BSP3505DPP [TDK]

Consumer Circuit, CMOS, PDIP64, SHRINK, PLASTIC, DIP-64;
BSP3505DPP
型号: BSP3505DPP
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Consumer Circuit, CMOS, PDIP64, SHRINK, PLASTIC, DIP-64

光电二极管
文件: 总40页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
BSP 3505D  
Baseband  
Sound Processor  
MICRONAS  
Edition Oct. 21, 1998  
6251-481-1PD  
BSP 3505D  
PRELIMINARY DATA SHEET  
Contents  
Page  
Section  
Title  
4
4
4
4
1.  
Introduction  
1.1.  
1.2.  
1.3.  
BSP 3505D Integrated Functions  
Features of the DSP-Section  
Features of the Analog Section  
5
5
5
6
6
6
2.  
Architecture of the BSP 3505D  
Analog Section and SCART Switching Facilities  
Standby Mode  
2.1.  
2.1.1.  
2.2.  
2.3.  
2.4.  
BSP 3505DAudio Baseband Processing  
Clock and Crystal Specifications  
Digital Control Output Pins  
2
7
3.  
I C Bus Interface: Device and Subaddresses  
8
3.1.  
Protocol Description  
2
9
3.2.  
Proposal for BSP 3505D I C Telegrams  
9
3.2.1.  
3.2.2.  
3.2.3.  
3.2.4.  
3.3.  
Symbols  
9
Write Telegrams  
Read Telegrams  
Examples  
9
9
2
10  
Start Up Sequence: Power Up and I C-Controlling  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
16  
17  
17  
17  
17  
18  
18  
18  
19  
19  
19  
20  
20  
20  
20  
4.  
Programming the BSP 3505D  
Register ‘MODE_REG’  
4.1.  
4.2.  
DSP Write Registers: Table and Addresses  
DSP Read Registers: Table and Addresses  
DSP Write Registers: Functions and Values  
Volume Loudspeaker Channel  
Balance Loudspeaker Channel  
Bass Loudspeaker Channel  
Treble Loudspeaker Channel  
Loudness Loudspeaker Channel  
Spatial Effects Loudspeaker Channel  
Volume SCART1  
4.3.  
4.4.  
4.4.1.  
4.4.2.  
4.4.3.  
4.4.4.  
4.4.5.  
4.4.6.  
4.4.7.  
4.4.8.  
4.4.9.  
4.4.10.  
4.4.11.  
4.4.12.  
4.4.13.  
4.4.14.  
4.5.  
Channel Source Modes  
Channel Matrix Modes  
SCART Prescale  
Definition of Digital Control Output Pins  
Definition of SCART-Switching Facilities  
Beeper  
Automatic Volume Correction (AVC)  
DSP Read Registers: Functions and Values  
Quasi-Peak Detector  
4.5.1.  
4.5.2.  
4.5.3.  
4.5.4.  
4.5.5.  
BSP Hardware Version Code  
BSP Major Revision Code  
BSP Product Code  
BSP ROM Version Code  
2
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
Contents, continued  
Page  
Section  
Title  
21  
21  
23  
26  
30  
31  
31  
32  
34  
5.  
Specifications  
5.1.  
Outline Dimensions  
5.2.  
Pin Connections and Short Descriptions  
Pin Configurations  
5.3.  
5.4.  
Pin Circuits  
5.5.  
Electrical Characteristics  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Characteristics  
5.5.1.  
5.5.2.  
5.5.3.  
37  
40  
40  
6.  
7.  
8.  
Application Circuit  
Appendix A: BSP 3505D Version History  
Data Sheet History  
MICRONAS INTERMETALL  
3
BSP 3505D  
PRELIMINARY DATA SHEET  
Baseband Sound Processor  
1.2. Features of the DSP-Section  
– flexible selection of audio sources to be processed  
Release Notes: The hardware description in this  
document is valid for the BSP 3505D version A2.  
– digital baseband processing: volume, bass, treble,  
loudness, and spatial effects  
1. Introduction  
– simple controlling of volume, bass, treble, loudness,  
and spatial effects  
The BSP 3505D is designed as a single-chip Baseband  
Sound Processor for applications in analog and digital  
TV sets, video recorders, and satellite receivers.  
1.3. Features of the Analog Section  
– two selectable analog stereo audio baseband inputs  
(= two SCART inputs)  
input level: 2 V RMS,  
The IC is produced in submicron CMOS technology, and  
is fully pin and software compatible to the MSP 34xx  
family. The BSP 3505D is available in a PLCC68,  
PSDIP64, PSDIP52, PQFP80, and in a PQFP44 pack-  
age.  
input impedance: 25 k  
– one selectable analog mono input:  
input level: 2 V RMS,  
Note: The BSP 3505D version has reduced control reg-  
isters and less functional pins. The remaining registers  
are software compatible to the MSP 34xxD. The pinning  
is compatible to the MSP 34xxD.  
input impedance: 15 kΩ  
– stereo high-quality A/D converter, S/N-Ratio: 85 dB  
– 20 Hz to 20 kHz bandwidth for SCART-to-SCART-  
copy facilities  
– loudspeaker: stereo four-fold oversampled D/A-con-  
verter  
output level per channel: max. 1.4 VRMS  
output resistance: max. 5 kΩ  
S/N-ratio: 85 dB at maximum volume  
max. noise voltage in mute mode: 10 µV  
(BW: 20 Hz ...16 kHz)  
1.1. BSP 3505D Integrated Functions  
– Stereo baseband input via integrated A/D converters  
– Two stereo D/A converters  
– AVC: Automatic Volume Correction  
– Bass, treble, volume, loudness processing  
– Full SCART in/out matrix without restrictions  
– spatial effect (pseudostereo / basewidth enlargement)  
– Digital control output pins D_CTR_OUT0/1  
– Reduction of necessary controlling  
– stereo four-fold oversampled D/A converter supplying  
a stereo SCART-output  
output level per channel: max. 2 V RMS,  
output resistance: max. 0.5 k,  
S/N-Ratio: 85 dB (20 Hz...16 kHz)  
2
– Less external components  
2
I C  
2
2
Loudspeaker  
OUT  
MONO IN  
BSP 3505D  
2
2
SCART1 IN  
SCART2 IN  
SCART  
OUT  
Fig. 1–2: Main I/O Signals BSP 3505D  
FM/AM Mono  
SIF  
Loudspeaker  
Tuner  
VIF  
BSP 3505D  
2
2
2
SCART  
SCART1  
SCART2  
SCART1  
Output  
SCART  
Inputs  
Fig. 1–1: Typical BSP 3505D application  
4
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
SCART_IN  
2. Architecture of the BSP 3505D  
SC1_IN_L/R  
Fig. 2–2 shows a simplified block diagram of the IC. Its  
architecture is split into two main functional blocks:  
to Audio Baseband  
Processing (DSP_IN)  
SC2_IN_L/R  
A
D
1. DSP (digital signal processing) section performing  
audio baseband processing  
SCARTL/R  
2. analog section containing two A/D-converters,  
four D/A-converters, and SCART-switching facilities.  
MONO_IN  
S1  
2.1. Analog Section and SCART Switching Facilities  
intern. Sig-  
nal Lines  
SCART_OUT  
The analog input and output sections include full matrix  
switching facilities, which are shown in Fig. 2–1.  
Pins  
The switches are controlled by the ACB bits defined in  
the audio processing interface (see section 4. Program-  
ming the BSP 3505D).  
SC1_OUT_L/R  
from Audio Baseband  
Processing (DSP_OUT)  
D
SCART1_L/R  
A
S2  
2.1.1. Standby Mode  
Fig. 2–1: SCART-Switching Facilities (see 4.4.12.)  
positions show the default configuration after Power  
On Reset.  
If the BSP 3505D is switched off by first pulling STAND-  
BYQ low, and then disconnecting the 5 V, but keeping  
the 8 V power supply (‘Standby’-mode), the switches  
S1 and S2 (see Fig. 2–1) maintain their position and  
function. This facilitates the copying from selected  
SCART-inputs to SCART-output in the TV-set’s standby  
mode.  
Note: SCART_OUT is undefined after RESET!  
In case of power-on start or starting from standby, the IC  
switches automatically to the default configuration,  
shown in Fig. 2–1. This action takes place after the first  
2
I C transmission into the DSP part. By transmitting the  
ACB register first, the individual default setting mode of  
the TV set can be defined.  
XTAL_OUT  
XTAL_IN  
Clock  
D_CTR_OUT0/1  
DSP  
LOUD-  
SPEAKER L  
DACM_L  
D/A  
Loudspeaker  
DACM_R  
LOUD-  
SPEAKER R  
D/A  
Mono  
MONO_IN  
SC1_IN_L  
A/D  
A/D  
D/A  
D/A  
SC1_OUT_L  
SCARTL  
SCARTR  
SCART1_L  
SCART1_R  
SCART1  
SCART  
SC1_OUT_R  
SC1_IN_R  
SC2_IN_L  
SCART2  
SCART Switching Facilities  
SC2_IN_R  
Fig. 2–2: Architecture of the BSP 3505D  
MICRONAS INTERMETALL  
5
BSP 3505D  
PRELIMINARY DATA SHEET  
2.2. BSP 3505D Audio Baseband Processing  
All audio baseband functions are performed by digital  
signal processing (DSP). The DSP functions are  
grouped into three processing parts: input preproces-  
sing, channel source selection, and channel postpro-  
cessing (see Fig. 2–3).  
The input preprocessing is intended to form a standard-  
ized signal level.  
All input and output signals can be processed simulta-  
neously.  
2.3. Clock and Crystal Specifications  
Remark on using the crystal: External capacitors at  
each crystal pin to ground are required. The higher the  
capacitors, the lower the clock frequency results.  
The nominal free running frequency should match the  
center of the tolerance range between 18.433 and  
18.431 MHz as closely as possible.  
