MQFL-270-12D [SYNQOR]

HIGH RELIABILITY DC-DC CONVERTER; 高可靠性DC-DC转换器
MQFL-270-12D
型号: MQFL-270-12D
厂家: SYNQOR WORLDWIDE HEADQUARTERS    SYNQOR WORLDWIDE HEADQUARTERS
描述:

HIGH RELIABILITY DC-DC CONVERTER
高可靠性DC-DC转换器

转换器 DC-DC转换器
文件: 总19页 (文件大小:1157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MQFL-270-12D  
Dual Output  
HIGH RELIABILITY DC-DC CONVERTER  
155-400 V  
155-475 V  
±12 V  
10 A  
87% @ 5 A / 89% @ 10 A  
Continuous Input  
Transient Input  
Output  
Output  
Efficiency  
FULL POWER OPERATION: -55ºC TO +125ºC  
The MilQor® series of high-reliability DC-DC converters  
brings SynQor’s field proven high-efficiency synchronous  
rectifier technology to the Military/Aerospace industry.  
TM  
SynQor’s innovative QorSeal packaging approach ensures  
survivability in the most hostile environments. Compatible  
with the industry standard format, these converters operate  
at a fixed frequency, have no opto-isolators, and follow  
conservative component derating guidelines. They are  
designed and manufactured to comply with a wide range of  
military standards.  
-HB  
10A  
MQFL-270-12@D-Y  
CONVERTER  
±12Vout  
DC/DC  
Vin  
270  
Design Process  
MQFL series converters are:  
• Designed for reliability per NAVSO-P3641-A guidelines  
D
F
ESIGNED & MANUFACTURED IN THE USA  
EATURING OR -REL SSEMBLY  
EALH  
Q
S
I
A
• Designed with components derated per:  
— MIL-HDBK-1547A  
Features  
— NAVSO P-3641A  
• Fixed switching frequency  
• No opto-isolators  
• Parallel operation with current share  
• Remote sense  
• Clock synchronization  
• Primary and secondary referenced enable  
Qualification Process  
MQFL series converters are qualified to:  
• MIL-STD-810F  
— consistent with RTCA/D0-160E  
• SynQor’s First Article Qualification  
• Continuous short circuit and overload protection with  
— consistent with MIL-STD-883F  
auto-restart feature  
• SynQor’s Long-Term Storage Survivability Qualification  
• SynQor’s on-going life test  
• Input under-voltage lockout/over-voltage shutdown  
Specification Compliance  
In-Line Manufacturing Process  
MQFL series converters (with MQME filter) are designed to meet:  
• MIL-HDBK-704-8 (A through F)  
• RTCA/DO-160E Section 16  
• MIL-STD-1275B  
• AS9100 and ISO 9001:2000 certified facility  
• Full component traceability  
• Temperature cycling  
• DEF-STAN 61-5 (part 6)/5  
• MIL-STD-461 (C, D, E)  
• RTCA/DO-160E Section 22  
• Constant acceleration  
• 24, 96, 160 hour burn-in  
• Three level temperature screening  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 1  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
BLOCK DIAGRAM  
ISOLATION STAGE  
REGULATION STAGE  
CURRENT  
SENSE  
1
7
Vin  
POSITIVE  
OUTPUT  
T1  
T1  
T2  
2
INPUT  
RETURN  
8
OUTPUT  
RETURN  
T2  
3
CASE  
GATE DRIVERS  
9
UVLO  
NEGATIVE  
OUTPUT  
CURRENT  
LIMIT  
OVSD  
4
GATE DRIVERS  
ENABLE 1  
PRIMARY  
CONTROL  
MAGNETIC  
12  
5
ENABLE 2  
SYNC OUT  
11  
DATA COUPLING  
BIAS POWER  
6
SECONDARY  
CONTROL  
SHARE  
SYNC IN  
10  
TRIM  
CONTROL  
POWER  
POSITIVE  
OUTPUT  
TRANSFORMER  
1
2
3
12  
open  
means  
on  
+VIN  
ENA 2  
11  
10  
IN RTN  
CASE  
SHARE  
TRIM  
– VOUT  
OUT RTN  
+VOUT  
+
MQFL  
4
5
6
9
8
7
+
270 Vdc  
Load  
ENA 1  
SYNC OUT  
SYNC IN  
+
open  
means  
on  
Load  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 2  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
MQFL-270-12D ELECTRICAL CHARACTERISTICS  
Parameter  
Min. Typ. Max. Units Notes & Conditions  
Group A  
Vin=270 V dc ±5%, Iout=10 A, CL=0 µF, free running (see Note 10)  
unless otherwise specified  
Subgroup  
(see Note 13)  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
Non-Operating  
600  
550  
-0.8  
-1.2  
V
V
V
V
Operating  
See Note 1  
See Note 2  
Reverse Bias (Tcase = 125ºC)  
Reverse Bias (Tcase = -55ºC)  
Isolation Voltage (I/O to case, I to O)  
Continuous  
-500  
-800  
-55  
500  
800  
125  
135  
300  
50  
V
V
°C  
°C  
°C  
V
Transient (≤100 µs)  
Operating Case Temperature  
Storage Case Temperature  
Lead Temperature (20 s)  
-65  
Voltage at ENA1, ENA2  
-1.2  
INPUT CHARACTERISTICS  
Operating Input Voltage Range  
"
155  
155  
270  
270  
400  
475  
V
V
Continuous  
Transient, 1 s  
See Note 3  
1, 2, 3  
4, 5, 6  
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Lockout Voltage Hysteresis  
Input Over-Voltage Shutdown  
Turn-Off Voltage Threshold  
Turn-On Voltage Threshold  
Shutdown Voltage Hysteresis  
Maximum Input Current  
142  
133  
5
150  
140  
11  
155  
145  
17  
V
V
V
1, 2, 3  
1, 2, 3  
1, 2, 3  
See Note 3  
490  
450  
20  
520  
475  
50  
550  
500  
80  
1
37  
4
V
V
V
A
mA  
mA  
mA  
mA  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
Vin = 155 V; Iout = 10 A  
No Load Input Current (operating)  
Disabled Input Current (ENA1)  
Disabled Input Current (ENA2)  
Input Terminal Current Ripple (pk-pk)  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point (Tcase = 25ºC)  
Positive Output  
28  
1
6
140  
Vin = 155 V, 270 V, 475 V  
Vin = 155 V, 270 V, 475 V  
Bandwidth = 100 kHz – 10 MHz; see Figure 20  
11  
180  
1
1
2, 3  
1
1
2, 3  
11.88 12.00 12.12  
-12.12 -12.00 -11.88  
V
V
Negative Output  
Output Voltage Set Point Over Temperature  
Positive Output  
11.82 12.00 12.18  
-12.18 -12.00 -11.82  
-20  
50  
11.76 12.00 12.24  
200  
V
V
mV  
mV  
V
mV  
mV  
A
A
W
A
A
A
mA  
µF  
Negative Output  
Positive Output Voltage Line Regulation  
Positive Output Voltage Load Regulation  
Total Positive Output Voltage Range  
Vout Cross Regulation (Negative)  
Vout Ripple and Noise Peak to Peak  
Total Operating Current Range  
Single Output Operating Current Range  
Operating Output Power Range  
Output DC Current-Limit Inception  
Short Circuit Output Current  
Back-Drive Current Limit while Enabled  
Back-Drive Current Limit while Disabled  
Maximum Output Capacitance  
DYNAMIC CHARACTERISTICS  
Output Voltage Deviation Load Transient  
For a Pos. Step Change in Load Current  
For a Neg. Step Change in Load Current  
Settling Time (either case)  
Output Voltage Deviation Line Transient  
For a Pos. Step Change in Line Voltage  
