
MIL-HDBK-704-7 (A through F)  
RTCA/DO-160 Section 16, 17, 18  
MIL-STD-1275 (B, D)  
DEF-STAN 61-5 (part 6)/(5, 6)  
MIL-STD-461 (C, D, E, F)  
AS9100 and ISO 9001:2008 certified facility  
Full component traceability  
Temperature cycling  
Constant acceleration  
24, 96, 160 hour burn-in  
RTCA/DO-160(E, F, G) Section 22  
Three level temperature screening  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 1  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Technical Specification  
BLOCK DIAGRAM  
REGULATION STAGE  
ISOLATION STAGE  
CURRENT  
SENSE  
1
7
+Vin  
+Vout  
T1  
T1  
T2  
2
INPUT  
RETURN  
8
OUTPUT  
RETURN  
T2  
3
CASE  
GATE DRIVERS  
GATE DRIVERS  
UVLO  
OVSD  
CURRENT  
LIMIT  
4
ENABLE 1  
PRIMARY  
CONTROL  
MAGNETIC  
DATA COUPLING  
BIAS POWER  
12  
ENABLE 2  
5
SYNC OUT  
11  
6
SECONDARY  
CONTROL  
SHARE  
SYNC IN  
10  
+ SENSE  
CONTROL  
POWER  
9
TRANSFORMER  
SENSE  
TYPICAL CONNECTION DIAGRAM  
1
12  
+VIN  
IN RTN  
ENA 2  
open  
means  
on  
2
3
4
5
6
11  
10  
9
SHARE  
CASE  
+SNS  
-SNS  
+
270 Vdc  
+
MQFL  
__  
ENA 1  
Load  
__  
8
open  
means  
on  
SYNC OUT  
SYNC IN  
OUT RTN  
+VOUT  
7
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 2  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Technical Specification  
MQFL-270-06S ELECTRICAL CHARACTERISTICS  
Parameter  
Min. Typ. Max. Units Notes & Conditions  
Group A  
Vin=270 V dc ±5%, Iout=20 A, CL=0 µF, free running (see Note 10) unless  
otherwise specified  
Subgroup  
(see Note 13)  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
Non-Operating  
600  
550  
-0.8  
-1.2  
V
V
V
V
Operating  
See Note 1  
Reverse Bias (Tcase = 125ºC)  
Reverse Bias (Tcase = -55ºC)  
Isolation Voltage (I/O to case, I to O)  
Continuous  
-500  
-800  
-55  
500  
800  
125  
135  
300  
50  
V
V
°C  
°C  
°C  
V
Transient (≤100 µs)  
Operating Case Temperature  
Storage Case Temperature  
Lead Temperature (20 s)  
HB Grade Products, See Notes 2 & 16  
-65  
Voltage at ENA1, ENA2  
-1.2  
INPUT CHARACTERISTICS  
Operating Input Voltage Range  
155  
155  
270  
270  
400  
475  
V
V
Continuous  
Transient, 1 s  
See Note 3  
1, 2, 3  
4, 5, 6  
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Lockout Voltage Hysteresis  
Input Over-Voltage Shutdown  
Turn-Off Voltage Threshold  
Turn-On Voltage Threshold  
Shutdown Voltage Hysteresis  
Maximum Input Current  
142  
133  
5
150  
140  
11  
155  
145  
17  
V
V
V
1, 2, 3  
1, 2, 3  
1, 2, 3  
See Note 3  
490  
450  
20  
520  
475  
50  
550  
500  
80  
1
37  
4
V
V
V
A
mA  
mA  
mA  
mA  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
Vin = 155 V; Iout = 20 A  
No Load Input Current (operating)  
Disabled Input Current (ENA1)  
Disabled Input Current (ENA2)  
Input Terminal Current Ripple (pk-pk)  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point (Tcase = 25ºC)  
Vout Set Point Over Temperature  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Total Output Voltage Range  
Vout Ripple and Noise Peak to Peak  
Operating Output Current Range  
Operating Output Power Range  
Output DC Current-Limit Inception  
Short Circuit Output Current  
Back-Drive Current Limit while Enabled  
Back-Drive Current Limit while Disabled  
Maximum Output Capacitance  
DYNAMIC CHARACTERISTICS  
Output Voltage Deviation Load Transient  
For a Pos. Step Change in Load Current  
For a Neg. Step Change in Load Current  
Settling Time (either case)  
Output Voltage Deviation Line Transient  
For a Pos. Step Change in Line Voltage  
For a Neg. Step Change in Line Voltage  
Settling Time (either case)  
Turn-On Transient  
28  
1
6
140  
Vin = 155 V, 270 V, 475 V  
Vin = 155 V, 270 V, 475 V  
Bandwidth = 100 kHz – 10 MHz; see Figure 14  
11  
180  
5.94  
5.9  
-20  
20  
5.88  
6.00  
6.00  
0
30  
6.00  
15  
6.06  
6.1  
20  
V
V
mV  
mV  
V
mV  
A
W
A
A
A
Vout at sense leads  
1
2, 3  
“ ; Vin = 155 V, 270 V, 400 V; Iout=20 A  
“ ; Vout @ (Iout=0 A) - Vout @ (Iout=20 A)  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
See Note 5  
40  
6.12  
50  
Bandwidth = 10 MHz; CL=11µF  
0
0
22  
21  
20  
120  
26  
24  
24  
6.4  
10  
See Note 4  
Vout ≤ 1.2 V; see Note 15  
27  
75  
10,000  
mA  
µF  
See Note 6  
-575  
-375  
375  
200  
mV  
mV  
µs  
Total Iout step = 10A‹-›20A, 2A‹-›10A; CL=11µF  
4, 5, 6  
4, 5, 6  
4, 5, 6  
575  
500  
See Note 7  
Vin step = 155V‹-›400V; CL=11 µF; see Note 8  
-1000  
-1200  
1000  
1200  
650  
mV  
mV  
µs  
4, 5, 6  
4, 5, 6  
See Note 5  
500  
Iout = 10 A; See Note 7  
Output Voltage Rise Time  
Output Voltage Overshoot  
Turn-On Delay, Rising Vin  
6
0
75  
5
2
10  
2
120  
10  
4
ms  
%
ms  
ms  
ms  
Vout = 0.6V-›5.4V  
4, 5, 6  
See Note 5  
4, 5, 6  
4, 5, 6  
4, 5, 6  
50  
ENA1, ENA2 = 5 V; see Notes 9 & 11  
ENA2 = 5 V; see Note 11  
ENA1 = 5 V; see Note 11  
Turn-On Delay, Rising ENA1  
Turn-On Delay, Rising ENA2  
EFFICIENCY  
Iout = 20 A (155 Vin)  
85  
86  
84  
81  
80  
75  
89  
89  
88  
86  
86  
82  
%
%
%
%
%
%
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
Iout = 10 A (155 Vin)  
Iout = 20 A (270 Vin)  
Iout = 10 A (270 Vin)  
Iout = 20 A (400 Vin)  
Iout = 10 A (400 Vin)  
Load Fault Power Dissipation  
Short Circuit Power Dissipation  
19  
24  
36  
40  
W
W
Iout at current limit inception point; See Note 4  
Vout ≤ 1.2 V  
1, 2, 3  
