NQ03012HMA15NRN [SYNQOR]

15A Non-Isolated DC/DC Converter in SIP configuration; 在SIP配置15A非隔离式DC / DC转换器
NQ03012HMA15NRN
型号: NQ03012HMA15NRN
厂家: SYNQOR WORLDWIDE HEADQUARTERS    SYNQOR WORLDWIDE HEADQUARTERS
描述:

15A Non-Isolated DC/DC Converter in SIP configuration
在SIP配置15A非隔离式DC / DC转换器

转换器 电源电路
文件: 总17页 (文件大小:1169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
15A Non-Isolated DC/DC Converter in SIP configuration  
The NiQor SIP DC/DC converter is a non-isolated  
buck regulator, which employs synchronous rectifi-  
cation to achieve extremely high conversion effi-  
Non-Isolated  
ciency. The NiQor family of converters are used  
predominately in DPA systems using a front end  
DC/DC high power brick (48Vin to low voltage bus).  
The non-isolated NiQor converters are then used at  
the point of load to create the low voltage outputs  
required by the design. Typical applications include  
telecom/datacom, industrial, medical, transportation,  
NiQor vertical mount SIP module  
data processing/storage and test equipment.  
Operational Features  
Mechanical Features  
• Ultra-high efficiency, up to 93% full load, 95% half  
• Industry standard SIP pin-out configuration  
• Delivers 15 amps of output current with minimal der-  
•Industry standard size: 2.0” x 0.55” x 0.29 (50.8 x  
ating - no heatsink required  
14 x 7.3mm)  
• Input voltage range: 3.0 - 3.6V  
• Total weight: 0.30 oz. (9.4 g), lower mass greatly  
reduces vibration and shock problems  
• Open frame construction maximizes air flow cooling  
• Available in both vertical and horizontal mounting  
• Fixed frequency switching provides predictable EMI  
performance  
• Fast transient response time  
• On-board input and output filter capacitor  
Control Features  
• No minimum load requirement means no preload  
resistors required  
• On/Off control  
• Output voltage trim (industry standard) permits  
custom voltages and voltage margining  
• Optional features include remote sense and wide  
output voltage trim (0.85V - 2.75V)  
Protection Features  
• Input under-voltage lockout disables converter at  
low input voltage conditions  
• Temperature compensated over-current shutdown  
protects converter from excessive load current or  
short circuits  
Safety Features  
• UL 1950 recognized (US & Canada)  
• TUV certified to EN60950  
• Output over-voltage protection protects load from  
damaging voltages  
• Meets 72/23/EEC and 93/68/EEC directives  
• Thermal shutdown  
which facilitates CE Marking in user’s end product  
• Board and plastic components meet UL94V-0 flam-  
mability requirements  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 1  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
MECHANICAL  
DIAGRAM  
Vertical Mount  
Side View  
Front View  
0.288  
(7.32)  
2.00  
(50.8)  
0.315 Max  
0.185  
(4.7)  
(8.0 Max)  
0.197 Max  
(5.0 Max)  
0.550  
(13.97)  
Ref.  
0.050  
(1.27)  
0.160  
1
2
3
4
5
A
6
7
8
10 11  
(4.06)  
0.050  
(1.27)  
0.040 PCB Ref.  
(1.02)  
0.120  
(3.05)  
0.025 + 0.003  
(0.64 + 0.076)  
SQ. Typ.  
0.000 0.100 0.200 0.300 0.400  
1.300 1.400 1.500 1.600  
(33.02) (35.56) (38.10) (40.64)  
1.800 1.900  
(0.00)  
(2.54)  
(5.08)  
(7.62)  
(10.16)  
(45.72) (48.26)  
NOTES  
PIN DESIGNATIONS  
1) All pins are 0.025” (0.64mm) +/- 0.003 (0.076mm) square.  
2) All Pins: Material - Copper Alloy  
Pin No. Name  
Function  
1
2
3
4
5
A
6
7
8
Vout(+)  
Vout(+)  
SENSE(+)  
Vout(+)  
Common  
I share  
Common  
Vin(+)  
Positive output voltage  
Positive output voltage  
Positive remote sense  
Positive output voltage  
Finish - Tin over Nickel plate  
3) Vertical, horizontal, vertical with reverse pins and surface  
mount options (future) available.  
4) Undimensioned components are shown for visual  
reference only.  
6) All dimensions in inches (mm)  
Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm)  
x.xxx +/-0.010 in. (x.xx +/-0.25mm)  
7) Weight: 0.30 oz. (9.4 g) typical  
Current share*  
Positive input voltage  
Positive input voltage1  
Output voltage trim2  
8) Workmanship: Meets or exceeds IPC-A-610C Class II  
Vin(+)  
TRIM  
10  
11  
Pin Connection Notes:  
ON/OFF  
LOGIC input to turn the converter  
on and off.  
1. Pin 10 - for fixed resistors, connect between Trim and  
Vout(+) to trim down or between Trim and Common  
(Ground) to trim up.  
Pins in Italics Shaded text are Optional  
2. Pin 11 - see section on Remote ON/OFF pin for descrip-  
tion of enable logic options.  
* Contact factory for availability of current share modules.  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 2  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
MECHANICAL  
DIAGRAM  
Horizontal Mount  
Front View  
Side View  
0.288  
(7.32)  
2.00  
(50.8)  
0.315 Max  
0.185  
(4.7)  
(8.0 Max)  
0.197 Max  
(5.0 Max)  
0.025 + 0.003  
(0.64 + 0.076)  
SQ. Typ.  
0.550  
(13.97)  
Ref.  
0.050  
(1.27)  
1
2
3
4
5
A
6
7
8
10 11  
0.128 Min  
0.050  
(1.27)  
0.040 PCB Ref.  
(1.02)  
(3.25 Min)  
0.330  
(8.38)  
See note on Thermal  
Considerations in  
Applications section.  
0.000 0.100 0.200 0.300 0.400  
1.300 1.400 1.500 1.600  
(33.02) (35.56) (38.10) (40.64)  
1.800 1.900  
(45.72) (48.26)  
(0.00)  
(2.54)  
(5.08)  
(7.62)  
(10.16)  
Vertical Mount  
Reversed Pins  
Front View  
Side View  
2.00  
0.288  
(7.32)  
(50.8)  
0.315 Max  
0.185  
(4.7)  
(8.0 Max)  
0.197 Max  
(5.0 Max)  
0.550  
(13.97)  
Ref.  
0.050  
(1.27)  
1
2
3
4
5
A
6
7
8
10 11  
0.160  
(4.06)  
0.050  
(1.27)  
0.040 PCB Ref.  
(1.02)  
0.120  
(3.05)  
0.025 + 0.003  
(0.64 + 0.076)  
SQ. Typ.  
0.000 0.100 0.200 0.300 0.400  
1.300 1.400 1.500 1.600  
(33.02) (35.56) (38.10) (40.64)  
1.800 1.900  
0.058 +.008  
(1.47 +.20)  
(0.00)  
(2.54)  
(5.08)  
(7.62)  
(10.16)  
(45.72) (48.26)  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 3  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