For a Neg. Step Change in Line Voltage  
Settling Time (either case)  
Turn-On Transient  
0
65  
20  
80  
Vin = 155 V, 270 V, 475 V; Iout=10 A  
Vout @ (Iout=0 A) - Vout @ (Iout=10 A)  
"
Bandwidth = 10 MHz; CL=11µF  
Bandwidth = 10 MHz; CL=11µF  
(+Iout) + (–Iout)  
Maximum +Iout or –Iout  
Total on both outputs  
+Iout + –Iout; +Iout = –Iout; See Note 4  
Vout ≤ 1.2 V; see Note 15  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
See Note 5  
1, 2, 3  
1, 2, 3  
See Note 5  
450  
20  
700  
80  
10  
8
120  
12.5  
15.5  
0
0
0
10.5  
10.5  
11.5  
13  
3.5  
10  
75  
3,000  
Total on both outputs  
See Note 6  
-900  
-600  
600  
300  
mV  
mV  
µs  
Total Iout step = 5A‹-›10A, 1A‹-›5A; CL=11µF  
4, 5, 6  
4, 5, 6  
4, 5, 6  
900  
500  
"
See Note 7  
Vin step = 155V‹-›475V; CL=11 µF; see Note 8  
-2000  
-2200  
2000  
2200  
600  
mV  
mV  
µs  
"
"
4, 5, 6  
4, 5, 6  
See Note 5  
450  
Iout = 5 A; See Note 7  
Output Voltage Rise Time  
6
0
75  
5
2
10  
2
120  
10  
4
ms  
%
ms  
ms  
ms  
Vout = 1.2V-›10.8V  
4, 5, 6  
See Note 5  
4, 5, 6  
4, 5, 6  
4, 5, 6  
Output Voltage Overshoot  
Turn-On Delay, Rising Vin  
50  
ENA1, ENA2 = 5 V; see Notes 9 & 11  
ENA2 = 5 V; see Note 11  
ENA1 = 5 V; see Note 11  
Turn-On Delay, Rising ENA1  
Turn-On Delay, Rising ENA2  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 3  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
MQFL-270-12D ELECTRICAL CHARACTERISTICS (Continued)  
Parameter  
Min. Typ. Max. Units Notes & Conditions  
Group A  
Vin=270 V dc ±5%, Iout=10 A, CL=0 µF, free running (see Note 10)  
unless otherwise specified  
Subgroup  
(see Note 13)  
EFFICIENCY  
Iout = 10 A (155 Vin)  
85  
86  
84  
83  
81  
77  
90  
90  
89  
87  
86  
83  
22  
24  
%
%
%
%
%
%
%
%
1, 2, 3  
1, 2, 3  
Iout = 5 A (155 Vin)  
Iout = 10 A (270 Vin)  
1, 2, 3  
Iout = 5 A (270 Vin)  
1, 2, 3  
Iout = 10 A (400 Vin)  
1, 2, 3  
Iout = 5 A (400 Vin)  
1, 2, 3  
Load Fault Power Dissipation  
Short Circuit Power Dissipation  
ISOLATION CHARACTERISTICS  
Isolation Voltage  
36  
43  
1, 2, 3  
See Note 5  
Dielectric strength  
Input RTN to Output RTN  
Any Input Pin to Case  
500  
500  
500  
100  
100  
V
V
1
1
1
1
1
1
Any Output Pin to Case  
Isolation Resistance (in rtn to out rtn)  
Isolation Resistance (any pin to case)  
Isolation Capacitance (in rtn to out rtn)  
FEATURE CHARACTERISTICS  
Switching Frequency (free running)  
Synchronization Input  
V
MΩ  
MΩ  
nF  
44  
500  
550  
600  
kHz  
1, 2, 3  
Frequency Range  
500  
2
-0.5  
20  
700  
5.5  
0.8  
80  
kHz  
V
V
%
1, 2, 3  
1, 2, 3  
1, 2, 3  
Logic Level High  
Logic Level Low  
Duty Cycle  
See Note 5  
Synchronization Output  
Pull Down Current  
Duty Cycle  
20  
25  
mA  
%
VSYNC OUT = 0.8 V  
Output connected to SYNC IN of other MQFL unit  
See Note 5  
See Note 5  
80  
Enable Control (ENA1 and ENA2)  
Off-State Voltage  
Module Off Pulldown Current  
On-State Voltage  
Module On Pin Leakage Current  
Pull-Up Voltage  
0.8  
V
µA  
V
µA  
V
1, 2, 3  
See Note 5  
1, 2, 3  
See Note 5  
1, 2, 3  
80  
2
Current drain required to ensure module is off  
20  
4.5  
Imax draw from pin allowed with module still on  
See Figure A  
3.2  
4.0  
RELIABILITY CHARACTERISTICS  
Calculated MTBF (MIL-STD-217F2)  
GB @ Tcase = 70ºC  
2600  
290  
TBD  
103 Hrs.  
103 Hrs.  
103 Hrs.  
AIF @ Tcase = 70ºC  
Demonstrated MTBF  
WEIGHT CHARACTERISTICS  
Device Weight  
79  
g
Electrical Characteristics Notes  
1. Converter will undergo input over-voltage shutdown.  
2. Derate output power to 50% of rated power at Tcase = 135º C.  
3. High or low state of input voltage must persist for about 200µs to be acted on by the lockout or shutdown circuitry.  
4. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value.  
5. Parameter not tested but guaranteed to the limit specified.  
6. Load current transition time ≥ 10 µs.  
7. Settling time measured from start of transient to the point where the output voltage has returned to ±1% of its final value.  
8. Line voltage transition time ≥ 250 µs.  
9. Input voltage rise time ≥ 250 µs.  
10. Operating the converter at a synchronization frequency above the free running frequency will slightly reduce the converter’s efficiency and may also  
cause a slight reduction in the maximum output current/power available. For more information consult the factory.  
11. After a disable or fault event, module is inhibited from restarting for 300 ms. See Shut Down section.  
12. All +Vout and -Vout voltage measurements are made with Kelvin probes on the output leads.  
13. SHARE pin outputs a power failure warning pulse during a fault condition. See Current Share section.  
14. Only the ES and HB grade products are tested at three temperatures. The C grade products are tested at one temperature. Please refer to the ESS  
table for details.  
15. These derating curves apply for the ES- and HB- grade products. The C- grade product has a maximum case temperature of 100º C and a maximum  
junction temperature rise of 20º C above TCASE.  
16. Converter delivers current into a persisting short circuit for up to 1 second. See Current Limit in the Application Notes section.  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 4  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
100  
95  
90  
85  
80  
75  
70  
65  
60  
22  
20  
18  
16  
14  
12  
10  
8
6
155 Vin  
270 Vin  
400 Vin  
155 Vin  
270 Vin  
400 Vin  
4
2
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Total Output Power (W)  
Total Output Power (W)  
Figure 1: Efficiency vs. output power, from zero load to full load with  
equal load on the +12V output and 50% load on the -12V output at  
Figure 2: Power dissipation vs. output power, from zero load to full  
load with equal load on the +12V output and 50% load on the -12V out-  
minimum, nominal, and maximum input voltage at 25  
°
C.  
put at minimum, nominal, and maximum input voltage at 25  
°
C.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
22  
20  
18  
16  
14  
12  
10  
8
6
155 Vin  
270 Vin  
400 Vin  
155 Vin  
270 Vin  
400 Vin  
4
2
0
8/0  
7/1  
6/2  
5/3  
4/4  