1, 2, 3  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 3  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Technical Specification  
MQFL-270-06S ELECTRICAL CHARACTERISTICS (Continued)  
Parameter  
Min. Typ. Max. Units Notes & Conditions  
Group A  
Vin=270 V dc ±5%, Iout=20 A, CL=0 µF, free running (see Note 10) unless  
otherwise specified  
Subgroup  
(see Note 13)  
ISOLATION CHARACTERISTICS  
Isolation Voltage  
Dielectric strength  
Input RTN to Output RTN  
Any Input Pin to Case  
500  
500  
500  
100  
100  
V
V
V
MΩ  
MΩ  
nF  
1
1
1
1
1
1
Any Output Pin to Case  
Isolation Resistance (in rtn to out rtn)  
Isolation Resistance (any pin to case)  
Isolation Capacitance (in rtn to out rtn)  
FEATURE CHARACTERISTICS  
Switching Frequency (free running)  
Synchronization Input  
44  
500  
550  
600  
kHz  
1, 2, 3  
Frequency Range  
Logic Level High  
Logic Level Low  
Duty Cycle  
500  
2.0  
-0.5  
20  
700  
5.5  
0.8  
80  
kHz  
V
V
1, 2, 3  
1, 2, 3  
1, 2, 3  
%
See Note 5  
Synchronization Output  
Pull Down Current  
Duty Cycle  
20  
25  
mA  
%
VSYNC OUT = 0.8 V  
Output connected to SYNC IN of other MQFL unit  
See Note 5  
See Note 5  
75  
Enable Control (ENA1 and ENA2)  
Off-State Voltage  
Module Off Pulldown Current  
On-State Voltage  
0.8  
V
µA  
V
1, 2, 3  
See Note 5  
1, 2, 3  
80  
2
Current drain required to ensure module is off  
Module On Pin Leakage Current  
Pull-Up Voltage  
20  
4.8  
µA  
V
Imax draw from pin allowed with module still on  
See Figure A  
See Note 5  
1, 2, 3  
3.2  
4.0  
RELIABILITY CHARACTERISTICS  
Calculated MTBF (MIL-STD-217F2)  
GB @ Tcase = 70ºC  
2600  
300  
103 Hrs.  
103 Hrs.  
AIF @ Tcase = 70ºC  
WEIGHT CHARACTERISTICS  
Device Weight  
79  
g
Electrical Characteristics Notes  
1. Converter will undergo input over-voltage shutdown.  
2. Derate output power to 50% of rated power at Tcase = 135ºC. 135ºC is above specified operating range.  
3. High or low state of input voltage must persist for about 200µs to be acted on by the lockout or shutdown circuitry.  
4. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value.  
5. Parameter not tested but guaranteed to the limit specified.  
6. Load current transition time ≥ 10 µs.  
7. Settling time measured from start of transient to the point where the output voltage has returned to ±1% of its final value.  
8. Line voltage transition time ≥ 250 µs.  
9. Input voltage rise time ≥ 250 µs.  
10. Operating the converter at a synchronization frequency above the free running frequency will slightly reduce the converter’s efficiency and may also cause  
a slight reduction in the maximum output current/power available. For more information consult the factory.  
11. After a disable or fault event, module is inhibited from restarting for 300 ms. See Shut Down section.  
12. SHARE pin outputs a power failure warning pulse during a fault condition. See Current Share section.  
13. Only the ES and HB grade products are tested at three temperatures. The C- grade products are tested at one temperature. Please refer to the ESS table  
for details.  
14. These derating curves apply for the ES and HB grade products. The C- grade product has a maximum case temperature of 70ºC and a maximum junction  
temperature rise of 20ºC above TCASE.  
15. Converter delivers current into a persisting short circuit for up to 1 second. See Current Limit in the Application Notes section.  
16. The specified operating case temperature for ES grade products is -45ºC to 100ºC. The specified operating case temperature for C- grade products is 0ºC  
to 70ºC.  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 4  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Technical Figures  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
155 Vin  
270 Vin  
400 Vin  
155 Vin  
270 Vin  
400 Vin  
0
4
8
12  
16  
20  
-55°C -35°C -15°C  
5°C  
25°C  
45°C  
65°C  
85°C 105°C 125°C  
Load Current (A)  
Case Temperature (ºC)  
Figure 1: Efficiency at nominal output voltage vs. load current for  
Figure 2: Efficiency at nominal output voltage and 60% rated power vs.  
minimum, nominal, and maximum input voltage at TCASE=25°C.  
case temperature for input voltage of 155V, 270V and 400V.  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
6
6
155 Vin  
155 Vin  
4
2
0
4
270 Vin  
400 Vin  
270 Vin  
2
400 Vin  
0
0
4
8
12  
16  
20  
-55°C -35°C -15°C  
5°C  
25°C  
45°C  
65°C  
85°C 105°C 125°C  
Load Current (A)  
Case Temperature (ºC)  
Figure 4: Power dissipation at nominal output voltage and 60% rated  
Figure 3: Power dissipation at nominal output voltage vs. load current  
power vs. case temperature for input voltage of 155V, 270V and 400V.  
for minimum, nominal, and maximum input voltage at Tcase=25°C.  
32  
28  
24  
20  
16  
12  
8
192  
168  
144  
120  
96  
7
6
5
4
3
2
72  
48  
Tjmax = 105ºC  
Tjmax = 125ºC  
Tjmax = 145ºC  
270 Vin  
1
4
24  
0
0
0
25  
45  
65  
85  
105  
125  
145  
135  
0
5
10  
15  
20  
25  
Case Temperature (ºC)  
Load Current (A)  
Figure 5: Output Current / Output Power derating curve as a  
function of Tcase and the Maximum desired power MOSFET junction  
temperature (see Note 14). Vin = 270V  
Figure 6: Output voltage vs. load current showing typical current limit  
curves. See Current Limit section in the Application Notes.  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 5  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Technical Figures  
