HAL1882UA [TDK]

线性霍尔传感器;
HAL1882UA
型号: HAL1882UA
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

线性霍尔传感器

传感器
文件: 总23页 (文件大小:1023K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hardware  
Documentation  
Data Sheet  
®
HAL 1881, HAL 1882,  
HAL 1883  
Preprogrammed Linear Hall-Effect  
Sensors in TO92 Package  
Edition July 4, 2022  
DSH000199_003EN  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
Copyright, Warranty, and Limitation of Liability  
The information and data contained in this document are believed to be accurate and reli-  
able. The software and proprietary information contained therein may be protected by  
copyright, patent, trademark and/or other intellectual property rights of TDK-Micronas. All  
rights not expressly granted remain reserved by TDK-Micronas.  
TDK-Micronas assumes no liability for errors and gives no warranty representation or  
guarantee regarding the suitability of its products for any particular purpose due to  
these specifications.  
By this publication, TDK-Micronas does not assume responsibility for patent infringements  
or other rights of third parties which may result from its use. Commercial conditions, prod-  
uct availability and delivery are exclusively subject to the respective order confirmation.  
Any information and data which may be provided in the document can and do vary in  
different applications, and actual performance may vary over time.  
All operating parameters must be validated for each customer application by customers’  
technical experts. Any mention of target applications for our products is made without a  
claim for fit for purpose as this has to be checked at system level.  
Any new issue of this document invalidates previous issues. TDK-Micronas reserves  
the right to review this document and to make changes to the document’s content at any  
time without obligation to notify any person or entity of such revision or changes. For  
further advice please contact us directly.  
Do not use our products in life-supporting systems, military, aviation, or aerospace  
applications! Unless explicitly agreed to otherwise in writing between the parties,  
TDK-Micronas’ products are not designed, intended or authorized for use as compo-  
nents in systems intended for surgical implants into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the  
product could create a situation where personal injury or death could occur.  
No part of this publication may be reproduced, photocopied, stored on a retrieval sys-  
tem or transmitted without the express written consent of TDK-Micronas.  
TDK-Micronas Trademarks  
– HAL  
Third-Party Trademarks  
All other brand and product names or company names may be trademarks of their  
respective companies.  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
2
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
Contents  
Page  
Section  
Title  
4
4
5
1.  
1.1.  
1.2.  
Introduction  
Major Applications  
Features  
6
2.  
Ordering Information  
6
2.1.  
Device-Specific Ordering Codes  
7
7
8
8
3.  
Functional Description  
General Function  
3.1.  
3.2.  
3.3.  
Output/Magnetic Field Polarity  
On-board Diagnostic Features  
9
4.  
Specifications  
9
4.1.  
Outline Dimensions  
13  
13  
13  
14  
15  
15  
16  
17  
18  
18  
19  
20  
4.2.  
4.3.  
4.4.  
Soldering, Welding and Assembly  
Pin Connections and Short Descriptions  
Dimensions of Sensitive Area  
Absolute Maximum Ratings  