3/5  
2/6  
1/7  
0/8  
8/0  
7/1  
6/2  
5/3  
4/4  
3/5  
-Iout  
2/6  
1/7  
0/8  
Load Current (A), +Iout  
/
Load Current (A), +Iout / -Iout  
Figure 3: Efficiency vs. output current, with total output current fixed  
at 80% load (96W) and loads split as shown between the +12V and  
-12V outputs at minimum, nominal, and maximum input voltage at  
Figure 4: Power dissipation vs. output current, with total output cur-  
rent fixed at 80% load (96W) and loads split as shown between the  
+12V and -12V outputs at minimum, nominal, and max input voltage at  
25  
°C.  
25  
°C.  
100  
16  
95  
90  
85  
80  
75  
70  
65  
60  
14  
12  
10  
8
6
4
155 Vin  
270 Vin  
400 Vin  
155 Vin  
270 Vin  
400 Vin  
2
0
-55ºC  
25ºC  
85ºC  
125ºC  
-55ºC  
25ºC  
85ºC  
125ºC  
Case Temperature (ºC)  
Case Temperature (ºC)  
Figure 5: Efficiency at 60% load (3A load on +12V and 3A load on  
Figure 6: Power dissipation at 60% load (3A load on +12V and 3A  
-12V) versus case temperature for Vin = 155V, 270V, and 400V.  
load on -12V) versus case temperature for Vin =155V, 270V, and 400V.  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 5  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
12.8  
-12.8  
-12.6  
-12.4  
-12.2  
-12.0  
-11.8  
-11.6  
-11.4  
-11.2  
12.8  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
11.2  
-12.8  
Input voltage has virtually no  
Input voltage has virtually no  
effect on cross regulation  
12.6  
-12.6  
-12.4  
-12.2  
-12.0  
-11.8  
-11.6  
-11.4  
-11.2  
effect on cross regulation  
12.4  
12.2  
12.0  
11.8  
11.6  
+Vout  
+Vout  
-Vout  
11.4  
-Vout  
11.2  
8 / 2  
6 / 4  
5 / 5  
+IOUT (A) -IOUT (A)  
4 / 6  
2 / 8  
8 / 0  
6 / 2  
4 / 4  
+IOUT (A) -IOUT (A)  
2 / 6  
0 / 8  
/
/
Figure 7: Load regulation vs. load current with power fixed at full load  
Figure 8: Load regulation vs. load current with power fixed at 80%  
(120W) and load currents split as shown between the +12V and -12V  
load (96W) and load currents split as shown between the +12V and  
outputs, at nominal input voltage and T  
= 25ºC.  
-12V outputs, at nominal input voltage and T  
= 25ºC.  
CASE  
CASE  
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
-12.5  
-12.4  
-12.3  
-12.2  
-12.1  
-12.0  
-11.9  
-11.8  
-11.7  
-11.6  
-11.5  
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
-12.5  
-12.4  
-12.3  
-12.2  
-12.1  
-12.0  
-11.9  
-11.8  
-11.7  
-11.6  
-11.5  
Input voltage has virtually no  
Input voltage has virtually no  
effect on cross regulation  
effect on cross regulation  
+Vout  
-Vout  
+Vout  
-Vout  
0
24  
48  
72  
96  
120  
0
24  
48  
72  
96  
120  
Total Output Power (W)  
Total Output Power (W)  
Figure 9: Load regulation vs. total output power from zero to to full  
Figure 10: Load regulation vs. total output power from zero to to full  
load where +Iout equals three times -Iout at nominal input voltage and  
load where -Iout equals three times +Iout at nominal input voltage and  
T
= 25ºC.  
T
= 25ºC.  
CASE  
CASE  
14  
14  
168  
144  
120  
96  
12  
10  
8
12  
10  
8
6
72  
6
4
48  
4
Tjmax  
Tjmax  
Tjmax  
= 105ºC  
= 125ºC  
= 145ºC  
2
24  
2
270 Vin  
0
0
0
25  
45  
65  
85  
105  
125  
145  
135  
0
2
4
6
8
10  
12  
14  
Case Temperature (ºC)  
Load Current (A)  
Figure 11: Output Current / Output Power derating curve as a function  
of T and the maximum desired power MOSFET junction temperature  
(see Note 15).  
Figure 12: Positive output voltage vs. total load current evenly split  
showing typical current limit curves. See Current Limit section in the  
Application Notes section.  
CASE  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 6  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
+Vout  
+Vout  
-Vout  
-Vout  
Figure 13: Turn-on transient at full rated load current (resistive load)  
(5 ms/div). Input voltage pre-applied. Ch 1: +Vout (5V/div);  
Ch 2: -Vout (5V/div); Ch 3: Enable1 input (5V/div).  
Figure 14: Turn-on transient at zero load current (5 ms/div). Input  
voltage pre-applied. Ch 1: +Vout (5V/div); Ch 2: -Vout (5V/div);  
Ch 3: Enable1 input (5V/div).  
+Vout  
+Vout  
-Vout  
-Vout  
Figure 15: Turn-on transient at full rated load current (resistive  
load) (5 ms/div). Input voltage pre-applied. Ch 1: +Vout (5V/div);  
Ch 2: -Vout (5V/div); Ch 3: Enable2 input (5V/div).  
Figure 16: Turn-on transient at full load, after application of input  
voltage (ENA 1 and ENA 2 logic high) (20ms/div). Ch 1: +Vout (5V/  
div); Ch 2: -Vout (5V/div); Ch 3: Vin (10V/div).  
+Vout  
+Iout  
+Vout  
+Iout  
-Vout  
-Iout  
-Vout  
-Iout  
Figure 17: Output voltage response to step-change in total load cur-  
Figure 18: Output voltage response to step-change in total load current  
rent (50%-100%-50%) of total Iout (max) split 50%/50%. Load cap: 1  
ceramic cap and 10 F, 100 m ESR tantalum cap. Ch 1: +Vout (1 V/div);  
Ch 2: +Iout (5A/div); Ch 3: -Vout (1 V/div); Ch 4: -Iout (5A/div).  
µ
F
(0%-50%-0%) of total Iout (max) split 50%/50%. Load cap: 1  
cap and 10 F, 100 m ESR tantalum cap. Ch 1: +Vout (1 V/div);  
2: +Iout (5A/div); Ch 3: -Vout (1 V/div); Ch 4: -Iout (5A/div).  
µ
F ceramic  
µ
W
µ
W
Ch  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 7  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
See Fig. 22  
See Fig. 21  
+VOUT  
IC  
MQME  
Filter  
MQFL  
Converter  
RTN  
–VOUT  
VSOURCE  
1 µF  
10 µF,  
ceramic  
100mΩ ESR  
capacitors  
capacitors  
Figure 19: Output voltage response to step-change in input voltage (16V - 50V  
- 16V). Load cap: 10µF, 100 mW ESR tantalum cap and 1µF ceramic cap. Ch  
1: +Vout (500mV/div); Ch 2: -Vout (500mV/div); Ch 3: Vin (20V/div).  
Figure 20: Test set-up diagram showing measurement points for  
Input Terminal Ripple Current (Figure 21) and Output Voltage Ripple  
(Figure 22).  
Figure 21: Input terminal current ripple, i , at full rated output current  
and nominal input voltage with SynQor MQ filter module (50 mA/div).  
Bandwidth: 20MHz. See Figure 20.  
Figure 22: Output voltage ripple, +Vout (Ch 1) and -Vout (Ch 2), at nominal  
input voltage and full load current evenly split (20 mV/div). Load capacitance:  
