IAM-20680HT [TDK]

IMU (惯性测量设备);
IAM-20680HT
型号: IAM-20680HT
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

IMU (惯性测量设备)

文件: 总55页 (文件大小:1956K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IAM-20680HT  
High Performance Automotive 6-Axis MotionTracking Device  
GENERAL DESCRIPTION  
APPLICATIONS  
The IAM-20680HT is a 6-axis MotionTracking device for  
Automotive non-safety applications that combines a 3-  
axis gyroscope and a 3-axis accelerometer in a thin  
3x3x0.75mm3 (16-pin LGA) package. It also features a  
4096-byte FIFO that can lower the traffic on the serial  
bus interface and reduce power consumption by allowing  
the system processor to burst read sensor data and then  
go into a low-power mode. IAM-20680HT, with its 6-axis  
integration, enables manufacturers to eliminate the  
costly and complex selection, qualification, and system  
level integration of discrete devices, guaranteeing  
optimal motion performance.  
IAM-20680HT address a wide range of Automotive  
applications, including but not limited to:  
Navigation Systems Aids for Dead Reckoning  
Lift Gate Motion Detection  
Accurate Location for Vehicle to Vehicle and  
Infrastructure  
View Camera Stabilization and Vision Systems  
Head-up display (HUD) and augmented reality HUD  
Car Alarm  
Telematics  
Insurance Vehicle Tracking  
ORDERING INFORMATION  
The gyroscope has a programmable full-scale range of  
±250 dps, ±500 dps, ±1000 dps and ±2000 dps. The  
accelerometer has a user-programmable accelerometer  
full-scale range of ±2g, ±4g, ±8g, and ±16g. Factory-  
calibrated initial sensitivity of both sensors reduces  
production-line calibration requirements.  
PART  
AXES  
TEMP RANGE  
PACKAGE  
MSL*  
IAM-20680HT†  
X, Y, Z -40°C to +105°C 16-Pin LGA  
3
†Denotes RoHS and Green-compliant package  
* Moisture sensitivity level of the package  
FEATURES  
Other industry-leading features include on-chip 16-bit  
ADCs, programmable digital filters, an embedded  
temperature sensor, and two programmable interrupts.  
The device features I2C and SPI serial interfaces, a VDD  
operating range of 1.71V to 3.6V, and a separate digital  
IO supply, VDDIO from 1.71V to 3.6V.  
Digital-output X-, Y-, and Z-axis angular rate sensors  
(gyroscopes) with a user-programmable full-scale  
range of ±250dps, ±500dps, ±1000dps, and  
±2000dps, integrated 16-bit ADCs.  
Digital-output X-, Y-, and Z-axis accelerometer with  
a user-programmable full-scale range of ±2g, ±4g,  
±8g, and ±16g and integrated 16-bit ADCs  
User-programmable digital filters for gyroscope,  
accelerometer, and temperature sensor  
Embedded Self-test  
Two interrupt lines  
Wake-on-Motion interrupt for low-power operation  
of applications processor  
BLOCK DIAGRAM  
Reliability testing performed according to  
AEC–Q100: PPAP and qualification report available  
upon request  
Final test at -40°C, 25°C, and +105°C  
TYPICAL OPERATING CIRCUIT  
LONGEVITY COMMITMENT  
To provide the best service for customers developing products  
with a long-life cycle we have designed and engineered  
products with longevity in mind. These products are designed  
for harsher environments and are tested and manufactured to  
higher accuracy and stability.  
https://invensense.tdk.com/longevity/  
InvenSense, Inc. reserves the right to change  
specifications and information herein without notice  
unless the product is in mass production and the  
datasheet has been designated by InvenSense in  
writing as subject to a specified Product / Process  
Change Notification Method regulation.  
InvenSense, a TDK Group Company  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
+1(408) 988–7339  
Document Number: DS-000481  
Revision: 1.1  
Rev. Date: 02/15/2022  
invensense.tdk.com  
 
 
 
 
 
 
IAM-20680HT  
TABLE OF CONTENTS  
General Description............................................................................................................................................ 1  
Block Diagram..................................................................................................................................................... 1  
Applications........................................................................................................................................................ 1  
Ordering Information ......................................................................................................................................... 1  
Features.............................................................................................................................................................. 1  
Typical Operating Circuit .................................................................................................................................... 1  
TABLE OF CONTENTS ..................................................................................................................................................... 2  
LIST OF FIGURES ............................................................................................................................................................ 5  
LIST OF TABLES .............................................................................................................................................................. 6  
1
2
3
Introduction........................................................................................................................................................ 7  
Purpose and Scope .................................................................................................................................. 7  
Product Overview .................................................................................................................................... 7  
Applications ............................................................................................................................................. 7  
Features.............................................................................................................................................................. 8  
Gyroscope Features................................................................................................................................. 8  
Accelerometer Features .......................................................................................................................... 8  
Additional Features.................................................................................................................................. 8  
Electrical Characteristics..................................................................................................................................... 9  
Gyroscope Specifications......................................................................................................................... 9  
Accelerometer Specifications ................................................................................................................10  
Electrical Specifications ......................................................................................................................... 11  
I2C Timing Characterization ...................................................................................................................14  
SPI Timing Characterization...................................................................................................................15  
Absolute Maximum Ratings...................................................................................................................16  
Thermal Information.............................................................................................................................. 16  
Applications Information.................................................................................................................................. 17  
Pin Out Diagram and Signal Description................................................................................................17  
Typical Operating Circuit........................................................................................................................ 18  
Bill of Materials for External Components.............................................................................................18  
Block Diagram........................................................................................................................................ 19  
Overview................................................................................................................................................ 19  
Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning..............................................20  
Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning .......................................20  
I2C and SPI Serial Communications Interfaces.......................................................................................20  
Self-Test ................................................................................................................................................. 21  
Clocking.................................................................................................................................................. 21  
4
Document Number: DS-000481  
Revision: 1.1  
Page 2 of 55  
 
IAM-20680HT  
Sensor Data Registers ............................................................................................................................ 22  
FIFO........................................................................................................................................................ 22  
Interrupts............................................................................................................................................... 22  
Digital-Output Temperature Sensor ......................................................................................................22  
Bias and LDOs ........................................................................................................................................ 22  
Charge Pump ......................................................................................................................................... 22  
Standard Power Modes ......................................................................................................................... 22  
Sensor Initialization and Basic Configuration ........................................................................................23  
Programmable Interrupts................................................................................................................................. 25  
Wake-on-Motion Interrupt....................................................................................................................25  
Digital Interface ................................................................................................................................................ 26  
I2C and SPI Serial Interfaces ...................................................................................................................26  
I2C Interface ........................................................................................................................................... 26  
IC Communications Protocol .................................................................................................................26  
I2C Terms................................................................................................................................................ 28  
SPI Interface........................................................................................................................................... 29  
Serial Interface Considerations......................................................................................................................... 30  
IAM-20680HT Supported Interfaces......................................................................................................30  
Register Map .................................................................................................................................................... 31  
Register Descriptions........................................................................................................................................ 33  
Registers 0 to 2 – Gyroscope Self-Test Registers...................................................................................33  
Registers 13 to 15 – Accelerometer Self-Test Registers ........................................................................33  
Register 19 – Gyro Offset Adjustment Register.....................................................................................34  
Register 20 – Gyro Offset Adjustment Register.....................................................................................34  
Register 21 – Gyro Offset Adjustment Register.....................................................................................34  
Register 22 – Gyro Offset Adjustment Register.....................................................................................34  
Register 23 – Gyro Offset Adjustment Register.....................................................................................35  
Register 24 – Gyro Offset Adjustment Register.....................................................................................35  
Register 25 – Sample Rate Divider.........................................................................................................35  
Register 26 – Configuration ...................................................................................................................35  
Register 27 – Gyroscope Configuration .................................................................................................36  
Register 28 – Accelerometer Configuration ..........................................................................................36  
Register 29 – Accelerometer Configuration 2........................................................................................37  
Register 30 – Low Power Mode Configuration......................................................................................38  
Register 31 – Wake-on Motion Threshold (Accelerometer)..................................................................39  
Register 35 – FIFO Enable ...................................................................................................................... 39  
Register 54 – FSYNC Interrupt Status.....................................................................................................40  
5
6
7
8
9
Document Number: DS-000481  
Revision: 1.1  
Page 3 of 55  
IAM-20680HT  
Register 55 – INT/INT2 Pin / Bypass Enable Configuration....................................................................40  
Register 56 – Interrupt Enable...............................................................................................................41  
Register 58 – Interrupt Status................................................................................................................41  
Registers 59 to 64 – Accelerometer Measurements .............................................................................41  
Registers 65 and 66 – Temperature Measurement...............................................................................42  
Registers 67 to 72 – Gyroscope Measurements ....................................................................................42  
Register 104 – Signal Path Reset............................................................................................................44  
Register 105 – Accelerometer Intelligence Control...............................................................................44  
Register 106 – User Control...................................................................................................................44  
Register 107 – Power Management 1 ...................................................................................................45  
Register 108 – Power Management 2 ...................................................................................................45  
Registers 114 and 115 – FIFO Count Registers ......................................................................................46  
Register 116 – FIFO Read Write.............................................................................................................47  
Register 117 – Who Am I ....................................................................................................................... 47  
Registers 119, 120, 122, 123, 125, 126 Accelerometer Offset Registers...............................................48  
Assembly .......................................................................................................................................................... 49  
Orientation of Axes................................................................................................................................ 49  
Package Dimensions .............................................................................................................................. 50  
Part Number Package Marking......................................................................................................................... 52  
Reference ......................................................................................................................................................... 53  
Revision History................................................................................................................................................ 54  
10  
11  
12  
13  
Document Number: DS-000481  
Revision: 1.1  
Page 4 of 55  
IAM-20680HT  
LIST OF FIGURES  
Figure 1. I2C Bus Timing Diagram.................................................................................................................................14  
Figure 2. SPI Bus Timing Diagram ................................................................................................................................15  
Figure 3. Pin out Diagram for IAM-20680HT 3.0x3.0x0.75mm3 LGA...........................................................................17  
Figure 4. IAM-20680HT LGA Application Schematic....................................................................................................18  
Figure 5. IAM-20680HT Block Diagram........................................................................................................................19  
Figure 6. IAM-20680HT Solution Using I2C Interface...................................................................................................20  
Figure 7. IAM-20680HT Solution Using SPI Interface ..................................................................................................21  
Figure 8. START and STOP Conditions..........................................................................................................................26  
Figure 9. Acknowledge on the I2C Bus .........................................................................................................................27  
Figure 10. Complete I2C Data Transfer ........................................................................................................................27  
Figure 11. Typical SPI Master/Slave Configuration......................................................................................................29  
Figure 12. I/O Levels and Connections ........................................................................................................................30  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation........................................................................49  
Figure 14. Package Dimensions ...................................................................................................................................50  
Figure 15. Part Number Package Marking...................................................................................................................52  
Document Number: DS-000481  
Revision: 1.1  
Page 5 of 55  
 
IAM-20680HT  
LIST OF TABLES  
Table 1. Gyroscope Specifications .................................................................................................................................9  
Table 2. Accelerometer Specifications ........................................................................................................................10  
Table 3. D.C. Electrical Characteristics.........................................................................................................................11  
Table 4. A.C. Electrical Characteristics.........................................................................................................................13  
Table 5. Other Electrical Specifications .......................................................................................................................13  
Table 6. I2C Timing Characteristics...............................................................................................................................14  
Table 7. SPI Timing Characteristics (8 MHz Operation) ...............................................................................................15  
Table 8. Absolute Maximum Ratings ...........................................................................................................................16  
Table 9. Thermal Information......................................................................................................................................16  
Table 10. Signal Descriptions.......................................................................................................................................17  
Table 11. Bill of Materials ............................................................................................................................................18  
Table 12. Standard Power Modes for IAM-20680HT...................................................................................................22  
Table 13. Table of Interrupt Sources ...........................................................................................................................25  
Table 14. Serial Interface.............................................................................................................................................26  
Table 15. I2C Terms......................................................................................................................................................28  
Table 16. Register Map................................................................................................................................................32  
Table 17. Gyroscope and Temperature Sensor Data Rates and Bandwidths (Low-Noise Mode) ...............................36  
Table 18. Accelerometer Data Rates and Bandwidths (Low-Noise Mode)..................................................................37  
Table 19. Example Configurations for Accelerometer WoM Mode ............................................................................38  
Table 20. Example Configurations for Gyroscope when GYRO_CYCLE = 1..................................................................39  
Table 21. Package Dimensions ....................................................................................................................................51  
Table 22. Part Number Package Marking ....................................................................................................................52  
Document Number: DS-000481  
Revision: 1.1  
Page 6 of 55  
 