Storage and Shelf Life  
4.5.  
4.6.  
4.7.  
Recommended Operating Conditions  
Characteristics  
4.8.  
4.8.1.  
4.9.  
4.10.  
4.11.  
4.11.1.  
Definition of t  
POD  
Power-On Reset / Undervoltage Detection  
Output Voltage in Case of Error Detection  
Magnetic Characteristics  
Definition of Sensitivity Error ES  
21  
21  
21  
22  
5.  
Application Notes  
Ambient Temperature  
EMC  
5.1.  
5.2.  
5.3.  
Application Circuit  
23  
6.  
Document History  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
3
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
Release Note: Revision bars indicate significant changes to the previous edition.  
Programmable Linear Hall-Effect Sensors in TO92 Package  
1. Introduction  
HAL 188x is a preprogrammed Hall-effect sensor family with a ratiometric, linear analog  
output proportional to the magnetic flux density applied to the sensor surface. The sen-  
sor can be used for magnetic-field measurements such as current measurements and  
detection of mechanical movement, like for small-angle or distance measurements. The  
sensor is robust and can be used in harsh electrical and mechanical environments.  
The spinning-current offset compensation leads to stable magnetic characteristics over  
supply voltage and temperature. Furthermore, the first and seconds order temperature  
coefficients of the sensor sensitivity can be used to compensate the temperature drift of  
all common magnetic materials. This enables operation over the full temperature range  
with high accuracy.  
The different family members vary by sensitivity (25 mV/mT, 31.25 mV/mT, and  
50 mV/mT). The output voltage response for zero magnetic field (apart from offset) is  
50% of supply voltage for all product family members.  
Type  
1881  
1882  
1883  
Offset  
Sensitivity  
50 mV/mT  
31.25 mV/mT  
25 mV/mT  
see Page  
50% of V  
50% of V  
50% of V  
20  
20  
20  
SUP  
SUP  
SUP  
The sensors are designed for industrial and automotive applications, are AEC-Q100  
qualified, and operate in the junction temperature range from –40 °C up to 170 °C.  
HAL 188x is available in the very small leaded package TO92UA-1 and TO92UA-2.  
1.1. Major Applications  
Thanks to the sensors’ robust and cost-effective design, HAL 188x is the optimal sys-  
tem solution for applications such as:  
– Small-angle or linear position measurements  
– Gear position detection in transmission application  
– Current sensing for battery management  
– Rotary selector  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
4
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
1.2. Features  
– Ratiometric linear output proportional to the magnetic field  
– Digital signal processing  
– Diagnostic feature: overflow or underflow  
– Pre-set temperature characteristics for matching all common magnetic materials  
– Diagnostic feature: overflow or underflow  
– On-chip temperature compensation  
– Active offset compensation  
– Operates from 40 °C up to 170 °C junction temperature  
– Operates from 4.5 V up to 5.5 V supply voltage in specification  
– Operates with static and dynamic magnetic fields up to 2.25 kHz  
– Pre-set sampling rate  
– Reverse-voltage protection at VSUP pin  
– Magnetic characteristics extremely robust against mechanical stress  
– Short-circuit protected push-pull output  
– EMC and ESD optimized design  
– AEC-Q100 qualified  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