2.4. Digital Control Output Pins  
The static level of two output pins of the BSP 3505D  
(D_CTR_OUT0/1) is switchable between HIGH and  
2
LOW by means of the I C-bus. This enables the control-  
ling of external hardware controlled switches or other  
2
devices via I C-bus (see section 4.4.11.)  
SCARTL  
SCARTR  
Loudspeaker L  
Volume  
SCART  
Loudspeaker  
Channel  
Matrix  
Analog  
Inputs  
Bass  
Treble  
Loudspeaker  
Outputs  
ȍ
Loudness  
AVC  
Prescale  
Balance  
Loudspeaker R  
Beeper  
SCART1_L  
SCART1_R  
Volume  
SCART1  
Channel  
Matrix  
SCART  
Output  
Quasi peak readout L  
Quasi peak readout R  
Quasi-Peak  
Detector  
SCART  
Internal signal lines (see Fig. 2–1)  
Fig. 2–3: Audio Baseband Processing (DSP-Firmware)  
6
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
2
3. I C Bus Interface: Device and Subaddresses  
Due to the internal architecture of the BSP 3505D the IC  
cannot react immediately to an I C request. The typical  
2
Asaslavereceiver, theBSP3505Dcanbecontrolledvia  
I C bus. Access to internal memory locations is  
achieved by subaddressing. The DSP processor part  
has its own subaddressing register bank.  
response time is about 0.3 ms for the DSP processor  
part. If the receiver (BSP) can’t receive another com-  
plete byte of data until it has performed some other func-  
tion; for example, servicing an internal interrupt, it can  
2
2
hold the clock line I C_CL LOW to force the transmitter  
In order to allow for more BSP or MSP ICs to be con-  
nected to the control bus, an ADR_SEL pin has been im-  
plemented. With ADR_SEL pulled to high, low, or left  
open, the BSP 3505D responds to changed device ad-  
dresses. Thus, three identical devices can be selected.  
into a wait state. The positions within a transmission  
where this may happen are indicated by ’Wait’ in section  
3.1. ThemaximumWait-periodoftheBSPduringnormal  
operation mode is less than 1 ms.  
2
I C-Bus conditions caused by BSP hardware problems:  
By means of the RESET bit in the CONTROL register,  
all devices with the same device address are reset.  
In case of any internal error, the BSPs wait-period is ex-  
tended to 1.8 ms. Afterwards, the BSP does not ac-  
knowledge (NAK) the device address. The data line will  
be left HIGH by the BSP and the clock line will be re-  
leased. The master can then generate a STOPcondition  
to abort the transfer.  
The IC is selected by asserting a special device address  
2
in the address part of an I C transmission. A device ad-  
dress pair is defined as a write address (80, 84, or 88  
)
hex  
and a read address (81, 85, or 89 ). Writing is done by  
hex  
sending the device write address first, followed by the  
subaddress byte, two address bytes, and two data by-  
tes. Reading is done by sending the device write ad-  
dress, followed by the subaddress byte and two address  
bytes. Without sending a stop condition, reading of the  
addresseddataiscompletedbysendingthedeviceread  
By means of NAK, the master is able to recognize the er-  
ror state and to reset the IC via I C-Bus. While transmit-  
ting the reset protocol (s. 5.2.4.) to ‘CONTROL’, the  
master must ignore the not acknowledge bits (NAK) of  
the BSP.  
2
2
address (81, 85, or 89 ) and reading two bytes of data.  
A general timing diagram of the I C Bus is shown in  
hex  
Fig. 3–2.  
2
Refer to Fig. 3–1: I C Bus Protocol and section 3.2. Pro-  
2
posal for BSP 3505D I C Telegrams.  
2
Table 3–1: I C Bus Device Addresses  
ADR_SEL  
Low  
High  
Left Open  
Read  
89  
Mode  
Write  
80  
Read  
81  
Write  
84  
Read  
85  
Write  
88  
BSP device address  
hex  
hex  
hex  
hex  
hex  
hex  
2
Table 3–2: I C Bus Subaddresses  
Name  
Binary Value  
Hex Value  
Mode  
Function  
CONTROL  
TEST  
0000 0000  
0000 0001  
0001 0010  
0001 0011  
00  
01  
12  
13  
Write  
Write  
Write  
Write  
software reset  
only for internal use  
write address DSP  
read address DSP  
WR_DSP  
RD_DSP  
MICRONAS INTERMETALL  
7
BSP 3505D  
PRELIMINARY DATA SHEET  
Table 3–3: Control Register (Subaddress: 00  
)
hex  
Name  
Subaddress  
00  
MSB  
14  
13..1  
LSB  
CONTROL  
1 : RESET  
0 : normal  
0
0
0
hex  
3.1. Protocol Description  
Write to DSP  
S
write  
device  
address  
Wait ACK  
sub-addr  
ACK  
addr-byte  
high  
ACK addr-byte low ACK data-byte high ACK data-byte low ACK  
P
Read from DSP  
S
write  
device  
address  
Wait ACK sub-addr ACK addr-byte ACK addr-byte ACK  
high low  
S
read  
device  
address  
Wait ACK data-byte ACK data-byte NAK  
high low  
P
Write to Control or Test Registers  
S
write  
device  
address  
Wait ACK  
sub-addr  
ACK  
data-byte high  
ACK  
data-byte low  
ACK  
P
2
Note: S =  
I C-Bus Start Condition from master  
2
P =  
I C-Bus Stop Condition from master  
2
ACK = Acknowledge-Bit: LOW on I C_DA from slave (=BSP, gray)  
or master (=CCU, hatched)  
2
NAK = Not Acknowledge-Bit: HIGH on I C_DA from master (=CCU, hatched) to indicate ‘End of Read’  
or from BSP indicating internal error state  
2
Wait = I C-Clock line held low by the slave (=BSP) while interrupt is serviced (<1.8 ms)  
1
0
2
I C_DA  
S
P
2
I C_CL  
2
Fig. 3–1: I C bus protocol  
(MSB first; data must be stable while clock is high)  
(Data: MSB first)  
8
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
F
I2C  
T
T
I2C3  
I2C4  
2
I C_CL  
T
T
T
T
I2C2  
I2C1  
I2C5  
I2C6  
2
I C_DA as input  
T
T
I2COL1  
I2COL2  
2
I C_DA as output  
2
Fig. 3–2: I C bus timing diagram  
2
3.2. Proposal for BSP 3505D I C Telegrams  
3.2.1. Symbols  
daw write device address  
dar read device address  
<
>
aa  
dd  
Start Condition  
Stop Condition  
Address Byte  
Data Byte  
3.2.2. Write Telegrams  
<daw 00 d0 00>  
write to CONTROL register  
write data into DSP  
<daw 12 aa aa dd dd>  
3.2.3. Read Telegrams  
<daw 13 aa aa <dar dd dd> read data from DSP  
3.2.4. Examples  
<80 00 80 00>  
RESET BSP statically  
clear RESET  
<80 00 00 00>  
<80 12 00 08 02 20>  
set loudspeaker channel source  
to SCART, stereo  
MICRONAS INTERMETALL  
9
BSP 3505D  
PRELIMINARY DATA SHEET  
2
3.3. Start Up Sequence: Power Up and I C-Controlling  
After power on or RESET (see Fig. 3–3), the IC is in an  
inactive state. The CCU has to transmit the required co-  
2
efficient set for a given operation via the I C bus. Initial-  
ization must start with the MODE Register.  
The reset pin should not be >0.45*DVSUP (see recom-  
mended conditions) before the 5 Volt digital power sup-  
ply (DVSUP) and the analog power supply (AVSUP) are  
>4.75 Volt AND the BSP clock is running. (Delay: 0.5 ms  
typ, 2 ms max)  
This means, if the reset low–high edge starts with a  
delay of 2 ms after DVSUP and AVSUP >4,75 Volt, even  
under worst case conditions, the reset is ok.  
DVSUP/V  
AVSUP/V  
4.75  
time / ms  
time / ms  
time / ms  
Oscillator  
max. 2  
RESETQ  
min. 2  
0.45 * DVSUP  
Note: The reset should  
not reach high level be-  
fore the oscillator has  
started. This requires a  
reset delay of >2 ms  
Fig. 3–3: Power-up sequence  
10  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
4. Programming the BSP 3505D  
4.1. Register ‘MODE_REG’  
The register ‘MODE_REG’ contains the control bits de-  
termining the operation mode of the BSP 3505D;  
Table 4–1 explains all bit positions.  
Table 4–1: Control word ‘MODE_REG’: All bits are “0” after power-on-reset  
Register  
Protocol  
Write Address (hex)  
Function  
MODE_REG  
long  
0083  
mode register  
Bit  
[0]  
[1]  
Function  
not used  
Comment  
Definition  
must be 0  
DCTR_TRI  
Digital_Control_Output tristate  
0 : active  
1 : tristate  
[2]  
not used  
not used  
not used  
not used  
not used  
must be 1  
must be 0  
must be 1  
must be 0  
must be 0  
[3–4]  
[5]  
[6–9]  
[10–15]  
MICRONAS INTERMETALL  
11  
BSP 3505D  
PRELIMINARY DATA SHEET  
4.2. DSP Write Registers: Table and Addresses  
Table 4–2: DSP Write Registers; Subaddress: 12 ; if necessary these registers are readable as well.  
hex  
DSP Write Register  
Address High/ Adjustable Range, Operational Modes  
Low  
Reset Mode  
Volume loudspeaker channel  
Volume / Clipping Mode loudspeaker  
Balance loudspeaker channel [L/R]  
Balance Mode loudspeaker  
0000hex  
H
L
[+12 dB ... –114 dB, MUTE]  
1/8 dB Steps / Reduce Vol., Tone, Comprom.  
[0..100 / 100 % and vv][–127..0 / 0 dB and vv]  