Figure 7: Turn-on transient at full resistive load and zero output  
capacitance initiated by ENA1. Input voltage pre-applied. Ch 1: Vout  
(2V/div). Ch 2: ENA1 (5V/div).  
Figure 8: Turn-on transient at full resistive load and 3mF output  
capacitance initiated by ENA1. Input voltage pre-applied. Ch 1: Vout  
(2V/div). Ch 2: ENA1 (5V/div).  
Figure 10: Turn-on transient at full resistive load and zero output  
capacitance initiated by Vin. ENA1 and ENA2 both previously high. Ch  
1: Vout (2V/div). Ch 2: Vin (100V/div).  
Figure 9: Turn-on transient at full resistive load and zero output  
capacitance initiated by ENA2. Input voltage pre-applied. Ch 1: Vout  
(2V/div). Ch 2: ENA2 (5V/div).  
Figure 11: Output voltage response to step-change in load current  
50%-100%-50% of Iout (max). Load cap: 1µF ceramic cap and 10µF,  
100mΩ ESR tantalum cap. Ch 1: Vout (500mV/div). Ch 2: Iout (10A/  
div).  
Figure 12: Output voltage response to step-change in load current 10%-  
50%-10% of Iout (max). Load cap: 1µF ceramic cap and 10µF, 100mΩ  
ESR tantalum cap. Ch 1: Vout (500mV/div). Ch 2: Iout (10A/div).  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 6  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Technical Figures  
Figure 13: Output voltage response to step-change in input voltage (155V  
- 400V - 155V) in 250 μS. Load cap: 10µF, 100mΩ ESR tantalum cap and  
1µF ceramic cap. Ch 1: Vin (100V/div). Ch 2: Vout (500mV/div).  
Figure 14: Test set-up diagram showing measurement points for Input  
Terminal Ripple Current (Figure 15) and Output Voltage Ripple (Figure  
16).  
capacitor and 10µF tantalum capacitor. Bandwidth: 10MHz. See  
Figure 14.  
Bandwidth: 20MHz. See Figure 14.  
MQFL converter. Ch1: SYNC OUT: (1V/div).  
across the output terminals. Ch 1: Vout (2V/div). Ch 2: Iout (10A/div).  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 7  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Technical Figures  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.01  
155 Vin  
270 Vin  
400 Vin  
155 Vin  
270 Vin  
400 Vin  
0.001  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 20: Magnitude of incremental forward transmission (FT = vout/  
vin) for minimum, nominal, and maximum input voltage at full rated  
power.  
Figure 19: Magnitude of incremental output impedance (Zout = vout/  
iout) for minimum, nominal, and maximum input voltage at full rated  
power.  
Figure 21: Magnitude of incremental reverse transmission (RT = iin/  
iout) for minimum, nominal, and maximum input voltage at full rated  
power.  
Figure 22: Magnitude of incremental input impedance (Zin = vin/iin)  
for minimum, nominal, and maximum input voltage at full rated power.  
Figure 23: High frequency conducted emissions of standalone MQFL-  
270-05S, 5Vout module at 120W output, as measured with Method  
CE102. Limit line shown is the ‘Basic Curvefor all applications with a  
270V source.  
Figure 24: High frequency conducted emissions of MQFL-270-05S,  
5Vout module at 120W output with MQFL-270-P filter, as measured  
with Method CE102. Limit line shown is the ‘Basic Curvefor all  
applications with a 270V source.  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 8  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Application Section  
BASIC OPERATION AND FEATURES  
CONTROL FEATURES  
The MQFL DC-DC converter uses a two-stage power conversion  
topology. The first, or regulation, stage is a buck-converter that  
keeps the output voltage constant over variations in line, load,  
and temperature. The second, or isolation, stage uses trans-  
formers to provide the functions of input/output isolation and  
voltage transformation to achieve the output voltage required.  
ENABLE: The MQFL converter has two enable pins. Both must  
have a logic high level for the converter to be enabled. A logic  
low on either pin will inhibit the converter.  
The ENA1 pin (pin 4) is referenced with respect to the convert-  
er’s input return (pin 2). The ENA2 pin (pin 12) is referenced  
with respect to the converter’s output return (pin 8). This per-  
mits the converter to be inhibited from either the input or the  
output side.  
Both the regulation and the isolation stages switch at a fixed  
frequency for predictable EMI performance. The isolation stage  
switches at one half the frequency of the regulation stage, but  
due to the push-pull nature of this stage it creates a ripple at  
double its switching frequency. As a result, both the input and  
the output of the converter have a fundamental ripple frequency  
of about 550 kHz in the free-running mode.  
Regardless of which pin is used to inhibit the converter, the  
regulation and the isolation stages are turned off. However,  
when the converter is inhibited through the ENA1 pin, the bias  
supply is also turned off, whereas this supply remains on when  
the converter is inhibited through the ENA2 pin. A higher input  
standby current therefore results in the latter case.  
Rectification of the isolation stage’s output is accomplished with  
synchronous rectifiers. These devices, which are MOSFETs with a  
very low resistance, dissipate far less energy than would Schottky  
diodes. This is the primary reason why the MQFL converters have  
such high efficiency, particularly at low output voltages.  
Both enable pins are internally pulled high so that an open con-  