5
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
2. Ordering Information  
A Micronas device is available in a variety of delivery forms. They are distinguished by a  
specific ordering code:  
XXXNNNNPA-T-C-P-Q-SP  
Further Code Elements  
Temperature Range  
Package  
Product Type  
Product Group  
Fig. 2–1: Ordering code principle  
For a detailed information, please refer to the brochure: “Sensors and Controllers:  
Ordering Codes, Packaging, Handling”.  
2.1. Device-Specific Ordering Codes  
HAL 188x is available in the following package and temperature variants.  
Table 2–1: Available packages  
Package Code (PA)  
Package Type  
UA  
TO92UA  
Table 2–2: Available temperature ranges  
Temperature Code (T)  
Temperature Range  
T = 40 °C to 170 °C  
A
J
The relationship between ambient temperature (TA) and junction temperature (TJ) is  
explained in Section 5.1. on page 21.  
For available variants for Configuration (C), Packaging (P), Quantity (Q), and Special  
Procedure (SP) please contact TDK-Micronas.  
Table 2–3: Available ordering codes and corresponding package marking  
Available Ordering Codes  
HAL 1881UA-A-[C-P-Q-SP]  
HAL 1882UA-A-[C-P-Q-SP]  
HAL 1883UA-A-[C-P-Q-SP]  
Package Marking  
1881A  
1882A  
1883A  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
6
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
3. Functional Description  
3.1. General Function  
HAL 188x is a monolithic integrated circuit (IC) which provides an output voltage pro-  
portional to the magnetic flux through the Hall plate and proportional to the supply volt-  
age (ratiometric behavior).  
The external magnetic field component perpendicular to the branded side of the package  
generates a Hall voltage. The Hall IC is sensitive to magnetic north and south polarity.  
This Hall voltage is converted to a digital value, processed by the Digital Signal Processing  
unit (DSP), converted back to an analog voltage by a D/A converter and buffered by a  
push-pull output stage. The function and the parameters for the DSP are explained in  
Section 3.3. on page 8. Internal temperature compensation circuitry and the spinning-cur-  
rent offset compensation enable operation over the full temperature range with minimal  
degradation in accuracy and offset. The circuitry also rejects offset shifts due to mechani-  
cal stress from the package. In addition, the sensor IC is protected against reverse polarity  
at supply pin.  
VSUP  
Internally  
stabilized  
Supply and  
Protection  
Devices  
Temperature  
Dependent  
Bias  
Protection  
Devices  
Overtemperature  
Detection  
Undervoltage  
Detection  
Oscillator  
50  
Digital  
Signal  
Processing  
OUT  
Switched  
Hall Plate  
A/D  
Converter  
D/A  
Converter  
Analog  
Output  
Diagnosis  
Calibration Control  
GND  
Fig. 3–1: HAL 188x block diagram  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
7
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
3.2. Output/Magnetic Field Polarity  
Applying a south-pole magnetic field perpendicular to the branded side of the package  
will increase the output voltage (for Sensitivity <0) from the quiescent (offset) voltage  
towards the supply voltage. A north-pole magnetic field will decrease the output voltage.  
3.3. On-board Diagnostic Features  
HAL 188x features the following five diagnostic functions controlled by the DSP:  
– Magnetic signal amplitude out of range (overflow or underflow in signal path)  
