NQ04018HMA15PVN [SYNQOR]

16Amp, wide ouput range, Non-Isolated DC/DC Converter; 16Amp ,宽范围的输出中,非隔离式DC / DC转换器
NQ04018HMA15PVN
型号: NQ04018HMA15PVN
厂家: SYNQOR WORLDWIDE HEADQUARTERS    SYNQOR WORLDWIDE HEADQUARTERS
描述:

16Amp, wide ouput range, Non-Isolated DC/DC Converter
16Amp ,宽范围的输出中,非隔离式DC / DC转换器

转换器 电源电路 输入元件
文件: 总20页 (文件大小:1627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
*
Technical Specification  
Non-Isolated  
3.0 - 5.5V  
16A  
SIP Converter  
in  
16Amp, wide ouput range, Non-Isolated DC/DC Converter  
The NiQor SIP DC/DC converter is a non-isolated  
buck regulator, which employs a fixed switching fre-  
quency and synchronous rectification to achieve  
extremely high conversion efficiency. The NiQor  
Non-Isolated  
family of converters are used predominately in DPA  
systems using a front end DC/DC high power brick  
(48Vin to low voltage bus). The non-isolated NiQor  
converters are then used at the point of load to cre-  
ate the low voltage outputs required by the design.  
The wide trim module can be programmed to a vari-  
ety of output voltages through the use of a single  
NiQor vertical mount SIP module  
resistor.  
Operational Features  
Mechanical Features  
• Ultra-high efficiency, up to 94% full load, 95% half  
• Industry standard SIP pin-out configuration  
• Delivers 16 amps of output current with minimal der-  
•Industry standard size: 2.0” x 0.55” x 0.29 (50.8 x  
ating - no heatsink required  
14 x 7.3mm)  
• Input voltage range: 3.0 - 5.5V  
• Programmable output voltages from 0.85 - 3.6V  
• Total weight: 0.30 oz. (9.4 g), lower mass greatly  
reduces vibration and shock problems  
• Open frame construction maximizes air flow cooling  
• Available in both vertical and horizontal mounting  
• Fixed frequency switching provides predictable EMI  
performance  
• Fast transient response time  
• On-board input and output filter capacitor  
Control Features  
• On/Off control  
• No minimum load requirement means no preload  
resistors required  
• Output voltage trim (industry standard) permits  
custom voltages and voltage margining  
• Remote sense (standard option)  
Protection Features  
• Fixed output voltage 15A modules available  
• Input under-voltage lockout disables converter at  
low input voltage conditions  
(0.9V - 3.3V)  
• Temperature compensated over-current shutdown  
protects converter from excessive load current or  
short circuits  
Safety Features  
• UL 1950 recognized (US & Canada)  
• TUV certified to EN60950  
• Output over-voltage protection protects load from  
damaging voltages (>4.4V)  
• Meets 72/23/EEC and 93/68/EEC directives  
which facilitates CE Marking in user’s end product  
• Thermal shutdown  
• Board and plastic components meet UL94V-0 flam-  
mability requirements  
* Final datasheet pending ECO review and signature.  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 1  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
MECHANICAL  
DIAGRAM  
Vertical Mount  
Side View  
Front View  
0.288  
(7.32)  
2.00  
(50.8)  
0.315 Max  
0.185  
(4.7)  
(8.0 Max)  
0.197 Max  
(5.0 Max)  
0.550  
(13.97)  
Ref.  
0.050  
(1.27)  
0.160  
(4.06)  
1
2
3
4
5
A
6
7
8
10 11  
0.050  
(1.27)  
0.040 PCB Ref.  
(1.02)  
0.120  
(3.05)  
0.025 + 0.003  
(0.64 + 0.076)  
SQ. Typ.  
0.000 0.100 0.200 0.300 0.400  
1.300 1.400 1.500 1.600  
(33.02) (35.56) (38.10) (40.64)  
1.800 1.900  
(0.00)  
(2.54)  
(5.08)  
(7.62)  
(10.16)  
(45.72) (48.26)  
NOTES  
PIN DESIGNATIONS  
1) All pins are 0.025” (0.64mm) +/- 0.003 (0.076mm) square.  
2) All Pins: Material - Copper Alloy  
Pin No. Name  
Function  
1
2
3
4
5
A
6
Vout(+)  
Vout(+)  
SENSE(+)  
Vout(+)  
Common  
I share  
Positive output voltage  
Positive output voltage  
Positive remote sense  
Positive output voltage  
Finish - Tin over Nickel plate  
3) Vertical, horizontal, vertical with reverse pins and surface  
mount options (future) available.  
4) Undimensioned components are shown for visual  
reference only.  
6) All dimensions in inches (mm)  
Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm)  
x.xxx +/-0.010 in. (x.xx +/-0.25mm)  
7) Weight: 0.30 oz. (9.4 g) typical  
Current share*  
Common  
Vin(+)  
7
Positive input voltage  
8) Workmanship: Meets or exceeds IPC-A-610C Class II  
8
10  
11  
Vin(+)  
TRIM1  
ON/OFF2  
Positive input voltage  
Output voltage trim (trim-up only)  
LOGIC input to turn the converter  
on and off.  
Pin Connection Notes:  
1. Pin 10 - for fixed resistors, connect between Trim and  
Common (Ground).  
2. Pin 11 - see section on Remote ON/OFF pin for descrip-  
tion of enable logic options.  
Pins in Italics Shaded text are Optional  
* Contact factory for availability of current share modules.  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 2  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
MECHANICAL  
DIAGRAM  
Horizontal Mount  
Front View  
Side View  
0.288  
(7.32)  
2.00  
(50.8)  
0.315 Max  
0.185  
(4.7)  
(8.0 Max)  
0.197 Max  
(5.0 Max)  
0.025 + 0.003  
(0.64 + 0.076)  
SQ. Typ.  
0.550  
(13.97)  
Ref.  
0.050  
(1.27)  
1
2
3
4
5
A
6
7
8
10 11  
0.128 Min  
0.050  
(1.27)  
(3.25 Min)  
0.040 PCB Ref.  
(1.02)  
0.330  
(8.38)  
See note on Thermal  
Considerations in  
Applications section.  
0.000 0.100 0.200 0.300 0.400  
1.300 1.400 1.500 1.600  
(33.02) (35.56) (38.10) (40.64)  
1.800 1.900  
(45.72) (48.26)  
(0.00)  
(2.54)  
(5.08)  
(7.62)  
(10.16)  
Vertical Mount  
Reversed Pins  
Front View  
Side View  
2.00  
0.288  
(7.32)  
(50.8)  
0.315 Max  
0.185  
(4.7)  
(8.0 Max)  
0.197 Max  
(5.0 Max)  
0.550  
(13.97)  
Ref.  
0.050  
1
2
3
4
5
A
6
7
8
10 11  
(1.27)  
0.160  
(4.06)  
0.050  
(1.27)  
0.040 PCB Ref.  
(1.02)  
0.120  
(3.05)  
0.025 + 0.003  
(0.64 + 0.076)  
SQ. Typ.  
0.000 0.100 0.200 0.300 0.400  
1.300 1.400 1.500 1.600  
(33.02) (35.56) (38.10) (40.64)  
1.800 1.900  
0.058 +.008  
(1.47 +.20)  
(0.00)  
(2.54)  
(5.08)  
(7.62)  
(10.16)  
(45.72) (48.26)  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 3  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
ELECTRICAL CHARACTERISTICS - NQ04T33VMA16 Series  
Vin=3.3Vdc and 5.0Vdc except 3.3Vout units where Vin=5.0V; TA=25°C, airflow rate=300 LFM unless otherwise noted; full operating tem-  
perature range is -40°C to +105°C ambient temp with appropriate power derating. Specifications subject to change without notice.  