[Linear mode / logarithmic mode]  
[+12 dB ... –12 dB]  
MUTE  
00hex  
100%/100%  
0001hex  
H
L
linear mode  
0 dB  
Bass loudspeaker channel  
0002hex  
0003hex  
0004hex  
H
H
H
L
Treble loudspeaker channel  
Loudness loudspeaker channel  
Loudness Filter Characteristic  
[+12 dB ... –12 dB]  
0 dB  
[0 dB ... +17 dB]  
0 dB  
[NORMAL, SUPER_BASS]  
[–100%...OFF...+100%]  
NORMAL  
OFF  
Spatial effect strength loudspeaker ch. 0005hex  
Spatial effect mode/customize  
H
L
[SBE, SBE+PSE]  
SBE+PSE  
00hex  
Volume SCART1 channel  
Volume / Mode SCART1 channel  
Loudspeaker channel source  
Loudspeaker channel matrix  
SCART1 channel source  
SCART1 channel matrix  
Quasi-peak detector source  
Quasi-peak detector matrix  
Prescale SCART  
0007hex  
0008hex  
000Ahex  
000Chex  
H
L
[00hex ... 7Fhex],[+12 dB ... –114 dB, MUTE]  
[Linear mode / logarithmic mode]  
[SCART]  
linear mode  
FM/AM  
SOUNDA  
FM/AM  
SOUNDA  
FM/AM  
SOUNDA  
00hex  
H
L
[SOUNDA, SOUNDB, STEREO, MONO]  
[SCART]  
H
L
[SOUNDA, SOUNDB, STEREO, MONO]  
[SCART]  
H
L
[SOUNDA, SOUNDB, STEREO, MONO]  
000Dhex  
0013hex  
H
H/L  
[00hex ... 7Fhex  
Bits [15..0]  
]
ACB Register (SCART Switching  
Facilities)  
00hex  
Beeper  
0014hex  
0029hex  
H/L  
H
[00hex ... 7Fhex]/[00hex ... 7Fhex  
[off, on, decay time]  
]
0/0  
off  
Automatic Volume Correction  
4.3. DSP Read Registers: Table and Addresses  
Table 4–3: DSP Read Registers; Subaddress: 13  
hex  
DSP Read Register  
Address  
0019  
High/Low  
H&L  
H&L  
Output Range  
Quasi peak readout left  
Quasi peak readout right  
[00  
[00  
... 7FFF  
... 7FFF  
]
]
16 bit two’s complement  
16 bit two’s complement  
hex  
hex  
hex  
hex  
hex  
001A  
hex  
12  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
4.4. DSP Write Registers: Functions and Values  
The BSP 3505D loudspeaker volume function is divided  
up in a digital and an analog section.  
Write registers are 16 bit wide, whereby the MSB is de-  
2
noted bit [15]. Transmissions via I C bus have to take  
With Fast Mute, volume is reduced to mute position by  
digital volume only. Analog volume is not changed. This  
reduces any audible DC plops. Going back from Fast  
Mute should be done to the volume step before Fast  
Mute was activated.  
place in 16-bit words. Some of the defined 16-bit words  
are divided into low [7..0] and high [15..8] byte, or in an  
other manner, thus holding two different control entities.  
All write registers are readable. Unused parts of the  
16-bitregistersmustbezero. Addressesnotgiveninthis  
table must not be written at any time!  
Clipping Mode  
Loudspeaker  
0000  
[3..0]  
hex  
4.4.1. Volume Loudspeaker Channel  
Reduce Volume  
0000  
RESET  
0
hex  
Volume  
0000  
[15..4]  
hex  
Loudspeaker  
Reduce Tone Control  
Compromise Mode  
0001  
1
2
hex  
+12 dB  
0111 1111 0000 7F0  
hex  
0010  
hex  
+11.875 dB  
0111 1110 1110 7EE  
hex  
If the clipping mode is set to “Reduce Volume”, the fol-  
lowing clipping procedure is used: To prevent severe  
clipping effects with bass or treble boosts, the internal  
volume is automatically limited to a level where, in com-  
bination with either bass or treble setting, the amplifica-  
tion does not exceed 12 dB.  
+0.125 dB  
0 dB  
0111 0011 0010 732  
0111 0011 0000 730  
hex  
hex  
–0.125 dB  
0111 0010 1110 72E  
hex  
–113.875 dB  
–114 dB  
Mute  
0000 0001 0010 012  
0000 0001 0000 010  
hex  
hex  
hex  
If the clipping mode is “Reduce Tone Control”, the bass  
or treble value is reduced if amplification exceeds 12 dB.  
0000 0000 0000 000  
RESET  
If the clipping mode is “Compromise Mode”, the bass or  
treble value and volume are reduced half and half if am-  
plification exceeds 12 dB.  
Fast Mute  
1111 1111 1110 FFE  
hex  
The highest given positive 8-bit number (7F ) yields in  
hex  
Example:  
Vol.:  
+6 dB  
Bass:  
+9 dB  
Treble:  
+5 dB  
a maximum possible gain of 12 dB. Decreasing the vol-  
ume register by 1 LSB decreases the volume by 1 dB.  
Volume settings lower than the given minimum mute the  
output. With large scale input signals, positive volume  
settings may lead to signal clipping.  
Red. Volume  
Red. Tone Con.  
Compromise  
3
9
5
5
5
6
6
4.5  
7.5  
MICRONAS INTERMETALL  
13  
BSP 3505D  
PRELIMINARY DATA SHEET  
4.4.2. Balance Loudspeaker Channel  
4.4.3. Bass Loudspeaker Channel  
Positivebalance settings reduce the left channel without  
affecting the right channel; negative settings reduce the  
right channel leaving the left channel unaffected. In lin-  
ear mode, a step by 1 LSB decreases or increases the  
balance by about 0.8% (exact figure: 100/127). In loga-  
rithmic mode, a step by 1 LSB decreases or increases  
the balance by 1 dB.  
Bass Loudspeaker  
+20 dB  
0002  
H
hex  
0111 1111  
0111 1000  
0111 0000  
0110 1000  
0110 0000  
0101 1000  
7F  
78  
70  
68  
60  
58  
hex  
hex  
hex  
hex  
hex  
hex  
+18 dB  
+16 dB  
+14 dB  
Balance Mode  
Loudspeaker  
0001  
[3..0]  
hex  
+12 dB  
+11 dB  
linear  
0000  
RESET  
0
1
hex  
+1 dB  
0000 1000  
0000 0001  
08  
hex  
logarithmic  
0001  
hex  
+1/8 dB  
0 dB  
01  
00  
hex  
0000 0000  
RESET  
hex  
Linear Mode  
–1/8 dB  
–1 dB  
1111 1111  
1111 1000  
FF  
F8  
hex  
Balance Loudspeaker  
Channel [L/R]  
0001  
H
hex  
hex  
Left muted, Right 100%  
Left 0.8%, Right 100%  
0111 1111  
0111 1110  
7F  
7E  
hex  
–11 dB  
–12 dB  
1010 1000  
1010 0000  
A8  
A0  
hex  
hex  
hex  
Left 99.2%, Right 100%  
Left 100%, Right 100%  
0000 0001  
01  
00  
hex  
With positive bass settings, internal overflow may occur  
even with overall volume less than 0 dB. This will lead to  
a clipped output signal. Therefore, it is not recom-  
mended to set bass to a value that, in conjunction with  
volume, would result in an overall positive gain.  
0000 0000  
RESET  
hex  
Left 100%, Right 99.2%  
1111 1111  
FF  
hex  
Left 100%, Right 0.8%  
Left 100%, Right muted  
1000 0010  
1000 0001  
82  
81  
hex  
hex  
Logarithmic Mode  
Balance Loudspeaker  
Channel [L/R]  
0001  
H
hex  
Left –127 dB, Right 0 dB  
Left –126 dB, Right 0 dB  
0111 1111  
0111 1110  
7F  
hex  
hex  
7E  
Left –1 dB, Right 0 dB  
Left 0 dB, Right 0 dB  
0000 0001  
01  
00  
hex  
0000 0000  
RESET  
hex  
Left 0 dB, Right –1 dB  
1111 1111  
FF  
hex  
Left 0 dB, Right –127 dB  
Left 0 dB, Right –128 dB  
1000 0001  
1000 0000  
81  
80  
hex  
hex  
14  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
4.4.4. Treble Loudspeaker Channel  
4.4.5. Loudness Loudspeaker Channel  
Treble Loudspeaker  
+15 dB  
0003  
H
Loudness  
Loudspeaker  
0004  
H
hex  
hex  
0111 1000  
0111 0000  
78  
70  
hex  
+17 dB  
+16 dB  
0100 0100  
0100 0000  
44  
40  
hex  
+14 dB  
hex  
hex  
+1 dB  
0000 1000  
0000 0001  
08  
hex  
+1 dB  
0 dB  
0000 0100  
04  
00  
hex  
+1/8 dB  
0 dB  
01  
00  
hex  
0000 0000  
RESET  
hex  
0000 0000  
RESET  
hex  
–1/8 dB  
–1 dB  
1111 1111  
1111 1000  
FF  
F8  
hex  
Mode Loudness  
Loudspeaker  
0004  
L
hex  
hex  
–11 dB  
–12 dB  
1010 1000  
1010 0000  
A8  
A0  
Normal (constant  
volume at 1 kHz)  
0000 0000  
RESET  
00  
04  
hex  
hex  
hex  
Super Bass (constant  
volume at 2 kHz)  
0000 0100  
hex  
Withpositivetreblesettings, internaloverflowmayoccur  
even with overall volume less than 0 dB. This will lead to  
a clipped output signal. Therefore, it is not recom-  
mended to set treble to a value that, in conjunction with  
volume, would result in an overall positive gain.  
Loudnessincreasesthevolumeoflowandhighfrequen-  
cy signals, while keeping the amplitude of the 1 kHz ref-  
erence frequency constant. The intended loudness has  
to be set according to the actual volume setting. Be-  
cause loudness introduces gain, it is not recommended  
to set loudness to a value that, in conjunction with vol-  
ume, would result in an overall positive gain.  
By means of ‘Mode Loudness’, the corner frequency for  
bass amplification can be set to two different values. In  
Super Bass mode, the corner frequency is shifted up.  
The point of constant volume is shifted from 1 kHz to  
2 kHz.  
MICRONAS INTERMETALL  
15  
BSP 3505D  
PRELIMINARY DATA SHEET  
4.4.6. Spatial Effects Loudspeaker Channel  
There are several spatial effect modes available:  
Mode A (low byte = 00 ) is compatible to the formerly  
hex  