ELECTRICAL CHARACTERISTICS - NQ03xxxVMA15 Series  
TA=25°C, airflow rate=300 LFM, Vin=3.3Vdc unless otherwise noted; full operating temperature range is -40°C to +105°C ambient tem-  
perature with appropriate power derating. Specifications subject to change without notice.  
Parameter  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
Module  
Min.  
Typ.  
Max.  
Units Notes & Conditions  
Non-Operating  
Operating  
All  
All  
All  
All  
All  
All  
5.0  
4.5  
5.0  
105  
125  
6.5  
V
V
V
°C  
°C  
V
continuous  
continuous  
100ms transient  
3.0  
Operating Transient Protection  
Operating Temperature  
Storage Temperature  
Voltage at ON/OFF input pin  
INPUT CHARACTERISTICS  
Operating Input Voltage Range1  
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Maximum Input Current2  
-40  
-55  
-3  
All  
3.0  
3.6  
V
Notes on pg. 6  
All  
All  
2.1  
2.0  
2.4  
2.3  
2.8  
2.5  
5.9  
7.4  
8.9  
10.4  
13.9  
110  
25  
V
V
A
A
A
0.9V  
1.2V  
1.5V  
1.8V  
2.5V  
All  
100% Load, 3.0Vin, 0.9Vout  
100% Load, 3.0Vin, 1.2Vout  
100% Load, 3.0Vin, 1.5Vout  
100% Load, 3.0Vin, 1.8Vout  
100% Load, 3.0Vin, 2.5Vout  
A
A
No-Load Input Current  
Disabled Input Current  
Inrush Current Transient Rating  
Response to Input Transient  
85  
17  
0.1  
70  
80  
90  
120  
160  
200  
125  
3
mA  
mA  
All  
All  
2
A s  
0.9V  
1.2V  
1.5V  
1.8V  
2.5V  
0.9-1.8V  
2.5V  
0.9-1.8V  
2.5V  
All  
mV/V 50mV/  
mV/V  
mV/V  
mV/V  
mV/V  
mA  
mA  
A
A
A
µs input transient (all)  
Input Reflected-Ripple Current  
Input Terminal Ripple Current  
pk-pk thru 1µH inductor, with 200µF  
tantalum; full load; Figs 24, 26  
RMS with 200µF tantalum and  
Figs 24, 26  
fast blow external fuse recommended  
internal ceramic  
net 50m  
1µH;  
2
Recommended Input Fuse  
20  
Input Filter Capacitor Value  
All  
All  
40  
200  
µF  
µF  
Recommended External Input Capacitance3  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point7 (50% load)  
0.9V  
1.2V  
1.5V  
1.8V  
2.5V  
0.885  
1.180  
1.475  
1.769  
2.458  
0.900  
1.200  
1.500  
1.800  
2.500  
0.917  
1.223  
1.529  
1.834  
2.548  
V
V
V
V
V
also applies to wide-trim (0.85-2.75V) unit  
Output Voltage Regulation  
Over Line  
+
+
+
All  
0.1  
0.5  
0.3  
%
%
%
%
V
V
V
V
V
Over Load  
0.9V  
2.5V  
All  
0.9V  
1.2V  
1.5V  
1.8V  
2.5V  
with sense pin  
with sense pin  
Over Temperature  
Total Output Voltage Range  
+2.0  
0.865  
1.153  
1.441  
1.729  
2.402  
0.944  
1.258  
1.573  
1.888  
2.622  
with sense pin, over sample, line, load,  
temperature & life (all)  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 4  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
ELECTRICAL CHARACTERISTICS (continued) - NQ03xxxVMA15 Series  
Parameter  
ModuleP Min.  
Typ.  
Max.  
Units Notes & Conditions  
OUTPUT CHARACTERISTICS (cont.)  
Output Voltage Ripple and Noise  
Peak-to-Peak  
20MHz bandwidth; Fig 24, 27  
All  
All  
15  
6
35  
12  
15  
40  
4,000  
mV  
mV  
A
Full Load  
Full Load  
RMS  
Operating Output Current Range  
Output DC Over-Current Shutdown4  
Maximum Output Capacitance5,6  
DYNAMIC CHARACTERISTICS  
Input Voltage Ripple Rejection  
All  
All  
All  
0
16  
25  
A
µF  
Derate startup load current per Fig. 23  
120 Hz; Figure 31  
0.9V  
2.5V  
45  
37  
dB  
dB  
Output Voltage during Load Current Transient  
For a Step Change in Output Current (0.1A/µs)  
For a Step Change in Output Current (5A/µs)  
Settling Time  
All  
All  
All  
40  
70  
50  
mV  
mV  
µs  
50%-75%-50% Iout max, 10µF, Fig 15-16  
50%-75%-50% Iout max, 470µF, Fig 17-18  
to within 1.5% Vout nom., Fig 15-18  
Load current & capacitance per Fig. 23  
Enable to Vout=100% nom., Figs 19-20  
Enable to 10%, Fig. 21  
Turn-On Transient  
Turn-On Time  
Start-Up Delay Time  
All  
5.5  
2.9  
1.6  
1.6  
2.5  
6.8  
4.1  
2.7  
2.4  
3.7  
8.5  
6.1  
4.6  
3.9  
5.6  
0
ms  
ms  
ms  
ms  
ms  
%
0.9V  
2.5V  
0.9V  
2.5V  
All  
Start-Up Rise Time  
10% to 90%, Fig. 22  
Resistive load up to 4,000µF  
Figures 1-4  
Output Voltage Overshoot  
EFFICIENCY  
100% Load  
0.9V  
1.2V  
1.5V  
1.8V  
2.5V  
0.9V  
1.2V  
1.5V  
1.8V  
2.5V  
83.5  
87  
89  
90.5  
93  
88  
90.5  
92  
93  
%
%
%
%
%
%
%
%
%
%
50% Load  
Figures 1-4  
95  
TEMP. LIMITS FOR POWER DERATING  
Semiconductor Junction Temperature7  
Board Temperature7  
All  
All  
125  
125  
°C  
°C  
Package rated to 150°C; Figs 5-14  
UL rated max operating temp 130°C  
FEATURE CHARACTERISTICS  
Switching Frequency  
ON/OFF Control  
All  
265  
300  
Vin  
330  
kHz  
may decrease by up to 30 kHz at -40°C  
Figure A  
Off-State Voltage  
On-State Voltage  
All  
All  
All  
1.5  
-3  
6.5  
0.6  
V
V
V
%
%
%
%
°C  
°C  
Pull-Up Voltage  
Output Voltage Trim Range1,8  
0.9V  
1.2-2.5V  
All  
-5  
-10  
+10  
+10  
+10  
145  
Measured Vout+ to common pins; Table 1  
Output Voltage Remote Sense Range1,9  
Output Over-Voltage Protection10  
Over-Temperature Shutdown  
Over-Temperature Shutdown Restart Hysteresis  
RELIABILITY CHARACTERISTICS  
Calculated MTBF (Telcordia)  
Measured Vout+ to common pins  
Over full temp range; % of nominal Vout  
Average PCB Temperature  
All  
All  
All  
113  
130  
120  
5
6
o
All  
All  
All  
TBD  
8.0  
10 Hrs. TR-NWT-000332; 100% load, 200LFM, 40 C T  
a
a
6
o
Calculated MTBF (MIL-217)  
Field Demonstrated MTBF  
10 Hrs. MIL-HDBK-217F; 100% load, 200LFM, 40 C T  
6
10 Hrs. See website for latest values  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 5  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
ELECTRICAL CHARACTERISTICS (continued) - NQ03xxxVMA15 Series  
NOTES  
Note 1: Maintain a minimum of 0.35V headroom between input and output voltage to meet performance specifications.  
Note 2: Wide trim option unit will perform as the model with the output voltage that it is trimmed to. Applies to all specifcations where values differ by Vout.  