Parameter  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
Setpoint  
Min.  
Typ.  
Max.  
Units Notes & Conditions  
Non-Operating  
Operating  
Operating Transient Protection  
Operating Temperature  
Storage Temperature  
Voltage at ON/OFF input pin (N, O options)  
Voltage at ON/OFF input pin (P option)  
INPUT CHARACTERISTICS  
Operating Input Voltage Range1  
All  
All  
All  
All  
All  
All  
All  
6.0  
5.5  
7.0  
105  
125  
V
V
V
°C  
°C  
V
continuous  
continuous  
100ms transient  
3.0  
-40  
-55  
-3  
6.5  
Vin + 0.3  
Negative and Negative/Open logic  
Positive/Open logic  
-0.5  
V
0.9-2.5V  
3.3V  
3.0  
4.5  
3.3-5.0  
5.0  
5.5  
5.5  
V
V
Referenced notes on pg. 6  
Input Under-Voltage Lockout1  
Turn-On Voltage Threshold  
0.9-2.5V  
3.3V  
0.9-2.5V  
3.3V  
0.9V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
1.9  
4.1  
1.9  
3.5  
2.4  
4.3  
2.3  
3.7  
2.85  
4.5  
2.85  
V
V
V
V
A
A
A
A
A
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Turn-Off Voltage Threshold  
4.0  
Maximum Input Current2 (3.0Vin\4.5Vin)  
6.8\4.6  
7.4\5.0  
8.7\5.8  
10.4\7.0  
12.2\8.2  
16.3\11.0  
14.2  
100% Load, 3.0Vin\4.5Vin, nominal Vout  
(+10%), full temp range, for all voltages.  
A
A
3.3V  
3.3Vout at 4.5Vin only  
No-Load Input Current (3.3Vin)  
No-Load Input Current (5.0Vin)  
0.9-2.5V  
0.9-2.5V  
3.3V  
0.9-2.5V  
3.3V  
80  
100  
80  
15  
10  
105  
130  
105  
25  
20  
0.1  
mA  
mA  
mA  
mA  
mA  
Disabled Input Current  
2
Inrush Current Transient Rating  
All  
A s  
Response to Input Transient (3.3Vin)  
0.9V  
2.5V  
0.9V  
3.3V  
0.9-1.8V  
2.5V  
0.9,1.0V  
1.2,3.3V  
1.5-2.5V  
0.9-1.8V  
2.5V  
0.9,1.0V  
1.2,1.5V  
1.8,2.5V  
3.3V  
130  
250  
75  
200  
215  
135  
175  
200  
235  
3.2  
mV/V 50mV/  
mV/V  
mV/V  
µs input transient (all)  
Response to Input Transient (5.0 Vin)  
Input Reflected-Ripple Current (3.3Vin)  
Input Reflected-Ripple Current (5.0Vin)  
mV/V  
mA  
mA  
mA  
mA  
mA  
A
pk-pk through 1µH inductor;  
Figs. 26, 29-30  
pk-pk through 1µH inductor;  
Figs. 26, 29-30  
Input Terminal Ripple Current (3.3Vin)  
Input Terminal Ripple Current (5.0Vin)  
RMS; 200µF/50m  
input cap.;  
2.2  
2.7  
3.2  
3.7  
A
Figs. 26-28  
A
A
RMS 200µF/50m  
Figs. 26-28  
input cap.;  
A
A
3.2  
Recommended Input Fuse  
Input Filter Capacitor Value  
Input Ripple Voltage (3.3Vin)  
All  
All  
20  
A
µF  
fast blow external fuse recommended  
internal ceramic  
40  
0.9,2.5V  
1.0-1.8V  
0.9-1.2V  
1.5,1.8V  
2.5,3.3V  
All  
135  
150  
120  
140  
150  
200  
mV  
mV  
mV  
mV  
mV  
µF  
RMS, full load, 200µF/50m  
input cap.  
see Fig. 26  
Input Ripple Voltage (5.0Vin)  
RMS, full load, 200µF/50m  
see Fig. 26  
input cap.  
2
Recommended External Input Capacitance  
net 50mΩ  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 4  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
ELECTRICAL CHARACTERISTICS (continued) - NQ04T33VMA16 Series  
Parameter  
Setpoint  
Min.  
Typ.  
Max.  
Units Notes & Conditions  
OUTPUT CHARACTERISTICS  
6
Output Voltage Set Point (50% load)  
0.9V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
0.884  
0.984  
1.181  
1.477  
1.773  
2.461  
3.242  
0.900  
1.000  
1.200  
1.500  
1.800  
2.500  
3.300  
0.917  
1.019  
1.221  
1.526  
1.831  
2.543  
3.358  
V
V
V
V
V
V
V
see trim equation  
Vin range 4.5V - 5.5V  
Output Voltage Regulation  
Over Line  
+
+
+
+
+
0.2  
All  
0.9V  
3.3V  
All  
0.9V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
All  
0.1  
0.5  
0.2  
4.5  
%
%
%
%
V
V
V
V
V
Over Load  
with sense pin  
with sense pin  
except +5.0% at less than 0.9V  
with sense pin, over sample, line, load,  
temperature & life (all)  
Over Temperature  
Total Output Voltage Range  
0.859  
0.957  
1.150  
1.438  
1.727  
2.397  
3.152  
0.940  
1.044  
1.250  
1.563  
1.875  
2.605  
3.444  
35\12  
60\20  
16  
V
V
Output Voltage Ripple & Noise (3.3Vin)  
Output Voltage Ripple & Noise (5.0Vin)  
Operating Output Current Range  
15\6  
25\9  
pk-pk\RMS; full load, 20MHz bandwidth;  
Figs 26, 31-32  
All  
All  
All  
All  
mV  
A
A
0
17  
Output DC Over-Current Shutdown3  
25  
40  
4,000  
Maximum Output Capacitance2,4  
µF  
Derate startup load current per Fig. 25  
120 Hz; Figure 39  
DYNAMIC CHARACTERISTICS  
Input Voltage Ripple Rejection (3.3Vin)  
0.9V  
2.5V  
0.9V  
3.3V  
51  
37  
56  
39  
dB  
dB  
dB  
dB  
Input Voltage Ripple Rejection (5.0Vin)  
120 Hz; Figure 40  
Output Voltage during Load Current Transient  
For a Step Change Iout=0.1A/µs (3.3Vin\5Vin)  
For a Step Change Iout=3A/µs (3.3Vin\5Vin)  
Settling Time (3.3Vin\5Vin)  
Turn-On Transient  
All  
All  
All  
90\70  
70\60  
140\40  
mV  
mV  
µs  
50%-75%-50% Iout max, 10µF, Fig 15,17  
50%-75%-50% Iout max, 470µF, Fig 16,18  
to within 1.5% Vout nom., Fig 15-18  
Load current & capacitance per Fig. 25  
Enable to Vout=100% nom., Figs 19-22  
Enable to 10%, Fig. 23  
Turn-On Time  
Start-Up Delay Time  
All  
5.5  
2.9  
1.5  
1.7  
2.6  
6.8  
4.0  
2.5  
2.5  
3.9  
8.5  
5.9  
4.3  
3.9  
5.7  
0
ms  
ms  
ms  
ms  
ms  
%
0.9V  
3.3V  
0.9V  
3.3V  
All  
Start-Up Rise Time  
10% to 90%, Fig. 24  
Resistive load, up to 4,000 µF  
Figures 1-4  
Output Voltage Overshoot  
EFFICIENCY  
100% Load (3.3Vin\5Vin)  
0.9V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
84.5/83  
85.5/84.5  
87.5/86.5  
89.5/88.5  
91/90  
%
%
%
%
%
%
%
93.5/92.5  
94  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 5  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
ELECTRICAL CHARACTERISTICS (continued) - NQ04T33VMA16 Series  
Parameter  
EFFICIENCY (cont.)  
50% Load (3.3Vin\5Vin)  
ModuleP Min.  
Typ.  
Max.  
Units Notes & Conditions  
0.9V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
89/87  
89.5/88  
91/89.5  
92.5/91  
93.5/92  
95.5/94  
95  
%
%
%
%
%
%
%
Figures 1-4  
TEMP. LIMITS FOR POWER DERATING  
Semiconductor Junction Temperature5  
Board Temperature5  
All  
All  
125  
125  
°C  
°C  
Package rated to 150°C; Figs 5-14  
UL rated max operating temp 130°C  
FEATURE CHARACTERISTICS  
Switching Frequency  
Negative Logic (N, O) ON/OFF Control  
Off-State Voltage  
All  
265  
300  
330  
kHz  
may decrease by up to 30 kHz at -40°C  
Figure A, page 16  
All  
All  
All  
All  
All  
1.5  
-3  
6.5  
0.6  
V
V
V
On-State Voltage  
Pull-Up Voltage (N logic only)  
Pull-Up Resistance (N logic only)  
Input Resistance (O logic only)  