IAM-20680HT  
1 INTRODUCTION  
PURPOSE AND SCOPE  
This document is a product specification, providing description, specifications, and design related information on  
the IAM-20680HT Automotive MotionTracking device. The device is housed in a thin 3x3x0.75 mm3 16-pin LGA  
package.  
PRODUCT OVERVIEW  
The IAM-20680HT is a 6-axis MotionTracking device for Automotive non-safety applications, that combines a 3-axis  
gyroscope and a 3-axis accelerometer in a thin 3x3x0.75 mm3 (16-pin LGA) package. It also features a 4096-byte  
FIFO that can lower the traffic on the serial bus interface and reduce power consumption by allowing the system  
processor to burst read sensor data and then go into a low-power mode. IAM-20680HT, with its 6-axis integration,  
enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of  
discrete devices, guaranteeing optimal motion performance.  
The gyroscope has a programmable full-scale range of ±250 dps, ±500 dps, ±1000 dps, and ±2000 dps. The  
accelerometer has a user-programmable accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g. Factory-  
calibrated initial sensitivity of both sensors reduces production-line calibration requirements.  
Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded  
temperature sensor, and programmable interrupts. The device features I2C and SPI serial interfaces, a VDD  
operating range of 1.71V to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V.  
Communication with all registers of the device is performed using either I2C at 400 kHz or SPI at 8 MHz.  
By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers  
with companion CMOS electronics through wafer-level bonding, TDK-InvenSense has driven the package size down  
to a footprint and thickness of 3x3x0.75 mm3 (16-pin LGA), to provide a very small yet high-performance. The  
device provides high robustness by supporting 10,000g shock reliability.  
APPLICATIONS  
Navigation Systems Aids for Dead Reckoning  
Lift Gate Motion Detections  
Accurate Location for Vehicle to Vehicle and Infrastructure  
View Camera Stabilization and Vision Systems  
Head-up display (HUD) and augmented reality HUD  
Car Alarm  
Telematics  
Insurance Vehicle Tracking  
Document Number: DS-000481  
Revision: 1.1  
Page 7 of 55  
 
 
 
 
IAM-20680HT  
2 FEATURES  
GYROSCOPE FEATURES  
The triple-axis MEMS gyroscope in the IAM-20680HT includes a wide range of features:  
Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-scale  
range of ±250 dps, ±500 dps, ±1000 dps and ±2000 dps and integrated 16-bit ADCs  
Digitally-programmable low-pass filter  
Factory calibrated sensitivity scale factor  
Self-test  
ACCELEROMETER FEATURES  
The triple-axis MEMS accelerometer in IAM-20680HT includes a wide range of features:  
Digital-output X-, Y-, and Z-axis accelerometer with a programmable full-scale range of ±2g, ±4g, ±8g and  
±16g and integrated 16-bit ADCs  
Two user-programmable interrupts  
Wake-on-Motion (WoM) interrupt for low-power operation of applications processor  
Self-test  
ADDITIONAL FEATURES  
The IAM-20680HT includes the following additional features:  
Thinnest LGA package for automotive applications: 3x3x0.75 mm3 (16-pin LGA)  
Minimal cross-axis sensitivity between the accelerometer and gyroscope axes  
4096-byte FIFO buffer enables the applications processor to read the data in bursts  
Digital-output temperature sensor  
User-programmable digital filters for gyroscope, accelerometer, and temperature sensor  
10,000g shock tolerant  
400 kHz Fast Mode I2C for communicating with all registers  
8 MHz SPI serial interface for communicating with all registers  
MEMS structure hermetically sealed and bonded at wafer level  
RoHS and Green compliant  
Document Number: DS-000481  
Revision: 1.1  
Page 8 of 55  
 
 
 
 
IAM-20680HT  
3 ELECTRICAL CHARACTERISTICS  
GYROSCOPE SPECIFICATIONS  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, Full Scale = 2000dps, Low-Noise  
Mode enabled unless otherwise noted.  
All Zero-rate output, sensitivity, and noise specifications include board soldering effects, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
GYROSCOPE SENSITIVITY  
FS_SEL=0  
FS_SEL=1  
FS_SEL=2  
FS_SEL=3  
±250  
±500  
±1000  
±2000  
16  
dps  
dps  
dps  
dps  
bits  
3
3
3
3
3
3
3
3
3
1
1
Full-Scale Range  
Gyroscope ADC Word Length  
Sensitivity Scale Factor  
FS_SEL=0  
FS_SEL=1  
FS_SEL=2  
FS_SEL=3  
Best fit straight line; 25°C  
25°C  
131  
LSB/(dps)  
LSB/(dps)  
LSB/(dps)  
LSB/(dps)  
%
65.5  
32.8  
16.4  
±0.1  
±1  
Nonlinearity  
Cross-Axis Sensitivity  
%
ZERO-RATE OUTPUT (ZRO)  
ZRO Tolerance  
ZRO Variation Over Temperature  
All axes combined, 25°C  
±0.8  
±1.0  
dps  
dps  
1,2  
1,2  
All axes combined, -40°C to +105°C  
GYROSCOPE NOISE PERFORMANCE  
25°C, initial, Noise BW = 306 Hz,  
VDD = VDDIO = 1.8V  
Rate Noise Spectral Density  
0.005  
27  
dps/√Hz  
1,4  
Gyroscope Mechanical Frequencies  
Low Pass Filter Response  
Gyroscope Start Up Time  
KHz  
Hz  
ms  
2
3
1
Programmable Range  
From Sleep mode, 25°C  
Programmable, Normal (Filtered)  
mode  
5
4
250  
50  
35  
Output Data Rate  
8000  
Hz  
1
Table 1. Gyroscope Specifications  
Notes:  
1. Based on characterization data on a limited number of parts.  
2. Tested in production at component level. Over temperature tests are performed at 25°C, 105°C, and/or -40°C.  
3. Guaranteed by design.  
4. Calculated from Total RMS Noise.  
Document Number: DS-000481  
Revision: 1.1  
Page 9 of 55  
 
 
 
IAM-20680HT  
ACCELEROMETER SPECIFICATIONS  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, Full Scale = 8g, Low-Noise Mode  
enabled unless otherwise noted.  
All Zero-g output, sensitivity, and noise specifications include board soldering effects, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
ACCELEROMETER SENSITIVITY  
AFS_SEL=0  
AFS_SEL=1  
AFS_SEL=2  
AFS_SEL=3  
Output in two’s complement format  
AFS_SEL=0  
AFS_SEL=1  
AFS_SEL=2  
AFS_SEL=3  
Best Fit Straight Line for 2g, 25°C  
25°C  
±2  
±4  
±8  
±16  
16  
16,384  
8,192  
4,096  
2,048  
±0.05  
±1  
g
g
g
3
3
3
3
3
3
3
3
3
1
1
Full-Scale Range  
g
ADC Word Length  
bits  
LSB/g  
LSB/g  
LSB/g  
LSB/g  
%
Sensitivity Scale Factor  
Nonlinearity  
Cross-Axis Sensitivity  
%
ZERO-G OUTPUT  
All axes combined, 25°C  
Zero-G Level Tolerance  
Zero-G Level Variation Over  
Temperature  
±50  
±50  
mg  
mg  
1,2  
1,2  
All axes combined, -40°C to +105°C  
NOISE PERFORMANCE  
Low-noise mode, +25°C, initial,  
Noise BW = 235 Hz, VDD = VDDIO = 1.8V  
Programmable Range  
From Sleep mode, 25°C  
Low-noise (active)  
Power Spectral Density  
135  
µg/√Hz  
1,4  
Low Pass Filter Response  
Accelerometer Start-up Time  
Output Data Rate  
5
4
218  
20  
4000  
Hz  
ms  
Hz  
3
1
1
Table 2. Accelerometer Specifications  
Notes:  
1. Based on characterization data on a limited number of parts.  
2. Tested in production at component level. Over temperature tests are performed at 25°C, 105°C, and/or -40°C.  
3. Guaranteed by design.  
4. Calculated from Total RMS Noise.  
Document Number: DS-000481  
Revision: 1.1  
Page 10 of 55  
 
 
IAM-20680HT  
ELECTRICAL SPECIFICATIONS  
D.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, Low-Noise Mode enabled unless  
otherwise noted.  
PARAMETER  
CONDITIONS  
SUPPLY VOLTAGES  
MIN  
TYP  
MAX  
UNITS  
NOTES  
VDD  
VDDIO  
1.71  
1.71  
1.8  
1.8  
3.6  
3.6  
V
V
1
1
SUPPLY CURRENTS & BOOT TIME  
6-axis Gyroscope + Accelerometer,  
-40°C to +105°C  
3
3.75  
mA  
1
Low-Noise Mode  
3-axis Gyroscope  
3-axis Accelerometer, 4 kHz ODR  
2.6  
390  
6
mA  
µA  
µA  
1
1
1
Full-Chip Sleep Mode  
TEMPERATURE RANGE  
Specified Temperature Range  
Performance parameters are not applicable  
beyond Specified Temperature Range  
-40  
+105  
°C  
1,2  
Table 3. D.C. Electrical Characteristics  
Notes:  
1. Based on characterization data on a limited number of parts.  
2. Based on qualification.  
Document Number: DS-000481  
Revision: 1.1  
Page 11 of 55  
 
 
 
IAM-20680HT  
A.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SUPPLIES  
Supply Ramp Time (TRAMP  
)
Monotonic ramp. Ramp  
rate is 10% to 90% of the  
final value  
0.01  
100  
ms  
1
TEMPERATURE SENSOR  
Operating Range  
Room Temperature Offset  
Sensitivity  
Ambient  
25°C  
Untrimmed  
-40  
105  
°C  
°C  
LSB/°C  
1
1
1
0
326.8  
POWER-ON RESET  
Supply Ramp Time (TRAMP  
)
Valid power-on RESET  
From power-up  
From sleep  
0.01  
100  
100  
5
ms  
ms  
ms  
1
1
1
11  
Start-up time for register read/write  
SA0 = 0  
SA0 = 1  
1101000  
1101001  
I2C ADDRESS  
DIGITAL INPUTS (FSYNC, SA0, SPC, SDI, CS)  
VIH, High Level Input Voltage  
VIL, Low Level Input Voltage  
CI, Input Capacitance  
0.7*VDDIO  
V
V
pF  
0.3*VDDIO  
1
1
< 10  
DIGITAL OUTPUT (SDO, INT)  
VOH, High Level Output Voltage  
VOL1, LOW-Level Output Voltage  
VOL.INT, INT Low-Level Output Voltage  
RLOAD=1 MΩ;  
RLOAD=1 MΩ;  
OPEN=1, 0.3 mA sink  
Current  
0.9*VDDIO  
V
V
V
0.1*VDDIO  
0.1  
Output Leakage Current  
tINT, INT Pulse Width  
OPEN=1  
LATCH_INT_EN=0  
100  
50  
nA  
µs  
I2C I/O (SCL, SDA)  
VIL, LOW Level Input Voltage  
VIH, HIGH-Level Input Voltage  
-0.5V  
0.7*VDDIO  
0.3*VDDIO  
VDDIO + 0.5  
V
V
V
Vhys, Hysteresis  
0.1*VDDIO  
V
VOL, LOW-Level Output Voltage  
IOL, LOW-Level Output Current  
3 mA sink current  
VOL=0.4V  
VOL=0.6V  
0
0.4  
V
1
3
6
100  
mA  
mA  
nA  
Output Leakage Current  
tof, Output Fall Time from VIHmax to  
VILmax  
Cb bus capacitance in pf  
20+0.1Cb  
300  
ns  
Document Number: DS-000481  
Revision: 1.1  
Page 12 of 55  
 
IAM-20680HT  
INTERNAL CLOCK SOURCE  
FCHOICE_B=1,2,3  
SMPLRT_DIV=0  
FCHOICE_B=0;  
DLPFCFG=0 or 7  
SMPLRT_DIV=0  
FCHOICE_B=0;  
32  
8
kHz  
kHz  
2
2
Sample Rate  
DLPFCFG=1,2,3,4,5,6;  
SMPLRT_DIV=0  
1
kHz  
2
CLK_SEL=0, 6 or gyro  
inactive; 25°C  
CLK_SEL=1,2,3,4,5 and gyro  
active; 25°C  
CLK_SEL=0,6 or gyro  
inactive  
CLK_SEL=1,2,3,4,5 and gyro  
active  
-5  
-1  
+5  
+1  
%
%
%
%
1
1
1
1
Clock Frequency Initial Tolerance  
-10  
-1  
+10  
+1  
Frequency Variation over  
Temperature  
Table 4. A.C. Electrical Characteristics  
Notes:  
1. Based on characterization data on a limited number of parts.  
2. Guaranteed by design.  
Other Electrical Specifications  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
SERIAL INTERFACE  
MIN  
TYP  
MAX  
UNITS NOTES  
100  
±10%  
1
Low Speed Characterization  
High Speed Characterization  
kHz  
1
SPI Operating Frequency, All  
Registers Read/Write  
8
MHz  
1, 2  
Modes 0  
and 3  
SPI Modes  
All registers, Fast-mode  
All registers, Standard-mode  
400  
100  
kHz  
kHz  
1
1
I2C Operating Frequency  
Table 5. Other Electrical Specifications  
Notes:  
1. Based on characterization data on a limited number of parts.  
2. SPI clock duty cycle between 45% and 55% should be used for 8-MHz operation.  
Document Number: DS-000481  
Revision: 1.1  
Page 13 of 55  
 