nection on both pins will enable the converter. Figure A shows  
the equivalent circuit looking into either enable pins. It is TTL  
compatible.  
Besides improving efficiency, the synchronous rectifiers permit  
operation down to zero load current. There is no longer a need  
for a minimum load, as is typical for converters that use diodes  
for rectification. The synchronous rectifiers actually permit a  
negative load current to flow back into the converter’s output  
terminals if the load is a source of short or long term energy.  
The MQFL converters employ a “back-drive current limit” to  
keep this negative output terminal current small.  
5.0V  
68K  
1N4148  
PIN 4  
(OR PIN 12)  
ENABLE  
TO ENABLE  
CIRCUITRY  
250K  
125K  
2N3904  
There is a control circuit on both the input and output sides  
of the MQFL converter that determines the conduction state  
of the power switches. These circuits communicate with each  
other across the isolation barrier through a magnetically coupled  
device. No opto-isolators are used. A separate bias supply pro-  
vides power to both the input and output control circuits.  
PIN 2  
(OR PIN 8)  
IN RTN  
Figure A: Circuit diagram shown for reference only, actual circuit  
components may differ from values shown for equivalent circuit.  
An input under-voltage lockout feature with hysteresis is pro-  
vided, as well as an input over-voltage shutdown. There is also  
an output current limit that is nearly constant as the load imped-  
ance decreases to a short circuit (i.e., there is no fold-back or  
fold-forward characteristic to the output current under this con-  
dition). When a load fault is removed, the output voltage rises  
exponentially to its nominal value without an overshoot.  
SHUT DOWN: The MQFL converter will shut down in response  
to following conditions:  
- ENA1 input low  
- ENA2 input low  
- VIN input below under-voltage lockout threshold  
- VIN input above over-voltage shutdown threshold  
- Persistent current limit event lasting more than 1 second  
The MQFL converter’s control circuit does not implement an out-  
put over-voltage limit or an over-temperature shutdown.  
The following sections describe the use and operation of addi-  
tional control features provided by the MQFL converter.  
Following a shutdown from a disable event or an input voltage  
fault, there is a startup inhibit delay which will prevent the  
converter from restarting for approximately 300ms. After the  
300ms delay elapses, if the enable inputs are high and the input  
voltage is within the operating range, the converter will restart.  
If the VIN input is brought down to nearly 0V and back into the  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 9  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Application Section  
operating range, there is no startup inhibit, and the output voltage  
will rise according to the “Turn-On Delay, Rising Vin” specification.  
The MQFL converter also has a SYNC OUT pin (pin 5). This out-  
put can be used to drive the SYNC IN pins of as many as ten (10)  
other MQFL converters. The pulse train coming out of SYNC  
OUT has a duty cycle of 50% and a frequency that matches the  
switching frequency of the converter with which it is associated.  
This frequency is either the free-running frequency if there is no  
synchronization signal at the SYNC IN pin, or the synchronization  
frequency if there is.  
Refer to the following Current Limit section for details regarding  
persistent current limit behavior.  
REMOTE SENSE: The purpose of the remote sense pins is  
to correct for the voltage drop along the conductors that con-  
nect the converter’s output to the load. To achieve this goal, a  
separate conductor should be used to connect the +SENSE pin  
(pin 10) directly to the positive terminal of the load, as shown  
in the connection diagram. Similarly, the –SENSE pin (pin 9)  
should be connected through a separate conductor to the return  
terminal of the load.  
The SYNC OUT signal is available only when the DC input volt-  
age is above approximately 125V and when the converter is not  
inhibited through the ENA1 pin. An inhibit through the ENA2 pin  
will not turn the SYNC OUT signal off.  
NOTE: An MQFL converter that has its SYNC IN pin driven by  
the SYNC OUT pin of a second MQFL converter will have its start  
of its switching cycle delayed approximately 180 degrees relative  
to that of the second converter.  
NOTE: Even if remote sensing of the load voltage is not desired,  
the +SENSE and the -SENSE pins must be connected to +Vout  
(pin 7) and OUTPUT RETURN (pin 8), respectively, to get proper  
regulation of the converter’s output. If they are left open, the  
converter will have an output voltage that is approximately  
200mV higher than its specified value. If only the +SENSE pin  
is left open, the output voltage will be approximately 25mV too  
high.  
Figure B shows the equivalent circuit looking into the SYNC IN pin.  
Figure C shows the equivalent circuit looking into the SYNC OUT pin.  
5V  
Inside the converter, +SENSE is connected to +Vout with a  
100W resistor and –SENSE is connected to OUTPUT RETURN  
with a 10W resistor.  
5K  
TO SYNC  
CIRCUITRY  
PIN 6  
It is also important to note that when remote sense is used, the  
voltage across the converter’s output terminals (pins 7 and 8)  
