BZX79C100RR2 [TAK_CHEONG]

Zener Diode, 100V V(Z), 6%, 0.5W, Silicon, Unidirectional, DO-204AH, HERMETIC SEALED, GLASS, DO-35, 2 PIN;
BZX79C100RR2
型号: BZX79C100RR2
厂家: Tak Cheong Electronics (Holdings) Co.,Ltd    Tak Cheong Electronics (Holdings) Co.,Ltd
描述:

Zener Diode, 100V V(Z), 6%, 0.5W, Silicon, Unidirectional, DO-204AH, HERMETIC SEALED, GLASS, DO-35, 2 PIN

测试 二极管
文件: 总10页 (文件大小:630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Licensed by ON Semiconductor,  
A trademark of semiconductor  
Components Industries, LLC for  
Zener Technology and Products.  
TAK CHEONG  
500 mW DO-35 Hermetically  
Sealed Glass Zener Voltage  
Regulators  
Maximum Ratings (Note 1)  
Rating  
Symbol  
Value  
Units  
Maximum Steady State Power Dissipation  
mW  
PD  
500  
@TL75, Lead Length = 3/8”  
4.0  
mW/℃  
Derate Above 75℃  
Operating and Storage  
Temperature Range  
AXIAL LEAD  
DO35  
TJ, Tstg  
-65 to +200  
°C  
Note 1: Some part number series have lower JEDEC registered ratings.  
Specification Features:  
ƒ
ƒ
ƒ
ƒ
ƒ
Zener Voltage Range = 2.4V to 200V  
ESD Rating of Clas 3 (>6 KV) per Human Body Model  
DO-35 Package (DO-204AH)  
Double Slug Type Construction  
Metallurgical Bonded Construction  
Cathode  
Anode  
Specification Features:  
Case  
Finish  
: Double slug type, hermetically sealed glass  
: All external surfaces are corrosion resistant and leads are readily solderable  
Polarity : Cathode indicated by polarity band  
Mounting: Any  
L
79C  
xxx  
Maximum Lead Temperature for Soldering Purposes  
230, 1/16” from the case for 10 seconds  
L
= Logo  
79Cxxx  
= BZX79Cxxx Device Code  
Ordering Information  
Device  
BZX79Cxxx  
Package  
Axial Lead  
Axial Lead  
Axial Lead  
Lead Form  
Lead Form  
Axial Lead  
Axial Lead  
Axial Lead  
Axial Lead  
Quantity  
3000 Units / Box  
BZX79CxxxRL  
5000 Units / Tape & Reel  
5000 Units / Tape & Reel  
3000 Units / Radial Tape & Reel  
3000 Units / Radial Tape & Reel  
5000 Units / Tape & Ammo  
5000 Units / Tape & Ammo  
3000 Units / Radial Tape & Ammo  
3000 Units / Radial Tape & Ammo  
BZX79CxxxRL2*  
BZX79CxxxRR1 !  
BZX79CxxxRR2 i  
BZX79CxxxTA  
BZX79CxxxTA2*  
BZX79CxxxRA1 !  
BZX79CxxxRA2 i  
* The “2” suffix refer to 26mm tape spacing.  
!
i
“1”: Polarity band up with cathode lead off first.  
“2”: Polarity band down with cathode lead off first.  
Devices listed in bold italic are Tak Cheong Preferred  
devices. Preferred devices are recommended choices  
for future use and best overall value.  
December 2005 / B  
http://takcheong.com  
1
BZX79C2V4 through BZX79C200 Series  
ELECTRICAL CHARACTERIZATION (TA = 25°C unless  
otherwise noted, VF = 1.5V max @ IF = 100mA for all types)  
I
Symbol  
Parameter  
IF  
VZ  
IZT  
Reverse Zener Voltage @ IZT  
Reverse Current  
ZZT  
θVBR  
IR  
Maximum Zener Impedance @ IZT  
Temperature Coefficient of VBR (Typical)  
Reverse Leakage Current @ VR  
Reverse Voltage  
VR  
VZ  
V
IR  
IZT  
VF  
VR  
IF  
Forward Current  
VF  
Forward Voltage @ IF  
Zener Voltage Regulator  
C
Capacitance (Typical)  
ELECTRICAL CHARACTERIZATION (TA = 25°C unless otherwise noted, VF = 1.5V max @ IF = 100mA for all types)  
Max Zener  
VZ @ IZT  
C
Impedance  
(Volts)  
VZ =0,  
Leakage Current  
IR @ VR  
θVBR  
(Note 4.)  