Spatial Effect Strength  
Loudspeaker  
0005  
H
hex  
used spatial effect. Here, the kind of spatial effect de-  
pends on the source mode. If the incoming signal is in  
mono mode, Pseudo Stereo Effect is active; for stereo  
signals, Pseudo Stereo Effect and Stereo Basewidth  
Enlargement is effective. The strength of the effect is  
controllable by the upper byte. A negative value reduces  
the stereo image. A rather strong spatial effect is recom-  
mended for small TV sets where loudspeaker spacing is  
rather close. For large screen TV sets, a more moderate  
spatial effect is recommended. In mode A, even in case  
of stereo input signals, Pseudo Stereo Effect is active,  
which reduces the center image.  
Enlargement 100%  
Enlargement 50%  
0111 1111  
0011 1111  
7F  
3F  
hex  
hex  
Enlargement 1.5%  
Effect off  
0000 0001  
01  
00  
hex  
0000 0000  
RESET  
hex  
Reduction 1.5%  
Reduction 50%  
Reduction 100%  
1111 1111  
1100 0000  
1000 0000  
FF  
C0  
hex  
hex  
hex  
In Mode B, only Stereo Basewidth Enlargement is effec-  
tive. For mono input signals, the Pseudo Stereo Effect  
has to be switched on.  
80  
It is worth mentioning, that all spatial effects affect ampli-  
tude and phase response. With the lower 4 bits, the fre-  
Spatial Effect Mode  
Loudspeaker  
0005  
[7..4]  
hex  
quency response can be customized. A value of 0000  
bin  
yields a flat response for center signals (L = R) but a high  
pass function of L or R only signals. A value of 0110  
bin  
Stereo Basewidth En-  
largement (SBE) and  
Pseudo Stereo Effect  
(PSE). (Mode A)  
0000  
RESET  
0000  
0
0
hex  
has a flat response for L or R only signals but a lowpass  
function for center signals. By using 1000 , the fre-  
bin  
hex  
quency response is automatically adapted to the sound  
material by choosing an optimal high pass gain.  
Stereo Basewidth En-  
largement (SBE) only.  
(Mode B)  
0010  
2
hex  
Spatial Effect Cus-  
tomize Coefficient  
Loudspeaker  
0005  
[3..0]  
hex  
max high pass gain  
0000  
0
hex  
RESET  
0010  
0100  
0110  
2/3 high pass gain  
1/3 high pass gain  
min high pass gain  
automatic  
2
hex  
4
hex  
6
hex  
8
hex  
1000  
16  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
4.4.7. Volume SCART1  
4.4.8. Channel Source Modes  
Volume Mode SCART1  
0007  
[3..0]  
Loudspeaker Source  
SCART1 Source  
0008  
H
H
H
hex  
hex  
linear  
0000  
RESET  
0
hex  
000A  
hex  
Quasi-Peak  
Detector Source  
000C  
hex  
logarithmic  
0001  
1
hex  
NONE  
0000 0000  
RESET  
00  
(MSP3410: FM)  
hex  
Linear Mode  
Volume SCART1  
OFF  
NONE (MSP3410: NICAM)  
0000 0001  
0000 0010  
01  
02  
hex  
0007  
H
hex  
SCART  
hex  
0000 0000  
RESET  
00  
hex  
hex  
4.4.9. Channel Matrix Modes  
0 dB gain  
0100 0000  
40  
(digital full scale (FS)  
Loudspeaker Matrix  
SCART1 Matrix  
0008  
L
L
L
to 2 V  
output)  
hex  
RMS  
000A  
+6 dB gain (–6 dBFS  
to 2 V output)  
0111 1111  
7F  
hex  
hex  
RMS  
Quasi-Peak  
000C  
hex  
Detector Matrix  
SOUNDA / LEFT  
0000 0000  
RESET  
00  
hex  
Logarithmic Mode  
Volume SCART1  
+12 dB  
0007  
[15..4]  
hex  
SOUNDB / RIGHT  
STEREO  
0001 0000  
0010 0000  
0011 0000  
10  
20  
30  
hex  
hex  
hex  
0111 1111 0000 7F0  
hex  
+11.875 dB  
0111 1110 1110 7EE  
hex  
MONO  
+0.125 dB  
0 dB  
0111 0011 0010 732  
0111 0011 0000 730  
hex  
4.4.10. SCART Prescale  
hex  
–0.125 dB  
0111 0010 1110 72E  
hex  
Volume Prescale  
SCART  
000D  
H
hex  
–113.875 dB  
–114 dB  
Mute  
0000 0001 0010 012  
0000 0001 0000 010  
hex  
hex  
hex  
OFF  
0000 0000  
RESET  
00  
19  
7F  
hex  
hex  
hex  
0000 0000 0000 000  
RESET  
0 dB gain (2 V  
in-  
0001 1001  
RMS  
put to digital full scale)  
+14 dB gain  
0111 1111  
(400 mV  
input to  
RMS  
digital full scale)  
MICRONAS INTERMETALL  
17  
BSP 3505D  
PRELIMINARY DATA SHEET  
4.4.11. Definition of Digital Control Output Pins  
4.4.13. Beeper  
ACB Register  
0013  
[15..14]  
Beeper Volume  
0014  
H
hex  
hex  
D_CTR_OUT0  
OFF  
0000 0000  
RESET  
00  
hex  
low  
(RESET)  
x0  
x1  
high  
Maximum Volume (full  
digital scale FDS)  
0111 1111  
7F  
hex  
D_CTR_OUT1  
low  
high  
(RESET)  
0x  
1x  
Beeper Frequency  
16 Hz (lowest)  
1 kHz  
0014  
L
hex  
0000 0001  
0100 0000  
1111 1111  
01  
40  
hex  
hex  
4.4.12. Definition of SCART-Switching Facilities  
4 kHz (highest)  
FF  
hex  
ACB Register  
0013  
[13..0]  
hex  
DSP IN  
A squarewave beeper can be added to the loudspeaker  
channel. The addition point is just before volume adjust-  
ment.  
Selection of Source:  
* SC1_IN_L/R  
MONO_IN  
SC2_IN_L/R  
Mute  
xx xx00 xx00 0000  
xx xx01 xx00 0000  
xx xx10 xx00 0000  
xx xx11 xx10 0000  
SC1_OUT_L/R  
Selection of Source:  
SC2_IN_L/R  
MONO_IN  
SCART1 via D/A  
SC1_IN_L/R  
Mute  
xx 01xx x0x0 0000  
xx 10xx x0x0 0000  
xx 11xx x0x0 0000  
xx 01xx x1x0 0000  
xx 11xx x1x0 0000  
* = RESET position, which becomes active at the  
time of the first write transmission on the control  
bus to the audio processing part (DSP). By writing  
to the ACB register first, the RESET state can be  
redefined.  
Note: After RESET, SC1_OUT_L/R is undefined!  
Note: If “MONO_IN” is selected at the DSP_IN selec-  
tion, the channel matrix mode of the corresponding out-  
put channel(s) must be set to “sound A”.  
18  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
4.4.14. Automatic Volume Correction (AVC)  
To reset the internal variables, the AVC should be  
switched off and on during any channel or source  
change. For standard applications, the recommended  
decay time is 4 sec.  
AVC  
on/off  
0029  
[15.12]  
hex  
AVC  
off and Reset  
of int. variables  
0000  
RESET  
0
hex  
Note: AVC should not be used in any Dolby Prologic  
mode, except PANORAMA, where no other than the  
loudspeaker output is active.  
AVC  
on  
1000  
8
hex  
AVC  
Decay Time  
0029  
[11..8]  
hex  
4.5. DSP Read Registers: Functions and Values  
8 sec (long)  
1000  
0100  
0010  
0001  
8
hex  
4
hex  
2
hex  
1
hex  
4 sec (middle)  
2 sec (short)  
20 ms (very short)  
All readable registers are 16-bit wide. Transmissions via  
2
I C bus have to take place in 16-bit words. Single data  
entries are 8 bit. Some of the defined 16-bit words are  
divided into low and high byte, thus holding two different  
control entities.  
Different sound sources fairly often do not have the  
same volume level. Advertisement during movies, as  
well, usually has a different (higher) volume level than  
the movie itself. The Automatic Volume Correction  
(AVC) solves this problem and equalizes the volume lev-  
els.  
These registers are not writeable.  
4.5.1. Quasi-Peak Detector  
Quasi-Peak  
Readout Left  
0019  
H+L  
H+L  
]
hex  
The absolute value of the incoming signal is fed into a  
filter with 16 ms attack time and selectable decay time.  
The decay time must be adjusted as shown in the table  
above. This attack/decay filter block works similar to a  
peak hold function. The volume correction value with its  
quasi continuous step width is calculated using the at-  
tack/decay filter output.  
Quasi-Peak  
Readout Right  
001A  
hex  
Quasi peak readout  
[0  
hex  
... 7FFF  
hex  
values are 16 bit two’s  
complement  
The Automatic Volume Correction works with an internal  
reference level of –18 dBFS. This means, input signals  
with a volume level of –18 dBFS will not be affected by  
the AVC. If the input signals vary in a range of –24 dB to  
0 dB, the AVC compensates this.  
The quasi peak readout register can be used to read out  
the quasi peak level of any input source, in order to ad-  
just all inputs to the same normal listening level. The re-  
fresh rate is 32 kHz. The feature is based on a filter time  
constant:  
Example: A static input signal of 1 kHz on Scart has an  
output level as shown in the table below.  
attack-time: 1.3 ms  
decay-time: 37 ms  
Scart Input  
0 dbr = 2 Vrms  
Volume  
Correc-  
tion  
Main Output  
0 dBr = 1.4 Vrms  
0 dBr  
–18 dB  
–12 dB  
–6 dB  
–18 dBr  
–18 dBr  
–18 dBr  
–18 dBr  
–18 dBr  
–24 dBr  
–6 dBr  
–12 dBr  
–18 dBr  
–24 dBr  
–30 dBr  
–0 dB  
+ 6 dB  
+ 6 dB  
Loudspeaker Volume = 73  
= 0 dBFS  
hex  
Scart Prescale = 20  
i.e. 2.0 Vrms = 0 dBFS  
hex  
MICRONAS INTERMETALL  
19  
BSP 3505D  
PRELIMINARY DATA SHEET  