 
IAM-20680HT  
I2C TIMING CHARACTERIZATION  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETERS  
I2C TIMING  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
I2C FAST-MODE  
fSCL, SCL Clock Frequency  
tHD.STA, (Repeated) START Condition Hold Time  
400  
kHz  
µs  
1
1
0.6  
tLOW, SCL Low Period  
tHIGH, SCL High Period  
tSU.STA, Repeated START Condition Setup Time  
tHD.DAT, SDA Data Hold Time  
tSU.DAT, SDA Data Setup Time  
tr, SDA and SCL Rise Time  
1.3  
0.6  
0.6  
0
100  
20+0.1Cb  
20+0.1Cb  
0.6  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
1
1
1
1
1
1
1
1
Cb bus cap. from 10 to 400 pF  
Cb bus cap. from 10 to 400 pF  
300  
300  
tf, SDA and SCL Fall Time  
tSU.STO, STOP Condition Setup Time  
tBUF, Bus Free Time Between STOP and START  
Condition  
1.3  
µs  
1
Cb, Capacitive Load for each Bus Line  
tVD.DAT, Data Valid Time  
tVD.ACK, Data Valid Acknowledge Time  
< 400  
pF  
µs  
µs  
1
1
1
0.9  
0.9  
Table 6. I2C Timing Characteristics  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.  
t
f
tSU.DAT  
t
r
SDA  
SCL  
70%  
30%  
70%  
30%  
continued below at  
A
t
f
t
r
t
VD.DAT  
70%  
30%  
70%  
30%  
t
HD.DAT  
9
th clock cycle  
tHD.STA  
1/fSCL  
tLOW  
1
st clock cycle  
S
t
HIGH  
t
BUF  
SDA  
SCL  
70%  
30%  
A
tSU.STO  
t
SU.STA  
tHD.STA  
t
VD.ACK  
70%  
30%  
th clock cycle  
S
P
Sr  
9
Figure 1. I2C Bus Timing Diagram  
Document Number: DS-000481  
Revision: 1.1  
Page 14 of 55  
 
 
 
IAM-20680HT  
SPI TIMING CHARACTERIZATION  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
NOTES  
PARAMETERS  
SPI TIMING  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
fSPC, SPC Clock Frequency  
tLOW, SPC Low Period  
tHIGH, SPC High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
8
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
1
1
1
1
1
1
1
1
2
2
56  
56  
2
63  
3
tSU.SDI, SDI Setup Time  
tHD.SDI, SDI Hold Time  
tVD.SDO, SDO Valid Time  
tHD.SDO, SDO Hold Time  
tDIS.SDO, SDO Output Disable Time  
tFall, SCLK Fall Time  
7
Cload = 20 pF  
Cload = 20 pF  
40  
6
20  
6.5  
6.5  
tRise, SCLK Rise Time  
Table 7. SPI Timing Characteristics (8 MHz Operation)  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.  
2. Based on other parameter values.  
CS  
70%  
30%  
tFall  
tRise  
t
HD;CS  
t
SU;CS  
70%  
t
HIGH  
1/fCLK  
SCLK  
30%  
tSU;SDI  
t
HD;SDI  
tLOW  
70%  
30%  
SDI  
LSB IN  
MSB IN  
tDIS;SDO  
tVD;SDO  
t
HD;SDO  
70%  
30%  
SDO  
MSB OUT  
LSB OUT  
Figure 2. SPI Bus Timing Diagram  
Document Number: DS-000481  
Revision: 1.1  
Page 15 of 55  
 
 
 
IAM-20680HT  
ABSOLUTE MAXIMUM RATINGS  
Stress above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device. These are  
stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the  
absolute maximum ratings conditions for extended periods may affect device reliability.  
PARAMETER  
RATING  
-0.5V to 4V  
Supply Voltage, VDD  
Supply Voltage, VDDIO  
REGOUT  
-0.5V to 4V  
-0.5V to 2V  
Input Voltage Level (SA0, FSYNC, SCL, SDA)  
Acceleration (Any Axis, unpowered)  
Temperature Range  
-0.5V to VDDIO + 0.5V  
10,000g for 0.2ms  
-40°C to 105°C  
Storage Temperature Range  
-40°C to 125°C  
2 kV (HBM);  
Electrostatic Discharge (ESD) Protection  
750V (CDM corner pins)  
500V (CDM all other pins)  
JEDEC Class II (2),125°C  
±100 mA  
Latch-up  
Ultrasonic excitation (cleaning/welding/…)  
Not allowed  
Table 8. Absolute Maximum Ratings  
THERMAL INFORMATION  
THERMAL METRIC  
DESCRIPTION  
Junction-to-ambient thermal resistance  
Junction-to-top characterization parameter  
VALUE  
84.58 °C/W  
7 °C/W  
θJA  
ψJT  
Table 9. Thermal Information  
Document Number: DS-000481  
Revision: 1.1  
Page 16 of 55  
 
 
 
 
IAM-20680HT  
4 APPLICATIONS INFORMATION  
PIN OUT DIAGRAM AND SIGNAL DESCRIPTION  
PIN NUMBER  
PIN NAME  
VDDIO  
SCL/SPC  
SDA/SDI  
SA0/SDO  
CS  
INT  
INT2  
FSYNC  
RESV  
PIN DESCRIPTION  
Digital I/O supply voltage  
1
2
3
4
5
6
7
8
9
I2C serial clock (SCL); SPI serial clock (SPC)  
I2C serial data (SDA); SPI serial data input (SDI)  
I2C slave address LSB (SA0); SPI serial data output (SDO)  
Chip select (0 = SPI mode; 1 = I2C mode)  
Interrupt digital output (push-pull or open-drain)  
Second Interrupt digital output (push-pull or open-drain)  
Synchronization digital input (optional). Connect to GND if unused  
Reserved. Connect to GND  
10  
11  
12  
13  
14  
15  
RESV  
RESV  
RESV  
GND  
Reserved. Connect to GND  
Reserved. Connect to GND  
Reserved. Connect to GND  
Connect to GND  
REGOUT  
Regulator filter capacitor connection  
RESV  
Reserved. Connect to GND  
16  
VDD  
Power Supply  
Table 10. Signal Descriptions  
Note: VDD, VDDIO, SCL/SPC and CS pins must be correctly managed at power-up to guarantee proper IAM-20680HT start-up. Please refer to  
sections 4.18.1 and 4.18.2 for detailed power-up instructions.  
Figure 3. Pin out Diagram for IAM-20680HT 3.0x3.0x0.75mm3 LGA  
Document Number: DS-000481  
Revision: 1.1  
Page 17 of 55  
 
 
 
 
IAM-20680HT  
TYPICAL OPERATING CIRCUIT  
Figure 4. IAM-20680HT LGA Application Schematic  
Note: I2C lines are open drain and pullup resistors (e.g. 10 kΩ) are required.  
BILL OF MATERIALS FOR EXTERNAL COMPONENTS  
COMPONENT  
REGOUT Capacitor  
LABEL  
C1  
SPECIFICATION  
QUANTITY  
X7R, 0.47 µF ±10%  
X7R, 0.1 µF ±10%  
X7R, 2.2 µF ±10%  
X7R, 10 nF ±10%  
1
1
1
1
C2  
VDD Bypass Capacitors  
VDDIO Bypass Capacitor  
C4  
C3  
Table 11. Bill of Materials  
Document Number: DS-000481  
Revision: 1.1  
Page 18 of 55  
 
 
 
 
IAM-20680HT  
BLOCK DIAGRAM  
Figure 5. IAM-20680HT Block Diagram  
OVERVIEW  
The IAM-20680HT is comprised of the following key blocks and functions:  
Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning  
Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning  
Primary I2C and SPI serial communications interfaces  
Self-Test  
Clocking  
Sensor Data Registers  
FIFO  
Two independent Interrupts  
Digital-Output Temperature Sensor  
Bias and LDOs  
Charge Pump  
Standard Power Modes  
Document Number: DS-000481  
Revision: 1.1  
Page 19 of 55  
 
 
 
IAM-20680HT  
THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING  
The IAM-20680HT consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the  
X-, Y-, and Z- Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration  
that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a  
voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-  
Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally  
programmed to ±250, ±500, ±1000, or ±2000 degrees per second (dps). The ADC sample rate is programmable  
from 8,000 samples per second, down to 3.9 samples per second, and user-selectable low-pass filters enable a  
wide range of cut-off frequencies.  
THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING  
The IAM-20680HT’s 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular  
axis induces displacement on the corresponding proof mass, and capacitive sensors detect the displacement  
differentially. The IAM-20680HT’s architecture reduces the accelerometers’ susceptibility to fabrication variations  
as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and  
+1g on the Z-axis. The accelerometers’ scale factor is calibrated at the factory and is nominally independent of  
supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs. The full-scale range of  
the digital output can be adjusted to ±2g, ±4g, ±8g, or ±16g.  
I2C AND SPI SERIAL COMMUNICATIONS INTERFACES  
The IAM-20680HT communicates to a system processor using either a SPI or an I2C serial interface. The IAM-  
20680HT always acts as a slave when communicating to the system processor. The LSB of the I2C slave address is  
set by pin 4 (SA0).  
IAM-20680HT Solution Using I2C Interface  
In Figure 6, the system processor is an I2C master to the IAM-20680HT.  
Figure 6. IAM-20680HT Solution Using I2C Interface  
Document Number: DS-000481  
Revision: 1.1  
Page 20 of 55  
 
 
 
 
IAM-20680HT  
IAM-20680HT Solution Using SPI Interface  
In Figure 7, the system processor is an SPI master to the IAM-20680HT. Pins 2, 3, 4, and 5 are used to support the  
SPC, SDI, SDO, and CS signals for SPI communications.  
Figure 7. IAM-20680HT Solution Using SPI Interface  
SELF-TEST  
Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each  
measurement axis can be activated by means of the gyroscope and accelerometer self-test registers (registers 27  
and 28).  
When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The  
output signal is used to observe the self-test response.  
The self-test response is defined as follows:  
SELF-TEST RESPONSE = SENSOR OUTPUT WITH SELF-TEST ENABLED – SENSOR OUTPUT WITH SELF-TEST DISABLED  
When the value of the self-test response is within the specified min/max limits of the product specification, the  
part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have  
failed self-test.  
CLOCKING  
The IAM-20680HT has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the  
internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various  
control circuits and registers. An on-chip PLL provides flexibility in the allowable inputs for generating this clock.  
Allowable internal sources for generating the internal clock are:  
a) An internal relaxation oscillator  
b) Auto-select between internal relaxation oscillator and gyroscope MEMS oscillator to use the best  
available source  
The only setting supporting specified performance in all modes is option b). It is recommended that option b) be  
used.  
Document Number: DS-000481  
Revision: 1.1  
Page 21 of 55  
 
 
 
IAM-20680HT  
SENSOR DATA REGISTERS  
The sensor data registers contain the latest gyroscope, accelerometer, and temperature measurement data. They  
are read-only registers and are accessed via the serial interface. Data from these registers may be read anytime.  
FIFO  
The IAM-20680HT contains a 4096-byte FIFO register that is accessible via the Serial Interface. The FIFO  
configuration register determines which data are written into the FIFO. Possible choices include gyro data,  
accelerometer data, temperature readings, and FSYNC input. A FIFO counter keeps track of how many bytes of  
valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to  
determine when new data are available.  
INTERRUPTS  
Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the  
INT pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can  
trigger an interrupt are new data are available to be read (from the FIFO and Data registers), FIFO overflow wake  
on motion. The interrupt status can be read from the Interrupt Status register.  
DIGITAL-OUTPUT TEMPERATURE SENSOR  
An on-chip temperature sensor and ADC are used to measure the IAM-20680HT die temperature. The readings  
from the ADC can be read from the FIFO or the Sensor Data registers.  
BIAS AND LDOS  
The bias and LDO section generates the internal supply and the reference voltages and currents required by the  
IAM-20680HT. Its two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output  
is bypassed by a capacitor at REGOUT. For further details on the capacitor, please refer to the Bill of Materials for  
External Components.  
CHARGE PUMP  
An on-chip charge pump generates the high voltage required for the MEMS oscillator.  
STANDARD POWER MODES  
Table 12 lists the user-accessible power modes for IAM-20680HT.  
MODE  
NAME  
GYRO  
Off  
Drive On  
Off  
ACCEL  
Off  
Off  
Duty-Cycled  
On  
1
2
3
4
5
6
Sleep Mode  
Standby Mode  
Accelerometer Wake-on-Motion (WoM) Mode  
Accelerometer Low-Noise Mode  
Gyroscope Low-Noise Mode  
Off  
On  
On  
Off  
On  
6-Axis Low-Noise Mode  
Table 12. Standard Power Modes for IAM-20680HT  
Notes:  
1. Power consumption for individual modes can be found in section 3.3.1.  
Document Number: DS-000481  
Revision: 1.1  
Page 22 of 55  
 