1µF ceramic cap and 10µF tantalum cap. Bandwidth: 10 MHz. See Figure 20.  
c
Figure 24: SYNC OUT vs. time, driving SYNC IN of a second SynQor  
MQFL converter.  
Figure 23: Rise of output voltage after the removal of a short circuit  
across the positive output terminals. Ch 1: +Vout (5V/div); Ch 2:  
-Vout (5V/div); Ch 3: +Iout (10A/div).  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 8  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
1
1
0.1  
0.1  
0.01  
0.01  
155 Vin  
270 Vin  
400Vin  
155 Vin  
270 Vin  
400 Vin  
0.001  
0.0001  
0.001  
0.0001  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 25: Magnitude of incremental output impedance (+Zout = +vout /+iout  
)
Figure 26: Magnitude of incremental output impedance (-Zout = -vout /-iout) for  
for minimum, nominal, and maximum input voltage at full rated power.  
minimum, nominal, and maximum input voltage at full rated power.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
155 Vin  
155 Vin  
-80  
-80  
270 Vin  
270 Vin  
-90  
-90  
400 Vin  
400 Vin  
-100  
-100  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 27: Magnitude of incremental forward transmission (+FT = +vout /vin)  
Figure 28: Magnitude of incremental forward transmission (-FT = -vout /vin)  
for minimum, nominal, and maximum input voltage at full rated power.  
for minimum, nominal, and maximum input voltage at full rated power.  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
155 Vin  
155 Vin  
-45  
-45  
270 Vin  
270 Vin  
-50  
-50  
400 Vin  
400 Vin  
-55  
-55  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 29: Magnitude of incremental reverse transmission (+RT = iin /+iout  
)
Figure 30: Magnitude of incremental reverse transmission (-RT = iin /-iout) for  
for minimum, nominal, and maximum input voltage at full rated power.  
minimum, nominal, and maximum input voltage at full rated power.  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 9  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
10000  
1000  
100  
155 Vin  
10  
270 Vin  
400 Vin  
1
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 32: High frequency conducted emissions of standalone MQFL-270-  
05S, 5Vout module at 120W output, as measured with Method CE102. Limit  
line shown is the ‘Basic Curve’ for all applications with a 270V source.  
Figure 31: Magnitude of incremental input impedance (Z = v /i  
for minimum, nominal, and maximum input voltage at full rated power  
with 50% / 50% split.  
)
in  
in in  
Figure 33: High frequency conducted emissions of MQFL-270-05S,  
5Vout module at 120W output with MQME-270-P filter, as measured with  
Method CE102. Limit line shown is the ‘Basic Curve’ for all applications  
with a 270V source.  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 10  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
back or fold-forward characteristic to the output current under  
this condition). When a load fault is removed, the output  
voltage rises exponentially to its nominal value without an  
overshoot.  
BASIC OPERATION AND FEATURES  
The MQFL dc-dc converter uses a two-stage power conversion  
topology. The first, or regulation, stage is a buck-converter  
that keeps the output voltage constant over variations in line,  
load, and temperature. The second, or isolation, stage uses  
transformers to provide the functions of input/output isolation  
and voltage transformation to achieve the output voltage  
required.  
The MQFL converter’s control circuit does not implement an  
output over-voltage limit or an over-temperature shutdown.  
The following sections describe the use and operation of addi-  
tional control features provided by the MQFL converter.  
In the dual output converter there are two secondary windings  
in the transformer of the isolation stage, one for each output.  
There is only one regulation stage, however, and it is used  
to control the positive output. The negative output therefore  
displays “Cross-Regulation”, meaning that its output voltage  
depends on how much current is drawn from each output.  
CONTROL FEATURES  
ENABLE: The MQFL converter has two enable pins. Both  
must have a logic high level for the converter to be enabled.  
A logic low on either pin will inhibit the converter.  
The ENA1 pin (pin 4) is referenced with respect to the con-  
verter’s input return (pin 2). The ENA2 pin (pin 12) is refer-  
enced with respect to the converter’s output return (pin 8).  
This permits the converter to be inhibited from either the input  
or the output side.  
Both the positive and the negative outputs share a common  
OUTPUT RETURN pin.  
Both the regulation and the isolation stages switch at a fixed  
frequency for predictable EMI performance. The isolation  
stage switches at one half the frequency of the regulation  
stage, but due to the push-pull nature of this stage it creates  
a ripple at double its switching frequency. As a result, both  
the input and the output of the converter have a fundamental  
ripple frequency of about 550 kHz in the free-running mode.  
Regardless of which pin is used to inhibit the converter, the  
regulation and the isolation stages are turned off. However,  
when the converter is inhibited through the ENA1 pin, the bias  
supply is also turned off, whereas this supply remains on when  
the converter is inhibited through the ENA2 pin. A higher  
input standby current therefore results in the latter case.  
Rectification of the isolation stage’s output is accomplished  
with synchronous rectifiers.  
These devices, which are  
Both enable pins are internally pulled high so that an open  
connection on both pins will enable the converter. Figure A  
shows the equivalent circuit looking into either enable pins. It  
is TTL compatible.  
MOSFETs with a very low resistance, dissipate far less energy  
than would Schottky diodes. This is the primary reason why  
the MQFL converters have such high efficiency, particularly at  
low output voltages.  
Besides improving efficiency, the synchronous rectifiers permit  
operation down to zero load current. There is no longer a  