IZT @ IZT  
(Ω)  
(Note 3.)  
F=1.0MHz  
(mV/)  
Device  
Device  
IZT  
(Note 2.)  
Marking  
Min  
Max  
(mA)  
(uA)  
(Volts)  
Min  
Max  
(pF)  
BZX79C2V4  
BZX79C2V7  
BZX79C3V0  
BZX79C3V3  
BZX79C3V6  
79C2V4  
79C2V7  
79C3V0  
79C3V3  
79C3V6  
2.2  
2.5  
2.8  
3.1  
3.4  
2.6  
2.9  
3.2  
3.5  
3.8  
100  
100  
95  
5
5
5
5
5
100  
75  
1
1
1
1
1
-3.5  
-3.5  
-3.5  
-3.5  
-3.5  
0
0
0
0
0
255  
230  
215  
200  
185  
50  
95  
25  
90  
15  
BZX79C3V9  
BZX79C4V3  
BZX79C4V7  
BZX79C5V1  
BZX79C5V6  
79C3V9  
79C4V3  
79C4V7  
79C5V1  
79C5V6  
3.7  
4
4.1  
4.6  
5
90  
90  
80  
60  
40  
5
5
5
5
5
10  
5
1
1
2
2
2
-3.5  
-3.5  
-3.5  
-2.7  
-2  
0.3  
1
175  
160  
130  
110  
95  
4.4  
4.8  
5.2  
3
0.2  
1.2  
2.5  
5.4  
6
2
1
BZX79C6V2  
BZX79C6V8  
BZX79C7V5  
BZX79C8V2  
BZX79C9V1  
79C6V2  
79C6V8  
79C7V5  
79C8V2  
79C9V1  
5.8  
6.4  
7
6.6  
7.2  
7.9  
8.7  
9.6  
10  
15  
15  
15  
15  
5
5
5
5
5
3
2
4
4
5
5
6
0.4  
1.2  
2.5  
3.2  
3.8  
3.7  
4.5  
5.3  
6.2  
7
90  
85  
80  
75  
70  
1
7.7  
8.5  
0.7  
0.5  
BZX79C10  
BZX79C11  
BZX79C12  
BZX79C13  
BZX79C15  
79C10  
79C11  
79C12  
79C13  
79C15  
9.4  
10.6  
11.6  
12.7  
14.1  
15.6  
20  
20  
25  
30  
30  
5
5
5
5
5
0.2  
0.1  
7
8
4.5  
5.4  
6
8
70  
65  
65  
60  
55  
10.4  
11.4  
12.4  
13.8  
9
0.1  
8
10  
11  
13  
0.1  
8
7
0.05  
10.5  
9.2  
2. TOLERANCE AND VOLTAGE DESIGNATION  
Tolerance designation – the type numbers listed have zener voltage min/max limits as shown.  
3. REVERSE ZENER VOLTAGE (VZ)  
Reverse zener voltage is measured under pulse conditions such at TJ is no more than 2above TA.  