will be higher than the converter’s nominal output voltage due  
to resistive drops along the connecting wires. This higher volt-  
age at the terminals produces a greater voltage stress on the  
converter’s internal components and may cause the converter to  
fail to deliver the desired output voltage at the low end of the  
input voltage range at the higher end of the load current and  
temperature range. Please consult the factory for details.  
SYNC IN  
IN RTN  
5K  
PIN 2  
Figure B: Equivalent circuit looking into the SYNC IN pin with  
respect to the IN RTN (input return) pin.  
SYNCHRONIZATION: The MQFL converter’s switching fre-  
quency can be synchronized to an external frequency source  
that is in the 500 kHz to 700 kHz range. A pulse train at the  
desired frequency should be applied to the SYNC IN pin (pin  
6) with respect to the INPUT RETURN (pin 2). This pulse train  
should have a duty cycle in the 20% to 80% range. Its low  
value should be below 0.8V to be guaranteed to be interpreted  
as a logic low, and its high value should be above 2.0V to be  
guaranteed to be interpreted as a logic high. The transition time  
between the two states should be less than 300ns.  
5V  
5K  
SYNC OUT  
FROM SYNC  
CIRCUITRY  
PIN 5  
IN RTN  
PIN 2  
OPEN COLLECTOR  
OUTPUT  
If the MQFL converter is not to be synchronized, the SYNC IN pin  
should be left open circuit. The converter will then operate in  
its free-running mode at a frequency of approximately 550 kHz.  
Figure C: Equivalent circuit looking into SYNC OUT pin with  
respect to the IN RTN (input return) pin.  
If, due to a fault, the SYNC IN pin is held in either a logic low or  
logic high state continuously, the MQFL converter will revert to  
its free-running frequency.  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 10  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Application Section  
CURRENT SHARE: When several MQFL converters are placed  
in parallel to achieve either a higher total load power or N+1  
redundancy, their SHARE pins (pin 11) should be connected  
together. The voltage on this common SHARE node represents  
the average current delivered by all of the paralleled converters.  
Each converter monitors this average value and adjusts itself  
so that its output current closely matches that of the average.  
Since the SHARE pin is monitored with respect to the OUTPUT  
RETURN (pin 8) by each converter, it is important to connect  
all of the converters’ OUTPUT RETURN pins together through a  
low DC and AC impedance. When this is done correctly, the  
converters will deliver their appropriate fraction of the total load  
current to within +/- 10% at full rated load.  
Whether or not converters are paralleled, the voltage at the  
SHARE pin could be used to monitor the approximate average  
current delivered by the converter(s). A nominal voltage of 1.0V  
represents zero current and a nominal voltage of 2.2V repre-  
sents the maximum rated total current, with a linear relationship  
Figure E: Output Voltage Trim Graph  
Figure D. In this case, a resistor connects the +SENSE pin to  
the –SENSE pin (which should still be connected to the output  
return, either remotely or locally). The value of the trim resistor  
should be chosen according to the following equation or from  
Figure E:  
in between.  
The internal source resistance of a converter’s  
SHARE pin signal is 2.5 kW.  
During an input voltage fault or primary disable event, the  
SHARE pin outputs a power failure warning pulse. The SHARE  
pin will go to 3V for approximately 14ms as the output voltage  
falls. During a current limit auto-restart event, the SHARE pin  
outputs a startup synchronization pulse. The SHARE pin will go  
to 5V for approximately 2ms before the converter restarts.  
Vnom  
Rtrim = 100 x  
Vout - Vnom - 0.025  
where:  
Vnom = the converter’s nominal output voltage,  
Vout = the desired output voltage (greater than Vnom), and  
Rtrim is in Ohms.  
NOTE: Converters operating from separate input filters with  
reverse polarity protection (such as the MQME-270-R filter)  
with their outputs connected in parallel may exhibit auto-restart  
operation at light loads. Consult factory for details.  
As the output voltage is trimmed up, it produces a greater  
voltage stress on the converter’s internal components and may  
cause the converter to fail to deliver the desired output voltage  
at the low end of the input voltage range at the higher end of  
the load current and temperature range. Please consult the  
factory for details. Factory trimmed converters are available  
by request.  
OUTPUT VOLTAGE TRIM: If desired, it is possible to increase  
the MQFL converter’s output voltage above its nominal value.  
To do this, use the +SENSE pin (pin 10) for this trim function  
instead of for its normal remote sense function, as shown in  
1
12  
+VIN  
ENA 2  
2
11  
IN RTN  
SHARE  
3
10  
CASE  
+ SNS  
Rtrim  
4
5
6
9
+
270Vdc  
ENA 1  
– SNS  
8
7
SYNC OUT  
SYNC IN  
OUT RTN  
+VOUT  
open  
means  
on  
Load  
+
Figure D: Typical connection for output voltage trimming.  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 11  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Application Section  
INPUT UNDER-VOLTAGE LOCKOUT: The MQFL converter  
has an under-voltage lockout feature that ensures the converter  