4.5.2. BSP Hardware Version Code  
Hardware Version  
Hardware Version  
BSP 3505D – A2  
001E  
H
hex  
[00  
... FF  
]
hex  
hex  
01  
hex  
A change in the hardware version code defines hard-  
ware optimizations that may have influence on the chip’s  
behavior. The readout of this register is identical to the  
hardware version code in the chip’s imprint.  
4.5.3. BSP Major Revision Code  
Major Revision  
001E  
L
hex  
BSP 3505D  
04  
hex  
4.5.4. BSP Product Code  
Product  
001F  
H
hex  
BSP 3505D  
05  
hex  
4.5.5. BSP ROM Version Code  
ROM Version  
001F  
L
hex  
Major software revision  
BSP 3505D – A2  
[00  
... FF  
]
hex  
hex  
02  
hex  
A change in the ROM version code defines internal soft-  
ware optimizations, that may have influence on the  
chip’s behavior, e.g. new features may have been in-  
cluded. Whileasoftwarechangeisintendedtocreateno  
compatibility problems, customers that want to use the  
new functions can identify new BSP 3505D versions ac-  
cording to this number.  
20  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
5. Specifications  
5.1. Outline Dimensions  
±0.1  
±0.1  
16 x 1.27  
= 20.32  
1.1 x 45 °  
±0.1  
1.27  
1.2 x 45°  
9
1
61  
10  
60  
1.6  
2
2
9
15  
9
26  
44  
1.9  
4.05  
27  
43  
0.1  
±0.1  
24.22  
± 0.125  
25.125  
±0.15  
4.75  
SPGS7004-3/5E  
Fig. 5–1:  
68-Pin Plastic Leaded Chip Carrier Package  
(PLCC68)  
Weight approximately 4.8 g  
Dimensions in mm  
SPGS0016-4/3E  
SPGS0015-1/2E  
64  
1
33  
32  
52  
27  
26  
1
±0.1  
19.3  
±0.1  
15.6  
±0.1  
±0.1  
18  
57.7  
±0.1  
±0.1  
14  
47  
±0.06  
0.27  
±0.06  
0.27  
0°...15°  
±0.5  
±0.1  
20.1  
1
±0.1  
1
0.457  
0.457  
±0.05  
1.778  
31 x 1.778 = 55.118  
±0.05  
1.778  
±0.1  
±0.1  
1.29  
25 x 1.778 = 44.47  
Fig. 5–2:  
Fig. 5–3:  
64-Pin Plastic Shrink Dual Inline Package  
(PSDIP64)  
52-Pin Plastic Shrink Dual In Line Package  
(PSDIP52)  
Weight approximately 9.0 g  
Dimensions in mm  
Weight approximately 5.5 g  
Dimensions in mm  
MICRONAS INTERMETALL  
21  
BSP 3505D  
PRELIMINARY DATA SHEET  
23 x 0.8 = 18.4  
0.8  
±0.03  
0.17  
64  
41  
40  
65  
8
8
1.8  
1.8  
10.3  
9.8  
5
16  
25  
80  
1.28  
1
24  
2.70  
23.2  
20  
0.1  
±0.2  
3
SPGS0025-1/1E  
Fig. 5–4:  
80-Pin Plastic Quad Flat Package  
(PQFP80)  
Weight approximately 1.6 g  
Dimensions in mm  
10 x 0.8 = 8  
0.8  
0.18  
33  
23  
34  
22  
12  
3.0  
1.3  
44  
1
11  
2.0  
2.15  
1.75  
13.2  
10  
0.1  
SPGS0006-1/1E  
Fig. 5–5:  
44-Pin Plastic Quad Flat Package  
(PQFP44)  
Weight approx. 0.4 g  
Dimensions in mm  
22  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
5.2. Pin Connections and Short Descriptions  
NC = not connected; leave vacant  
LV = if not used, leave vacant  
X = obligatory; connect as described in circuit diagram  
AHVSS: connect to AHVSS  
DVSS: if not used, connect to DVSS  
Pin No.  
Pin Name  
Type  
Connection  
(if not used)  
Short Description  
PLCC  
68-pin  
PSDIP  
64-pin  
PSDIP  
52-pin  
PQFP  
80-pin  
PQFP  
44-pin  
1
16  
14  
9
TP  
OUT  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
X
Test pin  
2
NC  
Not connected  
Test pin  
3
15  
14  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
8
TP  
OUT  
4
7
17  
16  
15  
14  
13  
12  
TP  
IN  
Test pin  
5
6
TP  
OUT  
Test pin  
6
5
TP  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
Test pin  
7
4
TP  
Test pin  
8
8
3
I2C_DA  
I2C_CL  
NC  
I2C data  
9
7
2
X
I2C clock  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
8
1
LV  
X
Not connected  
Standby (low-active)  
I2C Bus address select  
Digital control output 0  
Digital control output 1  
Not connected  
Not connected  
Not connected  
Not connected  
Test pin  
7
6
80  
79  
78  
77  
76  
75  
11  
10  
9
STANDBYQ  
ADR_SEL  
D_CTR_OUT0  
D_CTR_OUT1  
NC  
IN  
6
5
IN  
X
5
4
OUT  
OUT  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
X
4
3
8
3
2
NC  
NC  
1
2
74  
73  
72  
71  
70  
69  
68  
67  
66  
NC  
64  
63  
62  
61  
60  
59  
58  
57  
1
7
TP  
52  
51  
50  
49  
48  
47  
46  
6
XTAL_OUT  
XTAL_IN  
TESTEN  
NC  
OUT  
IN  
Crystal oscillator  
Crystal oscillator  
Test pin  
5
X
4
IN  
X
LV  
LV  
LV  
X
Not connected  
Test pin  
3
TP  
IN  
IN  
2
TP  
Test pin  
1
AVSUP  
Analog power supply  
+5 V  
65  
AVSUP  
X
Analog power supply  
+5 V  
64  
63  
NC  
NC  
LV  
LV  
Not connected  
Not connected  
MICRONAS INTERMETALL  
23  
BSP 3505D  
PRELIMINARY DATA SHEET  
Pin No.  
Pin Name  
Type  
Connection  
(if not used)  
Short Description  
PLCC  
68-pin  
PSDIP  
64-pin  
PSDIP  
52-pin  
PQFP  
80-pin  
PQFP  
44-pin  
27  
56  
45  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
AVSS  
AVSS  
MONO_IN  
NC  
X
Analog ground  
Analog ground  
Mono input  
X
28  
55  
44  
43  
IN  
LV  
LV  
X
Not connected  
Reference voltage  
Scart input 1 in, right  
Scart input 1 in, left  
Analog shield ground 1  
Scart input 2 in, right  
Scart input 2 in, left  
Test Pin  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
43  
42  
41  
42  
41  
40  
39  
38  
37  
VREFTOP  
SC1_IN_R  
SC1_IN_L  
ASG1  
SC2_IN_R  
SC2_IN_L  
TP  
IN  
IN  
LV  
LV  
AHVSS  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
X
40  
39  
IN  
IN  
38  
37  
NC  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
NC  
NC  
NC  
NC  
NC  
42  
36  
36  
AGNDC  
Analog reference volt-  
age high voltage part  
43  
41  
35  
44  
43  
42  
41  
40  
39  
35  
AHVSS  
AHVSS  
NC  
X
Analog ground  
X
Analog ground  
LV  
LV  
X
Not connected  
NC  
Not connected  
44  
45  
40  
39  
34  
33  
34  
33  
CAPL_M  
AHVSUP  
Volume capacitor MAIN  
X
Analog power supply  
8.0 V  
46  
47  
48  
49  
38  
37  
36  
35  
32  
31  
30  
29  
38  
37  
36  
35  
32  
31  
30  
29  
NC  
LV  
LV  
LV  
X
Not connected  
SC1_OUT_L  
SC1_OUT_R  
VREF1  
OUT  
OUT  
Scart output 1, left  
Scart output 1, right  
Reference ground 1  
high voltage part  
50  
51  
52  
34  
33  
28  
27  
34  
33  
32  
28  
NC  
NC  
NC  
LV  
LV  
LV  
Not connected  
Not connected  
Not connected  
24  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
Pin No.  
Pin Name  
Type  
Connection  
(if not used)  
Short Description  
PLCC  
68-pin  
PSDIP  
64-pin  
PSDIP  
52-pin  
PQFP  
80-pin  
PQFP  
44-pin  
53  
54  
55  
56  
57  
58  
32  
31  
30  
29  
28  
27  
31  
30  
29  
28  
27  
26  
NC  
LV  
LV  
LV  
LV  
LV  
X
Not connected  
26  
NC  
Not connected  
NC  
Not connected  
25  
24  
23  
27  
26  
25  
DACM_L  
DACM_R  
VREF2  
OUT  
OUT  
Loudspeaker out, left  
Loudspeaker out, right  
Reference ground 2  
high voltage part  
59  
60  
26  
25  
22  
21  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
24  
23  
NC  
LV  
LV  
LV  
LV  
X
Not connected  
Not connected  
Not connected  
Not connected  
Power-on-reset  
Not connected  
Not connected  
Not connected  
Test pin  
NC  
NC  
NC  
61  
62  
63  
64  
65  
66  
24  
23  
22  
21  
20  
19  
20  
22  
RESETQ  
NC  
IN  
IN  
LV  
LV  
LV  
LV  
X
NC  
19  
18  
17  
21  
NC  
TP  
DVSS  
DVSS  
DVSS  
DVSUP  
Digital ground  
Digital ground  
Digital ground  
X
20  
19  
X
67  
18  
16  
X
Digital power supply  
+5 V  
12  
11  
10  
DVSUP  
DVSUP  
TP  
X
Digital power supply  
+5 V  
X
Digital power supply  
+5 V  
68  
17  
15  
18  
OUT  
LV  
Test pin  
MICRONAS INTERMETALL  
25  
BSP 3505D  
PRELIMINARY DATA SHEET  
5.3. Pin Configurations  
TP  
NC  
TP  
TP  
DVSUP  
DVSS  
TP  
TP  
TP  
TP  
NC  
TP  
NC  
I2C_DA  
I2C_CL  
NC  
RESETQ  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
NC  
NC  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
STANDBYQ  
ADR_SEL  
D_CTR_OUT0  
D_CTR_OUT1  
NC  
VREF2  
DACM_R  
DACM_L  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
BSP 3505D  
TP  
NC  
XTAL_OUT  
NC  
XTAL_IN  
TESTEN  
VREF1  
SC1_OUT_R  
SC1_OUT_L  
NC  
TP  
NC  
AHVSUP  
CAPL_M  
TP  
AVSUP  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
AVSS  
MONO_IN  
VREFTOP  
SC1_IN_R  
SC1_IN_L  
ASG1  
SC2_IN_R  
SC2_IN_L  
AHVSS  
AGNDC  
NC  
NC  
NC  
NC  
NC  
NC  
TP  
Fig. 5–6: 68-pin PLCC package  
26  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
1
TP  
NC  
1
NC  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
TP  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
XTAL_OUT  
NC  