 
 
 
 
 
 
 
IAM-20680HT  
SENSOR INITIALIZATION AND BASIC CONFIGURATION  
The basic configuration of the IAM-20680HT includes the following steps:  
Power-up sequence  
Sensor initialization and clock source selection  
Digital interface access test  
Output data rate (i.e. sampling frequency) selection  
Full scale range selection  
Filter frequency selection  
Power mode selection  
Power-up sequence  
When applying VDD, the power voltage ramp is detected and a power-on-reset sequence is triggered inside the  
component. During this phase the device starts operating and internal logic levels are defined. For proper  
component initialization the power-up should be performed with both CS and SCL/SPC low, ensuring that CS and  
SCL pins are not in an undetermined state during the VDD ramp. If starting in I2C mode (CS at logic high), power-up  
should be performed with SCL/SPC low. Power-up with SCL/SPC high is not a supported case and must be avoided.  
It is worth noting that if the I/O pins (e.g. CS, SCL/SPC) are between VIL and VIH when the power-on-reset sequence  
is triggered, their value is undetermined and the internal logic levels may not be properly defined. It should also be  
noted that VIL and VIH are related to VDDIO and their value changes at power-up according to the applied VDDIO  
voltage ramp.  
Power-up sequences that do not respect the conditions above may not lead to proper digital interface initialization.  
In this case a preliminary soft reset operation (PWR_MGMT_1 register set 0x81) must be performed to reset the  
digital interface, as soon as both VDD and VDDIO are stable at their final voltage. Since the digital interface may not  
be properly initialized, the device may not provide the acknowledge signal if the I2C protocol is used.  
Sensor Initialization and Clock Source Selection  
When power-up sequence is completed (as per section 4.18.1), a soft reset is required to initialize the sensor and  
let the IAM-20680HT select the best clock source. The soft reset must be performed by setting the register  
PWR_MGMT_1 (address 0x6B) to 0x81 (see section 9.27), prior to registers initialization.  
Soft reset must be performed as first operation after the power-up sequence to ensure the proper component  
registers setting.  
Correct WHO_AM_I value is ensured only after the soft reset has been completed.  
Digital interface access test  
When soft reset is completed, make sure the component registers access can be done as expected. WHO_AM_I  
(address 0x75) register can be used for this purpose to verify the identity of the device.  
Output Data Rate Selection  
To set the output data rate (ODR) to the desired frequency, select the sample rate divider by setting the register  
SMPLRT_DIV (address 0x19) to the desired value (see section 9.9). For instance, to set the output data rate to 100  
Hz, write 0x09 into SMPLRT_DIV.  
Full-Scale Range Selection  
To set the full-scale range (FSR) of the accelerometer, set the register ACCEL_CONFIG (address 0x1C) to the desired  
value (see section 9.12). For instance, to set the FSR of the accelerometer to 2g, write 0x00 into ACCEL_CONFIG.  
To set the FSR of the gyroscope, set the register GYRO_CONFIG (address 0x1B) to the desired value (see section  
9.11). For instance, to set the FSR of the gyroscope to 250 dps, write 0x00 into GYRO_CONFIG.  
Document Number: DS-000481  
Revision: 1.1  
Page 23 of 55  
 
 
 
IAM-20680HT  
Filter Selection  
To set the corner frequency of the digital low-pass filter (DLPF) of the accelerometer, set the register  
ACCEL_CONFIG2 (address 0x1D) to the desired value (see section 9.13). For instance, to set the corner frequency  
of the DLPF of the accelerometer to 10.2 Hz, write 0x05 into ACCEL_CONFIG2.  
To set the corner frequency of the DLPF of the gyroscope, set the register CONFIG (address 0x1A) to the desired  
value (see section 9.10). For instance, to set the corner frequency of the DLPF of the gyroscope to 10 Hz, write  
0x05 into CONFIG.  
Power mode selection  
To set desired power modes for IAM-20680HT (see section 4.17).  
Document Number: DS-000481  
Revision: 1.1  
Page 24 of 55  
IAM-20680HT  
5 PROGRAMMABLE INTERRUPTS  
The IAM-20680HT has a programmable interrupt system which can generate an interrupt signal on the INT pin.  
Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually.  
INTERRUPT NAME  
Motion Detection  
MODULE  
Motion  
FIFO Overflow  
Data Ready  
FIFO  
Sensor Registers  
Table 13. Table of Interrupt Sources  
WAKE-ON-MOTION INTERRUPT  
The IAM-20680HT provides motion detection capability. A qualifying motion sample is one where the high passed  
sample from any axis has an absolute value exceeding a user-programmable threshold. The following steps explain  
how to configure the Wake-on-Motion Interrupt.  
Step 1: Ensure that Accelerometer is running  
In PWR_MGMT_1 register (0x6B) set ACCEL_CYCLE = 0, SLEEP = 0, and GYRO_STANDBY = 0  
Step 2: Accelerometer Configuration  
In ACCEL_CONFIG2 register (0x1D) set ACCEL_FCHOICE_B = 0 and A_DLPF_CFG[2:0] = b111  
Step 3: Enable Motion Interrupt  
In INT_ENABLE register (0x38) set WOM_INT_EN[2:0] = b111 to enable motion interrupt  
Once triggered, WOM interrupt is generated on INT pin (if INT2_EN bit is set to 0) or on INT2 pin (if INT2_EN is set  
to 1).  
Step 4: Set Motion Threshold  
Set the motion threshold in ACCEL_WOM_THR register (0x1F)  
Step 5: Enable Accelerometer Hardware Intelligence  
In ACCEL_INTEL_CTRL register (0x69) set ACCEL_INTEL_EN = 1 to enable the Wake-on-Motion detection  
logic  
In ACCEL_INTEL_CTRL register (0x69) set ACCEL_INTEL_MODE = 1 to make the detection insensitive to the  
acceleration DC-component  
In ACCEL_INTEL_CTRL register (0x69) ensure that bit 0 is set to 0.  
Step 6: Set Accelerometer WoM ODR Selection  
In LP_MODE_CFG register (0x1E) set ACCEL_WOM_ODR_CTRL[3:0] according to Table 19  
Step 7: Enable Cycle Mode (Accelerometer WoM Mode)  
In PWR_MGMT_2 register (0x6C) set STBY_XA = STBY_YA = STBY_ZA = 0, and STBY_XG = STBY_YG =  
STBY_ZG = 1  
In PWR_MGMT_1 register (0x6B) set ACCEL_CYCLE = 1  
Document Number: DS-000481  
Revision: 1.1  
Page 25 of 55  
 
 
 
IAM-20680HT  
6 DIGITAL INTERFACE  
I2C AND SPI SERIAL INTERFACES  
The internal registers and memory of the IAM-20680HT can be accessed using either I2C at 400 kHz or SPI at 8  
MHz. SPI operates in four-wire mode.  
PIN NUMBER  
PIN NAME  
VDDIO  
PIN DESCRIPTION  
Digital I/O supply voltage.  
1
4
2
3
SA0 / SDO  
SCL / SPC  
SDA / SDI  
I2C Slave Address LSB (SA0); SPI serial data output (SDO)  
I2C serial clock (SCL); SPI serial clock (SPC)  
I2C serial data (SDA); SPI serial data input (SDI)  
Table 14. Serial Interface  
Note: To prevent switching into I2C mode when using SPI, the I2C interface should be disabled by setting the I2C_IF_DIS configuration bit.  
Setting this bit should be performed immediately after waiting for the time specified by the “Start-Up Time for Register Read/Write” in section  
3.3.2.  
For further information regarding the I2C_IF_DIS bit, please refer to sections 8 and 9 of this document.  
I2C INTERFACE  
I2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are  
open-drain and bi-directional. In a generalized I2C interface implementation, attached devices can be a master or a  
slave. The master device puts the slave address on the bus, and the slave device with the matching address  
acknowledges the master.  
The IAM-20680HT always operates as a slave device when communicating to the system processor, which acts as  
the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz.  
The slave address of the IAM-20680HT is b110100X which is 7 bits long. The LSB bit of the 7-bit address is  
determined by the logic level on pin SA0. This allows two IAM-20680HTs to be connected to the same I2C bus.  
When used in this configuration, the address of one of the devices should be b1101000 (pin SA0 is logic low) and  
the address of the other should be b1101001 (pin SA0 is logic high).  
IC COMMUNICATIONS PROTOCOL  
START (S) and STOP (P) Conditions  
Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is defined as  
a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered busy until  
the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line  
while SCL is HIGH (see Figure 8).  
Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 8. START and STOP Conditions  
Document Number: DS-000481  
Revision: 1.1  
Page 26 of 55  
 
 
 
 
 
 
IAM-20680HT  
Data Format / Acknowledge  
I2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data  
transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge  
signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA  
and holding it low during the HIGH portion of the acknowledge clock pulse.  
If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it  
can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is  
ready, and releases the clock line (refer to Figure 9).  
DATA OUTPUT BY  
TRANSMITTER (SDA)  
not acknowledge  
DATA OUTPUT BY  
RECEIVER (SDA)  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
clock pulse for  
acknowledgement  
START  
condition  
Figure 9. Acknowledge on the I2C Bus  
Communications  
After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by  
an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to  
the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave  
device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the  
SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the  
master with a STOP condition (P), thus freeing the communications line. However, the master can generate a  
repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to  
HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place  
when SCL is low, with the exception of start and stop conditions.  
SDA  
SCL  
1 – 7  
8
9
1 – 7  
8
9
1 – 7  
8
9
S
P
START  
STOP  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
condition  
condition  
Figure 10. Complete I2C Data Transfer  
To write the internal IAM-20680HT registers, the master transmits the start condition (S), followed by the I2C  
address and the write bit (0). At the 9th clock cycle (when the clock is high), the IAM-20680HT acknowledges the  
transfer. Then the master puts the register address (RA) on the bus. After the IAM-20680HT acknowledges the  
Document Number: DS-000481  
Revision: 1.1  
Page 27 of 55  
 
 
IAM-20680HT  
reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal,  
and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the  
master can continue outputting data rather than transmitting a stop signal. In this case, the IAM-20680HT  
automatically increments the register address and loads the data to the appropriate register. The following figures  
show single and two-byte write sequences.  
Single-Byte Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
P
ACK  
ACK  
ACK  
Burst Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
To read the internal IAM-20680HT registers, the master sends a start condition, followed by the I2C address and a  
write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the IAM-  
20680HT, the master transmits a start signal followed by the slave address and read bit. As a result, the IAM-  
20680HT sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a  
stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock cycle. The  
following figures show single and two-byte read sequences.  
Single-Byte Read Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
S
AD+R  
AD+R  
NACK  
P
ACK  
ACK  
ACK  
ACK  
ACK  
DATA  
Burst Read Sequence  
Master  
Slave  
S
AD+W  
S
ACK  
NACK  
P
ACK  
DATA  
DATA  
I2C TERMS  
SIGNAL  
DESCRIPTION  
S
AD  
W
Start Condition: SDA goes from high to low while SCL is high  
Slave I2C address  
Write bit (0)  
R
Read bit (1)  
ACK  
NACK  
RA  
Acknowledge: SDA line is low while the SCL line is high at the 9th clock cycle  
Not-Acknowledge: SDA line stays high at the 9th clock cycle  
IAM-20680HT internal register address  
DATA  
P
Transmit or received data  
Stop condition: SDA going from low to high while SCL is high  
Table 15. I2C Terms  
Document Number: DS-000481  
Revision: 1.1  
Page 28 of 55  
 