Note 3: Tantalum or similar with additional ceramic as needed to reduce ripple current in external capacitors. See Figure 21. Output capacitance of  
<1000µF. Additional input capacitance equal to half of the output capacitance is recommended when more than 1000µF of output capacitance is used.  
Consult factory for more demanding applications. Also refer to Application Considerations section of this datasheet.  
Note 4: The over-current shutdown threshold for a short over-current pulse can be as high as 50A when trimming up a wide trim unit above 1.2V.  
Note 5: Larger input capacitance of at least half of the output capacitance is recommended when using >1000µF on a 2.5V output.  
Note 6: When trimming the output voltage to less than 0.88V with more than 1000µF of output capacitance, consult factory for trim circuit recommendations.  
Note 7: Power derating curves are measured using an evaluation board consisting of 6 layers of 2 ounce copper.  
Note 8: Wide trim option unit has a setpoint of 0.9V and a trim range of 0.85V-2.75V.  
Note 9: In remote sense applications, when trimming down, the trim-down resistor should be connected to the sense pin for more accurate trimming results.  
Note 10: Indicates worst case specification for 0.9V unit. Higher output voltage units have a tighter specification range. The wide-trim unit carries the OVP  
set point of a 2.5Vout unit, which has a worst-case maximum OVP trip level of 135%.  
STANDARDS COMPLIANCE  
Parameter  
P
Notes  
STANDARDS COMPLIANCE  
UL/cUL 60950  
File # E194341  
Certified by TUV  
EN60950  
72/23/EEC  
93/68/EEC  
Needle Flame Test (IEC 695-2-2)  
IEC 61000-4-2  
test on entire assembly; board & plastic components UL94V-0 compliant  
ESD test, 8kV - NP, 15kV air - NP (Normal Performance)  
GR-1089-CORE  
Section 7 - electrical safety, Section 9 - bonding/grounding  
Telcordia (Bellcore) GR-513  
An external input fuse must always be used to meet these safety requirements. Contact SynQor for official safety  
certificates on new releases or download from the SynQor website.  
QUALIFICATION TESTING  
Parameter  
P
# Units Test Conditions  
QUALIFICATION TESTING  
Life Test  
32  
95% rated Vin and load, units at derating point, 1000 hours  
Vibration  
5
10-55Hz sweep, 0.060” total excursion,1 min./sweep, 120 sweeps for 3 axis  
100g minimum, 2 drops in x and y axis, 1 drop in z axis  
-40°C to 100°C, unit temp. ramp 15°C/min., 500 cycles  
Toperating = min to max, Vin = min to max, full load, 100 cycles  
Tmin-10°C to Tmax+10°C, 5°C steps, Vin = min to max, 0-105% load  
85°C, 85% RH, 1000 hours, continuous Vin applied except 5min./day  
MIL-STD-883, method 2003  
Mechanical Shock  
Temperature Cycling  
Power/Thermal Cycling  
Design Marginality  
Humidity  
5
10  
5
5
5
Solderability  
15 pins  
Extensive characterization testing of all SynQor products and manufacturing processes is performed to ensure that we supply  
robust, reliable product. Contact factory for official product family qualification document.  
OPTIONS  
PATENTS  
SynQor provides various options for Packaging, Enable Logic, Pin SynQor is protected under various patents, including but not lim-  
Length and Feature Set for this family of DC/DC converters. ited to U.S. Patent numbers: 5,999,417; 6,222,742 B1;  
Please consult the last page of this specification sheet for infor- 6,594,159 B2; 6,545,890 B2.  
mation on available options.  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 6  
Performance Curves  
Non-Isolated  
3.0 - 3.6V  
15A  
SIP Converter  
in  
100  
95  
90  
85  
80  
75  
70  
65  
94  
93  
92  
91  
90  
89  
88  
87  
2.5 Vo  
1.8 Vo  
1.5 Vo  
1.2 Vo  
0.9 Vo  
25 C  
40 C  
55 C  
86  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
100  
200  
300  
400  
500  
Load Current (A)  
Air Flow (LFM)  
Figure 1: Efficiency at nominal output voltage vs. load current for all  
Figure 2: Efficiency at 1.5Vout and 60% rated power vs. airflow rate  
modules at 25  
°
C and nominal input voltage.  
for ambient air temperatures of 25  
voltage).  
°C, 40  
°
C, and 55  
°
C (nominal input  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5 Vo  
1.8 Vo  
1.5 Vo  
1.2 Vo  
0.9 Vo  
25 C  
40 C  
55 C  
0
100  
200  
300  
400  
500  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Air Flow (LFM)  
Load Current (A)  
Figure 3: Power dissipation at nominal output voltage vs. load current  
Figure 4: Power dissipation at 1.5Vout and 60% rated power vs. air-  
for all modules at 25  
°
C and nominal input voltage.  
flow rate for ambient air temperatures of 25  
nal input voltage).  
°C, 40°C, and 55°C (nomi-  
16  
14  
12  
10  
8
6
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
50 LFM (0.25 m/s)  
4
2
0
Semiconductor junction temperature is  
within 1 C of surface temperature  
°
0
25  
40  
55  
70  
85  
Ambient Air Temperature (oC)  
Figure 5: Maximum output power derating curves vs. ambient air tem-  
perature for 0.9Vout unit. Airflow rates of 50 LFM - 400 LFM with air  
flowing across the converter from pin 11 to pin 1 (Vin nom, vert mount).  
Figure 6: Thermal plot of 0.9V converter at 15 amp load current with  
55 C air flowing at the rate of 200 LFM. Air is flowing across the con-  
verter sideways from pin 11 to pin 1 (Vin nom, vert mount).  
°
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E 6/24/04  
Page 7  
Performance Curves  
Non-Isolated  
3.0 - 3.6V  
15A  
SIP Converter  
in  
16  
14  
12  
10  
8
6
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
50 LFM (0.25 m/s)  
4
2
0
Semiconductor junction temperature is  
within 1 C of surface temperature  
0
25  
40  
55  
70  
85  
°
Ambient Air Temperature (oC)  
Figure 7: Maximum output power derating curves vs. ambient air tem-  
perature for 1.2Vout unit. Airflow rates of 50 LFM - 400 LFM with air  
flowing across the converter from pin 11 to pin 1 (Vin nom, vert mount).  