need for a minimum load, as is typical for converters that use  
diodes for rectification. The synchronous rectifiers actually  
permit a negative load current to flow back into the con-  
verter’s output terminals if the load is a source of short or long  
term energy. The MQFL converters employ a “back-drive cur-  
rent limit” to keep this negative output terminal current small.  
5.0V  
68K  
1N4148  
PIN 4  
(or PIN 12)  
ENABLE  
TO ENABLE  
CIRCUITRY  
250K  
125K  
2N3904  
There is a control circuit on both the input and output sides of  
the MQFL converter that determines the conduction state of the  
power switches. These circuits communicate with each other  
across the isolation barrier through a magnetically coupled  
device. No opto-isolators are used. A separate bias supply  
provides power to both the input and output control circuits.  
PIN 2  
(or PIN 8)  
IN RTN  
Figure A: Equivalent circuit looking into either the ENA1 or ENA2  
pins with respect to its corresponding return pin.  
An input under-voltage lockout feature with hysteresis is pro-  
vided, as well as an input over-voltage shutdown. There is  
also an output current limit that is nearly constant as the load  
impedance decreases to a short circuit (i.e., there is no fold-  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 11  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
SYNCHRONIZATION: The MQFL converter’s switching fre-  
quency can be synchronized to an external frequency source  
that is in the 500 kHz to 700 kHz range. A pulse train at the  
desired frequency should be applied to the SYNC IN pin (pin  
6) with respect to the INPUT RETURN (pin 2). This pulse train  
should have a duty cycle in the 20% to 80% range. Its low  
value should be below 0.8V to be guaranteed to be interpret-  
ed as a logic low, and its high value should be above 2.0V  
to be guaranteed to be interpreted as a logic high. The transi-  
tion time between the two states should be less than 300ns.  
CURRENT SHARE: Like the single output MQFL converters,  
the dual output converters have a SHARE pin (pin 11). In this  
case, however, the voltage at this pin represents the sum of the  
positive and negative output currents. As such, the share pin  
cannot cause two or more paralleled converters to share load  
currents on the positive or negative outputs independently.  
Nevertheless, there may be applications where the two cur-  
rents have a fixed ratio, in which case it can make sense to  
force the sharing of total current among several converters.  
Since the SHARE pin is monitored with respect to the OUTPUT  
RETURN (pin 8) by each converter, it is important to connect  
all of the converters’ OUTPUT RETURN pins together through  
a low DC and AC impedance. When this is done correctly,  
the converters will deliver their appropriate fraction of the total  
load current to within +/- 10% at full rated load.  
If the MQFL converter is not to be synchronized, the SYNC IN  
pin should be left open circuit. The converter will then oper-  
ate in its free-running mode at a frequency of approximately  
550 kHz.  
If, due to a fault, the SYNC IN pin is held in either a logic low  
or logic high state continuously, the MQFL converter will revert  
to its free-running frequency.  
Whether or not converters are paralleled, the voltage at the  
SHARE pin could be used to monitor the approximate average  
current delivered by the converter(s). A nominal voltage of  
1.0V represents zero current and a nominal voltage of 2.2V  
represents the maximum rated total current, with a linear  
relationship in between. The internal source resistance of a  
converter’s SHARE pin signal is 2.5 kW.  
The MQFL converter also has a SYNC OUT pin (pin 5). This  
output can be used to drive the SYNC IN pins of as many as  
ten (10) other MQFL converters. The pulse train coming out  
of SYNC OUT has a duty cycle of 50% and a frequency that  
matches the switching frequency of the converter with which  
it is associated. This frequency is either the free-running fre-  
quency if there is no synchronization signal at the SYNC IN  
pin, or the synchronization frequency if there is.  
During an input voltage fault or primary disable event, the SHARE  
pin outputs a power failure warning pulse. The SHARE pin will go  
to 3V for approximately 14ms as the output voltage falls. During  
a current limit auto-restart event, the SHARE pin outputs a startup  
synchronization pulse. The SHARE pin will go to 5V for approxi-  
mately 2ms before the converter restarts.  
The SYNC OUT signal is available only when the dc input  
voltage is above approximately 125V and when the converter  
is not inhibited through the ENA1 pin. An inhibit through the  
ENA2 pin will not turn the SYNC OUT signal off.  
NOTE: Converters operating from separate input filters with  
reverse polarity protection (such as the MQME-270-T filter)  
with their outputs connected in parallel may exhibit auto-restart  
operation at light loads. Consult factory for details.  
NOTE: An MQFL converter that has its SYNC IN pin driven  
by the SYNC OUT pin of a second MQFL converter will have  
its start of its switching cycle delayed approximately 180  
degrees relative to that of the second converter.  
5V  
Figure B shows the equivalent circuit looking into the SYNC  
IN pin. Figure C shows the equivalent circuit looking into the  
SYNC OUT pin.  
5K  
SYNC OUT  
FROM SYNC  
CIRCUITRY  
PIN 5  
5V  
IN RTN  
PIN 2  
OPEN COLLECTOR  
5K  
OUTPUT  
TO SYNC  
CIRCUITRY  
PIN 6  
Figure C: Equivalent circuit looking into SYNC OUT pin with  
respect to the IN RTN (input return) pin.  
SYNC IN  
IN RTN  
5K  
PIN 2  
Figure B: Equivalent circuit looking into the SYNC IN pin with  
respect to the IN RTN (input return) pin.  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 12  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
OUTPUT VOLTAGE TRIM: If desired, it is possible to increase or  
decrease the MQFL dual converter’s output voltage from its nominal  
value. To increase the output voltage a resistor, Rup, should be con-  