– Over-/underflow in adder or multiplier  
– Over-/underflow in A/D converter  
These faults are visible at the output as long as present. The occurrence of these  
faults forces the output to the error band (see VDIAG_L or VDIAG_H in Section 4.9. on  
page 18).  
– Undervoltage detection with internal reset  
The occurrence of an undervoltage is indicated immediately by switching the output to  
ground.  
– Overtemperature: Thermal supervision of the output stage  
(overcurrent, short circuit, etc.)  
The sensor switches the output to tristate if an overtemperature is detected by the  
thermal supervision.  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
8
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
4. Specifications  
4.1. Outline Dimensions  
Product  
long lead  
short lead  
HAL 187x ,8x, 9x  
r
gate remain  
d
L
L
210.2  
optional  
15.70.2 standard  
Y
A
D
1.0  
0.2950.09  
0.2  
weight  
0.106 g  
0.05  
4.06  
0.05  
1.5  
0.7  
connected to PIN 2  
1+0.2  
connected to PIN 2  
D
center of  
sensitive area  
Y
5
.
1
.
x
5
a
0
.
0
m
A
2
.
5
3
0
.
3
2
.
0
0.5 +- 0.1  
1
3
2
0.08  
d
1
ejector pin Ø1.5  
dambar cut,  
not Sn plated (6x)  
a
e
L
r
a
g
n
i
d
l
e
w
r
o
r
e
0.05  
0.36  
d
l
o
Sn plated  
s
5
.
0
-
0
0.05  
0.43  
Sn plated  
0.4  
0.4  
1.27  
1.27  
2.54  
lead length cut  
not Sn plated (3x)  
0
2.5  
5 mm  
scale  
Dimensions are in mm.  
Physical dimensions do not include moldflash.  
BACK VIEW  
FRONT VIEW  
Sn-thickness might be reduced by mechanical handling.  
JEDEC STANDARD  
SPECIFICATION  
ISSUE DATE  
REVISION DATE  
PACKAGE  
TO92UA-2  
ANSI  
REV.NO.  
2
DRAWING-NO.  
(YY-MM-DD)  
(YY-MM-DD)  
ITEM NO. ISSUE  
TYPE  
NO.  
18-09-24  
20-04-07  
CUAI00031033.1  
ZG  
2101_Ver.02  
c
Copyright 2018 TDK-Micronas GmbH, all rights reserved  
Fig. 4–1:  
TO92UA-2 Plastic Transistor Standard UA package, 3 leads, non-spread  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
9
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
Product  
long lead  
short lead  
HAL 187x, 8x, 9x  
21 0.2  
optional  
0.2 standard  
o
gate remain  
L
15.7  
1.0  
L
Y
A
D
0.295  
0.2  
0.09  
weight  
0.106 g  
0.05  
4.06  
0.05  
1.5  
0.7  
connected to PIN 2  
1+0.2  
connected to PIN 2  
D
center of  
sensitive area  
Y
5
.
1
.
5
x
0
.
a
0
m
A
5
2
.
0
.
3
3
r
2
.
0.5 +- 0.1  
0.08  
0
u
1
2
3
d
1
dambar cut,  
not Sn plated (6x)  
6
4
2
7
.
.
0
0
ejector pin Ø1.5  
-
+
4
7
.
3
a
e
r
a
L
g
n
i
d
l
e
w
r
o
r
e
d
l
o
0.05  
0.36  
s
5
.
Sn plated  
0
-
0
0.05  
0.43  
Sn plated  
0.4  
0.4  
2.54  
2.54  
lead length cut  
not Sn plated (3x)  
0
2.5  
5 mm  
scale  
Dimensions are in mm.  
Physical dimensions do not include moldflash.  
Sn-thickness might be reduced by mechanical handling.  
BACK VIEW  
FRONT VIEW  
JEDEC STANDARD  
SPECIFICATION  
ISSUE DATE  
REVISION DATE  
PACKAGE  
TO92UA-1  
ANSI  
REV.NO.  
2
DRAWING-NO.  
(YY-MM-DD)  
(YY-MM-DD)  
ITEM NO. ISSUE  
TYPE  
NO.  
18-09-24  
20-04-07  
CUAS00031034.1  
ZG  
2102_Ver.02  
c
Copyright 2018 TDK-Micronas GmbH, all rights reserved  
Fig. 4–2:  
TO92UA-1 Plastic Transistor Standard UA package, 3 leads, spread  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
10  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
Δp  
Δp  
Δh  
Δh  
B
A
D0  
F2  
P2  
F1  
feed direction  
P0  
view A-B  
H
H1  
all dimensions in mm  
TO92UA TO92UT  
other dimensions see drawing of bulk  