Figure 8: Thermal plot of 1.2V converter at 15 amp load current with  
55°C air flowing at the rate of 200 LFM. Air is flowing across the con-  
verter sideways from pin 11 to pin 1 (Vin nom, vert mount).  
16  
14  
12  
10  
8
6
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
4
100 LFM (0.5 m/s)  
50 LFM (0.25 m/s)  
2
0
Semiconductor junction temperature is  
within 1°C of surface temperature  
0
25  
40  
55  
70  
85  
Ambient Air Temperature (oC)  
Figure 9: Maximum output power derating curves vs. ambient air tem-  
perature for 1.5Vout unit. Airflow rates of 50 LFM - 400 LFM with air  
flowing across the converter from pin 11 to pin 1 (Vin nom, vert mount).  
Figure 10: Thermal plot of 1.5V converter at 15 amp load current with  
55°C air flowing at the rate of 200 LFM. Air is flowing across the con-  
verter sideways from pin 11 to pin 1 (Vin nom, vert mount).  
16  
14  
12  
10  
8
6
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
50 LFM (0.25 m/s)  
4
2
0
0
25  
40  
55  
70  
85  
Semiconductor junction temperature is  
Ambient Air Temperature (oC)  
within 1°C of surface temperature  
Figure 11: Maximum output power derating curves vs. ambient air tem-  
perature for 1.8Vout unit. Airflow rates of 50 LFM - 400 LFM with air  
flowing across the converter from pin 11 to pin 1 (Vin nom, vert mount).  
Figure 12: Thermal plot of 1.8V converter at 15 amp load current with  
55 C air flowing at the rate of 200 LFM. Air is flowing across the con-  
verter sideways from pin 11 to pin 1 (Vin nom, vert mount).  
°
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E 6/24/04  
Page 8  
Performance Curves  
Non-Isolated  
3.0 - 3.6V  
15A  
SIP Converter  
in  
16  
14  
12  
10  
8
6
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
50 LFM (0.25 m/s)  
4
2
0
Semiconductor junction temperature is  
within 1 C of surface temperature  
0
25  
40  
55  
70  
85  
°
Ambient Air Temperature (oC)  
Figure 13: Maximum output power derating curves vs. ambient air tem-  
perature for 2.5Vout unit. Airflow rates of 50 LFM - 400 LFM with air  
flowing across the converter from pin 11 to pin 1 (Vin nom, vert mount).  
Figure 14: Thermal plot of 2.5V converter at 15 amp load current with  
55°C air flowing at the rate of 200 LFM. Air is flowing across the con-  
verter sideways from pin 11 to pin 1 (Vin nom, vert mount).  
Figure 15: Output voltage response for 0.9V unit to step-change in load  
Figure 16: Output voltage response for 2.5V unit to step-change in load  
current (50-75-50% of Iout max; di/dt=0.1A/  
µ
s). Load cap: 10  
µ
F, 100m  
current (50-75-50% of Iout max; di/dt=0.1A/µs). Load cap: 10µF, 100m  
ESR tantalum and 1  
µF ceramic. Ch 1: Vout (50mV/div), Ch 2: Iout (5A/div).  
ESR tantalum and 1µF ceramic. Ch 1: Vout (50mV/div), Ch 2: Iout (5A/div).  
Figure 17: Output voltage response for 0.9V unit to step-change in load  
current (50-75-50% of Iout max; di/dt=5A/ s). Load cap: 470 F, 25m  
ESR tantalum and 1 F ceramic. Ch 1: Vout (50mV/div), Ch 2: Iout (5A/div).  
Figure 18: Output voltage response for 2.5V unit to step-change in load  
current (50-75-50% of Iout max; di/dt=5A/ s). Load cap: 470 F, 25m  
ESR tantalum and 1 F ceramic. Ch 1: Vout (50mV/div), Ch 2: Iout (5A/div).  
µ
µ
µ
µ
µ
µ
Product # NQ03xxxVMA15 Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E 6/24/04 Page 9  
Performance Curves  
Non-Isolated  
3.0 - 3.6V  
15A  
SIP Converter  
in  
2.5Vout  
2.5Vout  
1.8Vout  
1.5Vout  
1.2Vout  
0.9Vout  
1.8Vout  
1.5Vout  
1.2Vout  
0.9Vout  
Figure 19: Turn-on transient at full load (resistive load) (2 ms/div).  
Figure 20: Turn-on transient at zero load (2 ms/div).  
Ch 1: ON/OFF input (2V/div)  
Ch 1: ON/OFF input (2V/div)  
Ch 2-6: Vout (1V/div)  
Ch 2-6: Vout (1V/div)  
7
6
5
4
3
2
7
6
5
4
3
2
1
0
Max Delay Time  
Min Delay Time  
Max Rise Time  
Min Rise Time  
1
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Voltage (V)  
Output Voltage (V)  
Figure 21: Minimum and Maximum Startup Delay Time (enable to  
Figure 22: Minimum and Maximum Startup Rise Time (10% to 90%)  
10%) over temperature versus output voltage (includes trimming).  
over temperature versus output voltage (includes trimming).  
14.0  
12.0  
10.0  
8.0  
0.9V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
6.0  
4.0  
2.0  
0.0  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Load Capacitance (uF)  
Figure 23: Maximum Startup Load Current versus Load Capacitance.  
Derate the load during startup according to this figure to avoid the pos-  
sibility of over-current shutdown.  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 10  
Performance Curves  
Non-Isolated  
3.0 - 3.6V  
15A  
SIP Converter  
in  
See Fig. 23  
1 µH  
See Fig. 22  
source  
0.9Vout  
impedance  
See Fig. 24  
iS  
1.2Vout  
1.5Vout  
iC  
DC/DC  
Converter  
VOUT  
1.8Vout  
2.5Vout  
VSOURCE  
15  
µ
F,  
ESR  
10 µF  
C*  
ceramic  
100m  
capacitor  
tantalum  
capacitor  
* See values for recommended external input capacitance.  
Inductor optional as needed.  
Figure 24: Test set-up diagram showing measurement points for Input  
Terminal Ripple Current (Figure 25), Input Reflected Ripple Current  
(Figure 26) and Output Voltage Ripple (Figure 27).  
Figure 25: Input Terminal Ripple Current, i , at full rated output cur-  
c
rent and nominal input voltage with 1  
µH source impedance and 200µF  
tantalum capacitor (5A/div). See Figure 24.  
0.9Vout  
1.2Vout  
0.9Vout  
1.5Vout  
1.2Vout  
1.5Vout  
1.8Vout  
2.5Vout  
1.8Vout  
2.5Vout  
Figure 26: Input Reflected Ripple Current, i , through a 1  
µH source  
Figure 27: Output Voltage Ripple at nominal input voltage and rated  
load current (10 mV/div). Load capacitance: 10 F ceramic capacitor  
and 15 F tantalum capacitor. Bandwidth: 20 MHz. See Figure 24.  
s
inductor at nominal input voltage and rated load current (100 mA/div).  