 
IAM-20680HT  
SPI INTERFACE  
SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The IAM-20680HT always  
operates as a Slave device during standard Master-Slave SPI operation.  
With respect to the Master, the Serial Clock output (SPC), the Serial Data Output (SDO) and the Serial Data Input  
(SDI) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the  
master.  
CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active  
at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected slave devices  
are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere  
with any active devices.  
SPI Operational Features  
1. Data are delivered MSB first and LSB last  
2. Data are latched on the rising edge of SPC  
3. Data should be transitioned on the falling edge of SPC  
4. The maximum frequency of SPC is 8 MHz  
5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first  
byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first  
byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The following 7 bits  
contain the Register Address. In cases of multiple-byte Read/Writes, data are two or more bytes:  
SPI Address format  
MSB  
LSB  
R/W A6 A5 A4 A3 A2 A1 A0  
SPI Data format  
MSB  
D7  
LSB  
D6 D5 D4 D3 D2 D1 D0  
6. Supports Single or Burst Read/Writes.  
SPC  
SDI  
SPI Master  
SPI Slave 1  
SDO  
CS  
CS1  
CS2  
SPC  
SDI  
SDO  
CS  
SPI Slave 2  
Figure 11. Typical SPI Master/Slave Configuration  
Document Number: DS-000481  
Revision: 1.1  
Page 29 of 55  
 
 
IAM-20680HT  
7 SERIAL INTERFACE CONSIDERATIONS  
IAM-20680HT SUPPORTED INTERFACES  
The IAM-20680HT supports I2C communications on its serial interface.  
The IAM-20680HT’s I/O logic levels are set to be VDDIO.  
Figure 12 depicts a sample circuit of IAM-20680HT. It shows the relevant logic levels and voltage connections.  
Figure 12. I/O Levels and Connections  
Document Number: DS-000481  
Revision: 1.1  
Page 30 of 55  
 
 
 
IAM-20680HT  
8 REGISTER MAP  
The following table lists the register map for the IAM-20680HT.  
Accessible  
Addr  
(Hex)  
Addr  
(Dec.)  
Serial  
I/F  
(writable)  
in Sleep  
Mode  
Register Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
00  
01  
02  
0D  
0E  
0F  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
00  
01  
02  
13  
14  
15  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SELF_TEST_X_GYRO  
SELF_TEST_Y_GYRO  
SELF_TEST_Z_GYRO  
SELF_TEST_X_ACCEL  
SELF_TEST_Y_ACCEL  
SELF_TEST_Z_ACCEL  
XG_OFFS_USRH  
XG_OFFS_USRL  
YG_OFFS_USRH  
YG_OFFS_USRL  
ZG_OFFS_USRH  
ZG_OFFS_USRL  
SMPLRT_DIV  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
XG_ST_DATA[7:0]  
YG_ST_DATA[7:0]  
ZG_ST_DATA[7:0]  
XA_ST_DATA[7:0]  
YA_ST_DATA[7:0]  
ZA_ST_DATA[7:0]  
X_OFFS_USR [15:8]  
X_OFFS_USR [7:0]  
Y_OFFS_USR [15:8]  
Y_OFFS_USR [7:0]  
Z_OFFS_USR [15:8]  
Z_OFFS_USR [7:0]  
SMPLRT_DIV[7:0]  
CONFIG  
-
FIFO_MODE  
YG_ST  
EXT_SYNC_SET[2:0]  
DLPF_CFG[2:0]  
GYRO_CONFIG  
XG_ST  
XA_ST  
ZG_ST  
ZA_ST  
FS_SEL [1:0]  
-
FCHOICE_B[1:0]  
ACCEL_CONFIG  
YA_ST  
ACCEL_FS_SEL[1:0]  
-
ACCEL_FCHOI  
CE_B  
1D  
1E  
1F  
29  
30  
31  
ACCEL_CONFIG 2  
LP_MODE_CFG  
R/W  
R/W  
R/W  
N
FIFO_SIZE[1:0]  
DEC2_CFG[1:0]  
A_DLPF_CFG[2:0]  
GYRO_CYCL  
E
N
N
G_AVGCFG[2:0]  
ACCEL_WOM_ODR_CTRL [3:0]  
ACCEL_WOM_THR  
WOM_THR[7:0]  
TEMP_FIFO  
_EN  
ACCEL_FIFO_  
EN  
23  
36  
35  
54  
FIFO_EN  
R/W  
R/C  
N
N
XG_FIFO_EN  
-
YG_FIFO_EN  
-
ZG_FIFO_EN  
-
-
-
-
-
-
-
FSYNC_INT  
FSYNC_INT  
-
FSYNC  
_INT_MODE_  
EN  
LATCH  
_INT_EN  
INT_RD  
_CLEAR  
FSYNC_INT_L  
EVEL  
37  
38  
3A  
55  
56  
58  
INT_PIN_CFG  
INT_ENABLE  
INT_STATUS  
R/W  
R/W  
R/C  
Y
Y
INT_LEVEL  
INT_OPEN  
-
-
-
INT2_EN  
FIFO  
_OFLOW  
_EN  
GDRIVE_INT_  
EN  
DATA_RDY_I  
NT_EN  
WOM_INT_EN[2:0]  
WOM_INT[2:0]  
-
-
FIFO  
_OFLOW  
_INT  
DATA  
_RDY_INT  
N
GDRIVE_INT  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
ACCEL_XOUT_H  
ACCEL_XOUT_L  
ACCEL_YOUT_H  
ACCEL_YOUT_L  
ACCEL_ZOUT_H  
ACCEL_ZOUT_L  
TEMP_OUT_H  
TEMP_OUT_L  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
ACCEL_XOUT_H[15:8]  
ACCEL_XOUT_L[7:0]  
ACCEL_YOUT_H[15:8]  
ACCEL_YOUT_L[7:0]  
ACCEL_ZOUT_H[15:8]  
ACCEL_ZOUT_L[7:0]  
TEMP_OUT[15:8]  
TEMP_OUT[7:0]  
GYRO_XOUT_H  
GYRO_XOUT_L  
GYRO_YOUT_H  
GYRO_YOUT_L  
GYRO_ZOUT_H  
GYRO_ZOUT_L  
GYRO_XOUT[15:8]  
GYRO_XOUT[7:0]  
GYRO_YOUT[15:8]  
GYRO_YOUT[7:0]  
GYRO_ZOUT[15:8]  
GYRO_ZOUT[7:0]  
ACCEL  
_RST  
TEMP  
_RST  
68  
104  
SIGNAL_PATH_RESET  
R/W  
N
-
-
-
-
-
-
Document Number: DS-000481  
Revision: 1.1  
Page 31 of 55  
 
IAM-20680HT  
Accessible  
(writable)  
in Sleep  
Mode  
Addr  
(Hex)  
Addr  
(Dec.)  
Serial  
I/F  
Register Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
ACCEL_INTE  
L_EN  
ACCEL_INTEL  
_MODE  
69  
6A  
6B  
105  
106  
107  
ACCEL_INTEL_CTRL  
USER_CTRL  
R/W  
R/W  
R/W  
N
N
Y
-
I2C_IF  
_DIS  
FIFO  
_RST  
SIG_COND  
_RST  
-
FIFO_EN  
SLEEP  
-
-
-
DEVICE_RES  
ET  
GYRO_  
STANDBY  
PWR_MGMT_1  
ACCEL_CYCLE  
STBY_XA  
TEMP_DIS  
STBY_ZA  
CLKSEL[2:0]  
STBY_YG  
6C  
72  
73  
74  
75  
77  
78  
7A  
7B  
7D  
7E  
108  
114  
115  
116  
117  
119  
120  
122  
123  
125  
126  
PWR_MGMT_2  
FIFO_COUNTH  
FIFO_COUNTL  
FIFO_R_W  
R/W  
R
Y
FIFO_LP_EN  
-
-
STBY_YA  
STBY_XG  
STBY_ZG  
N
N
N
N
N
N
N
N
N
N
FIFO_COUNT[12:8]  
R
FIFO_COUNT[7:0]  
R/W  
R
FIFO_DATA[7:0]  
WHOAMI[7:0]  
XA_OFFS [14:7]  
WHO_AM_I  
XA_OFFSET_H  
XA_OFFSET_L  
YA_OFFSET_H  
YA_OFFSET_L  
ZA_OFFSET_H  
ZA_OFFSET_L  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
XA_OFFS [6:0]  
YA_OFFS [14:7]  
YA_OFFS [6:0]  
ZA_OFFS [14:7]  
ZA_OFFS [6:0]  
-
-
-
Table 16. Register Map  
Note: Register Names ending in _H and _L contain the high and low bytes, respectively, of an internal register value.  
In the detailed register tables that follow, register names are in capital letters, while register values are in capital  
letters and italicized. For example, the ACCEL_XOUT_H register (Register 59) contains the 8 most significant bits,  
ACCEL_XOUT[15:8], of the 16-bit X-Axis accelerometer measurement, ACCEL_XOUT.  
The reset value is 0x00 for all registers other than the registers below:  
Self-test registers 0, 1, 2, 13, 14, 15 contain pre-programmed values  
Register 107, PWR_MGMT_1 = 0x01  
Register 117, WHO_AM_I: (default value is reported in section 9.31)  
Registers 119, 120, 122, 123, 125, 126 contain pre-programmed offset cancellation values  
Document Number: DS-000481  
Revision: 1.1  
Page 32 of 55  
 
 
IAM-20680HT  
9 REGISTER DESCRIPTIONS  
This section describes the function and contents of each register within the IAM-20680HT.  
Note: The device will come up in 6-Axis Low-Noise Mode upon power-up.  
REGISTERS 0 TO 2 – GYROSCOPE SELF-TEST REGISTERS  
Register Name: SELF_TEST_X_GYRO, SELF_TEST_Y_GYRO, SELF_TEST_Z_GYRO  
Type: READ/WRITE  
Register Address: 00, 01, 02 (Decimal); 00, 01, 02 (Hex)  
REGISTER  
BIT  
NAME  
FUNCTION  
The value in this register indicates the self-test output  
generated during manufacturing tests. This value is to be used  
to check against subsequent self-test outputs performed by  
the end user.  
The value in this register indicates the self-test output  
generated during manufacturing tests. This value is to be used  
to check against subsequent self-test outputs performed by  
the end user.  
The value in this register indicates the self-test output  
generated during manufacturing tests. This value is to be used  
to check against subsequent self-test outputs performed by  
the end user.  
SELF_TEST_X_GYRO  
[7:0] XG_ST_DATA[7:0]  
[7:0] YG_ST_DATA[7:0]  
[7:0] ZG_ST_DATA[7:0]  
SELF_TEST_Y_GYRO  
SELF_TEST_Z_GYRO  
The equation to convert self-test codes in OTP to factory self-test measurement is:  
ST _OTP = (2620/ 2FS )*1.01(ST _code1) (lsb)  
where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is based on  
the Self-Test value (ST_ FAC) determined in InvenSense’s factory final test and calculated based on the following  
equation:  
log(ST _ FAC /(2620/ 2FS ))  
ST _ code = round(  
) +1  
log(1.01)  
REGISTERS 13 TO 15 – ACCELEROMETER SELF-TEST REGISTERS  
Register Name: SELF_TEST_X_ACCEL, SELF_TEST_Y_ACCEL, SELF_TEST_Z_ACCEL  
Type: READ/WRITE  
Register Address: 13, 14, 15 (Decimal); 0D, 0E, 0F (Hex)  
REGISTER  
BITS  
NAME  
FUNCTION  
The value in this register indicates the self-test output  
generated during manufacturing tests. This value is to be  
used to check against subsequent self-test outputs  
performed by the end user.  
SELF_TEST_X_ACCEL  
[7:0]  
XA_ST_DATA[7:0]  
The value in this register indicates the self-test output  
generated during manufacturing tests. This value is to be  
used to check against subsequent self-test outputs  
performed by the end user.  
The value in this register indicates the self-test output  
generated during manufacturing tests. This value is to be  
used to check against subsequent self-test outputs  
performed by the end user.  
SELF_TEST_Y_ACCEL  
SELF_TEST_Z_ACCEL  
[7:0]  
[7:0]  
YA_ST_DATA[7:0]  
ZA_ST_DATA[7:0]  
The equation to convert self-test codes in OTP to factory self-test measurement is:  
Document Number: DS-000481  
Revision: 1.1  
Page 33 of 55  
 
 
 
IAM-20680HT  
ST _OTP = (2620/ 2FS )*1.01(ST _code1) (lsb)  
where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is based on  
the Self-Test value (ST_ FAC) determined in InvenSense’s factory final test and calculated based on the following  
equation:  
log(ST _ FAC /(2620/ 2FS ))  
ST _ code = round(  
) +1  
log(1.01)  
REGISTER 19 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: XG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 19 (Decimal); 13 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of X gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
X_OFFS_USR[15:8]  
REGISTER 20 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: XG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 20 (Decimal); 14 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of X gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
X_OFFS_USR[7:0]  
REGISTER 21 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: YG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 21 (Decimal); 15 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of Y gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Y_OFFS_USR[15:8]  
REGISTER 22 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: YG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 22 (Decimal); 16 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of Y gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Y_OFFS_USR[7:0]  
Document Number: DS-000481  
Revision: 1.1  
Page 34 of 55  
 