4. ZENER IMPEDANCE (ZZ) DERIVATION  
ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are  
for IZ(AC) = 0.1 IZ(DC) with AC frequency = 60Hz.  
http://takcheong.com  
2
BZX79C2V4 through BZX79C200 Series  
ELECTRICAL CHARACTERISTICS (TA  
= 25ºC unless  
otherwise noted. VF = 1.5 V Max @ IF = 100mA for all types)  
Symbol  
Parameter  
Reverse Zener Voltage @ IZT  
Reverse Zener Current  
VZ  
IZT  
ZZT  
θVBR  
IR  
Maximum Zener Impedance @ IZT  
Temperature Coefficient of VBR (Typical)  
Reverse Leakage Current @ VR  
Reverse Voltage  
VR  
IF  
Forward Current  
VF  
C
Forward Voltage @ IF  
Capacitance (Typical)  
ELECTRICAL CHARACTERISTICS (TA = 25c unless otherwise noted, VF = 1.5 V Max @ IF = 100mA for all types)  
Max Zener  
Impedance  
C
VZ = 0,  
VZ @ IZT  
(Volts)  
(Note 3.)  
Leakage Current  
IR @ VR  
θVBR  
(Note 4)  
(mV/ºC)  
ZZT @ IZT  
IZT  
F = 1.0MHz  
(pF)  
Device  
Device  
Marking  
Min  
Max  
()  
(mA)  
(µA)  
(Volts)  
Min  
Max  
(Note 2.)  
BZX79C2V4  
BZX79C2V7  
BZX79C3V0  
BZX79C3V3  
BZX7C3V6  
BZX79C3V9  
BZX79C4V3  
BZX79C4V7  
BZX79C5V1  
BZX79C5V6  
BZX79C6V2  
BZX79C6V8  
BZX79C7V5  
BZX79C8V2  
BZX79C9V1  
BZX79C10  
BZX79C11  
BZX79C12  
BZX79C13  
BZX79C15  
79C2V4  
79C2V7  
79C3V0  
79C3V3  
7C3V6  
2.2  
2.5  
2.8  
3.1  
3.4  
3.7  
4
2.6  
2.9  
3.2  
3.5  
3.8  
4.1  
4.6  
5
100  
100  
95  
95  
90  
90  
90  
80  
60  
40  
10  
15  
15  
15  
15  
20  
20  
25  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
100  
75  
50  
25  
15  
10  
5
1
1
-3.5  
-3.5  
-3.5  
-3.5  
-3.5  
-3.5  
-3.5  
-3.5  
-2.7  
-2  
0
0
255  
230  
215  
200  
185  
175  
160  
130  
110  
95  
1
0
1
0
1
0
79C3V9  
79C4V3  
79C4V7  
79C5V1  
79C5V6  
79C6V2  
79C6V8  
79C7V5  
79C8V2  
79C9V1  
79C10  
1
0.3  
1
1
4.4  
4.8  
5.2  
5.8  
6.4  
7
3
2
0.2  
1.2  
2.5  
3.7  
4.5  
5.3  
6.2  
7
5.4  
6
2
2
1
2
6.6  
7.2  
7.9  
8.7  
9.6  
10.6  
11.6  
12.7  
14.1  
15.6  
3
4
0.4  
1.2  
2.5  
3.2  
3.8  
4.5  
5.4  
6
90  
2
4
85  
1
5
8
7.7  
8.5  
9.4  
10.4  
11.4  
12.4  
13.8  
0.7  
0.5  
0.2  
0.1  
0.1  
0.1  
0.05  
5
75  
6
70  
7
8
70  
79C11  
8
9
65  
79C12  
8
10  
11  
13  
65  
79C13  
8
7
60  
79C15  
10.5  
9.2  
55  
2. TOLERANCE AND VOLTAGE DESIGNATION  
Tolerance designation – the type numbers listed have zener voltage min/max limits as shown.  
3. REVERSE ZENER VOLTAGE (VZ)  
Reverse zener voltage is measured under pulse conditions such that TJ is no more than 2ºC above TA.  
4. ZENER IMPEDANCE (ZZ) DERIVATION  
ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits  
are for IZ(AC) = 0.1 IZ(DC) with AC frequency = 60Hz.  
http://www.takcheong.com  
2
BZX79C2V4 through BZX79C200 Series  
ELECTRICAL CHARACTERISTICS (TA = 25c unless otherwise noted, VF = 1.5 V Max @ IF = 100mA for all types)  
Max Zener  
Impedance  
C
VZ = 0,  
VZ @ IZT  
(Volts)  
(Note 3.)  