See Figure 24.  
µ
µ
Figure 28: Load current (5A/div) as a function of time when 0.9V con-  
Figure 29: Load current (5A/div) as a function of time when 2.5V con-  
verter attempts to turn on into a 10 m short circuit. Top trace  
(10ms/div) is an expansion of the on-time portion of the bottom trace.  
verter attempts to turn on into a 10 m  
short circuit. Top trace  
(10ms/div) is an expansion of the on-time portion of the bottom trace.  
Product # NQ03xxxVMA15 Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E 6/24/04 Page 11  
Performance Curves  
Non-Isolated  
3.0 - 3.6V  
15A  
SIP Converter  
in  
0.1  
0.01  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
0.001  
0.0001  
-60  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 30: Magnitude of incremental output impedance (Z  
=
Figure 31: Magnitude of incremental forward transmission (FT =  
v /v ) for nominal input voltage at full rated power.  
out in  
out  
v
/i ) for nominal input voltage at full rated power.  
out out  
25  
20  
15  
10  
5
1
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
0
0.1  
-5  
-10  
-15  
-20  
-25  
0.01  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 32: Magnitude of incremental reverse transmission (RT =  
/i ) for nominal input voltage at full rated power.  
Figure 33: Magnitude of incremental input impedance (Z = v /i  
in in in  
)
i
for nominal input voltage at full rated power.  
in out  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 12  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
nal resistor, connect the resistor Rtrim-down between Pin 10 (TRIM)  
and the Vout pins or the SENSE pin. For a desired decrease of  
the nominal output voltage, the value of the resistor should be:  
BASIC OPERATION AND FEATURES  
The NiQor series non-isolated converter uses a buck-converter  
that keeps the output voltage constant over variations in line,  
load, and temperature. The NiQor modules employ synchro-  
nous rectification for very high efficiency.  
_
VOUT 0.80  
_
=
_
Rtrim-down  
1
x 30100  
()  
Rbuffer  
[( ) ]  
VOUT  
Dissipation throughout the converter is so low that it does not  
require a heatsink or metal baseplate for operation. The NiQor  
converter can thus be built more simply and reliably using high  
yield surface mount techniques on a single PCB substrate.  
where  
VOUT = Nominal Output Voltage  
OUT = Nominal VOUT - Desired VOUT  
V
R
buffer = defined in Table 1 below  
(value internal to the module)  
The NiQor series of SIPs and SMT converters uses the estab-  
lished industry standard footprint and pin-out configurations.  
Vout, set Rbuffer  
Note: wide trim unit has trim  
range from 0.85-2.75V. Nominal  
voltage is 0.9V. Use Rbuffer value  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
0.9 V  
59 k  
78.7 kΩ  
100 kΩ  
100 kΩ  
59 kΩ  
CONTROL FEATURES  
of 5.11k. when trimming.  
REMOTE ON/OFF (Pin 11): The ON/OFF input, Pin 11,  
permits the user to control when the converter is on or off. There  
are currently two options available for the ON/OFF input as  
described in the table below. Other options may be added  
based on user demand.  
5.11 kΩ  
Table 1: Rbuffer values for NiQor trim equation  
For example, to trim-down the output voltage of a 1.8V module  
by 5% to 1.71V, the Rtrim-down resistor value is calculated as fol-  
lows:  
Pin-Open  
Option  
Description Converter state  
Pin Action  
Pull Low = On  
Pull High = Off  
VOUT = 1.8V  
N Logic Negative  
Off  
On  
V
OUT = 1.8V - 1.71V = 0.09V  
buffer = 100  
Rtrim-down = [((1.8 - 0.8)/0.09 -1) x 30100] - 100000 = 204.34  
O Logic Negative/Open  
R
kΩ  
Figure A is a schematic view of the internal ON/OFF circuitry.  
Vin  
kΩ  
TRIM-UP: To increase the output voltage using an external  
resistor, connect the resistor Rtrim-up between Pin 10 (TRIM) and  
the Common Ground Pins. For a desired increase of the nom-  
inal output voltage, the value of the resistor should be:  
(N logic only)  
10K  
PWM  
Enable  
ON/OFF  
20K  
24080  
_
=
Rtrim-up  
()  
Rbuffer  
VOUT  
20K  
where  
VOUT = Nominal VOUT - Desired VOUT  
Negative  
Logic (N,O)  
R
buffer = defined in Table 1  
For example, to trim-up the output voltage of a 2.5V module by  
10% to 2.75V, the Rtrim-up resistor value is calculated as follows:  
Figure A: Schematic view of the internal ON/OFF circuitry  
V
OUT = 2.5V - 2.75V = 0.25V  
buffer = 78.7  
Rtrim-up = (24080/0.25) - 78700 = 17.62  
OUTPUT VOLTAGE TRIM (Pin 10): The TRIM input permits  
the user to adjust the output voltage up or down according to  
the trim range specifications by using an external resistor or a  
voltage source. If the TRIM feature is not being used, leave the  
TRIM pin disconnected.  
R
kΩ  
kΩ  
Note: the TRIM feature does not affect the voltage at which the  
output over-voltage protection circuit is triggered. Trimming the  
TRIM-DOWN: To decrease the output voltage using an exter-  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 13  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
output voltage too high may cause the over-voltage protection  
circuit to engage, particularly during transients.  
Over-Temperature Shutdown: A temperature sensor on  
the converter senses the average temperature of the module.  
The thermal shutdown circuit is designed to turn the converter  
off when the temperature at the sensed location reaches the  
Over-Temperature Shutdown value. It will allow the converter to  
turn on again when the temperature of the sensed location falls  
by the amount of the Over-Temperature Shutdown Restart  
Hysteresis value.  
Total DC Variation of Vout: For the converter to meet its  
specifications, the maximum variation of the DC value of Vout,  
due to both trimming and remote load voltage drops, should  
not be greater than that specified for the output voltage trim  
range.  
PROTECTION FEATURES  
APPLICATION CONSIDERATIONS  
Input Under-Voltage Lockout: The converter is designed  
to turn off when the input voltage is too low, helping avoid an  
input system instability problem, described in more detail in the  
application note titled “Input System Instability”. The lockout cir-  
cuitry is a comparator with DC hysteresis. When the input volt-  
age is rising, it must exceed the typical Turn-On Voltage  
Threshold value (listed on the specification page) before the  
converter will turn on. Once the converter is on, the input volt-  
age must fall below the typical Turn-Off Voltage Threshold value  
before the converter will turn off.  
Input and Output Filtering: SynQor recommends an exter-  
nal input capacitor of either a tantalum, polymer or aluminum  
electrolytic type on the input of the NQ03/NQ04 series non-  
isolated converters. This capacitance and resistance primarily  
provides damping of the input filter, reduces the source imped-  
ance and guarantees input stability (see SynQor application  
note "Input System Instability"). The input filter is formed by any  
source or wiring inductance and the converter’s input capaci-  
tance. The external capacitance also provides an additional  
benefit of ripple voltage reduction.  
Over Current Shutdown: The converter uses the control  
(high-side) MOSFET on-resistance to detect short circuit or  
excessive over-current conditions. The converter compensates  
for the temperature variation of the MOSFET on-resistance,  
keeping the overcurrent threshold roughly constant over tem-  
perature. Very short (<1mS) over-current pulses will see a  
slightly higher apparent threshold than longer duration over-  
current events. This makes the converter less susceptible to  
shutdown from transient load conditions. However, once the  
over-current threshold is reached the converter ceases PWM  
operation within microseconds. After an over-current shut-  
down, the converter will remain off for an inhibit period of 18  
to 32 milliseconds, and then attempt a soft-start. Depending on  
the impedance or current level of the overload condition, the  
converter will enter a "hiccup mode" where it repeatedly turns  
on and off at a frequency of 25 to 50 Hz, until the overload or  
short circuit condition is removed.  
A modest sized capacitor would suffice in most conditions, such  
as a 330µF, 16V tantalum, with an ESR of approximately 50  
m. The NiQor family converters have an internal ceramic  
input capacitor to reduce ripple current stress on the external  
capacitors. An external ceramic capacitor of similar size  
(330µF) with a series resistor of approximately 50 mwould  
also suffice and would provide the filter damping.  
Additional ceramic capacitance may be needed on the input,  
in parallel with the tantalum capacitor, to relieve ripple current  
stress on the tantalum capacitors. The external capacitance  
forms a current divider with the 40  
tance. At 300 kHz., the impedance of the internal capacitance  
is about 15mcapacitive. At that frequency, an SMT 330  
µF internal ceramic capaci-  
µF  
tantalum capacitor would have an impedance of about 50mΩ  
resistive, essentially just the ESR.  
In this example, at full load, that would stress the tantalum input  
capacitor to about 3A rms ripple current, possibly beyond its  
rating. Placing an additional 40µF of ceramic in parallel with  
Output Over-Voltage Limit: If the voltage across the output  
pins exceeds the Output Over-Voltage Protection threshold, the  
converter will immediately stop switching. This prevents dam-  
age to the load circuit due to 1) excessive series resistance in  
output current path from converter output pins to sense point, 2)  
a release of a short-circuit condition, or 3) a release of a cur-  
rent limit condition. Load capacitance determines exactly how  
high the output voltage will rise in response to these conditions.  
After 2-4 ms, the converter will automatically restart. Note the  
wide trim model uses the OVP threshold of the 2.5V unit.  
that capacitor would reduce the ripple current to about 1.5A,  
o
probably within its rating at 85 C. The input ripple current is  
proportional to load current, so this example should be scaled  
down according to the actual load current.  
Additional input capacitance equal to half of the output capac-  
itance is recommended when operating with more than 1000uF  
of output capacitance on a 1.5V or higher output voltage, or  
on lower voltage outputs when trimming down by more than  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 14  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
half of the trim-down allowance (e.g., further than -2.5% on a  
0.9V, or -5% on a 1.2V).  
denly. This can be caused by either a shutdown of the NiQor  
from a fault or from the load itself, for example when a card is  
hot-swapped out, suddenly dropping the load to zero. This is  
further justification for keeping the source inductance low, as  
mentioned above. When the power source is configured with  
remote sensing, the series resistance of the filter inductor and  
any other conductors or devices between the source and the  
sense point will result in a voltage drop which, in the event of  
a load current interruption, would add to the NiQor input volt-  
age.  
If no inductor is used to isolate the input ripple of the NiQor  
converters from the source or from inputs of other NiQor con-  
verters, then this external capacitance might be provided by the  
DC/DC converter used as the power source. SynQor's  
PowerQor series converters typically have tantalum and ceram-  
ic output capacitors that would provide the damping.  
An input inductor would help isolate the ripple currents and  
voltages from the source or other NiQor style converters on the  
voltage supply rail. If an input inductor is used, the recom-  