 
 
 
IAM-20680HT  
REGISTER 23 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: ZG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 23 (Decimal); 17 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of Z gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Z_OFFS_USR[15:8]  
REGISTER 24 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: ZG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 24 (Decimal); 18 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of Z gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Z_OFFS_USR[7:0]  
REGISTER 25 – SAMPLE RATE DIVIDER  
Register Name: SMPLRT_DIV  
Register Type: READ/WRITE  
Register Address: 25 (Decimal); 19 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0] SMPLRT_DIV[7:0]  
Divides the internal sample rate (see register CONFIG) to generate the sample rate that  
controls sensor data output rate, FIFO sample rate.  
Note: This register is only effective when FCHOICE_B register bits are 2’b00, and (0 < DLPF_CFG < 7).  
This is the update rate of the sensor register:  
SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV)  
Where INTERNAL_SAMPLE_RATE = 1 kHz  
REGISTER 26 – CONFIGURATION  
Register Name: CONFIG  
Register Type: READ/WRITE  
Register Address: 26 (Decimal); 1A (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
-
Always set to 0  
[6]  
FIFO_MODE  
When set to ‘1’, when the FIFO is full, additional writes will not be written to FIFO.  
When set to ‘0’, when the FIFO is full, additional writes will be written to the FIFO, replacing  
the oldest data.  
[5:3]  
EXT_SYNC_SET[2:0]  
Enables the FSYNC pin data to be sampled.  
EXT_SYNC_SET  
FSYNC bit location  
function disabled  
0
1
2
3
4
5
6
7
TEMP_OUT_L[0]  
GYRO_XOUT_L[0]  
GYRO_YOUT_L[0]  
GYRO_ZOUT_L[0]  
ACCEL_XOUT_L[0]  
ACCEL_YOUT_L[0]  
ACCEL_ZOUT_L[0]  
FSYNC will be latched to capture short strobes. This will be done such that if FSYNC toggles,  
the latched value toggles, but won’t toggle again until the new latched value is captured by  
the sample rate strobe.  
Document Number: DS-000481  
Revision: 1.1  
Page 35 of 55  
 
 
 
 
IAM-20680HT  
[2:0]  
DLPF_CFG[2:0]  
For the DLPF to be used, FCHOICE_B[1:0] is 2’b00.  
See Table 17.  
The DLPF is configured by DLPF_CFG, when FCHOICE_B [1:0] = 2b’00. The gyroscope and temperature sensor are  
filtered according to the value of DLPF_CFG and FCHOICE_B as shown in Table 17.  
Temperature  
FCHOICE_B  
Gyroscope  
Sensor  
DLPF_CFG  
3-dB BW  
(Hz)  
Noise BW  
(Hz)  
Rate  
(kHz)  
<1>  
<0>  
3-dB BW (Hz)  
X
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
X
X
0
1
2
3
4
5
6
7
8173  
3281  
250  
176  
92  
8595.1  
32  
4000  
4000  
4000  
188  
98  
3451.0  
306.6  
177.0  
108.6  
59.0  
32  
8
1
1
1
41  
20  
42  
20  
30.5  
1
10  
15.6  
10  
1
5
8.0  
5
1
8
3281  
3451.0  
4000  
Table 17. Gyroscope and Temperature Sensor Data Rates and Bandwidths (Low-Noise Mode)  
REGISTER 27 – GYROSCOPE CONFIGURATION  
Register Name: GYRO_CONFIG  
Register Type: READ/WRITE  
Register Address: 27 (Decimal); 1B (Hex)  
BIT  
[7]  
[6]  
[5]  
NAME  
FUNCTION  
XG_ST  
YG_ST  
ZG_ST  
X Gyro self-test  
Y Gyro self-test  
Z Gyro self-test  
Gyro Full Scale Select:  
00 = ±250 dps  
01= ±500 dps  
[4:3]  
FS_SEL[1:0]  
10 = ±1000 dps  
11 = ±2000 dps  
Reserved  
[2]  
-
[1:0]  
FCHOICE_B[1:0]  
Used to bypass DLPF as shown in Table 17 above.  
REGISTER 28 – ACCELEROMETER CONFIGURATION  
Register Name: ACCEL_CONFIG  
Register Type: READ/WRITE  
Register Address: 28 (Decimal); 1C (Hex)  
BIT  
[7]  
[6]  
[5]  
NAME  
FUNCTION  
XA_ST  
YA_ST  
ZA_ST  
X Accel self-test  
Y Accel self-test  
Z Accel self-test  
Accel Full Scale Select:  
±2g (00), ±4g (01), ±8g (10), ±16g (11)  
Reserved  
[4:3]  
[2:0]  
ACCEL_FS_SEL[1:0]  
-
Document Number: DS-000481  
Revision: 1.1  
Page 36 of 55  
 
 
 
IAM-20680HT  
REGISTER 29 – ACCELEROMETER CONFIGURATION 2  
Register Name: ACCEL_CONFIG2  
Register Type: READ/WRITE  
Register Address: 29 (Decimal); 1D (Hex)  
BIT  
NAME  
FUNCTION  
Specifies FIFO size according to the following:  
0 = 512 Byte  
1 = 1 kByte  
2 = 2 kByte  
3 = 4 kByte  
[7:6]  
FIFO_SIZE[1:0]  
Averaging filter settings for WoM Accelerometer Mode:  
0 = Average 4 samples  
1 = Average 8 samples  
[5:4]  
DEC2_CFG[1:0]  
2 = Average 16 samples  
3 = Average 32 samples  
[3]  
[2:0]  
ACCEL_FCHOICE_B  
A_DLPF_CFG  
Used to bypass DLPF as shown in the table below.  
Accelerometer low pass filter setting as shown in the table below.  
Accelerometer  
ACCEL_FCHOICE_B  
A_DLPF_CFG  
3-dB BW  
(Hz)  
Noise BW  
(Hz)  
Rate  
(kHz)  
1
0
0
0
0
0
0
0
0
X
0
1
2
3
4
5
6
7
1046.0  
218.1  
218.1  
99.0  
1100.0  
235.0  
235.0  
121.3  
61.5  
4
1
1
1
1
1
1
1
1
44.8  
21.2  
31.0  
10.2  
15.5  
5.1  
7.8  
420.0  
441.6  
Table 18. Accelerometer Data Rates and Bandwidths (Low-Noise Mode)  
The data output rate of the DLPF filter block can be further reduced by a factor of 1/(1+SMPLRT_DIV), where  
SMPLRT_DIV is an 8-bit integer. Following is a small subset of ODRs that are configurable for the accelerometer in  
the Low-Noise mode in this manner (Hz): 3.91, 7.81, 15.63, 31.25, 62.50, 125, 250, 500, 1K.  
The Table 19 lists the accelerometer filter bandwidths and noise available in the WoM mode of operation. In the  
WoM mode of operation, the accelerometer is duty-cycled.  
To operate in accelerometer WoM mode, gyroscope must be off and ACCEL_CYCLE must be set to ‘1’ in  
PWR_MGMT_1 (address 0x6B).  
Document Number: DS-000481  
Revision: 1.1  
Page 37 of 55  
 
 
IAM-20680HT  
ACCEL_FCHOICE_B  
A_DLPF_CFG  
DEC2_CFG  
1
x
0
7
0
7
0
7
0
7
x
0
1
2
3
Averages  
1x  
1.084  
1100.0  
4x  
1.84  
441.6  
8x  
2.84  
235.4  
16x  
4.84  
121.3  
32x  
8.84  
61.5  
Ton (ms)  
Noise BW (Hz)  
Noise (mg rms) TYP 1  
Based on 250 µg/Hz  
8.3  
5.3  
3.8  
2.8  
2.0  
ACCEL_WOM_ODR_CTRL  
ODR (Hz)  
3.9  
Current Consumption (µA) TYP 1  
4
5
8.4  
9.8  
9.4  
11.9  
17.0  
27.1  
47.2  
87.5  
168.1  
329.3  
10.8  
14.7  
13.6  
20.3  
19.2  
31.4  
7.8  
6
15.6  
12.8  
18.7  
30.4  
57.4  
100.9  
194.9  
22.5  
33.7  
55.9  
7
31.3  
38.2  
60.4  
104.9  
202.8  
N/A  
8
62.5  
69.4  
113.9  
220.9  
9
10  
11  
125.0  
250.0  
500.0  
132.0  
257.0  
N/A  
N/A  
Table 19. Example Configurations for Accelerometer WoM Mode  
Notes:  
1. Not tested in production, not guaranteed  
REGISTER 30 – LOW POWER MODE CONFIGURATION  
Register Name: LP_MODE_CFG  
Register Type: READ/WRITE  
Register Address: 30 (Decimal); 1E (Hex)  
BIT  
NAME  
GYRO_CYCLE 1  
FUNCTION  
When set to ‘1’ gyroscope or 6-axis are duty-cycled. Default setting is  
‘0’  
[7]  
Gyroscope averaging filter settings when GYRO_CYCLE is set to ‘1’.  
Default setting is ‘000’  
[6:4]  
G_AVGCFG[2:0]  
Accelerometer WoM Mode ODR configuration.  
ACCEL_WOM_ODR_CTRL is effective only when GYRO is off  
and ACCEL_CYCLE is set to ‘1’:  
0 to 3 = RESERVED  
4 = 3.9 Hz  
5 = 7.8 Hz  
6 = 15.6 Hz  
[3:0]  
ACCEL_WOM_ODR_CTRL[3:0]  
7 = 31.3 Hz  
8 = 62.5 Hz  
9 = 125 Hz  
10 = 250 Hz  
11 = 500 Hz  
12 to 15 = RESERVED  
Notes:  
1. Not tested in production, not guaranteed  
To reduce gyroscope or 6-axis power consumption, GYRO_CYCLE should be set to ‘1'. When GYRO_CYCLE is set to  
'1' gyroscope is duty-cycled and performance are reduced compared to Low-Noise mode. When GYRO_CYCLE is set  
to '1' gyroscope filter configuration is determined by G_AVGCFG[2:0] that sets the averaging filter configuration,  
gyroscope filter is not dependent on DLPF_CFG[2:0]. Table 20 shows some example configurations when  
GYRO_CYCLE is set to '1'.  
Document Number: DS-000481  
Revision: 1.1  
Page 38 of 55  
 
 
IAM-20680HT  
FCHOICE_B  
G_AVGCFG  
Averages  
Ton (ms)  
0
0
0
1
0
2
0
3
0
0
5
0
6
0
7
4
1x  
2x  
4x  
8x  
16x  
9.23  
60.2  
32x  
17.23  
30.6  
64x  
33.23  
15.6  
128x  
65.23  
8.0  
1.73  
650.8  
2.23  
407.1  
3.23  
224.2  
5.23  
117.4  
Noise BW (Hz)  
Noise (dps rms) TYP 1  
Based on 0.008 dps/Hz  
0.20  
0.16  
0.12  
0.09  
0.06  
0.04  
0.03  
0.02  
SMPLRT_DIV  
ODR (Hz)  
Current Consumption (mA) TYP 1  
255  
99  
64  
32  
19  
9
3.9  
10.0  
1.3  
1.3  
1.4  
1.4  
1.5  
1.6  
1.7  
1.9  
2.1  
2.3  
2.9  
1.3  
1.3  
1.4  
1.4  
1.5  
1.7  
1.8  
2.1  
2.3  
2.6  
1.3  
1.4  
1.4  
1.5  
1.6  
1.9  
2.0  
2.5  
2.7  
1.3  
1.4  
1.5  
1.6  
1.8  
2.2  
2.5  
1.4  
1.5  
1.6  
1.8  
2.1  
3.0  
1.4  
1.6  
1.8  
2.2  
2.8  
1.5  
1.9  
2.2  
1.8  
2.5  
15.4  
N/A  
30.3  
N/A  
50.0  
100.0  
125.0  
200.0  
250.0  
333.3  
500.0  
N/A  
7
4
N/A  
N/A  
3
2
N/A  
1
N/A  
Table 20. Example Configurations for Gyroscope when GYRO_CYCLE = 1  
Notes:  
1. Not tested in production, not guaranteed  
REGISTER 31 – WAKE-ON MOTION THRESHOLD (ACCELEROMETER)  
Register Name: ACCEL_WOM_THR  
Register Type: READ/WRITE  
Register Address: 31 (Decimal); 1F (Hex)  
BIT  
NAME  
FUNCTION  
This register holds the threshold value for the Wake on Motion Interrupt for accelerometer.  
Wake on motion threshold resolution is 4 mg/LSB regardless the selected full scale.  
[7:0]  
WOM_THR[7:0]  
REGISTER 35 – FIFO ENABLE  
Register Name: FIFO_EN  
Register Type: READ/WRITE  
Register Address: 35 (Decimal); 23 (Hex)  
BIT  
NAME  
FUNCTION  
1 – Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate; If enabled,  
buffering of data occurs even if data path is in standby.  
0 – Function is disabled.  
[7]  
TEMP_FIFO_EN  
1 – Write GYRO_XOUT_H and GYRO_XOUT_L to the FIFO at the sample rate; If enabled,  
buffering of data occurs even if data path is in standby.  
0 – Function is disabled.  
1 – Write GYRO_YOUT_H and GYRO_YOUT_L to the FIFO at the sample rate; If enabled,  
buffering of data occurs even if data path is in standby.  
[6]  
[5]  
XG_FIFO_EN  
YG_FIFO_EN  
0 – Function is disabled.  
Note: Enabling any one of the bits corresponding to the Gyros or Temp data paths, data are buffered into  
the FIFO even though that data path is not enabled.  
Document Number: DS-000481  
Revision: 1.1  
Page 39 of 55  
 