Positive Logic (P) ON/OFF Control  
Logic Low Voltage Range  
2/3 Vin  
6.7  
20  
k
k
Open collector/drain input; Figure A  
All  
All  
All  
All  
All  
All  
All  
All  
All  
-0.2  
2.2  
300  
1
Vin  
V
V
µA  
µA  
V
%
V
°C  
°C  
Logic High Voltage Range (internal pullup)  
Logic Low sink current  
Vin/10K  
550  
10  
3.6  
+10  
4.35  
Logic High sink current (leakage)  
Output Voltage Trim Range1,6,8  
Output Voltage Remote Sense Range1,7,8  
Output Over-Voltage Protection8  
Over-Temperature Shutdown  
Over-Temperature Shutdown Restart Hysteresis  
RELIABILITY CHARACTERISTICS  
Calculated MTBF (Telcordia)  
Calculated MTBF (MIL-217)  
0.85  
3.75  
Measured Vout+ to common pins; Table 1  
Measured Vout+ to common pins  
Over full temp range  
4.05  
120  
5
Average PCB Temperature  
6
o
All  
All  
All  
10.1  
6.6  
10 Hrs. TR-NWT-000332; 15A load, 200LFM, 40 C T  
a
a
6
o
10 Hrs. MIL-HDBK-217F; 15A load, 200LFM, 40 C T  
6
Field Demonstrated MTBF  
10 Hrs. See website for latest values  
Note 1: Maintain a minimum of 0.4V headroom between input and output voltage to meet performance specifications. Unit will perform as the model with the  
output voltage that it is trimmed to.  
Note 2: Tantalum or similar with additional ceramic as needed to reduce ripple current in external input capacitors. See Figure 26. When using more than  
1000µF of output capacitance, input filter inductor should be reduced to <0.3µH or input capacitance should be increased to match output capacitance.  
Consult factory for more demanding applications. Also refer to Application Considerations section of this datasheet.  
Note 3: The over-current shutdown threshold for a short over-current pulse can be as high as 50A when trimming up a wide trim unit above 1.2V.  
Note 4: When trimming a 0.9V unit to less than 0.88V with more than 1000µF of output capacitance, consult factory for trim circuit recommendations. This  
also applies to trimming a 1.0V unit below 0.95V.  
Note 5: Power derating curves are measured using an evaluation board consisting of 6 layers of 2 ounce copper.  
Note 6: Wide trim option unit has a setpoint of 0.753V and a trim range of 0.85V-3.6V.  
Note 7: In remote sense applications, when trimming down, the trim-down resistor should be connected to the sense pin for more accurate trimming results.  
Note 8: User should allow sufficient transient response headroom between the module’s local output and the minimum OVP threshold.  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 6  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
STANDARDS COMPLIANCE  
Parameter  
P
Notes  
STANDARDS COMPLIANCE  
UL/cUL 60950  
File # E194341  
Certified by TUV  
EN60950  
72/23/EEC  
93/68/EEC  
Needle Flame Test (IEC 695-2-2)  
IEC 61000-4-2  
test on entire assembly; board & plastic components UL94V-0 compliant  
ESD test, 8kV - NP, 15kV air - NP (Normal Performance)  
GR-1089-CORE  
Section 7 - electrical safety, Section 9 - bonding/grounding  
Telcordia (Bellcore) GR-513  
An external input fuse must always be used to meet these safety requirements. Contact SynQor for official safety  
certificates on new releases or download from the SynQor website.  
QUALIFICATION TESTING  
Parameter  
P
# Units Test Conditions  
QUALIFICATION TESTING  
Life Test  
42  
95% rated Vin and load, units at derating point, 1000 hours  
Vibration  
5
10-55Hz sweep, 0.060” total excursion,1 min./sweep, 120 sweeps for 3 axis  
100g minimum, 2 drops in x and y axis, 1 drop in z axis  
-40°C to 100°C, unit temp. ramp 15°C/min., 500 cycles  
Toperating = min to max, Vin = min to max, full load, 100 cycles  
Tmin-10°C to Tmax+10°C, 5°C steps, Vin = min to max, 0-105% load  
85°C, 85% RH, 1000 hours, continuous Vin applied except 5min./day  
MIL-STD-883, method 2003  
Mechanical Shock  
Temperature Cycling  
Power/Thermal Cycling  
Design Marginality  
Humidity  
5
10  
5
5
5
Solderability  
15 pins  
Extensive characterization testing of all SynQor products and manufacturing processes is performed to ensure that we supply  
robust, reliable product. Contact factory for official product family qualification document.  
OPTIONS  
PATENTS  
SynQor provides various options for Packaging, Enable Logic, Pin SynQor is protected under various patents, including but not lim-  
Length and Feature Set for this family of DC/DC converters. ited to U.S. Patent numbers: 5,999,417; 6,222,742 B1;  
Please consult the last page of this specification sheet for infor- 6,594,159 B2; 6,545,890 B2.  
mation on available options.  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 7  
Performance Curves  
Non-Isolated  
3.0 - 5.5V  
16A  
SIP Converter  
in  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
2.5 Vo  
1.8 Vo  
1.5 Vo  
1.2 Vo  
1.0 Vo  
0.9 Vo  
3.3 Vo  
2.5 Vo  
1.8 Vo  
1.5 Vo  
1.2 Vo  
1.0 Vo  
0.9 Vo  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Load Current (A)  
Load Current (A)  
Figure 1: Efficiency at 3.3Vin and nominal output voltage vs. load cur-  
Figure 2: Efficiency at 5.0Vin and nominal output voltage vs. load cur-  
rent for all modules at 25  
°C.  
rent for all modules at 25°C.  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
3.3 Vo  
2.5 Vo  
1.8 Vo  
1.5 Vo  
1.2 Vo  
1.0 Vo  
0.9 Vo  
2.5 Vo  
1.8 Vo  
1.5 Vo  
1.2 Vo  
1.0 Vo  
0.9 Vo  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Load Current (A)  
Load Current (A)  
Figure 3: Power dissipation at 3.3Vin and nominal output voltage vs.  
Figure 4: Power dissipation at 5.0Vin and nominal output voltage vs.  
load current for all modules at 25  
°C.  
load current for all modules at 25°C.  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
4
4
2
2
50 LFM (0.25 m/s)  
0
50 LFM (0.25 m/s)  
0
0
25  
40  
55  
70  
85  
0
25  
40  
55  
70  
85  
Ambient Air Temperature (oC)  
Ambient Air Temperature (oC)  
Figure 5: Maximum output power derating curves vs. ambient air temp  
for 0.9Vo to 1.8Vo units at 3.3Vin. Airflow rates of 50 - 400 LFM with  
air flowing across the converter from pin 11 to pin 1 (vert mount).  
Figure 6: Maximum output power derating curves vs. ambient air temp  
for 0.9Vo to 1.8Vo units at 5.0Vin. Airflow rates of 50 - 400 LFM with  
air flowing across the converter from pin 11 to pin 1 (vert mount).  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 8  
Performance Curves  
Non-Isolated  
3.0 - 5.5V  
16A  
SIP Converter  