mended capacitance should guarantee stability and control the  
ripple current for up to 1.0µH of input inductance.  
A TVS device could also be used to clamp the voltage level dur-  
ing these conditions, but the relatively narrow range between  
operating voltage and the absolute maximum voltage restrict  
the use of these devices to lower source current levels that will  
not drive the transient voltage suppressor above the voltage  
limit when all the source current is flowing into the clamp. A  
TVS would be a good supplemental control, in addition to care-  
ful selection of inductance and capacitance values.  
The input inductor need not have very high inductance.  
A
value of 500 nanohenries would equate to almost one ohm of  
series impedance at the switching frequency of 300 kHz. This  
would be working against an assumed capacitive ESR of 30mΩ  
on the supply side of the inductor, providing significant isola-  
tion and ripple reduction.  
Equivalent Model for Input Ripple: A simple but reason-  
ably accurate model of input ripple is to treat the NiQor input  
as a pulsed AC current source at 300 kHz.in parallel with a  
very low ESR capacitor, see Figure B. The peak-to-peak current  
of the source model is equal to the NiQor load current, repre-  
senting the peak current in the NiQor's smoothing choke. The  
capacitor represents the 40µF input ceramic capacitance of the  
NiQor converter, with a nearly negligible ESR of less than 1  
m. A further refinement can be made by setting the duty cycle  
of the pulsed source to the output voltage divided by the input  
voltage.  
No external capacitance is required at the output, however, the  
ripple voltage can be further reduced if ceramic and tantalum  
capacitors are added at the output. Since the internal output  
capacitance is about 50µF, approximately that amount of  
capacitance would be needed to produce a noticeable reduc-  
tion in output ripple. The value of the tantalum capacitors is  
both to provide a high capacitance for pulsed loads and to pro-  
vide damping of the distribution network with their inherent  
ESR, which is low, but higher than ceramics. Additional output  
capacitance in the range of 300-500µF is beneficial for reduc-  
ing the deviation in response to a fast load transient.  
The only error in this simplified model is that it ignores the  
inductive current in the choke, usually less than 20% of the load  
current, and it ignores the resistive losses inside the NiQor con-  
verter, which would alter the duty cycle very slightly.  
Input Over-Voltage Prevention: The power system  
designer must take precautions to prevent damaging the NiQor  
converters by input overvoltage. This is another reason to be  
careful about damping the input filter so that no ringing occurs  
from an underdamped filter. The voltage must be prevented  
from exceeding the absolute maximum voltage indicated in the  
Electrical Specifications section of the data sheet under all con-  
ditions of turn-on, turn-off and load transients and fault condi-  
tions. The power source should have an over voltage shutdown  
threshold as close as reasonably possible to the operating  
point.  
The model is a good guide for calculating the effects of exter-  
nal input capacitors and other filter elements on ripple voltage  
and ripple current stress on capacitors.  
40  
µF  
INPUT  
I
<1mΩ  
p-p  
Additional protection can come from additional input capaci-  
tance, perhaps on the order of 1,000µF, but contingent on the  
I
= I  
Load  
p-p  
source inductance value. A large source inductance would  
require more capacitance to keep the input voltage below the  
absolute maximum, if the load current were interrupted sud-  
Figure B: Equivalent model for input ripple  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 15  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
High Capacitance Loads with Backdrive: When using  
two or more NiQor converters with high capacitance loads  
(greater than 1,000µF), special consideration must be given to  
wide output voltage trim range NiQor module at a later date.  
Any trim resistor should connect to the ground or output node  
at one of the respective pins of the NiQor, so as to prevent the  
trim level from being affected by load drops through the ground  
or power planes.  
the following condition. If a back-drive source is feeding volt-  
age back to a NiQor output, perhaps through some ASIC or  
other load device, and the back-driving source is greater than  
60% of the input voltage to the NiQor that has not been  
enabled yet, an overcurrent condition may exist on startup. This  
condition could prevent a proper startup when the second  
NiQor is enabled. The condition is caused by the second  
NiQor having to ramp the voltage to a high duty cycle with a  
high capacitance load, which can trip the overcurrent shut-  
down, preventing a startup. The following remedies for this sit-  
uation can be applied:  
OPTIONAL FEATURES  
REMOTE SENSE(+) (Pin  
3 - Optional): The optional  
SENSE(+) input corrects for voltage drops along the conductors  
that connect the converter’s output pins to the load.  
Pin 3 should be connected to Vout(+) at the point on the board  
where regulation is desired. A remote connection at the load  
can adjust for a voltage drop only as large as that specified in  
this datasheet, that is  
1) Limit output capacitance on higher voltage outputs to  
1,000µF. OR,  
Vout(+) – SENSE(+) < Sense Range % x Vout  
2) Prevent back-drive conditions that raise the off-state output  
voltage to more than 60% of the input voltage.  
Pin 3 must be connected for proper regulation of the output volt-  
age. If these connections are not made, the converter will deliv-  
er an output voltage that is slightly higher than its specified  
value.  
Thermal Considerations: For vertical mount applications  