NC  
2
XTAL_OUT  
XTAL_IN  
TESTEN  
NC  
2
XTAL_IN  
TESTEN  
NC  
3
D_CTR_OUT1  
D_CTR_OUT0  
ADR_SEL  
STANDBYQ  
I2C_CL  
I2C_DA  
TP  
3
D_CTR_OUT1  
D_CTR_OUT0  
ADR_SEL  
STANDBYQ  
NC  
4
4
5
5
TP  
TP  
6
TP  
6
7
TP  
7
AVSUP  
AVSS  
AVSUP  
AVSS  
8
8
I2C_CL  
I2C_DA  
TP  
9
9
MONO_IN  
VREFTOP  
SC1_IN_R  
SC1_IN_L  
TP  
MONO_IN  
VREFTOP  
SC1_IN_R  
SC1_IN_L  
ASG1  
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
TP  
TP  
TP  
TP  
TP  
TP  
SC2_IN_R  
SC2_IN_L  
NC  
TP  
TP  
TP  
TP  
SC2_IN_R  
SC2_IN_L  
TP  
DVSUP  
DVSS  
TP  
NC  
48  
47  
46  
45  
36  
35  
34  
33  
AGNDC  
AHVSS  
CAPL_M  
AHVSUP  
NC  
TP  
17  
18  
19  
20  
17  
18  
19  
20  
DVSUP  
DVSS  
TP  
NC  
NC  
NC  
NC  
RESETQ  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
NC  
32  
31  
30  
29  
28  
27  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
21  
22  
23  
24  
25  
26  
NC  
NC  
NC  
SC1_OUT_L  
SC1_OUT_R  
VREF1  
NC  
NC  
NC  
VREF2  
DACM_R  
DACM_L  
NC  
AGNDC  
AHVSS  
NC  
RESETQ  
CAPL_M  
AHVSUP  
NC  
NC  
NC  
NC  
VREF2  
DACM_R  
DACM_L  
NC  
SC1_OUT_L  
SC1_OUT_R  
VREF1  
NC  
Fig. 5–8: 52-pin PSDIP package  
NC  
NC  
NC  
Fig. 5–7: 64-pin PSDIP package  
MICRONAS INTERMETALL  
27  
BSP 3505D  
PRELIMINARY DATA SHEET  
TP  
SC2_IN_L  
SC2_IN_R  
ASG1  
SC1_IN_L  
SC1_IN_R  
VREFTOP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
MONO_IN  
AVSS  
AGNDC  
AHVSS  
AHVSS  
NC  
AVSS  
NC  
NC  
NC  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41  
AVSUP  
AVSUP  
65  
CAPL_M  
AHVSUP  
40  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
TP  
TP  
NC  
SC1_OUT_L  
SC1_OUT_R  
VREF1  
NC  
NC  
TESTEN  
XTAL_IN  
NC  
NC  
XTAL_OUT  
TP  
BSP 3505D  
NC  
NC  
NC  
NC  
NC  
NC  
D_CTR_OUT1  
D_CTR_OUT0  
ADR_SEL  
STANDBYQ  
DACM_L  
DACM_R  
VREF2  
NC  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
NC  
I2C_CL  
I2C_DA  
NC  
NC  
NC  
TP  
RESETQ  
TP  
NC  
TP  
NC  
TP  
NC  
TP  
TP  
TP  
DVSS  
TP  
DVSUP  
DVSUP  
DVSS  
DVSS  
DVSUP  
Fig. 5–9: 80-pin PQFP package  
28  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
NC  
VREF1  
SC1_OUT_R  
SC1_OUT_L  
NC  
DACM_L  
DACM_R  
VREF2  
NC  
AHVSUP  
NC  
33 32 31 30 29 28 27 26 25 24 23  
CAPL_M 34  
AHVSS 35  
22 RESETQ  
21 NC  
AGNDC 36  
SC2_IN_L 37  
SC2_IN_R 38  
ASG1 39  
20 DVSS  
19 DVSUP  
18 TP  
BSP 3505D  
17 TP  
SC1_IN_L 40  
SC1_IN_R 41  
VREFTOP 42  
MONO_IN 43  
AVSS 44  
16 TP  
15 TP  
14 TP  
13 I2C_DA  
12 I2C_CL  
1
2
3
4
5
6
7
8
9
10 11  
AVSUP  
STANDBYQ  
TP  
ADR_SEL  
D_CTR_OUT0  
D_CTR_OUT1  
TP  
TESTEN  
XTAL_IN  
TP  
XTAL_OUT  
Fig. 5–10: 44-pin PQFP package  
MICRONAS INTERMETALL  
29  
BSP 3505D  
PRELIMINARY DATA SHEET  
5.4. Pin Circuits (pin numbers refer to PLCC68 package)  
40 k  
3.75 V  
N
GND  
Fig. 5–17: Input Pins 30, 31, 33, and 34  
(SC1–2_IN_L/R)  
Fig. 5–11: Input/Output Pins 8 and 9  
(I C_DA, I C_CL)  
2
2
125 k  
3.75 V  
Fig. 5–12: Input Pins 11, 12, and 61  
(STANDBYQ, ADR_SEL, RESETQ)  
Fig. 5–18: Pin 42 (AGNDC)  
DV  
SUP  
P
N
0...2 V  
GND  
Fig. 5–19: Capacitor Pin 44 (CAPL_M)  
Fig. 5–13: Output Pins 13, and 14  
(D_CTR_OUT0/1)  
P
N
40 pF  
80 k  
500 k  
3–30 pF  
300  
3.75 V  
3–30 pF  
Fig. 5–14: Input/Output Pins 20 and 21  
(XTALIN/OUT)  
Fig. 5–20: Output Pins 47, 48  
(SC1_OUT_L/R)  
VREFTOP  
2.6V  
AHV  
SUP  
0...1.2 mA  
Fig. 5–15: Pin 29 (VREFTOP)  
3.3 k  
24 k  
3.75 V  
Fig. 5–21: Output Pins 56, 57  
(DACM_L/R)  
Fig. 5–16: Input Pin 28 (MONO_IN)  
30  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
5.5. Electrical Characteristics  
5.5.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Pin Name  
Min.  
0
Max.  
Unit  
°C  
°C  
V
1)  
T
A
Ambient Operating Temperature  
Storage Temperature  
First Supply Voltage  
Second Supply Voltage  
Third Supply Voltage  
70  
T
–40  
–0.3  
–0.3  
–0.3  
–0.5  
125  
9.0  
6.0  
6.0  
0.5  
S
V
SUP1  
V
SUP2  
V
SUP3  
AHVSUP  
DVSUP  
AVSUP  
V
V
dV  
Voltage between AVSUP  
and DVSUP  
AVSUP,  
DVSUP  
V
SUP23  
P
TOT  
Chip Power Dissipation  
AHVSUP,  
DVSUP,  
AVSUP  
PLCC68 without Heat Spreader  
PSDIP64 without Heat Spreader  
PSDIP52 without Heat Spreader  
PQFP44 without Heat Spreader  
1200  
1300  
1200  
mW  
1)  
960  
V
Input Voltage, all Digital Inputs  
Input Current, all Digital Pins  
Input Voltage, all Analog Inputs  
–0.3  
–20  
V
+0.3  
+0.3  
V
Idig  
SUP2  
2)  
I
+20  
mA  
Idig  
3)  
3)  
V
Iana  
SCn_IN_s,  
MONO_IN  
–0.3  
V
SUP1  
V
2)  
I
Input Current, all Analog Inputs  
SCn_IN_s,  
MONO_IN  
–5  
+5  
mA  
Iana  
4) 5)  
4) 5)  
I
I
Output Current, all SCART Outputs  
SC1_OUT_s  
,
,
Oana  
3)  
4)  
4)  
Output Current, all Analog Outputs  
except SCART Outputs  
DACM_s  
Oana  
4)  
4)  
I
Output Current, other pins  
connected to capacitors  
CAPL_M  
AGNDC  
Cana  
1)  
2)  
3)  
4)  
5)  
For PQFP44 package, max. ambient operating temperature is 65 °C.  
positive value means current flowing into the circuit  
“n” means “1” or “2”, “s” means “L” or “R”  
The Analog Outputs are short circuit proof with respect to First Supply Voltage and Ground.  
Total chip power dissipation must not exceed absolute maximum rating.  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the  
“Recommended Operating Conditions/Characteristics” of this specification is not implied. Exposure to absolute maxi-  
mum ratings conditions for extended periods may affect device reliability.  
MICRONAS INTERMETALL  
31  
BSP 3505D  
PRELIMINARY DATA SHEET  
5.5.2. Recommended Operating Conditions  
at T = 0 to 70 °C (65 °C for PQFP44)  
A
Symbol  
Parameter  
Min.  
Typ.  
8.0  
Max.  
Unit  
Pin Name  
AHVSUP  
DVSUP  
V
SUP1  
V
SUP2  
V
SUP3  
First Supply Voltage  
Second Supply Voltage  
Third Supply Voltage  
7.6  
8.4  
V
V
V
4.75  
4.75  
5.0  
5.0  
5.25  
5.25  
AVSUP  
V
RESET Input High-Low and Low-  
High Transition Voltage  
RESETQ  
0.45  
5
0.8  
0.2  
V
SUP2  
REIL  
t
RESET Low Time after DVSUP  
Stable and Oscillator Startup  
µs  
REIL  
V
V
Digital Input Low Voltage  
Digital Input High Voltage  
STANDBYQ,  
ADR_SEL,  
TESTEN  
V
V
DIGIL  
SUP2  
0.8  
1
DIGIH  
SUP2  
t
STANDBYQ Setup Time before  
Turn-off of Second Supply Voltage  
STANDBYQ,  
DVSUP  
µs  
STBYQ1  
2
I C-Bus Recommendations  
2
2
V
V
I C-BUS Input Low Voltage  
I C_CL,  
0.3  
1.0  
V
V
I2CIL  
I2CIH  
SUP2  
2
I C_DA  
2
I C-BUS Input High Voltage  
0.6  
SUP2  
2
2
f
t
t
t
t
t
I C-BUS Frequency  
I C_CL  
MHz  
ns  
I2C  
2
2
I C START Condition Setup Time  
I C_CL,  
120  
120  
500  
500  
55  
I2C1  
I2C2  
I2C3  
I2C4  
I2C5  
2
I C_DA  
2
I C STOP Condition Setup Time  
ns  
2
2
I C-Clock Low Pulse Time  
I C_CL  
ns  
2
I C-Clock High Pulse Time  
ns  
2
2
I C-Data Setup Time Before  
I C_CL,  
ns  
2
Rising Edge of Clock  
I C_DA  
2
t
I C-Data Hold Time  
55  
ns  
I2C6  
after Falling Edge of Clock  
Crystal Recommendations  
f
P
Parallel Resonance Frequency  
at 12 pF Load Capacitance  
18.432  
MHz  
f
Accuracy of Adjustment  
–100  
–50  
+100  
+50  
ppm  
ppm  
TOL  
D
Frequency Variation versus  
Temperature  
TEM  
R
C
Series Resistance  
8
25  
R
Shunt (Parallel) Capacitance  
6.2  
7.0  
pF  
0
32  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Pin Name  
Load Capacitance Recommendations  
External Load Capacitance  
1)  
C
L
XTAL_IN,  
XTAL_OUT  
PSDIP  
PLCC  
1.5  
3.3  
pF  
pF  
Amplitude Recommendation for Operation with External Clock Input (C  
after reset = 22 pF)  
load  
V
XCA  
External Clock Amplitude  
XTAL_IN  
0.7  
V
pp  
Analog Input and Output Recommendations  
C
C
AGNDC-Filter-Capacitor  
AGNDC  
–20% 3.3  
–20% 100  
–20% 330  
µF  
nF  
nF  
AGNDC  
Ceramic Capacitor in Parallel  
2)  
DC-Decoupling Capacitor  
in front of SCART Inputs  
SCn_IN_s  
+20%  
inSC  
V
V
SCART Input Level  
2.0  
2.0  
V
V
inSC  
RMS  
Input Level, Mono Input  
SCART Load Resistance  
SCART Load Capacitance  
Main Volume Capacitor  
Main Filter Capacitor  
MONO_IN  
inMONO  
RMS  
2)  
R
C
C
C
SC1_OUT_s  
10  
kΩ  
nF  
µF  
nF  
LSC  
LSC  
VMA  
FMA  
6.0  
CAPL_M  
10  
2)  
DACM_s  
–10%  
1
+10%  
Recommendations for Reference Voltage Pin  
C
VREFTOP-Filter-Capacitor  
Ceramic Capacitor in Parallel  
VREFTOP  
–20% 10  
µF  
VREFTOP  
–20% 100  
nF  
1)  
External capacitors at each crystal pin to ground are required. The higher the capacitors, the lower the clock  