in  
Semiconductor junction temperature is  
within 1 C of surface temperature  
Semiconductor junction temperature is  
within 1 C of surface temperature  
°
°
Figure 7: Thermal plot of 0.9Vo to 1.8Vo converters at 3.3Vin with 15  
Figure 8: Thermal plot of 0.9Vo to 1.8Vo converters at 5.0Vin with 15  
amp load current and 55  
°
C air flowing at the rate of 200 LFM. Air is  
amp load current and 55°C air flowing at the rate of 200 LFM. Air is  
flowing across the converter from pin 11 to pin 1 (vertical mount).  
flowing across the converter from pin 11 to pin 1 (vertical mount).  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
50 LFM (0.25 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
50 LFM (0.25 m/s)  
4
4
2
0
2
0
0
25  
40  
55  
70  
85  
0
25  
40  
55  
70  
85  
Ambient Air Temperature (oC)  
Ambient Air Temperature (oC)  
Figure 9: Maximum output power derating curves vs. ambient air tem-  
perature for 2.5Vout unit at 3.3Vin. Airflow rates of 50 - 400 LFM with  
air flowing across the converter from pin 11 to pin 1 (vert mount).  
Figure 10: Maximum output power derating curves vs. ambient air tem-  
perature for 2.5Vout unit at 5.0Vin. Airflow rates of 50 - 400 LFM with  
air flowing across the converter from pin 11 to pin 1 (vert mount).  
Semiconductor junction temperature is  
Semiconductor junction temperature is  
within 1  
°C of surface temperature  
within 1°C of surface temperature  
Figure 11: Thermal plot of 2.5Vout converter at 3.3Vin with 15 amp  
load current and 55 C air flowing at the rate of 200 LFM. Air is flow-  
ing across the converter from pin 11 to pin 1 (vertical mount).  
Figure 12: Thermal plot of 2.5Vout converter at 5.0Vin with 15 amp  
load current and 55 C air flowing at the rate of 200 LFM. Air is flow-  
ing across the converter from pin 11 to pin 1 (vertical mount).  
°
°
Product # NQ04T33VMA16 Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B 7/6/04  
Page 9  
Performance Curves  
Non-Isolated  
3.0 - 5.5V  
16A  
SIP Converter  
in  
16  
14  
12  
10  
8
6
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
50 LFM (0.25 m/s)  
4
2
Semiconductor junction temperature is  
within 1 C of surface temperature  
0
°
0
25  
40  
55  
70  
85  
Ambient Air Temperature (oC)  
Figure 13: Maximum output power derating curves vs. ambient air tem-  
perature for 3.3Vout unit at 5.0Vin. Airflow rates of 50 - 400 LFM with  
air flowing across the converter from pin 11 to pin 1 (vert mount).  
Figure 14: Thermal plot of 3.3Vout converter at 5.0Vin with 15 amp  
load current and 55 C air flowing at the rate of 200 LFM. Air is flow-  
ing across the converter from pin 11 to pin 1 (vertical mount).  
°
2.5Vout  
0.9Vout  
2.5Vout  
0.9Vout  
Figure 15: Output voltage response at 3.3Vin to step-change in load cur-  
Figure 16: Output voltage response at 3.3Vin to step-change in load cur-  
rent (50-75-50% of Iout max; di/dt=0.1A/  
µ
s). Load cap: 15  
µ
F, 100m  
ESR  
rent (50-75-50% of Iout max; di/dt=3A/µs). Load cap: 470µF, 25mESR  
tantalum and 10  
µF ceramic. Top: Vout (100mV/div), Bottom: Iout (5A/div).  
tantalum and 10  
µ
F ceramic. Top: Vout (100mV/div), Bottom: Iout (5A/div).  
3.3Vout  
0.9Vout  
3.3Vout  
0.9Vout  
Figure 17: Output voltage response at 5.0Vin to step-change in load cur-  
rent (50-75-50% of Iout max; di/dt=0.1A/ s). Load cap: 15 F, 100m ESR  
tantalum and 10 F ceramic. Top: Vout (100mV/div), Bottom: Iout (5A/div).  
Figure 18: Output voltage response at 5.0Vin to step-change in load cur-  
rent (50-75-50% of Iout max; di/dt=3A/ s). Load cap: 470 F, 25m ESR  
tantalum and 10 F ceramic. Top: Vout (100mV/div), Bottom: Iout (5A/div).  
µ
µ
µ
µ
µ
µ
Product # NQ04T33VMA16 Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B 7/6/04 Page 10  
Performance Curves  
Non-Isolated  
3.0 - 5.5V  
16A  
SIP Converter  
in  
3.3Vout  
2.5Vout  
2.5Vout  
1.8Vout  
1.5Vout  
1.8Vout  
1.5Vout  
1.2Vout  
1.0Vout  
0.9Vout  
0.75Vout  
1.2Vout  
1.0Vout  
0.9Vout  
0.75Vout  
Figure 19: Turn-on transient at 3.3Vin and full load (resistive load)  
(2ms/div). Ch 1: ON/OFF input (2V/div). Ch 2-8: Vout (500mV/div)  
Figure 20: Turn-on transient at 5.0Vin and full load (resistive load)  
(2ms/div). Ch 1: ON/OFF input (2V/div). Ch 2-8: Vout (500mV/div)  
3.3Vout  
2.5Vout  
2.5Vout  
1.8Vout  
1.5Vout  
1.8Vout  
1.5Vout  
1.2Vout  
1.0Vout  
0.9Vout  
0.75Vout  
1.2Vout  
1.0Vout  
0.9Vout  
0.75Vout  
Figure 21: Turn-on transient at 3.3Vin and zero load (2ms/div). Ch 1:  
Figure 22: Turn-on transient at 5.0Vin and zero load (2ms/div). Ch 1:  
ON/OFF input (2V/div). Ch 2-8: Vout (500mV/div)  
ON/OFF input (2V/div). Ch 2-8: Vout (500mV/div)  
7
6
5
4
3
2
7
6
5
4
3
2
Max Rise Time  
Min Rise Time  
Max Delay Time  
Min Delay Time  
1
1
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Voltage (V)  
Output Voltage (V)  
Figure 23: Minimum and Maximum Startup Delay Time (enable to  
Figure 24: Minimum and Maximum Startup Rise Time (10% to 90%)  
10%) over temperature versus output voltage (includes trimming).  
over temperature versus output voltage (includes trimming).  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 11  
Performance Curves  
Non-Isolated  
3.0 - 5.5V  
16A  
SIP Converter  
in  
14.0  
12.0  
10.0  
8.0  
Figs. 26-27  
<1 µH  
Figs. 24-25  
source  
impedance  
Figs. 28-29  
0.9V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
iS  
iC  
DC/DC  
Converter  
VOUT  
6.0  
4.0  
VSOURCE  
15  
µ
F,  
ESR  
10 µF  
C*  
2.0  
ceramic  
100m  
capacitor  
tantalum  
0.0  
capacitor  
* See values for recommended external input  
capacitance. Inductor optional as needed. Reduce  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
to <0.3µH for Cout > 1000µF, unless Cin > Cout.  
Load Capacitance (uF)  
Figure 25: Maximum Startup Load Current versus Load Capacitance.  
Derate the load during startup according to this figure to avoid the pos-  
sibility of over-current shutdown.  
Figure 26: Test set-up diagram showing measurement points for Input  
Terminal Ripple Current (Figs 27-28), Input Reflected Ripple Current  
(Figs 29-30) and Output Voltage Ripple (Figs 31-32).  
0.9Vout  
1.0Vout  
0.9Vout  
1.0Vout  
1.2Vout  
1.2Vout  
1.5Vout  
1.5Vout  
1.8Vout  
1.8Vout  
2.5Vout  
2.5Vout  
3.3Vout  
Figure 27: Input Terminal Ripple Current, i , at 15A load and 3.3V  
Figure 28: Input Terminal Ripple Current, i , at 15A load and 5.0V  