Leakage Current  
IR @ VR  
θVBR  
(Note 4)  
(mV/ºC)  
ZZT @ IZT  
IZT  
F = 1.0MHz  
(pF)  
Device  
Device  
Marking  
Min  
Max  
()  
(mA)  
(µA)  
(Volts)  
Min  
Max  
(Note 2.)  
BZX79C16  
BZX79C18  
BZX79C20  
BZX79C22  
BZX79C24  
BZX79C27  
BZX79C30  
BZX79C33  
BZX79C36  
BZX79C39  
BZX79C43  
BZX79C47  
BZX79C51  
BZX79C56  
BZX79C62  
BZX79C68  
BZX79C75  
BZX79C82  
BZX79C91  
BZX79C100  
BZX79C110  
BZX79C120  
BZX79C130  
BZX79C150  
BZX79C160  
BZX79C180  
BZX79C200  
79C16  
79C18  
79C20  
79C22  
79C24  
79C27  
79C30  
79C33  
79C36  
79C39  
79C43  
79C47  
79C51  
79C56  
79C62  
79C68  
79C75  
79C82  
79C91  
79C100  
79C110  
79C120  
79C130  
79C150  
79C160  
79C180  
79C200  
15.3  
16.8  
18.8  
20.8  
22.8  
25.1  
28  
17.1  
19.1  
21.2  
23.3  
25.6  
28.9  
32  
40  
45  
5
5
5
5
5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.1  
11.2  
12.6  
14  
10.4  
12.9  
14.4  
16.4  
18.4  
14  
16  
52  
47  
36  
34  
33  
30  
27  
25  
23  
21  
21  
19  
19  
18  
17  
17  
16.5  
29  
28  
27  
26  
24  
23  
21  
20  
18  
17  
55  
18  
55  
15.4  
16.8  
18.9  
21  
20  
70  
22  
80  
23.5  
26  
80  
31  
35  
80  
23.1  
25.2  
27.3  
30.1  
32.9  
35.7  
39.2  
43.4  
47.6  
52.5  
62  
29  
34  
38  
90  
31  
37  
41  
130  
150  
170  
180  
200  
215  
240  
255  
280  
300  
500  
650  
800  
950  
1250  
1400  
1700  
2000  
34  
40  
46  
37  
44  
50  
40  
48  
54  
44  
52  
60  
47  
58  
66  
51  
64  
72  
56  
70  
79  
60  
77  
87  
46  
51  
95  
85  
96  
0.1  
69  
107  
119  
131  
144  
158  
185  
200  
228  
255  
94  
106  
116  
127  
141  
156  
171  
191  
212  
0.1  
76  
57  
104  
114  
124  
138  
153  
168  
188  
0.1  
84  
63  
0.1  
91  
69  
0.1  
99  
75  
0.1  
114  
122  
137  
152  
87  
0.1  
93  
0.1  
105  
120  
0.1  
2. TOLERANCE AND VOLTAGE DESIGNATION  
Tolerance designation – the type numbers listed have zener voltage min/max limits as shown.  
3. REVERSE ZENER VOLTAGE (VZ)  
Reverse zener voltage is measured under pulse conditions such that TJ is no more than 2ºC above TA.  
4. ZENER IMPEDANCE (ZZ) DERIVATION  
ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits  
are for IZ(AC) = 0.1 IZ(DC) with AC frequency = 60Hz.  
http://www.takcheong.com  
3
BZX79C2V4 through BZX79C200 Series  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
HEAT  
SINKS  
3/8"  
3/8"  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
T
, LEAD TEMPERATURE (°C)  
L
Figure 1. Steady State Power Derating  
http://www.takcheong.com  
4
BZX79C2V4 through BZX79C200 Series  
APPLICATION NOTE - ZENER VOLTAGE  
500  
400  
Since the actual voltage available from a given zener  
diode is temperature dependent, it is necessary to determine  
junction temperature under any set of operating conditions  
in order to calculate its value. The following procedure is  
recommended:  
L
L
300  
200  
100  
Lead Temperature, TL, should be determined from:  
2.4-60 V  
TL = θLAPD + TA.  