at elevated temperatures that call for forced air cooling (see  
thermal derating curves), the preferred airflow direction is from  
pin 11 to pin 1, as indicated in the thermal images provided.  
If airflow is in the opposite direction (pin 1 to pin 11) the power  
Note: the output over-voltage protection circuit senses the volt-  
age across the output (pins 1, 2 and 4) to determine when it  
should trigger, not the voltage across the converter’s sense lead  
(pin 3).  
O
devices will run hotter by about 5 C (corresponding to an  
additional 1 ampere of load derating at conditions where der-  
ating occurs).  
CURRENT SHARE (Pin A - Optional): Additional informa-  
tion on the current share feature will be provided in a future  
revision of this technical specification. Please contact SynQor  
engineering support for further details.  
For horizontal mount applications (NQ0xxxxHMA parts),  
where the inductor and power devices are facing down, the  
preferred airflow direction is into the leading edge opposite the  
pin header edge, such that air flowing under the NiQor PCB  
flows out between the pins and the inductor. With this airflow  
direction, and with the inductor firmly contacting the applica-  
tion board, the user can apply the thermal derating curves pro-  
vided herein for vertical mount with airflow from pin 11 to pin  
1. Airflows in other directions across the horizontally mounted  
O
NiQor will result in temperatures that are higher by about 5 C  
O
with pin 11 to pin 1 airflow and about 10 C with pin 1 to pin  
O
11 airflow. Also, temperature increases of up to 10 C (2 Amp  
lower derating) can be expected if the inductor thermal inter-  
face does not make good contact to the customer's circuit  
board.  
Layout Suggestion: When using a fixed output NiQor con-  
verter, the designer may chose to use the trim function and  
would thus be required to reserve board space for a trim resis-  
tor. It is suggested that even if the designer does not plan to use  
the trim function, additional space should be reserved on the  
board for a trim resistor. This will allow the flexibility to use the  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 16  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 3.6V  
15A  
in  
ORDERING INFORMATION  
PART NUMBERING SYSTEM  
The tables below show the valid model numbers and order-  
ing options for converters in this product family. When  
ordering SynQor converters, please ensure that you use the  
complete 15 character part number consisting of the 12  
character base part number and the additional 3 characters  
for options.  
The part numbering system for SynQor’s NiQor DC/DC con-  
verters follows the format shown in the example below.  
NQ 03 025 V M A 15 O R S  
Options (see  
Ordering Information)  
Output Current  
Thermal Design  
Output Max Output  
Model Number  
Input Voltage  
Voltage  
0.9 V  
Current  
15 A  
15 A  
15 A  
15 A  
15 A  
15 A  
NQ03009p MA15xyz  
NQ03012p MA15xyz  
NQ03015p MA15xyz  
NQ03018p MA15xyz  
NQ03025p MA15xyz  
3.0 - 3.6 V  
3.0 - 3.6 V  
3.0 - 3.6 V  
3.0 - 3.6 V  
3.0 - 3.6 V  
Performance Level  
Packaging (see Order Info)  
Output Voltage  
1.2 V  
1.5 V  
1.8 V  
Input Voltage  
2.5 V  
0.85-2.75V  
NQ03T25
p
MA15
xyz*
3.0 - 3.6 V  
Product Family  
* Nominal output voltage for this unit is 0.9V and it must be trim-  
mmed up or down for any other desired voltage.  
The first 12 characters comprise the base part number and  
the last 3 characters indicate available options. Although  
there are no default values for packaging, enable logic, pin  
length and feature set, the most common options are vertical  
mount SIP (V), Negative/Open logic (O), 0.160” pins (R)  
and Sense feature set (S). These part numbers are more like-  
ly to be readily available in stock for evaluation and proto-  
type quantities.  
The following option choices must be included in place of  
the p x y z spaces in the model numbers listed above.  
Packaging: p  
Options Description: x y z  
Packaging  
Enable Logic  
Pin Style  
Feature Set  
R - 0.160"  
(Standard)  
V - Vert. Mount SIP  
H - Horz. Mount SIP  
N - Negative  
O - Neg/Open  
S - Sense (Std.)  
N - None  
V - 0.160" (Vert  
Reversed)  
Application Notes  
A variety of application notes and technical white papers  
can be downloaded in pdf format at www.synqor.com.  
Contact SynQor for further information:  
Warranty  
SynQor offers a three (3) year limited warranty. Complete warranty  
information is listed on our web site or is available upon request from  
SynQor.  
Phone:  
Toll Free: 888-567-9596  
Fax:  
978-849-0600  
978-849-0602  
E-mail:  
Web:  
sales@synqor.com  
www.synqor.com  
Information furnished by SynQor is believed to be accurate and reliable.  
However, no responsibility is assumed by SynQor for its use, nor for any  
infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any  
patent or patent rights of SynQor.  
Address: 155 Swanson Road  
Boxborough, MA 01719  
Product # NQ03xxxVMA15  
Phone 1-888-567-9596  
Doc.# 005-2NV3xxE Rev. E  
6/24/04  
Page 17  

相关型号:

NQ03012HMA15NRS

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012HMA15NVN

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012HMA15NVS

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012HMA15ORN

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012HMA15ORS

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012HMA15OVN

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012HMA15OVS

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012VMA15NRN

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012VMA15NRS

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012VMA15NVN

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012VMA15NVS

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR

NQ03012VMA15ORN

15A Non-Isolated DC/DC Converter in SIP configuration
SYNQOR