c
c
input voltage with 1  
µ
H source impedance and 200  
µ
F tantalum capaci-  
input voltage with 1  
µ
H source impedance and 200  
µ
F tantalum capaci-  
tor (5A/div). See Figure 26.  
tor (5A/div). See Figure 26.  
0.9Vout  
0.9Vout  
1.0Vout  
1.2Vout  
1.0Vout  
1.2Vout  
1.5Vout  
1.8Vout  
1.5Vout  
1.8Vout  
2.5Vout  
3.3Vout  
2.5Vout  
Figure 29: Input Reflected Ripple Current, i , through a 1  
µ
H source  
Figure 30: Input Reflected Ripple Current, i , through a 1µH source  
s
s
inductor at 3.3V input voltage and 15A load current (100 mA/div). See  
inductor at 5.0V input voltage and 15A load current (100 mA/div). See  
Figure 26.  
Figure 26.  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 12  
Performance Curves  
Non-Isolated  
3.0 - 5.5V  
16A  
SIP Converter  
in  
0.9Vout  
0.9Vout  
1.0Vout  
1.0Vout  
1.2Vout  
1.2Vout  
1.5Vout  
1.5Vout  
1.8Vout  
1.8Vout  
2.5Vout  
2.5Vout  
3.3Vout  
Figure 31: Output Voltage Ripple at 3.3V input voltage and 15A load  
current (10 mV/div). Load capacitance: 10 F ceramic capacitor and  
15 F tantalum capacitor. Bandwidth: 20 MHz. See Figure 26.  
Figure 32: Output Voltage Ripple at 5.0V input voltage and 15A load  
current (10 mV/div). Load capacitance: 10 F ceramic capacitor and  
15 F tantalum capacitor. Bandwidth: 20 MHz. See Figure 26.  
µ
µ
µ
µ
Figure 33: Load current (10A/div) as a function of time when a 3.3Vin,  
0.9Vo unit attempts to turn on into a 10 m short circuit. Top trace  
(100 s/div) is an expansion of the on-time portion of the bottom trace.  
Figure 34: Load current (10A/div) as a function of time when a 5.0Vin,  
0.9Vo unit attempts to turn on into a 10 m short circuit. Top trace  
(100 s/div) is an expansion of the on-time portion of the bottom trace.  
µ
µ
Figure 35: Load current (10A/div) as a function of time when a 3.3Vin,  
2.5Vo unit attempts to turn on into a 10 m short circuit. Top trace  
(100 s/div) is an expansion of the on-time portion of the bottom trace.  
Figure 36: Load current (10A/div) as a function of time when a 5.0Vin,  
3.3Vo unit attempts to turn on into a 10 m short circuit. Top trace  
(100 s/div) is an expansion of the on-time portion of the bottom trace.  
µ
µ
Product # NQ04T33VMA16 Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B 7/6/04 Page 13  
Performance Curves  
Non-Isolated  
3.0 - 5.5V  
16A  
SIP Converter  
in  
0.1  
0.01  
0.1  
0.01  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
0.001  
0.0001  
0.001  
0.0001  
10  
10  
100  
1,000  
Hz  
10,000  
100,000  
100  
1,000  
Hz  
10,000  
100,000  
Figure 37: Magnitude of incremental output impedance (Z  
=
Figure 38: Magnitude of incremental output impedance (Z  
=
out  
out  
v
/i ) for 3.3V input voltage at 15A load.  
out out  
v
/i ) for 5.0V input voltage at 15A load.  
out out  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 39: Magnitude of incremental forward transmission (FT =  
/v ) for 3.3V input voltage at 15A load.  
Figure 40: Magnitude of incremental forward transmission (FT =  
/v ) for 5.0V input voltage at 15A load.  
v
v
out in  
out in  
10  
5
10  
5
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
0
0
-5  
-5  
-10  
-15  
-10  
-15  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 41: Magnitude of incremental reverse transmission (RT =  
/i ) for 3.3V input voltage at 15A load.  
Figure 42: Magnitude of incremental reverse transmission (RT =  
i /i ) for 5.0V input voltage at 15A load.  
in out  
i
in out  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 14  
Performance Curves  
Non-Isolated  
3.0 - 5.5V  
16A  
SIP Converter  
in  
1
10  
1
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
0.1  
0.1  
0.01  
0.01  
10  
10  
100  
1,000  
Hz  
10,000  
100,000  
100  
1,000  
Hz  
10,000  
100,000  
Figure 43: Magnitude of incremental input impedance (Z = v /i  
)
Figure 44: Magnitude of incremental input impedance (Z = v /i  
in in  
)
in  
in in  
in  
for 3.3V input voltage at 15A load.  
for 5.0V input voltage at 15A load.  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 15  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
between Pin 10 (TRIM) and the Common Ground Pins. To  
acheive a desired output voltage Vout, the value of the resistor  
should be:  
BASIC OPERATION AND FEATURES  
The NiQor series non-isolated converter uses a buck-converter  
that keeps the output voltage constant over variations in line,  
load, and temperature. The NiQor modules employ synchro-  
nous rectification for very high efficiency.  
21070  
_
=
()  
Rtrim  
5110  
_
VOUT 0.7525  
Dissipation throughout the converter is so low that it does not  
require a heatsink or metal baseplate for operation. The NiQor  
converter can thus be built more simply and reliably using high  
yield surface mount techniques on a single PCB substrate.  
For example, to program an output voltage of 3.3V, the Rtrim  
resistor value is calculated as follows:  
R
trim = (21070/(3.3-0.7525)) - 5110 = 3.16 kΩ  
The NiQor series of SIPs and SMT converters uses the estab-  
lished industry standard footprint and pin-out configurations.  
Note: the TRIM feature does not affect the voltage at which the  
output over-voltage protection circuit is triggered. Trimming the  
output voltage too high may cause the over-voltage protection  
circuit to engage, particularly during transients.  
CONTROL FEATURES  
Total DC Variation of Vout: For the converter to meet its  
specifications, the maximum variation of the DC value of Vout,  
due to both trimming and remote load voltage drops, should  
not be greater than that specified for the output voltage trim  
range.  
REMOTE ON/OFF (Pin 11): The ON/OFF input, Pin 11,  
permits the user to control when the converter is on or off. There  
are currently two options available for the ON/OFF input  
described in the table below. (contact factory for other options)  
Pin-Open  
Option  
Description Converter state Pin Action  
PROTECTION FEATURES  
N Logic Negative  
Off  
On  
On  
Pull Low = On  
Pull High = Off  
Pull Low = Off  
O Logic Negative/Open  
P Logic Positive/Open  
Input Under-Voltage Lockout: The converter is designed  
to turn off when the input voltage is too low, helping avoid an  
input system instability problem, described in more detail in the  
application note titled “Input System Instability”. The lockout cir-  
cuitry is a comparator with DC hysteresis. When the input volt-  
age is rising, it must exceed the typical Turn-On Voltage  
Threshold value (listed on the specification page) before the  
converter will turn on. Once the converter is on, the input volt-  
age must fall below the typical Turn-Off Voltage Threshold value  
before the converter will turn off.  
Figure A is a schematic view of the internal ON/OFF circuitry.  
Vin  
Vin  
(N logic only)  
10K  
10K  
1K  
PWM  
Enable  
ON/OFF  
ON/OFF  
20K  
Over Current Shutdown: The converter uses the control  
(high-side) MOSFET on-resistance to detect short circuit or  
excessive over-current conditions. The converter compensates  
for the temperature variation of the MOSFET on-resistance,  
keeping the overcurrent threshold roughly constant over tem-  
perature. Very short (<1mS) over-current pulses will see a  
slightly higher apparent threshold than longer duration over-  
current events. This makes the converter less susceptible to shut-  
down from transient load conditions. However, once the over-  
current threshold is reached the converter ceases PWM opera-  
tion within microseconds. After an over-current shutdown, the  
converter will remain off for an inhibit period of 18 to 32 mil-  
liseconds, and then attempt a soft-start. Depending on the  
impedance or current level of the overload condition, the con-  
verter will enter a "hiccup mode" where it repeatedly turns on  
PWM  
Enable  
20K  
15K  
Negative  
Logic (N,O)  
Positive  
Logic (P)  
Figure A: Simplified Schematic of internal ON/OFF circuitry  
OUTPUT VOLTAGE TRIM (Pin 10): The TRIM input permits  
the user to adjust the output voltage according to the trim range  
specifications by using an external resistor. If the TRIM feature  
is not being used, leave the TRIM pin disconnected.  
TRIM (wide trim output unit): The output voltage of the  
NQ04T33 module can be programmed to any voltage from  
0.85 to 3.6V by connecting a single external resistor Rtrim  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 16  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
and off at a frequency of 25 to 50 Hz, until the overload or  
short circuit condition is removed.  
resistive, essentially just the ESR.  
In this example, at full load, that would stress the tantalum input  
capacitor to about 3A rms ripple current, possibly beyond its  
rating. Placing an additional 40µF of ceramic in parallel with  
Output Over-Voltage Limit: If the voltage across the output  
pins exceeds the Output Over-Voltage Protection threshold, the  
converter will immediately stop switching. This prevents dam-  
age to the load circuit due to 1) excessive series resistance in  
output current path from converter output pins to sense point, 2)  
a release of a short-circuit condition, or 3) a release of a cur-  
rent limit condition. Load capacitance determines exactly how  
high the output voltage will rise in response to these conditions.  
After 2-4 ms, the converter will automatically restart. Note the  
wide trim model has a typical OVP threshold of 4.1V.  
that capacitor would reduce the ripple current to about 1.5A,  
o
probably within its rating at 85 C. The input ripple current is  
proportional to load current, so this example should be scaled  
down according to the actual load current.  
Additional input capacitance equal to half of the output capac-  
itance is recommended when operating with more than 1000uF  
of output capacitance on lower voltage outputs when trimming  
down by more than half of the trim-down allowance (e.g., fur-  
ther than -2.5% on a 0.9V, or -5% on a 1.2V).  
Over-Temperature Shutdown: A temperature sensor on  
the converter senses the average temperature of the module.  
The thermal shutdown circuit is designed to turn the converter  
off when the temperature at the sensed location reaches the  
Over-Temperature Shutdown value. It will allow the converter to  
turn on again when the temperature of the sensed location falls  
by the amount of the Over-Temperature Shutdown Restart  
Hysteresis value.  
Input inductance should be reduced for maintaining input sta-  
bility when operating with large output capacitance  
(>1000  
good phase margin with up to the 4000  
capacitance. If the input inductance must be increased up to  
H even with large output capacitance (>1000 F), an input  
µF). Reducing input inductance to <0.3  
µH provides for  
F maximum output  
µ
1
µ
µ
capacitance equal to or greater than the output capacitance  
may be needed to compensate the input impedance.  
APPLICATION CONSIDERATIONS  
If no inductor is used to isolate the input ripple of the NiQor  
converters from the source or from inputs of other NiQor con-  
verters, then this external capacitance might be provided by the  
DC/DC converter used as the power source. SynQor's  
PowerQor series converters typically have tantalum and ceram-  
ic output capacitors that would provide the damping.  
Input and Output Filtering: SynQor recommends an exter-  
nal input capacitor of either a tantalum, polymer or aluminum  
electrolytic type on the input of the NQ03/NQ04 series non-  
isolated converters. This capacitance and resistance primarily  
provides damping of the input filter, reduces the source imped-  
ance and guarantees input stability (see SynQor application  
note "Input System Instability"). The input filter is formed by any  
source or wiring inductance and the converter’s input capaci-  
tance. The external capacitance also provides an additional  
benefit of ripple voltage reduction.  
An input inductor would help isolate the ripple currents and  
voltages from the source or other NiQor style converters on the  
voltage supply rail. If an input inductor is used, the recom-  
mended capacitance should guarantee stability and control the  
ripple current for up to 1.0µH of input inductance.  
A modest sized capacitor would suffice in most conditions, such  
as a 330µF, 16V tantalum, with an ESR of approximately 50  
The input inductor need not have very high inductance.  
A
m. The NiQor family converters have an internal ceramic  
input capacitor to reduce ripple current stress on the external  
capacitors. An external ceramic capacitor of similar size  
(330µF) with a series resistor of approximately 50 mwould  
also suffice and would provide the filter damping.  
value of 250 nanohenries would equate to almost 500 miliohm  
of series impedance at the switching frequency of 300 kHz.  
This would be working against an assumed capacitive ESR of  
30mon the supply side of the inductor, providing significant  
isolation and ripple reduction.  
Additional ceramic capacitance may be needed on the input,  
in parallel with the tantalum capacitor, to relieve ripple current  
stress on the tantalum capacitors. The external capacitance  
No external capacitance is required at the output, however, the  
ripple voltage can be further reduced if ceramic and tantalum  
capacitors are added at the output. Since the internal output  
forms a current divider with the 40  
tance. At 300 kHz., the impedance of the internal capacitance  
is about 15mcapacitive. At that frequency, an SMT 330  
tantalum capacitor would have an impedance of about 50mΩ  
µF internal ceramic capaci-  
capacitance is about 50µF, approximately that amount of  
ceramic capacitance would be needed to produce a noticeable  
reduction in output ripple. The value of the tantalum capacitors  
is both to provide a high capacitance for pulsed loads and to  
µF  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 17  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
provide damping of the distribution network with their inherent  
ESR, which is low, but higher than ceramics. Additional output  
of the pulsed source to the output voltage divided by the input  
voltage.  
capacitance in the range of 300-500µF is beneficial for reduc-  
ing the deviation in response to a fast load transient.  
The only error in this simplified model is that it ignores the  
inductive current in the choke, usually less than 20% of the load  
current, and it ignores the resistive losses inside the NiQor con-  
verter, which would alter the duty cycle very slightly.  
Input Over-Voltage Prevention: The power system  
designer must take precautions to prevent damaging the NiQor  
converters by input overvoltage. This is another reason to be  
careful about damping the input filter so that no ringing occurs  
from an underdamped filter. The voltage must be prevented  
from exceeding the absolute maximum voltage indicated in the  
Electrical Specifications section of the data sheet under all con-  
ditions of turn-on, turn-off and load transients and fault condi-  
tions. The power source should have an over voltage shutdown  
threshold as close as reasonably possible to the operating  
point.  
The model is a good guide for calculating the effects of exter-  
nal input capacitors and other filter elements on ripple voltage  
and ripple current stress on capacitors.  
40  
µF  
INPUT  
I
<1mΩ  
p-p  
Additional protection can come from additional input capaci-  
tance, perhaps on the order of 1,000µF, but contingent on the  
I
= I  
Load  
p-p  
source inductance value. A large source inductance would  
require more capacitance to keep the input voltage below the  
absolute maximum, if the load current were interrupted sud-  
denly. This can be caused by either a shutdown of the NiQor  
from a fault or from the load itself, for example when a card is  
hot-swapped out, suddenly dropping the load to zero. This is  
further justification for keeping the source inductance low, as  
mentioned above. When the power source is configured with  
remote sensing, the series resistance of the filter inductor and  
any other conductors or devices between the source and the  
sense point will result in a voltage drop which, in the event of  
a load current interruption, would add to the NiQor input volt-  
age.  
Figure B: Equivalent model for input ripple  
High Capacitance Loads with Backdrive: When using  
two or more NiQor converters with high capacitance loads  
(greater than 1,000µF), special consideration must be given to  
the following condition. If a back-drive source is feeding volt-  
age back to a NiQor output, perhaps through some ASIC or  
other load device, and the back-driving source is greater than  
60% of the input voltage to the NiQor that has not been  
enabled yet, an overcurrent condition may exist on startup. This  
condition could prevent a proper startup when the second  
NiQor is enabled. The condition is caused by the second  
NiQor having to ramp the voltage to a high duty cycle with a  
high capacitance load, which can trip the overcurrent shut-  
down, preventing a startup. The following remedies for this sit-  
uation can be applied:  
A TVS device could also be used to clamp the voltage level dur-  
ing these conditions, but the relatively narrow range between  
operating voltage and the absolute maximum voltage restrict  
the use of these devices to lower source current levels that will  
not drive the transient voltage suppressor above the voltage  
limit when all the source current is flowing into the clamp. A  
TVS would be a good supplemental control, in addition to care-  
ful selection of inductance and capacitance values.  
1) Limit output capacitance on higher voltage outputs to  
1,000µF. OR,  
2) Prevent back-drive conditions that raise the off-state output  
voltage to more than 60% of the input voltage.  
Equivalent Model for Input Ripple: A simple but reason-  
ably accurate model of input ripple is to treat the NiQor input  
as a pulsed AC current source at 300 kHz.in parallel with a  
very low ESR capacitor, see Figure B. The peak-to-peak current  
of the source model is equal to the NiQor load current, repre-  
senting the peak current in the NiQor's smoothing choke. The  
capacitor represents the 40µF input ceramic capacitance of the  
NiQor converter, with a nearly negligible ESR of less than 1  
m. A further refinement can be made by setting the duty cycle  
Thermal Considerations: For vertical mount applications  
at elevated temperatures that call for forced air cooling (see  
thermal derating curves - measured using 6 layer 2oz copper  
board), the preferred airflow direction is from pin 11 to pin 1,  
as indicated in the thermal images provided. If airflow is in the  
opposite direction (pin 1 to pin 11) the power devices will run  
O
hotter by about 5 C (corresponding to an additional 1 ampere  
of load derating at conditions where derating occurs).  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 18  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
For horizontal mount applications (NQ0xxxxHMA parts),  
where the inductor and power devices are facing down, the  
preferred airflow direction is into the leading edge opposite the  
pin header edge, such that air flowing under the NiQor PCB  
flows out between the pins and the inductor. With this airflow  
direction, and with the inductor firmly contacting the applica-  
tion board, the user can apply the thermal derating curves pro-  
vided herein (measured using 6 layer 2oz copper board) for  
vertical mount with airflow from pin 11 to pin 1. Airflows in  
other directions across the horizontally mounted NiQor will  
tion on the current share feature will be provided in a future  
revision of this technical specification. Please contact SynQor  
engineering support for further details.  
O
result in temperatures that are higher by about 5 C with pin 11  
O
to pin 1 airflow and about 10 C with pin 1 to pin 11 airflow.  
O
Also, temperature increases of up to 10 C (2 Amp lower der-  
ating) can be expected if the inductor thermal interface does  
not make good contact to the customer's circuit board.  
Layout Suggestion: When using a fixed output NiQor con-  
verter, the designer may chose to use the trim function and  
would thus be required to reserve board space for a trim resis-  
tor. It is suggested that even if the designer does not plan to use  
the trim function, additional space should be reserved on the  
board for a trim resistor. This will allow the flexibility to use the  
wide output voltage trim range NiQor module at a later date.  
Any trim resistor should connect to the ground or output node  
at one of the respective pins of the NiQor, so as to prevent the  
trim level from being affected by load drops through the ground  
or power planes.  
OPTIONAL FEATURES  
REMOTE SENSE(+) (Pin  
3 - Optional): The optional  
SENSE(+) input corrects for voltage drops along the conductors  
that connect the converter’s output pins to the load.  
Pin 3 should be connected to Vout(+) at the point on the board  
where regulation is desired. A remote connection at the load  
can adjust for a voltage drop only as large as that specified in  
this datasheet, that is  
Vout(+) – SENSE(+) < Sense Range % x Vout  
Pin 3 must be connected for proper regulation of the output volt-  
age. If these connections are not made, the converter will deliv-  
er an output voltage that is slightly higher than its specified  
value.  
Note: the output over-voltage protection circuit senses the volt-  
age across the output (pins 1, 2 and 4) to determine when it  
should trigger, not the voltage across the converter’s sense lead  
(pin 3).  
CURRENT SHARE (Pin A - Optional): Additional informa-  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 19  
Technical Specification  
Non-Isolated  
SIP Converter  
3.0 - 5.5V  
16A  
in  
ORDERING INFORMATION  
PART NUMBERING SYSTEM  
The tables below show the valid model numbers and order-  
ing options for converters in this product family. When  
ordering SynQor converters, please ensure that you use the  
complete 15 character part number consisting of the 12  
character base part number and the additional 3 characters  
for options.  
The part numbering system for SynQor’s NiQor DC/DC con-  
verters follows the format shown in the example below.  
NQ 04 T33 V M A 16 O R S  
Options (see  
Ordering Information)  
Output Current  
Thermal Design  
Output Max Output  
Model Number  
Input Voltage  
Voltage  
Current  
Performance Level  
Packaging (see Order Info)  
Output Voltage  
NQ04009pMA15xyz 3.0 - 5.5 V  
NQ04010pMA15xyz 3.0 - 5.5 V  
NQ04012pMA15xyz 3.0 - 5.5 V  
NQ04015pMA15xyz 3.0 - 5.5 V  
NQ04018pMA15xyz 3.0 - 5.5 V  
NQ04025pMA15xyz 3.0 - 5.5 V  
NQ04033pMA15xyz 4.5 - 5.5 V  
NQ04T33pMA16xyz 3.0 - 5.5 V  
0.9 V  
15 A  
1.0 V  
1.2 V  
15 A  
15 A  
15 A  
15 A  
15 A  
15 A  
16 A  
1.5 V  
Input Voltage  
1.8 V  
Product Family  
2.5 V  
3.3 V  
0.85-3.6V  
The first 12 characters comprise the base part number and  
the last 3 characters indicate available options. Although  
there are no default values for packaging, enable logic, pin  
length and feature set, the most common options are vertical  
mount SIP (V), Negative/Open logic (O), 0.160” pins (R)  
and Sense feature set (S). These part numbers are more like-  
ly to be readily available in stock for evaluation and proto-  
type quantities.  
* NQ04 15amp part numbers represent fixed output voltage units  
(see separate datasheets for NQ04xxxxMA15xxx modules).  
The following option choices must be included in place of  
the p x y z spaces in the model numbers listed above.  
Packaging: p  
Options Description: x y z  
Packaging  
Enable Logic  
Pin Style  
Feature Set  
R - 0.160"  
(Standard)  
N - Negative  
O - Neg./Open  
P - Pos./Open  
V - Vert. Mount SIP  
H - Horz. Mount SIP  
S - Sense (Std.)  
N - None  
Application Notes  
V - 0.160" (Vert  
Reversed)  
A variety of application notes and technical white papers  
can be downloaded in pdf format at www.synqor.com.  
Contact SynQor for further information:  
Warranty  
SynQor offers a three (3) year limited warranty. Complete warranty  
information is listed on our web site or is available upon request from  
SynQor.  
Phone:  
Toll Free: 888-567-9596  
Fax:  
978-849-0600  
978-849-0602  
E-mail:  
Web:  
sales@synqor.com  
www.synqor.com  
Information furnished by SynQor is believed to be accurate and reliable.  
However, no responsibility is assumed by SynQor for its use, nor for any  
infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any  
patent or patent rights of SynQor.  
Address: 155 Swanson Road  
Boxborough, MA 01719  
Product # NQ04T33VMA16  
Phone 1-888-567-9596  
Doc.# 005-2NV4T3E Rev. B  
7/6/04  
Page 20  

相关型号:

NQ04018HMA15PVS

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15NRN

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15NRS

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15NVN

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15NVS

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15ORN

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15ORS

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15OVN

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15OVS

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15PRN

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15PRS

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR

NQ04018VMA15PVN

16Amp, wide ouput range, Non-Isolated DC/DC Converter
SYNQOR