frequency results. The nominal free running frequency should match 18.432 MHz as closely as possible. Due  
to different layouts of customer PCBs, the matching capacitor size should be defined in the application. The sug-  
gested values (1.5 pF/3.3 pF) are figures based on experience with various PCB layouts.  
2)  
“n” means “1” or “2”, “s” means “L” or “R”  
MICRONAS INTERMETALL  
33  
BSP 3505D  
PRELIMINARY DATA SHEET  
5.5.3. Characteristics  
at T = 0 to 70 °C (65 °C for PQFP44), f  
= 18.432 MHz,  
CLOCK  
A
V
SUP1  
= 7.6 to 8.4 V, V  
= 4.75 to 5.25 V for min./max. values  
SUP2  
at T = 60 °C, f  
= 18.432 MHz, V  
= 8 V, V  
= 5 V for typical values, T = Junction Temperature  
SUP2 J  
A
CLOCK  
SUP1  
MAIN (M) = Loudspeaker Channel, AUX (A) = Headphone Channel  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
MHz  
%
Test Conditions  
f
Clock Input Frequency  
Clock High to Low Ratio  
XTAL_IN  
18.432  
CLOCK  
D
45  
55  
50  
CLOCK  
JITTER  
t
Clock Jitter (Verification not  
provided in Production test)  
ps  
V
DC-Voltage Oscillator  
2.5  
0.4  
V
xtalDC  
t
Oscillator Startup Time at  
XTAL_IN,  
2
ms  
Startup  
VDD Slew-rate of 1 V/1 µs  
XTAL_OUT  
I
First Supply Current (active)  
AHVSUP  
SUP1A  
Analog Volume for Main and Aux at 0dB  
9.6  
6.3  
17.1  
11.2  
24.6  
16.1  
mA  
mA  
Analog Volume for Main and Aux at –30dB  
I
I
I
Second Supply Current (active)  
Third Supply Current (active)  
First Supply Current  
DVSUP  
AVSUP  
AHVSUP  
86  
15  
3.5  
95  
25  
5.6  
102  
35  
mA  
mA  
mA  
SUP2A  
SUP3A  
SUP1S  
7.7  
STANDBYQ = low  
(standby mode) at T = 27 °C  
j
2
2
V
I C-Data Output Low Voltage  
I C_DA  
0.4  
1.0  
V
I
= 3 mA  
I2COL  
I2COH  
I2COL1  
I2COL  
2
I
t
I C-Data Output High Current  
µA  
ns  
V
= 5 V  
I2COH  
2
2
I C-Data Output Hold Time  
I C_DA,  
15  
2
after Falling Edge of Clock  
I C_CL  
2
t
I C-Data Output Setup Time  
100  
ns  
f
= 1 MHz  
I2COL2  
I2C  
before Rising Edge of Clock  
Analog Ground  
V
AGNDC Open Circuit Voltage  
AGNDC Output Resistance  
AGNDC  
3.63  
70  
3.73  
125  
3.83  
180  
V
R
10 MΩ  
load  
AGNDC0  
R
kΩ  
3 V V  
4 V  
outAGN  
AGNDC  
Analog Input Resistance  
1)  
R
R
SCART Input Resistance  
SCn_IN_s  
25  
15  
40  
24  
58  
35  
kΩ  
kΩ  
f
f
= 1 kHz, I = 0.05 mA  
= 1 kHz, I = 0.1 mA  
inSC  
signal  
from T = 0 to 70 °C  
A
MONO Input Resistance  
MONO_IN  
inMONO  
signal  
from T = 0 to 70 °C  
A
Audio Analog-to-Digital-Converter  
1)  
V
AICL  
Effective Analog Input Clipping  
Level for Analog-to-Digital-  
Conversion  
SCn_IN_s,  
MONO_IN  
2.00  
2.25  
V
RMS  
f
= 1 kHz  
signal  
1)  
“n” means “1”, or “2”;  
“s” means “L” or “R”  
34  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
SCART Outputs  
1)  
R
SCART Output Resistance  
SC1_OUT_s  
f = 1 kHz, I = 0.1 mA  
signal  
outSC  
at T = 27 °C  
200  
200  
330  
460  
500  
j
from T = 0 to 70 °C  
A
dV  
Deviation of DC-Level at SCART  
Output from AGNDC Voltage  
–70  
+70  
mV  
dB  
dB  
OUTSC  
1)  
A
Gain from Analog Input  
to SCART Output  
SCn_IN_s  
–1.0  
–0.5  
+0.5  
+0.5  
f = 1 kHz  
signal  
SCtoSC  
MONO_IN  
SC1_OUT_s  
1)  
1)  
f
Frequency Response from Analog  
Input to SCART Output  
bandwidth: 0 to 20000 Hz  
with resp. to 1 kHz  
rSCtoSC  
V
outSC  
Effective Signal Level at SCART-  
Output during full-scale digital in-  
put signal from DSP  
SC1_OUT_s  
1.8  
1.9  
3.3  
2.0  
V
RMS  
f
= 1 kHz  
signal  
signal  
Main Outputs  
1
R
Main Output Resistance  
DACM_s )  
f
= 1 kHz, I = 0.1 mA  
outMA  
at T = 27 °C  
2.1  
2.1  
4.6  
5.0  
kΩ  
kΩ  
j
from T = 0 to 70 °C  
A
V
DC-Level at Main-Output  
for Analog Volume at 0 dB  
for Analog Volume at –30 dB  
outDCMA  
1.8  
2.04  
61  
2.28  
1.51  
V
mV  
V
outMA  
EffectiveSignalLevelatMain-Out-  
put during full-scale digital input  
signal from DSP for Analog Vol-  
ume at 0 dB  
1.23  
1.37  
V
RMS  
f
= 1 kHz  
signal  
Analog Performance  
SNR  
THD  
1)  
Signal-to-Noise Ratio  
from Analog Input to  
SCART Output  
MONO_IN,  
SCn_IN_s  
93  
96  
dB  
%
Input Level = –20 dB,  
f = 1 kHz,  
sig  
equally weighted  
20 Hz...20 kHz  
1)  
1)  
SC1_OUT_s  
Total Harmonic Distortion  
from Analog Input to  
SCART Output  
MONO_IN,  
0.01  
0.03  
Input Level = –3 dBr,  
1)  
SCn_IN_s  
f
sig  
= 1 kHz,  
equally weighted  
20 Hz...20 kHz  
1)  
SC1_OUT_s  
“n” means “1” or “2”;  
“s” means “L” or “R”  
MICRONAS INTERMETALL  
35  
BSP 3505D  
PRELIMINARY DATA SHEET  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
XTALK  
Crosstalk attenuation  
– PLCC68  
Input Level = –3 dB,  
f
sig  
= 1 kHz, unused ana-  
– PSDIP64  
log inputs connected to  
ground by Z < 1 kΩ  
between left and right channel within  
SCART Input/Output pair (LR, RL)  
equally weighted  
20 Hz...20 kHz  
1)  
SCn_IN SC1_OUT  
PLCC68  
PSDIP64  
80  
80  
dB  
dB  
PSRR: rejection of noise on AHVSUP at 1 kHz  
AGNDC  
AGNDC  
MONO_IN,  
SCn_IN_s  
SC1_OUT_s  
80  
70  
dB  
dB  
From Analog Input to  
SCART Output  
1)  
1)  
DC  
DC voltage at VREFTOP  
“n” means “1” or “2”; “s” means “L” or “R”  
VREFTOP  
2.4  
2.6  
2.7  
V
VREFTOP  
1)  
36  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
6. Application Circuit  
C s. section 5.5.2.  
10  
µF  
100  
nF  
+8.0 V  
+
18.432  
MHz  
3.3  
µF  
100  
nF  
+
10 µF  
+
1 µF  
1 µF  
28 (55) MONO_IN  
DACM_L (29) 56  
DACM_R (28) 57  
330 nF  
1 nF  
MAIN  
31 (52) SC1_IN_L  
30 (53) SC1_IN_R  
330 nF  
330 nF  
100Ω  
22 µF  
32 (51) ASG1  
SC1_OUT_L (37) 47  
SC1_OUT_R (36) 48  
AHVSS  
+
34 (49) SC2_IN_L  
33 (50) SC2_IN_R  
330 nF  
330 nF  
BSP 3505D  
100Ω  
22 µF  
+
5V  
11 (7) STANDBYQ  
12 (6) ADR_SEL  
D_CTR_OUT0 (5) 13  
D_CTR_OUT1 (4) 14  
5V  
DVSS  
DVSS  
2
TESTEN (61) 22  
8 (10) I C_DA  
2
9 (9) I C_CL  
AVSS  
100  
nF  
100  
nF  
100  
nF  
+
ResetQ  
(from CCU,  
see  
10 µF  
5 V  
5 V  
8.0 V  
section.3.3.)  
Note: Pin numbers refer to the PLCC68 package, numbers in brackets refer to the PSDIP64 package.  
Application Note:  
more than one capacitor. By choosing different values,  
the frequency range of active decoupling can be ex-  
tended. In our application boards we use: 220 pF,  
470 pF, 1.5 nF, and 10 µF. The capacitor with lowest val-  
ue should be placed nearest to the DVSUP and DVSS  
pins.  
All ground pins should be connected to onelow-resistive  
ground plane.  
All supply pins should be connected separately with  
short and low-resistive lines to the power supply.  
Decouplingcapacitors fromDVSUPtoDVSS, AVSUPto  
AVSS, and AHVSUP to AHVSS are recommended as  
close as possible to these pins. Decoupling of DVSUP  
and DVSS is most important. We recommend using  
The ASG1 pin should be connected as closely as pos-  
sibletotheMSPtoground. IfitisleadwiththeSC1input-  
lines as shielding line, it should NOT be conneted to  
ground at the SCART connector.  
MICRONAS INTERMETALL  
37  
BSP 3505D  
PRELIMINARY DATA SHEET  
38  
MICRONAS INTERMETALL  
BSP 3505D  
PRELIMINARY DATA SHEET  
MICRONAS INTERMETALL  
39  
BSP 3505D  
PRELIMINARY DATA SHEET  
7. Appendix A: BSP 3505D Version History  
8. Data Sheet History  
1. Preliminary Data Sheet: “BSP 3505D Baseband  
Sound Processor”, Oct. 21, 1998, 6251-481-1PD.  
First release of the preliminary data sheet.  
A2  
First hardware release BSP 3505D  
MICRONAS INTERMETALL GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
All information and data contained in this data sheet are with-  
out any commitment, are not to be considered as an offer for  
conclusion of a contract nor shall they be construed as to  
create any liability. Any new issue of this data sheet invalidates  
previous issues. Product availability and delivery dates are ex-  
clusively subject to our respective order confirmation form; the  
same applies to orders based on development samples deliv-  
ered. By this publication, MICRONAS INTERMETALL GmbH  
does not assume responsibility for patent infringements or  
other rights of third parties which may result from its use.  
Reprinting is generally permitted, indicating the source. How-  
ever, our prior consent must be obtained in all cases.  
E-mail: docservice@intermetall.de  
Internet: http://www.intermetall.de  
Printed in Germany  
Order No. 6251-481-1PD  
40  
MICRONAS INTERMETALL  