nected between the TRIM pin (pin 10) and the OUTPUT RETURN  
pin (pin 8), as shown in Figure D. The value of this resistor should  
be determined according to the following equation:  
10,000.0  
1,000.0  
100.0  
10.0  
Vnom – 2.5  
Vout – Vnom  
– 2 x Vnom + 5  
Rup = 10 x  
(
)
Trim Down Configuration  
Trim Up Configuration  
where:  
Vnom = the converter’s nominal output voltage,  
Vout = the desired output voltage (greater than Vnom), and  
Rup is in kiloOhms (kW).  
1.0  
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
The maximum value of output voltage that can be achieved is  
5.5V.  
Change in Vout (V)  
Figure E: Change in Output Voltage Graph  
To decrease the output voltage a resistor, Rdown, should be con-  
nected between the TRIM pin and the POSITIVE OUTPUT pin (pin  
7), as shown in Figure D. The value of this resistor should be  
determined according to the following equation:  
rent and temperature range. Please consult the factory for details.  
Factory trimmed converters are available by request.  
INPUT UNDER-VOLTAGE LOCKOUT: The MQFL converter  
has an under-voltage lockout feature that ensures the converter  
will be off if the input voltage is too low. The threshold of input  
voltage at which the converter will turn on is higher that the thresh-  
old at which it will turn off. In addition, the MQFL converter will  
not respond to a state of the input voltage unless it has remained  
Vnom  
Vout – 2.5  
– 1  
– 5  
Rdown = 10 x  
x
[
2.5 ] [Vnom – Vout ]  
where:  
Vnom = the converter’s nominal output voltage,  
Vout = the desired output voltage (less than Vnom), and  
in that state for more than about 200 s. This hysteresis and the  
µ
Rdown is in kiloOhms (kW).  
delay ensure proper operation when the source impedance is high  
or in a noisy enviroment.  
As the output voltage is trimmed up, it produces a greater voltage  
stress on the converter’s internal components and may cause the  
converter to fail to deliver the desired output voltage at the low  
end of the input voltage range at the higher end of the load cur-  
1
12  
+VIN  
ENA 2  
SHARE  
TRIM  
open  
means  
on  
2
11  
10  
IN RTN  
3
CASE  
+
MQFL-270-12D  
Rup  
4
5
6
9
8
7
+
270 Vdc  
Load  
Load  
ENA 1  
– VOUT  
OUT RTN  
+VOUT  
Rdown  
SYNC OUT  
SYNC IN  
+
open  
means  
on  
Figure D: Typical connection for output voltage trimming.  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 13  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
To avoid any problems that might arise due to back-drive  
current, the MQFL converters limit the negative current  
that the converter can draw from its output terminals. The  
threshold for this back-drive current limit is placed sufficiently  
below zero so that the converter may operate properly  
down to zero load, but its absolute value (see the Electrical  
Characteristics page) is small compared to the converter’s  
rated output current.  
INPUT OVER-VOLTAGE SHUTDOWN: The MQFL converter  
also has an over-voltage feature that ensures the converter will  
be off if the input voltage is too high. It also has a hysteresis and  
time delay to ensure proper operation.  
SHUT DOWN: The MQFL converter will shut down in response  
to following conditions:  
- ENA1 input low  
- ENA2 input low  
INPUT SYSTEM INSTABILITY: This condition can occur  
because any dc-dc converter appears incrementally as a  
negative resistance load. A detailed application note titled  
“Input System Instability” is available on the SynQor web-  
site which provides an understanding of why this instability  
arises, and shows the preferred solution for correcting it.  
- VIN input below under-voltage lockout threshold  
- VIN input above over-voltage shutdown threshold  
- Persistent current limit event lasting more than 1 second  
Following a shutdown from a disable event or an input voltage  
fault, there is a startup inhibit delay which will prevent the con-  
verter from restarting for approximately 300ms. After the 300ms  
delay elapses, if the enable inputs are high and the input voltage  
is within the operating range, the converter will restart. If the  
VIN input is brought down to nearly 0V and back into the operat-  
ing range, there is no startup inhibit, and the output voltage will  
rise according to the “Turn-On Delay, Rising Vin” specification.  
THERMAL CONSIDERATIONS: Figure 11 shows the sug-  
gested Power Derating Curves for this converter as a function of  
the case temperature and the maximum desired power MOSFET  
junction temperature. All other components within the converter  
are cooler than its hottest MOSFET, which at full power is no  
more than 20ºC higher than the case temperature directly below  
this MOSFET.  
Refer to the following Current Limit section for details regarding  
persistent current limit behavior.  
CURRENT LIMIT: The converter will reduce its output voltage in  
response to an overload condition, as shown in Figure 12. If the  
output voltage drops to below approximately 50% of the nomi-  
nal setpoint for longer than 1 second, the auto-restart feature  
will engage. The auto-restart feature will stop the converter from  
delivering load current, in order to protect the converter and the  
load from thermal damage. After four seconds have elapsed,  
the converter will automatically restart.  
The Mil-HDBK-1547A component derating guideline calls for a  
maximum component temperature of 105ºC. Figure 11 there-  
fore has one power derating curve that ensures this limit is main-  
tained. It has been SynQor’s extensive experience that reliable  
long-term converter operation can be achieved with a maximum  
component temperature of 125ºC. In extreme cases, a maximum  
temperature of 145ºC is permissible, but not recommended for  
long-term operation where high reliability is required. Derating  
curves for these higher temperature limits are also included in  
Figure 11. The maximum case temperature at which the con-  
verter should be operated is 135ºC.  
In a system with multiple converters configured for load sharing  
using the SHARE pin, if the auto-restart feature engages, the con-  