will be off if the input voltage is too low. The threshold of  
input voltage at which the converter will turn on is higher that  
the threshold at which it will turn off. In addition, the MQFL  
converter will not respond to a state of the input voltage unless  
it has remained in that state for more than about 200µs. This  
hysteresis and the delay ensure proper operation when the  
source impedance is high or in a noisy environment.  
THERMAL CONSIDERATIONS: The suggested Power Derating  
Curves for this converter as a function of the case temperature  
and the maximum desired power MOSFET junction temperature  
on the figures page. All other components within the converter  
are cooler than its hottest MOSFET, which at full power is no  
more than 20ºC higher than the case temperature directly  
below this MOSFET. The Mil-HDBK-1547A component derating  
guideline calls for a maximum component temperature of 105ºC.  
The power derating figure; therefore has one power derating  
curve that ensures this limit is maintained. It has been SynQor’s  
extensive experience that reliable long-term converter operation  
can be achieved with a maximum component temperature of  
125ºC. In extreme cases, a maximum temperature of 145ºC is  
permissible, but not recommended for long-term operation where  
high reliability is required. Derating curves for these higher  
temperature limits are also included in Figure 5. The maximum  
case temperature at which the converter should be operated is  
135ºC.  
INPUT OVER-VOLTAGE SHUTDOWN: The MQFL converter  
also has an over-voltage feature that ensures the converter will  
be off if the input voltage is too high. It also has a hysteresis  
and time delay to ensure proper operation.  
CURRENT LIMIT: The converter will reduce its output volt-  
age in response to an overload condition. If the output voltage  
drops to below approximately 50% of the nominal setpoint for  
longer than 1 second, the auto-restart feature will engage. The  
auto-restart feature will stop the converter from delivering load  
current, in order to protect the converter and the load from ther-  
mal damage. After four seconds have elapsed, the converter will  
automatically restart.  
When the converter is mounted on a metal plate, the plate  
will help to make the converter’s case bottom a uniform tem-  
perature. How well it does so depends on the thickness of the  
plate and on the thermal conductance of the interface layer  
(e.g. thermal grease, thermal pad, etc.) between the case and  
the plate. Unless this is done very well, it is important not to  
mistake the plate’s temperature for the maximum case tempera-  
ture. It is easy for them to be as much as 5-10ºC different at  
full power and at high temperatures. It is suggested that a ther-  
mocouple be attached directly to the converter’s case through a  
small hole in the plate when investigating how hot the converter  
is getting. Care must also be made to ensure that there is not  
a large thermal resistance between the thermocouple and the  
case due to whatever adhesive might be used to hold the ther-  
mocouple in place.  
In a system with multiple converters configured for load sharing  
using the SHARE pin, if the auto-restart feature engages,  
the converters will synchronize their restart using signals  
communicated on the SHARE pin.  
BACK-DRIVE CURRENT LIMIT: Converters that use MOSFETs  
as synchronous rectifiers are capable of drawing a negative cur-  
rent from the load if the load is a source of short- or long-term  
energy. This negative current is referred to as a “back-drive cur-  
rent”.  
Conditions where back-drive current might occur include  
paralleled converters that do not employ current sharing, or  
where the current share feature does not adequately ensure  
sharing during the startup or shutdown transitions. It can also  
occur when converters having different output voltages are  
connected together through either explicit or parasitic diodes  
that, while normally off, become conductive during startup or  
shutdown. Finally, some loads, such as motors, can return  
energy to their power rail. Even a load capacitor is a source of  
back-drive energy for some period of time during a shutdown  
transient.  
INPUT SYSTEM INSTABILITY: This condition can occur  
because any DC-DC converter appears incrementally as a  
negative resistance load. A detailed application note titled  
“Input System Instability” is available on the SynQor website  
which provides an understanding of why this instability arises,  
and shows the preferred solution for correcting it.  
To avoid any problems that might arise due to back-drive  
current, the MQFL converters limit the negative current that the  
converter can draw from its output terminals. The threshold  
for this back-drive current limit is placed sufficiently below zero  
so that the converter may operate properly down to zero load,  
but its absolute value (see the Electrical Characteristics page) is  
small compared to the converter’s rated output current.  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 12  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Stress Screening  
CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS  
C-Grade  
ES-Grade  
HB-Grade  
Consistent with  
MIL-STD-883F  
Screening  
specified from  
specified from  
(
0spºeCcitoe+d7f0roºmC ) (-45 ºC to +100 ºC) (-55 ºC to +125 ºC  
)
Element Evaluation  
No  
Yes  
No  
No  
Yes  
Yes  
Internal Visual  
Temperature Cycle  
Constant Acceleration  
*
Yes  
Yes  
Condition B  
(-55 ºC to +125 ºC)  
Condition C  
(-65 ºC to +150 ºC)  
Method 1010  
Method 2001  
(Y1 Direction)  
Condition A  
(5000g)  
500g  
Burn-in  
Method 1015  
24 Hrs @ +125 ºC  
96 Hrs @ +125 ºC  
160 Hrs @ +125 ºC  
Final Electrical Test  
Method 5005 (Group A)  
+25 ºC  
Full QorSeal  
*
-45, +25, +100 ºC  
Full QorSeal  
Yes  
-55, +25, +125 ºC  
Full QorSeal  
Yes  
Mechanical Seal,  
Thermal, and  
Coating Process  
External Visual  
2009  
Construction Process  
QorSeal  
QorSeal  
QorSeal  
* Per IPC-A-610 Class 3  
MilQor converters and filters are offered in three variations of environmental stress screening options. All MilQor converters use SynQors proprietary  
QorSeal™ Hi-Rel assembly process that includes a Parylene-C coating of the circuit, a high performance thermal compound filler, and a nickel barrier  
gold plated aluminum case. Each successively higher grade has more stringent mechanical and electrical testing, as well as a longer burn-in cycle. The ES-  
and HB-Grades are also constructed of components that have been procured through an element evaluation process that pre-qualifies each new batch of  
devices.  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 13  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Mechanical Diagrams  
0.250 [6.35]  
+VIN  
ENA 2  
SHARE  
+SNS  
1
12  
SEE NOTE 7  
IN RTN  
2
11  
1.50 [38.1]  
0.200 [5.08]  
TYP. NON-CUM.  
MQFL-270-06S-X-ES  
DC-DC CONVERTER  
CASE  
3
10 1.260  
ENA 1  
270Vin 6.0Vout @ 20A  
4
-SNS  
[32.00]  
9
8
7
MADE IN USA  
SYNC OUT  
OUT RTN  
+VOUT  
5
0.040 [1.02]  
S/N 0000000 D/C 3205-301 CAGE 1WX10  
SYNC IN  
6
PIN  
2.50 [63.50]  
2.760 [70.10]  
3.00 [76.2]  
0.050 [1.27]  
0.128 [3.25]  
0.22 [5.6]  
2.96 [75.2]  
0.228 [5.79]  
0.390 [9.91]  
Case X  
0.250 [6.35]  
+VIN  
ENA 2  
1
2
3
4
12  
11  
SEE NOTE 7  
0.200 [5.08]  
TYP.  
IN RTN  
CASE  
SHARE  
+SNS  
1.50 [38.1]  
MQFL-270-06S-U-ES  
DC-DC CONVERTER  
270Vin 6.0Vout @ 20A  
10 1.260  
NON-CUM.  
ENA 1  
-SNS  
[32.00]  
9
8
7
SYNC OUT  
SYNC IN  
OUT RTN  
+VOUT  
5
MADE IN USA  
0.040  
[1.02]  
PIN  
S/N 0000000 D/C 3211-301 CAGE 1WX10  
6
0.42  
[10.7]  
2.50 [63.5]  
2.760 [70.10]  
3.00 [76.2]  
0.050 [1.27]  
0.128 [3.25]  
0.22 [5.6]  
2.80 [71.1]  
0.390 [9.91]  
Case U  
PIN DESIGNATIONS  
Pin # Function Pin # Function  
NOTES  
1)  
Pins 0.040’’ (1.02mm) diameter  
2)  
Pin Material: Copper Alloy  
Finish: Gold over Nickel plating, followed by Sn/Pb solder dip  
All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm)  
x.xxx +/-0.010 in. (x.xx +/-0.25mm)  
Weight: 2.8 oz (78.5 g) typical  
Workmanship: Meets or exceeds IPC-A-610 Class III  
Print Labeling on Top Surface per Product Label Format Drawing  
Pin 1 identification hole, not intended for mounting (case X and U)  
Baseplate flatness tolerance is 0.004” (.10mm) TIR for surface.  
1
2
3
4
5
6
Positive input  
Input return  
Case  
Enable 1  
Sync output  
Sync input  
7
8
9
Positive output  
Output return  
- Sense  
3)  
4)  
5)  
6)  
7)  
8)  
10 + Sense  
11 Share  
12 Enable 2  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 14  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Mechanical Diagrams  
0.300 [7.62]  
1.150 [29.21]  
0.140 [3.56]  
0.250 [6.35]  
TYP  
0.250 [6.35]  
+VIN  
ENA 2  
SHARE  
1
12  
11  
10  
9
0.200 [5.08]  
TYP. NON-CUM.  
2.000  
[50.80]  
IN RTN  
2
3
4
5
6
CASE  
+SNS  
MQFL-270-06S-Y-ES  
DC-DC CONVERTER  
270Vin 6.0Vout @ 20A  
1.50  
[38.1]  
ENA 1  
-SNS  
SYNC OUT  
SYNC IN  
MADE IN USA OUT RTN  
8
1.750  
[44.45]  
S/N 0000000 D/C 3211-301 CAGE 1WX10  
+VOUT  
7
0.040 [1.02]  
PIN  
0.050 [1.27]  
1.750 [44.45]  
2.50 [63.5]  
0.375 [9.52]  
0.22 [5.6]  
2.96 [75.2]  
0.228 [5.79]  
0.390 [9.91]  
Case Y  
Case Z  
(variant of Y)  
Case W  
(variant of Y)  
0.250 [6.35]  
0.250 [6.35]  
0.200 [5.08]  
TYP. NON-CUM.  
0.200 [5.08]  
TYP. NON-CUM.  
0.040 [1.02]  
PIN  
0.040 [1.02]  
PIN  
0.22 [5.6]  
0.050 [1.27]  
0.42 [10.7]  
0.050 [1.27]  
0.22 [5.6]  
0.36 [9.14]  
2.80 [71.1]  
0.525 [13.33]  
0.390  
[9.91]  
0.525 [13.33]  
0.390  
[9.91]  
2.80 [71.1]  
PIN DESIGNATIONS  
Pin # Function Pin # Function  
NOTES  
1)  
Pins 0.040’’ (1.02mm) diameter  
2)  
Pin Material: Copper Alloy  
Finish: Gold over Nickel plating, followed by Sn/Pb solder dip  
All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm)  
x.xxx +/-0.010 in. (x.xx +/-0.25mm)  
Weight: 2.8 oz (78.5 g) typical  
Workmanship: Meets or exceeds IPC-A-610 Class III  
Print Labeling on Top Surface per Product Label Format Drawing  
Pin 1 identification hole, not intended for mounting (case X and U)  
Baseplate flatness tolerance is 0.004” (.10mm) TIR for surface.  
1
2
3
4
5
6
Positive input  
Input return  
Case  
Enable 1  
Sync output  
Sync input  
7
8
9
Positive output  
Output return  
- Sense  
3)  
4)  
5)  
6)  
7)  
8)  
10 + Sense  
11 Share  
12 Enable 2  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 15  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Ordering Information  
MilQor Converter FAMILY MATRIX  
The tables below show the array of MilQor converters available. When ordering SynQor converters, please ensure that  