max. allowed tolerance over 20 hole spacings 1.0  
Short leads 18 - 20 21 - 23.1  
22 - 24.1  
Long leads 24 - 26  
27 - 29.1  
28 - 30.1  
Δp  
UNIT  
D0  
4.0  
F1  
F2  
Δh  
L
P0  
P2  
T
T1  
W
W0  
W1  
W2  
1.47  
1.07  
1.47  
1.07  
11.0  
max  
13.2  
12.2  
7.05  
5.65  
mm  
1.0  
1.0  
0.5  
0.9  
18.0  
6.0  
9.0  
0.3  
STANDARD  
ISSUE DATE  
YY-MM-DD  
ANSI  
DRAWING-NO.  
ZG-NO.  
ISSUE  
-
ITEM NO.  
ZG001031_Ver.05  
IEC 60286-2  
16-07-18  
06631.0001.4  
© Copyright 2007 Micronas GmbH, all rights reserved  
Fig. 4–3:  
TO92UA: Dimensions ammopack inline, not spread, standard lead length  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
11  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
Δp  
Δp  
Δh  
Δh  
B
A
D0  
F2  
P2  
F1  
feed direction  
view A-B  
P0  
H
H1  
all dimensions in mm  
TO92UA TO92UT  
21 - 23.1 22 - 24.1  
other dimensions see drawing of bulk  
max. allowed tolerance over 20 hole spacings 1.0  
Short leads  
Long leads  
18 - 20  
24 - 26  
28 - 30.1  
27 - 29.1  
Δp  
UNIT  
mm  
D0  
4.0  
F1  
F2  
Δh  
L
P0  
P2  
T
T1  
W
W0  
6.0  
W1  
9.0  
W2  
0.3  
2.74  
2.34  
2.74  
2.34  
11.0  
max  
13.2  
12.2  
7.05  
5.65  
1.0  
1.0  
0.5  
0.9  
18.0  
JEDEC STANDARD  
ISSUE DATE  
YY-MM-DD  
ANSI  
DRAWING-NO.  
06632.0001.4  
ZG-NO.  
ISSUE  
-
ITEM NO.  
ICE 60286-2  
ZG001032_Ver.06  
16-07-18  
© Copyright 2007 Micronas GmbH, all rights reserved  
Fig. 4–4:  
TO92UA: Dimensions ammopack inline, spread, standard lead length  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
12  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
4.2. Soldering, Welding and Assembly  
Information related to solderability, welding, assembly, and second-level packaging is  
included in the document “Guidelines for the Assembly of Micronas Packages”.  
It is available on the TDK-Micronas website (https://www.micronas.com/en/service-  
center/downloads) or on the service portal (https://service.micronas.com).  
4.3. Pin Connections and Short Descriptions  
Pin No. Pin Name  
Short Description  
Supply Voltage Pin  
Ground  
VSUP  
GND  
OUT  
1
2
3
Push-Pull Output  
1
VSUP  
OUT  
3
2
GND  
Fig. 4–5: Pin configuration  
4.4. Dimensions of Sensitive Area  
Hall plate area = 0.2 mm 0.1 mm  
See Fig. 4–1 on page 9 for more information on the Hall plate position.  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
13  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
4.5. Absolute Maximum Ratings  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only. Functional operation of the device at  
these conditions is not implied. Exposure to absolute maximum rating conditions for  
extended periods will affect device reliability.  
This device contains circuitry to protect the inputs and outputs against damage due to  
high static voltages or electric fields; however, it is advised that normal precautions  
must be taken to avoid application of any voltage higher than absolute maximum-rated  
voltages to this circuit.  
All voltages listed are referenced to ground (GND).  
Symbol  
Parameter  
Pin  
No.  
Min.  
Max. Unit Notes  
VSUP  
Supply Voltage  
1
8.5  
14.4  
15  
8.5  
14.4  
16  
V
V
t < 96 h2)  
t < 10 min2)3)  
t < 1 min2)3)  
VOUT  
Output Voltage  
3
0.51)  
0.51)  
0.51)  
8.5  
14.4  
16  
t < 96 h2)  
t < 10 min2)  
t < 1 min2)  
VOUTVSUP Excess of Output Voltage  
1, 3  
3
0.5  
V
over Supply Voltage  
IOUT  
Continuous Output  