θLA is the lead-to-ambient thermal resistance (°C/W) and PD  
is the power dissipation. The value for θLA will vary and  
depends on the device mounting method. θLA is generally 30  
to 40°C/W for the various clips and tie points in common use  
and for printed circuit board wiring.  
62-200 V  
0
0
0.2  
0.4  
0.6  
0.8  
1
The temperature of the lead can also be measured using a  
thermocouple placed on the lead as close as possible to the  
tie point. The thermal mass connected to the tie point is  
normally large enough so that it will not significantly  
respond to heat surges generated in the diode as a result of  
pulsed operation once steady-state conditions are achieved.  
Using the measured value of TL, the junction temperature  
may be determined by:  
L , LEAD LENGTH TO HEAT SINK (INCH)  
Figure 2. Typical Thermal Resistance  
1000  
7000  
5000  
TYPICAL LEAKAGE CURRENT  
AT 80% OF NOMINAL  
2000  
1000  
BREAKDOWN VOLTAGE  
TJ = TL + TJL.  
700  
500  
TJL is the increase in junction temperature above the lead  
temperature and may be found from Figure 2 for dc power:  
200  
100  
70  
TJL = θJLPD.  
50  
For worst-case design, using expected limits of IZ, limits  
of PD and the extremes of TJ(TJ) may be estimated.  
Changes in voltage, VZ, can then be found from:  
20  
10  
V = θVZTJ.  
7
5
θVZ, the zener voltage temperature coefficient, is found  
from Figures 4 and 5.  
2
1
0.7  
0.5  
Under high power-pulse operation, the zener voltage will  
vary with time and may also be affected significantly by the  
zener resistance. For best regulation, keep current  
excursions as low as possible.  
+12C  
0.2  
Surge limitations are given in Figure 7. They are lower  
than would be expected by considering only junction  
temperature, as current crowding effects cause temperatures  
to be extremely high in small spots, resulting in device  
degradation should the limits of Figure 7 be exceeded.  
0.1  
0.07  
0.05  
0.02  
0.01  
0.007  
0.005  
+2C  
0.002  
0.001  
14  
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
V
, NOMINAL ZENER VOLTAGE (VOLTS)  
Z
Figure 3. Typical Leakage Current  
http://www.takcheong.com  
5
BZX79C2V4 through BZX79C200 Series  
TEMPERATURE COEFFICIENTS  
(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)  
+12  
+10  
100  
70  
50  
+8  
+6  
+4  
+2  
30  
20  
VZ @ IZ (NOTE 2)  
RANGE  
10  
7
5
RANGE  
VZ @ IZT  
0
-2  
-4  
3
2
(NOTE 2)  
1
2
7
10  
4
5
6
8
9
11  
10  
20  
30  
V , ZENER VOLTAGE (VOLTS)  
Z
50  
70  
100  
3
12  
V
, ZENER VOLTAGE (VOLTS)  
Z
Figure 4a. Range for Units to 12 Volts  
Figure 4b. Range for Units 12 to 100 Volts  
200  
180  
160  
+6  
+4  
VZ @ IZ  
T = 25 °C  
A
+2  
0
20mA  
140  
0.01mA  
1mA  
VZ @ IZT  
120  
100  
-2  
-4  
(NOTE 2)  
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOL TS  
NOTE: CHANGES IN ZENER CURRENT DO NOT  
NOTE: AFFECT TEMPERATURE COEFFICIENTS  
6
8
5
120  
130  
140  
150  
160  