you use the complete part number according to the table in the last page. Contact the factory for other requirements.  
Single Output  
Dual Output †  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
6V  
7.5V  
9V  
12V  
15V  
28V  
5V  
12V  
15V  
Full Size  
MQFL-28  
(1R5S) (1R8S) (2R5S) (3R3S)  
(05S)  
(06S)  
(7R5S)  
(09S)  
(12S)  
(15S)  
(28S)  
(05D)  
(12D)  
(15D)  
16-40Vin Cont.  
24A  
Total  
10A  
Total  
8A  
Total  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
30A  
30A  
30A  
30A  
30A  
24A  
24A  
20A  
20A  
24A  
20A  
20A  
17A  
17A  
20A  
16A  
16A  
13A  
13A  
16A  
13A  
13A  
11A  
11A  
13A  
10A  
10A  
8A  
8A  
8A  
4A  
4A  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
MQFL-28E  
16-70Vin Cont.  
24A  
Total  
10A  
Total  
8A  
Total  
16-80Vin 1s Trans.*  
Absolute Max Vin =100V  
MQFL-28V  
16-40Vin Cont.  
6.5A  
6.5A  
8A  
3.3A  
3.3A  
4A  
5.5-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
MQFL-28VE  
16-70Vin Cont.  
8A  
5.5-80Vin 1s Trans.*  
Absolute Max Vin = 100V  
MQFL-270  
155-400Vin Cont.  
24A  
Total  
10A  
Total  
8A  
Total  
10A  
155-475Vin 1s Trans.*  
Absolute Max Vin = 550V  
MQFL-270L  
15A  
Total  
6A  
Total  
5A  
Total  
65-350Vin Cont.  
40A  
40A  
30A  
22A  
15A  
12A  
10A  
8A  
6A  
5A  
2.7A  
65-475Vin 1s Trans.*  
Absolute Max Vin = 550V  
Single Output  
Dual Output †  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
6V  
7.5V  
9V  
12V  
15V  
28V  
5V  
12V  
15V  
Half Size  
(1R5S) (1R8S) (2R5S) (3R3S)  
(05S)  
(06S)  
(7R5S)  
(09S)  
(12S)  
(15S)  
(28S)  
(05D)  
(12D)  
(15D)  
MQHL-28  
16-40Vin Cont.  
10A  
Total  
4A  
Total  
3.3A  
Total  
20A  
20A  
10A  
20A  
20A  
10A  
20A  
20A  
10A  
15A  
15A  
7.5A  
10A  
10A  
5A  
8A  
8A  
4A  
6.6A  
6.6A  
3.3A  
5.5A  
5.5A  
4A  
4A  
2A  
3.3A  
3.3A  
1.8A  
1.8A  
0.9A  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
MQHL-28E  
16-70Vin Cont.  
10A  
Total  
4A  
Total  
3.3A  
Total  
16-80Vin 1s Trans.*  
Absolute Max Vin =100V  
MQHR-28  
16-40Vin Cont.  
5A  
Total  
2A  
Total  
1.65A  
Total  
2.75A  
1.65A  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
MQHR-28E  
16-70Vin Cont.  
5A  
Total  
2A  
Total  
1.65A  
Total  
10A  
10A  
10A  
7.5A  
5A  
4A  
3.3A  
2.75A  
2A  
1.65A  
0.9A  
16-80Vin 1s Trans.*  
Absolute Max Vin = 100V  
Check with factory for availability.  
†80% of total output current available on any one output.  
*Converters may be operated at the highest transient input voltage, but some component electrical and thermal stresses would be beyond MIL-  
HDBK-1547A guidelines.  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 16  
MQFL-270-06S  
Output: 6.0V  
Current: 20A  
Ordering Information  
PART NUMBERING SYSTEM  
The part numbering system for SynQor’s MilQor DC-DC converters follows the format shown in the table below.  
Not all combinations make valid part numbers, please contact SynQor for availability. See the Product Summary web page for more options.  
Example: MQFL-270-06S-Y-ES  
Output Voltage(s)  
Input  
Voltage  
Range  
Model  
Name  
Package Outline/  
Pin Configuration  
Screening  
Grade  
Single  
Dual  
Output  
Output  
1R5S  
1R8S  
2R5S  
3R3S  
05S  
06S  
7R5S  
09S  
28  
28E  
28V  
28VE  
U
X
Y
W
Z
MQFL  
MQHL  
MQHR  
05D  
12D  
15D  
C
ES  
HB  
270  
270L  
12S  
15S  
28S  
APPLICATION NOTES  
A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.  
PATENTS  
SynQor holds the following U.S. patents, one or more of which apply to each product listed in this document. Additional patent applications may be  
pending or filed in the future.  
5,999,417  
6,894,468  
7,119,524  
7,765,687  
6,222,742  
6,896,526  
7,269,034  
7,787,261  
6,545,890  
6,927,987  
7,272,021  
8,023,290  
6,577,109  
7,050,309  
7,272,023  
8,149,597  
6,594,159  
7,072,190  
7,558,083  
6,731,520  
7,085,146  
7,564,702  
Contact SynQor for further information and to order:  
Warranty  
SynQor offers a two (2) year limited warranty. Complete warranty informa-  
tion is listed on our website or is available upon request from SynQor.  
Phone:  
Toll Free: 1-888-567-9596  
978-849-0600  
Fax:  
E-mail:  
Web:  
978-849-0602  
mqnbofae@synqor.com  
www.synqor.com  
Information furnished by SynQor is believed to be accurate and reliable.  
However, no responsibility is assumed by SynQor for its use, nor for any  
infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any  
patent or patent rights of SynQor.  
Address: 155 Swanson Road  
Boxborough, MA 01719  
USA  
Product# MQFL-270-06S  
Phone 1-888-567-9596  
www.SynQor.com  
Doc.# 005-005058 Rev. C  
08/13/13  
Page 17  

相关型号:

MQFL-270-06S-WES

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-WHB

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-XES

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-XHB

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-Y-ES

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-06S-YB

暂无描述
SYNQOR

MQFL-270-06S-YC

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-YES

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-YHB

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-09S

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-09S-Y-ES

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-09S-Z-HB

DC-DC Regulated Power Supply Module, 1 Output, 117W, Hybrid, MODULE-12
SYNQOR