verters will synchronize their restart using signals communicated  
on the SHARE pin.  
When the converter is mounted on a metal plate, the plate will  
help to make the converter’s case bottom a uniform temperature.  
How well it does so depends on the thickness of the plate and  
on the thermal conductance of the interface layer (e.g. thermal  
grease, thermal pad, etc.) between the case and the plate. Unless  
this is done very well, it is important not to mistake the plate’s  
temperature for the maximum case temperature. It is easy for  
them to be as much as 5-10ºC different at full power and at high  
temperatures. It is suggested that a thermocouple be attached  
directly to the converter’s case through a small hole in the plate  
when investigating how hot the converter is getting. Care must  
also be made to ensure that there is not a large thermal resistance  
between the thermocouple and the case due to whatever adhe-  
sive might be used to hold the thermocouple in place.  
BACK-DRIVE CURRENT LIMIT:  
Converters that use  
MOSFETs as synchronous rectifiers are capable of drawing  
a negative current from the load if the load is a source of  
short- or long-term energy. This negative current is referred  
to as a “back-drive current”.  
Conditions where back-drive current might occur include  
paralleled converters that do not employ current sharing, or  
where the current share feature does not adequately ensure  
sharing during the startup or shutdown transitions. It can  
also occur when converters having different output voltages  
are connected together through either explicit or parasitic  
diodes that, while normally off, become conductive during  
startup or shutdown. Finally, some loads, such as motors,  
can return energy to their power rail. Even a load capacitor  
is a source of back-drive energy for some period of time dur-  
ing a shutdown transient.  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 14  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS  
ES-Grade  
(-55 ºC to +125 ºC)  
(Element Evaluation)  
HB-Grade  
(-55 ºC to +125 ºC)  
(Element Evaluation)  
Consistent with  
MIL-STD-883F  
C-Grade  
(-40 ºC to +100 ºC)  
Screening  
Internal Visual  
Yes  
No  
Yes  
Yes  
*
Condition B  
(-55 ºC to +125 ºC)  
Condition C  
(-65 ºC to +150 ºC)  
Temperature Cycle  
Method 1010  
Constant  
Acceleration  
Method 2001  
(Y1 Direction)  
Condition A  
(5000g)  
No  
500g  
Method 1015  
Load Cycled  
Burn-in  
• 10s period  
24 Hrs @ +125 ºC  
96 Hrs @ +125 ºC  
160 Hrs @ +125 ºC  
• 2s @ 100% Load  
• 8s @ 0% Load  
Method 5005  
(Group A)  
Final Electrical Test  
+25 ºC  
-45, +25, +100 ºC  
Full QorSeal  
-55, +25, +125 ºC  
Full QorSeal  
Mechanical Seal,  
Thermal, and Coating  
Process  
Full QorSeal  
External Visual  
2009  
Yes  
Yes  
*
Construction Process  
QorSeal  
QorSeal  
QorSeal  
* Per IPC-A-610 (Rev. D) Class 3  
MilQor converters and filters are offered in four variations of construction technique and environmental stress screening options. The  
three highest grades, C, ES, and HB, all use SynQor’s proprietary QorSeal™ Hi-Rel assembly process that includes a Parylene-C coating  
of the circuit, a high performance thermal compound filler, and a nickel barrier gold plated aluminum case. Each successively higher  
grade has more stringent mechanical and electrical testing, as well as a longer burn-in cycle. The ES- and HB-Grades are also con-  
structed of components that have been procured through an element evaluation process that pre-qualifies each new batch of devices.  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 15  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
0.093  
[2.36]  
0.250 [6.35]  
0.200 [5.08]  
+VIN  
ENA 2  
1
12  
IN RTN  
SHARE  
2
11  
1.50 [38.10]  
MQFL-270-12D-X-HB  
DC-DC CONVERTER  
270Vin ±12out @ 10 A  
CASE  
TRIM  
-VOUT  
3
4
5
6
10 1.260  
TYP. NON-CUM.  
[32.00]  
ENA 1  
9
8
7
MADE IN USA  
OUT RTN  
+VOUT  
SYNC OUT  
SYNC IN  
0.040 [1.02]  
PIN  
S/N 0000000 D/C 3205-301 CAGE 1WX10  
2.50 [63.50]  
2.76 [70.10]  
3.00 [76.20]  
0.050 [1.27]  
0.220 [5.59]  
0.128 [3.25]  
2.96 [75.2]  
0.228 [5.79]  
0.390 [9.91]  
Case X  
0.093  
[2.36]  
0.250 [6.35]  
+VIN  
ENA 2  
1
12  
11  
0.200 [5.08]  
TYP. NON-CUM.  
IN RTN  
CASE  
SHARE  
2
3
4
5
6
1.50 [38.10]  
MQFL-270-12D-U-HB  
DC-DC CONVERTER  
270Vin ±12out @ 10 A  
TRIM  
-VOUT  
10 1.260  
[32.00]  
ENA 1  
9
8
7
OUT RTN  
+VOUT  
SYNC OUT  
SYNC IN  
MADE IN USA  
0.040 [1.02]  
PIN  
S/N 0000000 D/C 3205-301 CAGE 1WX10  
0.42  
[10.7]  
2.50 [63.50]  
2.76 [70.10]  
3.00 [76.20]  
0.050 [1.27]  
0.220 [5.59]  
0.128 [3.25]  
2.80 [71.1]  
Case U  
0.390 [9.91]  
NOTES  
PIN DESIGNATIONS  
1)  
2)  
Pins 0.040” (1.02mm) diameter  
Pin Function  
Pin Function  
12 Enable 2  
11 Share  
Pins Material: Copper  
Finish: Gold over Nickel plate  
1
2
3
4
5
6
Positive input  
Input return  
CASE  
3)  
All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm)  
x.xxx +/-0.010 in. (x.xx +/-0.25mm)  
10 Trim  
4)  
5)  
6)  
Weight: 2.8 oz (78.5 g) typical  
Enable 1  
9
8
7
Negative output  
Workmanship: Meets or exceeds IPC-A-610C Class III  
Print Labeling on Top Surface per Product Label Format Drawing  
Sync output  
Sync input  
Output return  
Positive output  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 16  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
0.300 [7.62]  
0.140 [3.56]  
1.15 [29.21]  
0.250 [6.35]  
TYP  
0.250 [6.35]  
1
2
3
4
5
6
+VIN  
12  
ENA 2  
2.00  
[50.80]  
IN RTN  
CASE  
SHARE  
TRIM  
11  
10  
9
0.200 [5.08]  
MQFL-270-12D-Y-HB  
DC-DC CONVERTER  
270Vin ±12out @ 10 A  
1.50  
[38.10]  
TYP.  
-VOUT  
ENA 1  
NON-CUM.  
OUT RTN  
+VOUT  
SYNC OUT  
SYNC IN  
MADE IN USA  
8
1.750  
[44.45]  
S/N 0000000 D/C 3205-301 CAGE 1WX10  
7
0.040  
[1.02]  
PIN  
0.050 [1.27]  
0.220 [5.59]  
1.750 [44.45]  
2.50 [63.50]  
0.375 [9.52]  
2.96 [75.2]  
0.228 [5.79]  
0.390 [9.91]  
Case Y  
Case Z  
(variant of Y)  
Case W  
(variant of Y)  
0.250 [6.35]  
0.250 [6.35]  
0.200 [5.08]  
TYP. NON-CUM.  
0.200 [5.08]  
TYP. NON-CUM.  
0.040 [1.02]  
PIN  
0.040 [1.02]  