Current  
5  
5
mA  
min  
°C  
°C  
tsh  
Output Short Circuit  
Duration  
3
10  
4)  
TJ  
Junction Temperature  
under Bias  
40  
55  
190  
150  
TSTORAGE  
Transportation/Short-Term  
Storage Temperature  
Device only with-  
out packing  
material  
VESD  
ESD Protection at VSUP5)  
ESD Protection at OUT5)  
1
3
4.0  
8.0  
4.0  
8.0  
kV  
kV  
1) Internal protection resistor = 50   
2) No cumulated stress  
3) As long as TJmax is not exceeded  
4) For 96 h - Please contact TDK-Micronas for other temperature requirements  
5) AEC-Q100-002 (100 pF and 1.5 k  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
14  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
4.6. Storage and Shelf Life  
Information related to storage conditions of Micronas sensors is included in the document  
“Guidelines for the Assembly of Micronas Packages”. It gives recommendations linked to  
moisture sensitivity level and long-term storage.  
It is available on the TDK-Micronas website (https://www.micronas.com/en/service-  
center/downloads) or on the service portal (https://service.micronas.com).  
4.7. Recommended Operating Conditions  
Functional operation of the device beyond those indicated in the “Recommended Oper-  
ating Conditions/Characteristics” is not implied and may result in unpredictable behavior  
of the device and may reduce reliability and lifetime.  
All voltages listed are referenced to ground (GND).  
Symbol Parameter  
VSUP Supply Voltage  
IOUT  
Pin No. Min.  
Typ. Max.  
Unit Notes  
1
3
4.5  
5
5.5  
1
V
Continuous Output  
Current  
1  
mA  
RL  
CL  
TJ  
Load Resistor  
3
3
5.5  
10  
k  
Load Capacitance  
0.33  
47  
nF  
Junction Operating  
Temperature1)  
40  
40  
40  
125  
150  
170  
°C  
for 8000 h2)  
for 2000 h2)  
for 1000 h2)  
1) Depends on the temperature profile of the application. Please contact TDK-Micronas for life time  
calculations.  
2) Time values are not cumulative.  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
15  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
4.8. Characteristics  
at TJ = 40 °C to 170 °C, VSUP = 4.5 V to 5.5 V, GND = 0 V, at Recommended Operation  
Conditions if not otherwise specified in the column “Notes”. Typical characteristics for TJ =  
25 °C and VSUP = 5 V.  
Symbol Parameter  
Pin Min. Typ. Max. Unit  
No.  
Notes  
ISUP  
Supply Current over  
1
5
6.75 8.5  
mA  
Temperature  
Signal  
Resolution  
3
3
10  
8
Bit  
kHz  
%
fs  
Sampling Frequency  
INL  
Non-Linearity of  
Output Voltage  
1.0  
0
1.0  
% of Supply Voltage  
(Linear regression)  
TJ = 25 °C  
over Temperature2)  
ER  
Ratiometric Error of  
Output  
3
1.0  
0
1.0  
%
over Temperature  
(Error in VOUT/VSUP)  
VOUTH  
VOUTL  
BW  
Analog Output  
High Voltage limit of  
linear range output  
3
3
3
4.7  
4.9  
0.1  
V
VSUP = 5 V,  
IOUT = 1 mA  
Analog Output  
Low Voltage limit of  
linear range output  
0.3  
V
VSUP = 5 V,  
IOUT = 1 mA  
Small Signal Band-  
2.25 2.5  
kHz  
BAC <10 mT, fs = 8 kHz  
width (3 dB)2)  
1) Guaranteed by design  
2) Characterized on small sample size, not tested  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
16  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
Symbol Parameter  
Pin Min. Typ. Max. Unit  
No.  
Notes  
tr(O)  
Response Time of  
3
125  
360  
s  
CL = 10 nF, time from  
10% to 90% of final out-  
put voltage for a mag-  
netic input signal step  
from 0 mT to more than  
50% of the magnetic  
range of the device.  
Output2)  
tPOD  
Power-Up Time  
(time to reach stabi-  
lized output voltage,  
10mV)2)  
3
400  
500  
s  
CL = 10 nF, 90% of VOUT  
VOUTn  
ROUT  
Output RMS Noise2)  
3
3
1.2  
60  
3.0  
mV  
B = 5% to 95% of  
RANGE  
ESD Protection  
Resistance1)  
TO92UA Package  
Thermal Resistance  
Determined with a  
1s0p board  
Rthja  
Rthjc  
Junction to Air  
250  
70  
K/W  
K/W  
Junction to Case  
1) Guaranteed by design  
2) Characterized on small sample size, not tested  
4.8.1. Definition of tPOD  
tPOD is the power-up time to reach a stabilized output (10 mV).  
Voltage  
5 V  
VPORLH  
VSUP  
~2 V  
0 V  
5 V  
VOUT  
0 V  
tPOD  
time  
Fig. 4–6: Definition of tPOD  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
17  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
4.9. Power-On Reset / Undervoltage Detection  
at TJ = 40 °C to 170 °C, GND=0 V, typical characteristics for TJ = 25 °C  
Symbol  
Parameter  
Pin  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
VPOR_LH  
Undervoltage  
1
4.15  
4.3  
4.45  
V
Detection Level  
(Power-On Reset,  
Rising Supply)1)  
VPOR_HL  
Undervoltage  
Detection Level  
1
1
3.9  
4.05  
225  
4.25  
300  
V
(Power-On Reset,  
Falling Supply)1)  
VPOR_HYS  
Undervoltage/POR  
Detection Level  
Hysteresis1)  
150  
mV  
1) Characterized on small sample size, not tested  
4.10. Output Voltage in Case of Error Detection  
at TJ = 40 °C to 170 °C, typical characteristics for TJ = 25 °C.  
Symbol  
Parameter  
Pin  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDIAG_L  
Output Voltage in  
case of Error Detec-  
tion  
3
0
0.02  
0.1  
V
VSUP = 5 V  
RL = 5 k  
pull-up  
VDIAG_H  
Output Voltage in  
case of Error Detec-  
tion  
3
4.7  
4.9  
5
V
VSUP = 5 V  
RL = 5 k  
pull-down  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
18  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
4.11. Magnetic Characteristics  
at Recommended Operating Conditions if not otherwise specified in the column ’Notes’,  
TJ = 40 °C to 170 °C, VSUP = 4.5 V to 5.5 V. Typical Characteristics for TA = 25 °C and  
VSUP = 5 V.  
Symbol  
Parameter  
Pin  
No.  
Values  
Min.  
Unit Notes  
Typ.  
Max.  
SENS  
Sensitivity1)  
3
47.5 50.0  
52.5  
mV/ HAL 1881; TJ = 25 °C  
mT  
30.0 31.25 32.5  
HAL 1882; TJ = 25 °C  
24.0 25.0  
0.3  
26.0  
1
HAL 1883; TJ = 25 °C  
Senstrim  
Trim Step for Absolute  
Sensitivity  
3
3
mV/ At min. sensitivity  
mT At max. sensitivity  
Offsettrim OffseT Trim  
2.5  
10  
312  
mV OALN = 0  
OALN = 1  
1250  
ES  
Sensitivity Error over  
3
6  
0
0
6
%
Part to part variation  
for certain combina-  
tions of TC and  
TCSQ  
Temperature1)  
(see Section 4.11.1.)  
BOFFSET  
Magnetic Offset  
3
3
2  
2
mT B = 0 mT, TA = 25 °C  
µT B = 0 mT,  
BOFFSET  
Magnetic Offset Drift  
over temperature1)  
400 0  
400  
BOFFSET(T) BOFFSET  
(25 °C)  
VOFFSET  
Voltage Offset Drift  
over temperature 1)  
3
3
10  
20  
0
0
30  
20  
mV B = 0 mT,  
VOFFSET(T) VOFFSET  
(25 °C)  
BHysteresis  
Magnetic Hysteresis1)  
µT  
Range = 40 mT  
1) Characterized on small sample size, not tested  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
19  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
4.11.1. Definition of Sensitivity Error ES  
ES is the maximum of the absolute value of the quotient of the normalized measured  
value1) over the normalized ideal linear value2) minus 1:  
meas  
ideal  
  
  
-----------  
ES = max abs  
1  
Tmin, Tmax  
In the example shown in Fig. 4–7 the maximum error occurs at 10 °C:  
1.001  
0.993  
------------  
ES =  
1 = 0.8%  
1) normalized to achieve a least-square-fit straight-line that has a value of 1 at 25 °C  
2) normalized to achieve a value of 1 at 25 °C  
ideal 200 ppm/k  
1.03  
least-squares method straight line  
of normalized measured data  
measurement example of real  
1.02  
1.01  
1.00  
0.99  
0.98  
sensor, normalized to achieve a  
value of 1 of its least-squares  
method straight line at 25 °C  
1.001  
0.993  
-25 -10  
150  
175  
0
25  
temperature [°C]  
125  
-50  
50  
75 100  
Fig. 4–7: Definition of Sensitivity Error ES  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
20  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
5. Application Notes  
5.1. Ambient Temperature  
Due to the internal power dissipation, the temperature on the silicon chip (junction temper-  
ature TJ) is higher than the temperature outside the package (ambient temperature TA).  
TJ = TA + T  
At static conditions and continuous operation, the following equation applies:  
T = ISUP * VSUP * RthjX  
The X represents junction to air or to case.  
In order to estimate the temperature difference T between the junction and the respec-  
tive reference (e.g. air, case, or solder point) use the max. parameters for ISUP, RthX,  
and the max. value for VSUP from the application.  
The following example shows the result for junction to air conditions. VSUP = 5.5 V,  
Rthja = 250 K/W and ISUP = 10 mA the temperature difference T = 13.75 K.  
The junction temperature TJ is specified. The maximum ambient temperature TAmax can  
be estimated as:  
TAmax = TJmax T  
Note  
The calculated self-heating of the devices is only valid for the Rth test  
boards. Depending on the application setup the final results in an applica-  
tion environment might deviate from these values.  
5.2. EMC  
HAL 1880 is designed for a stabilized 5 V supply. Interferences and disturbances  
conducted along the 12 V onboard system (product standard ISO 7637 part 1) are not  
relevant for these applications.  
For applications with disturbances by capacitive or inductive coupling on the supply line  
or radiated disturbances, the application circuit shown in Fig. 5–1 on page 22 is recom-  
mended. Applications with this arrangement should pass the EMC tests according to  
the product standards ISO 7637 part 3 (electrical transient transmission by capacitive or  
inductive coupling).  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
21  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
5.3. Application Circuit  
For EMC protection, it is recommended to connect a 47 nF capacitor between ground  
and output voltage pin as well as a 100 nF capacitor between supply and ground as  
shown in Fig. 5–1.  
VSUP  
10 k  
OUT  
HAL188x  
100 nF  
47 nF  
GND  
Fig. 5–1: Recommended application circuit  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
22  
DATA SHEET  
HAL 1881, HAL 1882, HAL 1883  
6. Document History  
1. Advance Information: “HAL 1881, HAL 1882, HAL 1883, Preprogrammed Linear Hall-  
Effect Sensors in TO92 Package”, Aug. 1, 2018, AI000209_001EN. First release of  
the Advance Information.  
2. Data Sheet: “HAL 1881, HAL 1882, HAL 1883 Preprogrammed Linear Hall-Effect  
Sensors in TO92 Package”, March 31, 2020, DSH000199_001EN. First release of  
the data sheet.  
3. Data Sheet: “HAL 1881, HAL 1882, HAL 1883 Preprogrammed Linear Hall-Effect  
Sensors in TO92 Package”, July 7, 2020, DSH000199_002EN. Second release of  
the data sheet.  
Major Changes:  
– Fig. 4.1 and 4.2: TO92UA package drawings updated  
– Characteristics: Response Time of Output tr(O) updated  
4. Data Sheet: “HAL 1881, HAL 1882, HAL 1883 Preprogrammed Linear Hall-Effect  
Sensors in TO92 Package”, July 4, 2022, DSH000199_003EN. Third release of the  
data sheet.  
Major Change:  
– Section 4.11. Magnetic Characteristics: Voltage Offset Drift VOFFSET added  
TDK-Micronas GmbH  
Hans-Bunte-Strasse 19 D-79108 Freiburg P.O. Box 840 D-79008 Freiburg, Germany  
Tel. +49-761-517-0 Fax +49-761-517-2174 www.micronas.tdk.com  
TDK-Micronas GmbH  
July 4, 2022; DSH000199_003EN  
24  

相关型号:

HAL1883UA

线性霍尔传感器
TDK

HAL1890UA

线性霍尔传感器
TDK

HAL1XY

Low-Cost Hall-Effect Sensor Family
MICRONAS

HAL1XY_1

Low-Cost Hall-Effect Sensor Family
MICRONAS

HAL200-S

Current Transducer HAL 50~600-S
LEM

HAL201

Low-Cost Hall-Effect Sensor Family
MICRONAS

HAL201JQ-K

Hall-Effect Sensor Family
MICRONAS

HAL201JQ-K

Analog Circuit, 1 Func, CMOS, PSIP3, PLASTIC, TO-92UA-6, SMD-3
TDK

HAL201TQ-K

Hall-Effect Sensor Family
MICRONAS

HAL201TQ-K

Analog Circuit, 1 Func, CMOS, PDSO4, PLASTIC, SOT-89B-3, SMD-4
TDK

HAL201TQ-K-C-P-Q-SP

Hall Effect Sensor, 28mT Min, 30mT Max, 0-20mA, Rectangular, Surface Mount, PLASTIC, SOT-89B, 4 PIN
TDK

HAL202

Low-Cost Hall-Effect Sensor Family
MICRONAS