 
 
IAM-20680HT  
BIT  
NAME  
FUNCTION  
1 – Write GYRO_ZOUT_H and GYRO_ZOUT_L to the FIFO at the sample rate; If enabled,  
buffering of data occurs even if data path is in standby.  
0 – Function is disabled  
[4]  
ZG_FIFO_EN  
1 – Write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H,  
and ACCEL_ZOUT_L to the FIFO at the sample rate;  
0 – Function is disabled.  
[3]  
ACCEL_FIFO_EN  
-
[2:0]  
Reserved.  
REGISTER 54 – FSYNC INTERRUPT STATUS  
Register Name: FSYNC_INT  
Register Type: READ to CLEAR  
Register Address: 54 (Decimal); 36 (Hex)  
BIT  
NAME  
FUNCTION  
This bit automatically sets to 1 when a FSYNC interrupt has been generated. The bit  
clears to 0 after the register has been read.  
[7]  
FSYNC_INT  
REGISTER 55 – INT/INT2 PIN / BYPASS ENABLE CONFIGURATION  
Register Name: INT_PIN_CFG  
Register Type: READ/WRITE  
Register Address: 55 (Decimal); 37 (Hex)  
BIT  
NAME  
FUNCTION  
1 – The logic level for INT/INT2 pin is active low.  
0 – The logic level for INT/INT2 pin is active high.  
1 – INT/INT2 pin is configured as open drain.  
0 – INT/INT2 pin is configured as push-pull.  
1 – INT/INT2 pin level held until interrupt status is cleared.  
0 – INT/INT2 pin indicates interrupt pulse’s width is 50 µs.  
1 – Interrupt status is cleared if any read operation is performed.  
0 – Interrupt status is cleared only by reading INT_STATUS register  
1 – The logic level for the FSYNC pin as an interrupt is active low.  
0 – The logic level for the FSYNC pin as an interrupt is active high.  
When this bit is equal to 1, the FSYNC pin will trigger an interrupt when it transitions to  
the level specified by FSYNC_INT_LEVEL. When this bit is equal to 0, the FSYNC pin is  
disabled from causing an interrupt.  
[7]  
INT_LEVEL  
INT_OPEN  
[6]  
[5]  
[4]  
[3]  
LATCH_INT_EN  
INT_RD_CLEAR  
FSYNC_INT_LEVEL  
[2]  
[1]  
[0]  
FSYNC_INT_MODE_EN  
-
Reserved.  
When INT2_EN = 0, all of the interrupts appear on the INT pin, and INT2 interrupt pin is  
unused. When INT2_EN = 1, all interrupts except for data ready appear on the INT2 pin,  
and data ready interrupt appears on the INT interrupt pin.  
-INT2_EN  
Document Number: DS-000481  
Revision: 1.1  
Page 40 of 55  
 
 
IAM-20680HT  
REGISTER 56 – INTERRUPT ENABLE  
Register Name: INT_ENABLE  
Register Type: READ/WRITE  
Register Address: 56 (Decimal); 38 (Hex)  
BIT  
NAME  
FUNCTION  
111 – Enable WoM interrupt on accelerometer.  
000 – Disable WoM interrupt on accelerometer.  
[7:5]  
WOM_INT_EN[2:0]  
1 – Enables a FIFO buffer overflow to generate an interrupt.  
0 – Function is disabled.  
[4]  
FIFO_OFLOW_EN  
[3]  
[2]  
[1]  
[0]  
-
Reserved.  
GDRIVE_INT_EN  
-
DATA_RDY_INT_EN  
Gyroscope Drive System Ready interrupt enable.  
Reserved.  
Data ready interrupt enable.  
Data ready interrupt is always generated on INT pin. All the other interrupts signals are generated on INT pin if  
INT2_EN bit is set to 0 or on INT2 pin if INT2_EN bit is set to 1.  
REGISTER 58 – INTERRUPT STATUS  
Register Name: INT_STATUS  
Register Type: READ to CLEAR  
Register Address: 58 (Decimal); 3A (Hex)  
BIT  
NAME  
FUNCTION  
Accelerometer WoM interrupt status. Cleared on Read.  
111 – WoM interrupt on accelerometer  
[7:5]  
WOM_INT[2:0]  
This bit automatically sets to 1 when a FIFO buffer overflow has been generated. The bit  
clears to 0 after the register has been read.  
[4]  
FIFO_OFLOW_INT  
[3]  
[2]  
[1]  
-
Reserved.  
GDRIVE_INT  
-
Gyroscope Drive System Ready interrupt  
Reserved.  
This bit automatically sets to 1 when a Data Ready interrupt is generated. The bit clears  
to 0 after the register has been read.  
[0]  
DATA_RDY_INT  
REGISTERS 59 TO 64 – ACCELEROMETER MEASUREMENTS  
Register Name: ACCEL_XOUT_H  
Register Type: READ only  
Register Address: 59 (Decimal); 3B (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
ACCEL_XOUT_H[15:8]  
High byte of accelerometer x-axis data.  
Register Name: ACCEL_XOUT_L  
Register Type: READ only  
Register Address: 60 (Decimal); 3C (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
ACCEL_XOUT_L[7:0]  
Low byte of accelerometer x-axis data.  
Register Name: ACCEL_YOUT_H  
Register Type: READ only  
Register Address: 61 (Decimal); 3D (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
ACCEL_YOUT_H[15:8]  
High byte of accelerometer y-axis data.  
Document Number: DS-000481  
Revision: 1.1  
Page 41 of 55  
 
 
 
IAM-20680HT  
Register Name: ACCEL_YOUT_L  
Register Type: READ only  
Register Address: 62 (Decimal); 3E (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
ACCEL_YOUT_L[7:0]  
Low byte of accelerometer y-axis data.  
Register Name: ACCEL_ZOUT_H  
Register Type: READ only  
Register Address: 63 (Decimal); 3F (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
ACCEL_ZOUT_H[15:8]  
High byte of accelerometer z-axis data.  
Register Name: ACCEL_ZOUT_L  
Register Type: READ only  
Register Address: 64 (Decimal); 40 (Hex)  
BIT  
[7:0]  
NAME  
ACCEL_ZOUT_L[7:0]  
FUNCTION  
Low byte of accelerometer z-axis data.  
REGISTERS 65 AND 66 – TEMPERATURE MEASUREMENT  
Register Name: TEMP_OUT_H  
Register Type: READ only  
Register Address: 65 (Decimal); 41 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
TEMP_OUT[15:8]  
High byte of the temperature sensor output.  
Register Name: TEMP_OUT_L  
Register Type: READ only  
Register Address: 66 (Decimal); 42 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the temperature sensor output  
[7:0]  
TEMP_OUT[7:0]  
TEMP_degC  
= ((TEMP_OUT –  
RoomTemp_Offset)/Temp_Sensitivity) + 25degC  
REGISTERS 67 TO 72 – GYROSCOPE MEASUREMENTS  
Register Name: GYRO_XOUT_H  
Register Type: READ only  
Register Address: 67 (Decimal); 43 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
GYRO_XOUT[15:8]  
High byte of the X-Axis gyroscope output.  
Register Name: GYRO_XOUT_L  
Register Type: READ only  
Register Address: 68 (Decimal); 44 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the X-Axis gyroscope output.  
GYRO_XOUT = Gyro_Sensitivity * X_angular_rate  
[7:0]  
GYRO_XOUT[7:0]  
Nominal  
FS_SEL = 0  
Conditions  
Gyro_Sensitivity = 131 LSB/(dps)  
Document Number: DS-000481  
Revision: 1.1  
Page 42 of 55  
 
 
IAM-20680HT  
Register Name: GYRO_YOUT_H  
Register Type: READ only  
Register Address: 69 (Decimal); 45 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
GYRO_YOUT[15:8]  
High byte of the Y-Axis gyroscope output.  
Register Name: GYRO_YOUT_L  
Register Type: READ only  
Register Address: 70 (Decimal); 46 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the Y-Axis gyroscope output.  
GYRO_YOUT = Gyro_Sensitivity * Y_angular_rate  
[7:0]  
GYRO_YOUT[7:0]  
Nominal  
FS_SEL = 0  
Conditions  
Gyro_Sensitivity = 131 LSB/(dps)  
Register Name: GYRO_ZOUT_H  
Register Type: READ only  
Register Address: 71 (Decimal); 47 (Hex)  
BIT  
[7:0]  
NAME  
GYRO_ZOUT[15:8]  
FUNCTION  
High byte of the Z-Axis gyroscope output.  
Register Name: GYRO_ZOUT_L  
Register Type: READ only  
Register Address: 72 (Decimal); 48 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the Z-Axis gyroscope output.  
GYRO_ZOUT =  
Gyro_Sensitivity * Z_angular_rate  
FS_SEL = 0  
Gyro_Sensitivity = 131 LSB/(dps)  
[7:0]  
GYRO_ZOUT[7:0]  
Nominal  
Conditions  
Document Number: DS-000481  
Revision: 1.1  
Page 43 of 55  
IAM-20680HT  
REGISTER 104 – SIGNAL PATH RESET  
Register Name: SIGNAL_PATH_RESET  
Register Type: READ/WRITE  
Register Address: 104 (Decimal); 68 (Hex)  
BIT  
NAME  
FUNCTION  
[7:2]  
Reserved.  
-
Reset accel digital signal path.  
[1]  
[0]  
ACCEL_RST  
Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.  
Reset temp digital signal path.  
TEMP_RST  
Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.  
REGISTER 105 – ACCELEROMETER INTELLIGENCE CONTROL  
Register Name: ACCEL_INTEL_CTRL  
Register Type: READ/WRITE  
Register Address: 105 (Decimal); 69 (Hex)  
BIT  
[7]  
NAME  
ACCEL_INTEL_EN  
FUNCTION  
This bit enables the Wake-on-Motion detection logic.  
0 – Compares the current sample to the first sample taken when entering in  
WoM mode.  
[6]  
ACCEL_INTEL_MODE  
1 – Compare the current sample with the previous sample.  
[5:1]  
[0]  
Reserved.  
-
-
Reserved, must be set to 0 when WoM is activated. Please refer to section 5.1  
REGISTER 106 – USER CONTROL  
Register Name: USER_CTRL  
Register Type: READ/WRITE  
Register Address: 106 (Decimal); 6A (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
Reserved.  
1 – Enable FIFO operation mode.  
-
[6]  
FIFO_EN  
0 – Disable FIFO access from serial interface. To disable FIFO writes by DMA, use FIFO_EN  
register.  
[5]  
[4]  
-
Reserved.  
I2C_IF_DIS  
1 – Disable I2C Slave module and put the serial interface in SPI mode only.  
[3]  
Reserved.  
-
1 – Reset FIFO module. Reset is asynchronous. This bit auto clears after one clock cycle of the  
internal 20 MHz clock.  
Reserved.  
1 – Reset all gyro digital signal path, accel digital signal path, and temp digital signal path.  
This bit also clears all the sensor registers.  
[2]  
[1]  
[0]  
FIFO_RST  
-
SIG_COND_RST  
Document Number: DS-000481  
Revision: 1.1  
Page 44 of 55  
 
 
 
 
IAM-20680HT  
REGISTER 107 – POWER MANAGEMENT 1  
Register Name: PWR_MGMT_1  
Register Type: READ/WRITE  
Register Address: 107 (Decimal); 6B (Hex)  
BIT  
NAME  
FUNCTION  
1 – Reset the internal registers and restores the default settings. The bit automatically clears  
to 0 once the reset is done.  
[7]  
DEVICE_RESET  
[6]  
[5]  
SLEEP  
When set to 1, the chip is set to sleep mode. Default setting is 0.  
When set to 1, and SLEEP and STANDBY are not set to 1, the chip will cycle between sleep  
and taking a single accelerometer sample.  
Note: When all accelerometer axes are disabled via PWR_MGMT_2 register bits and cycle is enabled, the  
chip will wake up at the rate determined by the respective registers above, but will not take any  
samples.  
ACCEL_CYCLE  
When set, the gyro drive and PLL circuitry are enabled, but the sense paths are disabled. This  
is a power mode that allows quick enabling of the gyros.  
When set to 1, this bit disables the temperature sensor.  
Code Clock Source  
[4]  
[3]  
GYRO_STANDBY  
TEMP_DIS  
0
1
2
3
4
5
6
7
Internal 20 MHz oscillator.  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Internal 20 MHz oscillator.  
[2:0]  
CLKSEL[2:0]  
Stops the clock and keeps timing generator in reset.  
Note: The default value of CLKSEL[2:0] is 001.  
REGISTER 108 – POWER MANAGEMENT 2  
Register Name: PWR_MGMT_2  
Register Type: READ/WRITE  
Register Address: 108 (Decimal); 6C (Hex)  
BIT  
[7]  
[6]  
NAME  
FIFO_LP_EN  
FUNCTION  
1 – Enable FIFO in Accelerometer WoM mode. Default setting is 0.  
Reserved.  
-
1 – X accelerometer is disabled.  
0 – X accelerometer is on.  
1 – Y accelerometer is disabled.  
0 – Y accelerometer is on.  
1 – Z accelerometer is disabled.  
0 – Z accelerometer is on.  
1 – X gyro is disabled.  
0 – X gyro is on.  
1 – Y gyro is disabled.  
0 – Y gyro is on.  
1 – Z gyro is disabled.  
0 – Z gyro is on.  
[5]  
STBY_XA  
[4]  
[3]  
[2]  
[1]  
[0]  
STBY_YA  
STBY_ZA  
STBY_XG  
STBY_YG  
STBY_ZG  
Document Number: DS-000481  
Revision: 1.1  
Page 45 of 55  
 
 
IAM-20680HT  
REGISTERS 114 AND 115 – FIFO COUNT REGISTERS  
Register Name: FIFO_COUNTH  
Register Type: READ Only  
Register Address: 114 (Decimal); 72 (Hex)  
BIT  
NAME  
FUNCTION  
[7:5]  
Reserved.  
-
High Bits; count indicates the number of written bytes in the FIFO.  
Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL.  
[4:0]  
FIFO_COUNT[12:8]  
Register Name: FIFO_COUNTL  
Register Type: READ Only  
Register Address: 115 (Decimal); 73 (Hex)  
BIT  
NAME  
FUNCTION  
Low Bits; count indicates the number of written bytes in the FIFO.  
Note: Must read FIFO_COUNTH to latch new data for both FIFO_COUNTH and FIFO_COUNTL.  
[7:0]  
FIFO_COUNT[7:0]  
Document Number: DS-000481  
Revision: 1.1  
Page 46 of 55  
 
IAM-20680HT  
REGISTER 116 – FIFO READ WRITE  
Register Name: FIFO_R_W  
Register Type: READ/WRITE  
Register Address: 116 (Decimal); 74 (Hex)  
BIT  
[7:0]  
NAME  
FIFO_DATA[7:0]  
FUNCTION  
Read/Write command provides Read or Write operation for the FIFO.  
Description:  
This register is used to read and write data from the FIFO buffer.  
Data are written to the FIFO in order of register number (from lowest to highest). If all the FIFO enable flags (see  
below) are enabled, the contents of registers 59 through 72 will be written in order at the Sample Rate.  
The contents of the sensor data registers (Registers 59 to 72) are written into the FIFO buffer when their  
corresponding FIFO enable flags are set to 1 in FIFO_EN (Register 35).  
If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is automatically set to 1. This bit is located in  
INT_STATUS (Register 58). When the FIFO buffer has overflowed, the oldest data will be lost and new data will be  
written to the FIFO unless register 26 CONFIG, bit[6] FIFO_MODE = 1.  
If the FIFO buffer is empty, reading register FIFO_DATA will return a unique value of 0xFF until new data are  
available. Normal data are precluded from ever indicating 0xFF, so 0xFF gives a trustworthy indication of FIFO  
empty.  
REGISTER 117 – WHO AM I  
Register Name: WHO_AM_I  
Register Type: READ only  
Register Address: 117 (Decimal); 75 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
WHOAMI  
Register to indicate to user which device is being accessed.  
This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID. The default  
value of the register is 0xFA. This is different from the I2C address of the device as seen on the slave I2C controller  
by the applications processor. The I2C address of the IAM-20680HT is 0x68 or 0x69 depending upon the value  
driven on AD0 pin.  
Document Number: DS-000481  
Revision: 1.1  
Page 47 of 55  
 
 
IAM-20680HT  
REGISTERS 119, 120, 122, 123, 125, 126 ACCELEROMETER OFFSET REGISTERS  
Register Name: XA_OFFSET_H  
Register Type: READ/WRITE  
Register Address: 119 (Decimal); 77 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 14 to 7 of the 15-bit of the X accelerometer offset cancellation (2’s complement).  
±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.  
[7:0]  
XA_OFFS[14:7]  
Register Name: XA_OFFSET_L  
Register Type: READ/WRITE  
Register Address: 120 (Decimal); 78 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 6 to 0 of the 15-bit of the X accelerometer offset cancellation (2’s complement).  
±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.  
[7:1]  
XA_OFFS[6:0]  
[0]  
Reserved. This bit is set during factory calibration and the value must be kept unchanged.  
-
Register Name: YA_OFFSET_H  
Register Type: READ/WRITE  
Register Address: 122 (Decimal); 7A (Hex)  
BIT  
NAME  
FUNCTION  
Bits 14 to 7 of the 15-bit of the Y accelerometer offset cancellation (2’s complement).  
±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.  
[7:0]  
YA_OFFS[14:7]  
Register Name: YA_OFFSET_L  
Register Type: READ/WRITE  
Register Address: 123 (Decimal); 7B (Hex)  
BIT  
NAME  
FUNCTION  
Bits 6 to 0 of the 15-bit of the Y accelerometer offset cancellation (2’s complement).  
±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.  
[7:1]  
YA_OFFS[6:0]  
[0]  
Reserved. This bit is set during factory calibration and the value must be kept unchanged.  
-
Register Name: ZA_OFFSET_H  
Register Type: READ/WRITE  
Register Address: 125 (Decimal); 7D (Hex)  
BIT  
NAME  
FUNCTION  
Bits 14 to 7 of the 15-bit of the Z accelerometer offset cancellation (2’s complement).  
±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.  
[7:0]  
ZA_OFFS[14:7]  
Register Name: ZA_OFFSET_L  
Register Type: READ/WRITE  
Register Address: 126 (Decimal); 7E (Hex)  
BIT  
NAME  
FUNCTION  
Bits 6 to 0 of the 15-bit of the Z accelerometer offset cancellation (2’s complement).  
±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.  
[7:1]  
ZA_OFFS[6:0]  
[0]  
Reserved. This bit is set during factory calibration and the value must be kept unchanged.  
-
Document Number: DS-000481  
Revision: 1.1  
Page 48 of 55  
 
IAM-20680HT  
10 ASSEMBLY  
This section provides general guidelines for assembling TDK-InvenSense Micro Electro-Mechanical Systems (MEMS)  
gyros packaged in LGA package.  
ORIENTATION OF AXES  
Figure 13 below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1  
identifier (•) in the figure.  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation  
Document Number: DS-000481  
Revision: 1.1  
Page 49 of 55  
 
 
 
IAM-20680HT  
PACKAGE DIMENSIONS  
16 Lead LGA 3x3x0.75 mm3 NiAu pad finish.  
Figure 14. Package Dimensions  
Document Number: DS-000481  
Revision: 1.1  
Page 50 of 55  
 
 
IAM-20680HT  
DIMENSIONS IN MILLIMETERS  
MIN NOM MAX  
0.8  
REF  
REF  
3.1  
SYMBOLS  
Total Thickness  
Substrate Thickness  
Mold Thickness  
A
A1  
A2  
0.7  
0.75  
0.105  
0.63  
D
E
2.9  
2.9  
0.2  
0.3  
3
3
Body Size  
3.1  
0.3  
0.4  
Lead Width  
Lead Length  
W
0.25  
L
e
n
0.35  
0.5  
16  
Lead Pitch  
Lead Count  
BSC  
D1  
E1  
SD  
2
1
BSC  
BSC  
BSC  
BSC  
Edge Ball Center to Center  
Body Center to Contact Ball  
---  
SE  
b
---  
---  
---  
---  
---  
Ball Width  
Ball Diameter  
Ball Opening  
Ball Pitch  
Ball Count  
---  
---  
---  
e1  
n1  
---  
---  
Pre-Solder  
---  
Package Edge Tolerance  
Mold Flatness  
aaa  
bbb  
ddd  
eee  
fff  
0.1  
0.2  
0.08  
---  
---  
0.1  
Coplanarity  
Ball Offset (Package)  
Ball Offset (Ball)  
Lead Edge to Package Edge  
M
0.05  
0.15  
Table 21. Package Dimensions  
Document Number: DS-000481  
Revision: 1.1  
Page 51 of 55  
 
IAM-20680HT  
11 PART NUMBER PACKAGE MARKING  
The part number package marking for IAM-20680HT devices is summarized below:  
PART NUMBER  
IAM-20680HT  
PART NUMBER PACKAGE MARKING  
IA268HT  
Table 22. Part Number Package Marking  
Figure 15. Part Number Package Marking  
Samples with Part Number Package Marking “IA268HT E” are engineering samples and may have deviations in  
respect to the specifications and functions reported in the datasheet. Engineering samples are not production-  
intent parts.  
Document Number: DS-000481  
Revision: 1.1  
Page 52 of 55  
 
 
 
IAM-20680HT  
12 REFERENCE  
Please refer to “InvenSense MEMS Motion Handling and Assembly Guide (AN-IVS-0002A-00)” for the following  
information:  
Manufacturing Recommendations  
o
o
o
o
o
o
o
o
o
o
o
Assembly Guidelines and Recommendations  
PCB Design Guidelines and Recommendations  
MEMS Handling Instructions  
ESD Considerations  
Reflow Specification  
Storage Specifications  
Package Marking Specification  
Tape & Reel Specification  
Reel & Pizza Box Label  
Packaging  
Representative Shipping Carton Label  
Compliance  
o
o
o
Environmental Compliance  
DRC Compliance  
Compliance Declaration Disclaimer  
Document Number: DS-000481  
Revision: 1.1  
Page 53 of 55  
 
IAM-20680HT  
13 REVISION HISTORY  
REVISION DATE  
REVISION  
DESCRIPTION  
10/21/2021  
02/15/2022  
1.0  
1.1  
Initial revision  
Updated formatting  
Added longevity info  
Document Number: DS-000481  
Revision: 1.1  
Page 54 of 55  
 
IAM-20680HT  
https://invensense.tdk.com/longevity/  
This information furnished by InvenSense or its affiliates (“TDK InvenSense”) is believed to be accurate and reliable. However, no responsibility is  
assumed by TDK InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use.  
Specifications are subject to change without notice. TDK InvenSense reserves the right to make changes to this product, including its circuits and  
software, in order to improve its design and/or performance, without prior notice. TDK InvenSense makes no warranties, neither expressed nor  
implied, regarding the information and specifications contained in this document. TDK InvenSense assumes no responsibility for any claims or  
damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not  
limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or  
otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied.  
Trademarks that are registered trademarks are the property of their respective companies. TDK InvenSense sensors should not be used or sold  
in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life  
threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear  
instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.  
©2021—2022 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps,  
DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and  
product names may be trademarks of the respective companies with which they are associated.  
©2021—2022 InvenSense. All rights reserved.  
Document Number: DS-000481  
Revision: 1.1  
Page 55 of 55  

相关型号:

IAM-81000-GP2

Double Balanced Mixer, 50MHz Min, 5000MHz Max, BIPolar
AGILENT

IAM-81000-GP4

Double Balanced Mixer, 50MHz Min, 5000MHz Max, BIPolar
AGILENT

IAM-81000-GP6

Double Balanced Mixer, 50MHz Min, 5000MHz Max, BIPolar
AGILENT

IAM-81008

Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/IF Amp
AGILENT

IAM-81008-STR

IC-MIXER/IF AMP
ETC

IAM-81008-TR1

Silicon Bipolar MMIC 5? GHz Active Double Balanced Mixer/IF? Amp
AGILENT

IAM-81018

RF Mixer
ETC

IAM-81028

Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/IF Amp
AGILENT

IAM-82008

Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/ IF Amp
AGILENT

IAM-82008-STR

Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/ IF Amp
AGILENT

IAM-82008-TR1

Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/ IF Amp
AGILENT

IAM-82008-TR2

Double Balanced Mixer, 50MHz Min, 5000MHz Max, BIPolar
AGILENT