PIN  
0.420 [10.7]  
0.050 [1.27]  
0.220 [5.59]  
0.220 [5.59]  
0.050 [1.27]  
0.36 [9.2]  
2.80 [71.1]  
0.525 [13.33]  
0.390  
[9.91]  
0.390  
[9.91]  
0.525 [13.33]  
2.80 [71.1]  
PIN DESIGNATIONS  
Pin Function Pin Function  
NOTES  
1)  
2)  
Pins 0.040” (1.02mm) diameter  
Pins Material: Copper  
1
2
3
4
5
6
Positive input  
Input return  
CASE  
Enable 1  
Sync output  
Sync input  
12 Enable 2  
11 Share  
10 Trim  
Finish: Gold over Nickel plate  
3)  
All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm)  
x.xxx +/-0.010 in. (x.xx +/-0.25mm)  
9
8
7
Negative output  
Output return  
Positive output  
4)  
5)  
6)  
Weight: 2.8 oz (78.5 g) typical  
Workmanship: Meets or exceeds IPC-A-610C Class III  
Print Labeling on Top Surface per Product Label Format Drawing  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 17  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
MilQor Converter FAMILY MATRIX  
The tables below show the array of MQFL converters available. When ordering SynQor converters, please ensure that you use  
the complete part number according to the table in the last page. Contact the factory for other requirements.  
Single Output  
Dual Output †  
28V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
6V  
7.5V  
9V  
12V  
(12S)  
15V  
(15S)  
±5V  
(05D)  
±12V  
(12D)  
±15V  
(15D)  
Full Size  
(1R5S) (1R8S) (2R5S) (3R3S) (05S)  
(06S) (7R5S) (09S)  
(28S)  
MQFL-28  
16-40Vin Cont.  
24A  
Total  
10A  
Total  
8A  
Total  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
30A  
30A  
30A  
30A  
30A  
24A  
24A  
20A  
20A  
24A  
20A  
20A  
17A  
17A  
20A  
16A  
16A  
13A  
13A  
16A  
13A  
13A  
11A  
11A  
13A  
10A  
10A  
8A  
8A  
8A  
4A  
4A  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
MQFL-28E  
16-70Vin Cont.  
16-80Vin 1s Trans.*  
Absolute Max Vin =100V  
24A  
Total  
10A  
Total  
8A  
Total  
MQFL-28V  
16-40Vin Cont.  
5.5-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
20A  
Total  
8A  
Total  
6.5A  
Total  
6.5A  
6.5A  
8A  
3.3A  
3.3A  
4A  
MQFL-28VE  
16-70Vin Cont.  
5.5-80Vin 1s Trans.*  
Absolute Max Vin = 100V  
20A  
Total  
8A  
Total  
6.5A  
Total  
8A  
MQFL-270  
155-400Vin Cont.  
155-475Vin 0.1s Trans.*  
Absolute Max Vin = 550V  
24A  
Total  
10A  
Total  
8A  
Total  
10A  
Single Output  
Dual Output †  
28V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
6V  
7.5V  
9V  
12V  
(12S)  
15V  
(15S)  
±5V  
(05D)  
±12V  
(12D)  
±15V  
(15D)  
Half Size  
(1R5S) (1R8S) (2R5S) (3R3S) (05S)  
(06S) (7R5S) (09S)  
(28S)  
MQHL-28 (50W)  
16-40Vin Cont.  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
10A  
Total  
4A  
Total  
3.3A  
Total  
20A  
20A  
20A  
20A  
20A  
20A  
15A  
15A  
10A  
10A  
8A  
8A  
6.6A  
6.6A  
5.5A  
5.5A  
4A  
4A  
3.3A  
3.3A  
1.8A  
1.8A  
MQHL-28E (50W)  
16-70Vin Cont.  
16-80Vin 1s Trans.*  
Absolute Max Vin =100V  
10A  
Total  
4A  
Total  
3.3A  
Total  
MQHR-28 (25W)  
16-40Vin Cont.  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
5A  
Total  
2A  
Total  
1.65A  
Total  
10A  
10A  
10A  
10A  
10A  
10A  
7.5A  
7.5A  
5A  
5A  
4A  
4A  
3.3A  
3.3A  
2.75A  
2.75A  
2A  
2A  
1.65A  
1.65A  
0.9A  
0.9A  
MQHR-28E (25W)  
16-70Vin Cont.  
16-80Vin 1s Trans.*  
Absolute Max Vin =100V  
5A  
Total  
2A  
Total  
1.65A  
Total  
Check with factory for availability.  
†80% of total output current available on any one output.  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 18  
MQFL-270-12D  
Output:  
Current:  
12V  
10 A Total  
Technical Specification  
PART NUMBERING SYSTEM  
The part numbering system for SynQor’s MilQor DC-DC converters follows the format shown in the table below.  
Output Voltage(s)  
Input  
Model  
Name  
Package Outline/  
Pin Configuration  
Screening  
Grade  
Voltage  
Range  
Single  
Output  
Dual  
Output  
1R5S  
1R8S  
2R5S  
3R3S  
05S  
06S  
7R5S  
09S  
28  
28E  
28V  
28VE  
U
X
Y
W
Z
C
ES  
HB  
MQFL  
MQHL  
MQHR  
05D  
12D  
15D  
270  
12S  
15S  
28S  
MQFL – 270 – 12D – Y – ES  
Example:  
APPLICATION NOTES  
A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.  
PATENTS  
SynQor holds the following patents, one or more of which might apply to this product:  
5,999,417  
6,927,987  
6,222,742  
7,050,309  
6,545,890  
7,072,190  
6,577,109  
7,085,146  
6,594,159  
7,119,524  
6,731,520  
7,269,034  
6,894,468  
7,272,021  
6,896,526  
7,272,023  
Contact SynQor for further information:  
Phone:  
978-849-0600  
Warranty  
SynQor offers a two (2) year limited warranty. Complete warranty  
information is listed on our website or is available upon request from  
SynQor.  
Toll Free: 888-567-9596  
Fax:  
978-849-0602  
E-mail:  
Web:  
mqnbofae@synqor.com  
www.synqor.com  
Information furnished by SynQor is believed to be accurate and reliable.  
However, no responsibility is assumed by SynQor for its use, nor for any  
infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any  
patent or patent rights of SynQor.  
Address: 155 Swanson Road  
Boxborough, MA 01719  
USA  
Product # MQFL-270-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005043 Rev. A  
05/26/09  
Page 19  

相关型号:

MQFL-270-12D-Y-ES

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-12D-Z-C

DC-DC Regulated Power Supply Module, 2 Output, 120W, Hybrid, MODULE-12
SYNQOR

MQFL-270-12S-W-HB

DC-DC Regulated Power Supply Module, 1 Output, 120W, Hybrid, MODULE-12
SYNQOR

MQFL-270-12S-X-C

DC-DC Regulated Power Supply Module, 1 Output, 120W, Hybrid, MODULE-12
SYNQOR

MQFL-270-12S-Y-C

DC-DC Regulated Power Supply Module, 1 Output, 120W, Hybrid, MODULE-12
SYNQOR

MQFL-270-15S

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-15S-Y-ES

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-15S-Y-HB

DC-DC Regulated Power Supply Module, 1 Output, 120W, Hybrid, MODULE-12
SYNQOR

MQFL-270-28S

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-28S-Y-ES

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-3R3S

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-3R3S-X-ES

DC-DC Regulated Power Supply Module, 1 Output, 99W, Hybrid, MODULE-12
SYNQOR