相关型号:

BSP3505DQA

Volume Control Circuit, PQFP80, PLASTIC, QFP-80
TDK

BSP365

MiniSmart(High-side switch Short-circuit protection Overtemperature protection with hysteresis)
INFINEON

BSP372

SIPMOS Small-Signal Transistor (N channel Enhancement mode Logic Level Avalanche rated
INFINEON

BSP372L6327

1.7A, 100V, 0.31ohm, N-CHANNEL, Si, POWER, MOSFET, GREEN, PLASTIC PACKAGE-4
ROCHESTER

BSP372L6327

Power Field-Effect Transistor, 1.7A I(D), 100V, 0.31ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, GREEN, PLASTIC PACKAGE-4
INFINEON

BSP372NH6327

Small Signal Field-Effect Transistor, 1.8A I(D), 100V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, GREEN, PLASTIC PACKAGE-4
INFINEON

BSP372NH6327XTSA1

Small Signal Field-Effect Transistor, 1.8A I(D), 100V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, GREEN, PLASTIC PACKAGE-4
INFINEON

BSP372_08

SIPMOS Small-Signal Transistor
INFINEON

BSP373

SIPMOS Small-Signal Transistor (N channel Enhancement mode Avalanche rated)
INFINEON

BSP373E6327

Power Field-Effect Transistor, 1.7A I(D), 100V, 0.3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

BSP373E6327

1.7A, 100V, 0.3ohm, N-CHANNEL, Si, POWER, MOSFET
ROCHESTER

BSP373L6327

Power Field-Effect Transistor, 1.7A I(D), 100V, 0.3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, GREEN, PLASTIC PACKAGE-4
INFINEON