170  
180  
190  
200  
3
4
7
V
, ZENER VOLTAGE (VOLTS)  
V
, ZENER VOLTAGE (VOLTS)  
Z
Z
Figure 4c. Range for Units 120 to 200 Volts  
Figure 5. Effect of Zener Current  
1000  
100  
70  
TA = 25°C  
500  
T= 25 °C  
50  
0V BIAS  
0 BIAS  
200  
100  
50  
30  
20  
1V BIAS  
1 VOLT BIAS  
10  
20  
7
5
50% OF V BIAS  
10  
5
50% OF  
V
BIAS  
Z
3
2
2
1
1
1
2
5
10  
20  
50  
100  
120  
140  
160  
180  
190  
200  
220  
V
, ZENER VOLTAGE (VOLTS)  
V , ZENER VOLTAGE (VOLTS)  
Z
Z
Figure 6a. Typical Capacitance 2.4-100 Volts  
Figure 6b. Typical Capacitance 120-200 Volts  
http://www.takcheong.com  
6
BZX79C2V4 through BZX79C200 Series  
100  
RECT ANGULAR  
WAVEFORM  
70  
50  
11V-91V NONREPETITIVE  
1.8V-10V NONREPETITIVE  
T
= 25°C PRIOR TO  
J
30  
20  
5% DUTY CYCLE  
INITIAL PULSE  
10  
10% DUTY CYCLE  
20% DUTY CYCLE  
7
5
3
2
1
0.01  
0.02  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
200  
500  
1000  
PW, PULSE WIDTH (ms)  
Figure 7a. Maximum Surge Power 1.8-91 Volts  
1000  
500  
1000  
700  
500  
T
= 25°C  
(rms) = 0.1 Iz(dc)  
J
VZ = 2.7V  
i
Z
RECT ANGULAR  
WAVEFORM, TJ = 25°C  
f = 60 Hz  
300  
200  
200  
47V  
27V  
100  
100  
70  
50  
100-200 VOLTS NONREPETITIVE  
50  
20  
30  
20  
6.2V  
10  
7
10  
5
5
3
2
2
1
1
0.01  
0.1  
1
10  
100  
1000  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
PW, PULSE WIDTH (ms)  
I
, ZENER CURRENT (mA)  
Z
Figure 7b. Maximum Surge Power DO-35  
100-200Volts  
Figure 8. Effect of Zener Current on  
Zener Impedance  
1000  
700  
500  
1000  
TJ = 25°C  
iZ (rms) = 0.1 IZ (dc)  
MAXIMUM  
MINIMUM  
500  
200  
f = 60Hz  
IZ = 1mA  
5mA  
200  
100  
70  
50  
100  
50  
20mA  
20  
20  
10  
5
75°C  
10  
7
5
25°C  
0°C  
150°C  
2
1
2
1
1
2
3
5
7
10  
20  
30  
50 70 100  
0.4  
0.5  
0.6  
0.7  
V , FOR WARD VOLTAGE (VOLTS)  
F
0.8  
0.9  
1
1.1  
V
, ZENER VOLTAGE (VOLTS)  
Z
Figure 9. Effect of Zener Voltage on Zener Impedance  
Figure 10. Typical Forward Characteristics  
http://www.takcheong.com  
7
BZX79C2V4 through BZX79C200 Series  
20  
10  
T
= 25°C  
A
1
0.1  
0.01  
6
1
2
5
7
8
9
10  
11  
12  
13  
14  
15  
16  
3
4
V
, ZENER VOLTAGE (VOLTS)  
Z
Figure 1 1. Zener Voltage versus Zener Current - V = 1 thru 16 Volts  
Z
10  
T
= 25°C  
A
1
0.1  
0.01  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
, ZENER VOLTAGE (VOLTS)  
Z
Figure 12. Zener Voltage versus Zener Current - V = 15 thru 30 Volts  
Z
http://www.takcheong.com  
8
BZX79C2V4 through BZX79C200 Series  
10  
T
= 25°  
A
1
0.1  
0.01  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
V
, ZENER VOLTAGE (VOLTS)  
Z
Figure 13. Zener Voltage versus Zener Current - V = 30 thru 105 Volts  
Z
10  
1
0.1  
0.01  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
V
, ZENER VOLTAGE (VOLTS)  
Z
Figure 14. Zener Voltage versus Zener Current - V = 110 thru 220 Volts  
Z
http://www.takcheong.com  
9

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY