ICG-20330 [TDK]

陀螺仪;
ICG-20330
型号: ICG-20330
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

陀螺仪

文件: 总56页 (文件大小:1028K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICG-20330  
High Performance 3-Axis OIS/EIS Optimized MEMS Gyro  
GENERAL DESCRIPTION  
APPLICATIONS  
The ICG-20330 is a 3-axis MotionTracking® device  
that includes a 3-axis gyroscope in a small  
3x3x 0.75 mm (16-pin LGA) package.  
OIS (Optical Image Stabilization) in phone  
camera modules, DSLR, and DSC  
EIS (Electronic Image Stabilization) in  
DSC, and phone camera modules  
High performance specs  
o
Gyroscope sensitivity error: ±1%  
FEATURES  
o
Gyroscope noise: 5 mdps/Hz  
1% Gyro initial sensitivity eliminates OIS  
dynamic calibration  
Includes 512-byte FIFO to reduce traffic on the  
serial bus interface, and reduce power  
consumption by allowing the system processor  
to burst read sensor data and then go into a  
low-power mode  
Optimized OIS/EIS programmable gyro  
FSR of ±31.25dps, ±62.5dps, ±125ps and  
±250dps  
High Resolution at up to 1048 LSB/(º/s)  
Low 5mdps/√Hz Noise  
EIS FSYNC support  
User-programmable interrupts  
Wake-on-motion interrupt for low power  
operation of applications processor  
512-byte FIFO buffer enables the  
applications processor to read the data in  
bursts  
ICG-20330 includes on-chip 16-bit ADCs,  
programmable digital filters, an embedded  
temperature sensor, and programmable interrupts.  
The device features an operating voltage range  
down to 1.71V. Communication ports include I2C  
and high-speed SPI at 7 MHz.  
On-Chip 16-bit ADCs and Programmable  
Filters  
Host interface: 7 MHz SPI or 400 kHz Fast  
ORDERING INFORMATION  
Mode I2C  
Digital-output temperature sensor  
VDD operating range of 1.71 V to 3.45 V  
MEMS structure hermetically sealed and  
bonded at wafer level  
PART  
AXES  
TEMP RANGE  
PACKAGE  
ICG-20330X,Y,Z -40°C to +85°C  
16-Pin LGA  
RoHS and Green compliant  
Denotes RoHS and Green-Compliant Package  
TYPICAL OPERATING CIRCUIT  
BLOCK DIAGRAM  
1.8 3.3VDC  
VDD  
C2, 0.1 mF  
C4, 2.2 mF  
REGOUT  
16 15 14  
ICG-20330  
INT  
C1, 0.47 mF  
Self  
test  
X Gyro  
Y Gyro  
Z Gyro  
ADC  
ADC  
ADC  
Interrupt  
Status  
Register  
GND  
VDDIO  
1.8 3.3 VDC  
C3, 10 nF  
13  
12  
11  
10  
9
1
2
3
4
5
SCL/SPC  
SDA/SDI  
NC  
NC  
CS  
SCL  
SDA  
AD0  
Self  
test  
Slave I2C and  
SPI Serial  
Interface  
SA0 / SDO  
SCL / SPC  
SDA / SDI  
ICG-20330  
FIFO  
SA0/SDO  
CS  
NC  
NC  
VDDIO  
Self  
test  
User & Config  
Registers  
FSYNC  
6
7
8
Temp Sensor  
ADC  
Sensor  
Registers  
Charge  
Pump  
Bias & LDOs  
VDD  
GND  
REGOUT  
InvenSense reserves the right to change the  
detail specifications as may be required to  
permit improvements in the design of its  
products.  
InvenSense, a TDK Group Company  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
+1(408) 9887339  
Document Number: DS-000127  
Revision: 1.1  
Release Date: 03/18/2021  
invensense.tdk.com  
 
 
 
 
 
 
ICG-20330  
TABLE OF CONTENTS  
General Description ........................................................................................................................................................ 1  
Ordering Information...................................................................................................................................................... 1  
Block Diagram ................................................................................................................................................................ 1  
Applications .................................................................................................................................................................... 1  
Features.......................................................................................................................................................................... 1  
Typical Operating Circuit ................................................................................................................................................ 1  
1
INTRODUCTION....................................................................................................................................................7  
1.1  
1.2  
1.3  
Purpose and Scope.............................................................................................................................................. 7  
Product Overview................................................................................................................................................ 7  
Applications ........................................................................................................................................................ 7  
2
3
Features...............................................................................................................................................................8  
2.1  
2.2  
Gyroscope Features ............................................................................................................................................ 8  
Additional Features............................................................................................................................................. 8  
Electrical Characteristics ......................................................................................................................................9  
3.1  
3.2  
3.2.2  
Gyroscope Specifications .................................................................................................................................... 9  
Electrical Specifications .................................................................................................................................... 10  
D.C. Electrical Characteristics ................................................................................................................... 10  
A.C. Electrical Characteristics ................................................................................................................... 11  
Other Electrical Specifications .................................................................................................................. 12  
3.2.2  
3.2.3  
3.3  
I2C Timing Characterization .............................................................................................................................. 13  
SPI Timing Characterization.............................................................................................................................. 14  
Absolute Maximum Ratings.............................................................................................................................. 15  
3.4  
3.5  
4
Applications Information ...................................................................................................................................16  
4.1  
Pin Out Diagram and Signal Description........................................................................................................... 16  
Typical Operating Circuit .................................................................................................................................. 17  
Bill of Materials for External Components........................................................................................................ 17  
Block Diagram................................................................................................................................................... 18  
Overview........................................................................................................................................................... 18  
Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning ......................................................... 18  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
I2C and SPI Serial Communications Interfaces .................................................................................................. 19  
ICG-20330 Solution Using I2C Interface .................................................................................................... 19  
ICG-20330 Solution Using SPI Interface.................................................................................................... 20  
4.7.1  
4.7.2  
4.8  
Self-Test ............................................................................................................................................................ 20  
Document Number: DS-000127  
Revision: 1.1  
Page 2 of 56  
Rev Date: 03/18/2021  
ICG-20330  
4.9  
Clocking ............................................................................................................................................................ 21  
4.10 Sensor Data Registers....................................................................................................................................... 21  
4.11 FIFO................................................................................................................................................................... 21  
4.12 Interrupts .......................................................................................................................................................... 21  
4.13 Digital-Output Temperature Sensor ................................................................................................................. 21  
4.14 Bias and LDOs ................................................................................................................................................... 21  
4.15 Charge Pump .................................................................................................................................................... 21  
4.16 Standard Power Modes .................................................................................................................................... 22  
4.17 Power-Up Sequence.......................................................................................................................................... 22  
4.18 Sensor Initialization and Clock Source Selection............................................................................................... 22  
5
6
Programmable Interrupts ..................................................................................................................................23  
Digital Interface .................................................................................................................................................24  
6.1  
6.2  
6.3  
6.4  
6.5  
I2C and SPI Serial Interfaces .............................................................................................................................. 24  
I2C Interface ...................................................................................................................................................... 24  
I2C Communications Protocol ........................................................................................................................... 24  
I2C Terms........................................................................................................................................................... 27  
SPI Interface...................................................................................................................................................... 28  
7
8
Serial Interface Considerations ..........................................................................................................................29  
7.1  
ICG-20330 Supported Interfaces....................................................................................................................... 29  
Assembly ...........................................................................................................................................................30  
8.1  
8.2  
Orientation of Axes........................................................................................................................................... 30  
Package Dimensions......................................................................................................................................... 31  
9
Part Number Package Marking ..........................................................................................................................33  
Reference.......................................................................................................................................................34  
Register Map..................................................................................................................................................35  
10  
11  
12  
Register Descriptions .....................................................................................................................................37  
12.1 Registers 0 to 2 Gyroscope Self-Test Registers .............................................................................................. 37  
12.2 Register 4 Gyroscope Offset Temperature Compensation (TC) Register........................................................ 38  
12.3 Register 5 Gyroscope Offset Temperature Compensation (TC) Register........................................................ 38  
12.4 Register 07 Gyroscope Offset Temperature Compensation (TC) Register...................................................... 39  
12.5 Register 08 Gyroscope Offset Temperature Compensation (TC) Register...................................................... 39  
Document Number: DS-000127  
Revision: 1.1  
Page 3 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.6 Register 10 Gyroscope Offset Temperature Compensation (TC) Register...................................................... 39  
12.7 Register 11 Gyroscope Offset Temperature Compensation (TC) Register...................................................... 40  
12.8 Registers 19 Gyro Offset Adjustment Register............................................................................................... 40  
12.9 Registers 20 Gyro Offset Adjustment Register............................................................................................... 40  
12.10  
12.11  
12.12  
12.13  
12.14  
12.15  
12.16  
12.17  
12.18  
12.19  
12.20  
12.21  
12.22  
12.23  
12.24  
12.24  
12.25  
12 26  
12.27  
12.28  
12.29  
Registers 21 Gyro Offset Adjustment Register........................................................................................... 41  
Registers 22 Gyro Offset Adjustment Register........................................................................................... 41  
Registers 23 Gyro Offset Adjustment Register........................................................................................... 41  
Register 24 Gyro Offset Adjustment Register ............................................................................................ 42  
Register 25 Sample Rate Divider................................................................................................................ 42  
Register 26 Configuration .......................................................................................................................... 43  
Register 27 Gyroscope Configuration ........................................................................................................ 44  
Register 35 FIFO Enable ............................................................................................................................. 45  
Register 54 FSYNC Interrupt Status............................................................................................................ 46  
Register 55 INT Pin / Bypass Enable Configuration.................................................................................... 46  
Register 56 Interrupt Enable...................................................................................................................... 47  
Register 58 Interrupt Status....................................................................................................................... 47  
Registers 65 and 66 Temperature Measurement ...................................................................................... 48  
Registers 67 to 72 Gyroscope Measurements............................................................................................ 49  
Register 104 Signal Path Reset .................................................................................................................. 50  
Register 106 User Control .......................................................................................................................... 51  
Register 107 Power Management 1 .......................................................................................................... 52  
Register 108 Power Management 2 .......................................................................................................... 53  
Register 114 and 115 FIFO Count Registers............................................................................................... 53  
Register 116 FIFO Read Write.................................................................................................................... 54  
Register 117 Who Am I .............................................................................................................................. 54  
13  
Revision History .............................................................................................................................................55  
Document Number: DS-000127  
Revision: 1.1  
Page 4 of 56  
Rev Date: 03/18/2021  
ICG-20330  
LIST OF FIGURES  
Figure 1. I2C Bus Timing Diagram....................................................................................................................13  
Figure 2. SPI Bus Timing Diagram...................................................................................................................14  
Figure 3. Pin-out Diagram for ICG-20330 3.0x3.0x0.75 mm LGA....................................................................16  
Figure 4. ICG-20330 LGA Application Schematic ............................................................................................17  
Figure 5. ICG-20330 Block Diagram ................................................................................................................18  
Figure 6. ICG-20330 Solution Using I2C Interface............................................................................................19  
Figure 7. ICG-20330 Solution Using SPI Interface...........................................................................................20  
Figure 8. START and STOP Conditions...........................................................................................................25  
Figure 9. Acknowledge on the I2C Bus.............................................................................................................25  
Figure 10. Complete I2C Data Transfer ............................................................................................................26  
Figure 11. Typical SPI Master / Slave Configuration........................................................................................28  
Figure 12. I/O Levels and Connections ............................................................................................................29  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation..............................................................30  
Document Number: DS-000127  
Revision: 1.1  
Page 5 of 56  
Rev Date: 03/18/2021  
ICG-20330  
LIST OF TABLES  
Table 1. Gyroscope Specifications .....................................................................................................................9  
Table 2. D.C. Electrical Characteristics ............................................................................................................10  
Table 3. A.C. Electrical Characteristics ............................................................................................................12  
Table 4. Other Electrical Specifications............................................................................................................12  
Table 5. I2C Timing Characteristics ..................................................................................................................13  
Table 6. SPI Timing Characteristics (7 MHz Operation) ..................................................................................14  
Table 7. Absolute Maximum Ratings................................................................................................................15  
Table 8. Signal Descriptions.............................................................................................................................16  
Table 9. Bill of Materials ...................................................................................................................................17  
Table 10. Standard Power Modes for ICG-20330 ............................................................................................22  
Table 11. Table of Interrupt Sources ................................................................................................................23  
Table 12. Serial Interface..................................................................................................................................24  
Table 13. I2C Terms..........................................................................................................................................27  
Table 14. ICG-20330 Register Map..................................................................................................................36  
Document Number: DS-000127  
Revision: 1.1  
Page 6 of 56  
Rev Date: 03/18/2021  
ICG-20330  
1 INTRODUCTION  
1.1 PURPOSE AND SCOPE  
This document is a preliminary product specification, providing a description, specifications, and design related  
information on the ICG-20330 MotionTracking device for imaging applications, such as Optical Image  
Stabilization, OIS, or Electronic Image Stabilization, EIS. The device is housed in a small 3x3x0.75 mm 16-pin  
LGA package.  
1.2 PRODUCT OVERVIEW  
The ICG-20330 is a 3-axis MotionTracking device that has a 3-axis gyroscope in a small 3x3x0.75 mm (16-pin  
LGA) package. It also features a 512-byte FIFO for EIS applications to lower the traffic on the serial bus  
interface, and reduce power consumption by allowing the system processor to burst read sensor data for a  
given video frame. The unique support for FSYNC (frame sync), facilitates synchronization of Video Frame  
Sync from Image sensors and Motion data from gyro collected during a given frame via an interrupt to the host.  
The gyroscope has a programmable full-scale range of ±31.25, ±62.5, ±125 and ±250 degrees/sec, optimized  
for Image Stabilization applications.  
Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded  
temperature sensor, and programmable interrupts. The device features I2C and SPI serial interfaces, a VDD  
operating range of 1.71 V to 3.6 V, and a separate digital IO supply, VDDIO from 1.71 V to 3.6 V.  
Communication with all registers of the device is performed using either I2C at 400 kHz or SPI at 7 MHz.  
By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS  
wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package  
size down to a footprint and thickness of 3x3x0.75 mm (16-pin LGA), to provide a very small yet  
high-performance, low-cost package. The device provides high robustness by supporting 10,000g shock  
reliability.  
1.3 APPLICATIONS  
OIS, Optical Image Stabilization in phone camera modules, DSLR, and DSC  
EIS, Electronic Image Stabilization in DSC, and phone camera modules  
Document Number: DS-000127  
Revision: 1.1  
Page 7 of 56  
Rev Date: 03/18/2021  
ICG-20330  
2 FEATURES  
2.1 GYROSCOPE FEATURES  
The triple-axis MEMS gyroscope in the ICG-20330 includes a wide range of features:  
Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-  
scale range of ±31.25, ±62.5, ±125 and ±250 °/sec and integrated 16-bit ADCs  
Digitally-programmable low-pass filter  
Factory calibrated sensitivity scale factor  
Self-test  
2.2 ADDITIONAL FEATURES  
The ICG-20330 includes the following additional features:  
512-byte FIFO buffer enable the applications processor to read the data in bursts  
Digital-output temperature sensor  
User-programmable digital filters for gyroscope and temp sensor  
10,000 g shock tolerant  
400-kHz Fast Mode I2C for communicating with all registers  
7-MHz SPI serial interface for communicating with all registers  
MEMS structure hermetically sealed and bonded at wafer level  
RoHS and Green compliant  
Document Number: DS-000127  
Revision: 1.1  
Page 8 of 56  
Rev Date: 03/18/2021  
ICG-20330  
3 ELECTRICAL CHARACTERISTICS  
3.1 GYROSCOPE SPECIFICATIONS  
Typical Operating Circuit of section 0, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
GYROSCOPE SENSITIVITY  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Full-Scale Range  
FS_SEL= 0  
FS_SEL= 1  
FS_SEL= 2  
FS_SEL= 3  
±31.25  
±62.5  
±125  
±250  
16  
º/s  
º/s  
3
3
3
3
3
3
3
3
3
1
1
º/s  
º/s  
ADC Word Length  
bits  
Sensitivity Scale Factor  
FS_SEL= 0  
FS_SEL=1  
FS_SEL= 2  
FS_SEL= 3  
25°C  
1048  
524  
LSB/(º/s)  
LSB/(º/s)  
LSB/(º/s)  
LSB/(º/s)  
%
262  
131  
Sensitivity Scale Factor Tolerance  
±1  
Sensitivity Scale Factor Variation Over  
Temperature  
-20°C to +75°C  
±3  
%
Nonlinearity  
Best fit straight line; 25°C  
±0.1  
±2  
%
%
1
1
Cross-Axis Sensitivity  
ZERO-RATE OUTPUT (ZRO)  
Initial ZRO Tolerance  
25°C  
±5  
±5  
º/s  
º/s  
2
1
ZRO Variation Over Temperature  
-20°C to +75°C  
GYROSCOPE NOISE PERFORMANCE (FS_SEL=0)  
Total RMS Noise  
DLPFCFG = 2 (92 Hz)  
DLPFCFG = 2 (92 Hz)  
At 10 Hz  
0.06  
0.30  
º/s-rms  
º/s-p-p  
º/s/√Hz  
2
2
2
Total Peak-to-Peak Noise  
Rate Noise Spectral Density  
0.005  
GYROSCOPE MECHANICAL  
Mechanical Frequency  
Sensor Mechanical Bandwidth  
LOW PASS FILTER RESPONSE  
25  
1.6  
27  
80  
29  
KHz  
KHz  
2
1
3
Programmable Range  
92  
250  
Hz  
ms  
1
1
GYROSCOPE START-UP TIME  
OUTPUT DATA RATE  
Programmable, Normal (Filtered)  
mode  
1000  
8000  
Hz  
Table 1. Gyroscope Specifications  
Notes:  
1. Derived from validation or characterization of parts on PCB, not guaranteed in production.  
2. Tested in production.  
3. Guaranteed by design.  
4. Calculated from Total RMS Noise.  
Document Number: DS-000127  
Revision: 1.1  
Page 9 of 56  
Rev Date: 03/18/2021  
ICG-20330  
3.2 ELECTRICAL SPECIFICATIONS  
3.2.2  
D.C. Electrical Characteristics  
Typical Operating Circuit of section 0, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SUPPLY VOLTAGES  
VDD  
1.71  
1.71  
1.8  
1.8  
3.45  
3.45  
V
V
1
1
VDDIO  
SUPPLY CURRENTS & BOOT TIME  
3-Axis Gyroscope  
Active Current  
2.9  
mA  
1
Full-Chip Sleep Mode  
Boot Time  
10  
50  
µA  
ms  
1
1
VDD on to first register write  
TEMPERATURE RANGE  
Operating Temperature Range  
-40  
+85  
°C  
1
Table 2. D.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Based on simulation.  
Document Number: DS-000127  
Revision: 1.1  
Page 10 of 56  
Rev Date: 03/18/2021  
 
ICG-20330  
3.2.2  
A.C. Electrical Characteristics  
Typical Operating Circuit of section 0, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted.  
Parameter  
Conditions  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SUPPLIES  
Monotonic ramp. Ramp rate  
is 10% to 90% of the final  
value  
Supply Ramp Time  
0.01  
100  
ms  
1
TEMPERATURE SENSOR  
Operating Range  
Room Temperature Offset  
Sensitivity  
Ambient  
25°C  
1
1
1
-40  
85  
°C  
°C  
0
Untrimmed  
326.8  
LSB/°C  
Power-On RESET  
Supply Ramp Time (TRAMP  
)
Valid power-on RESET  
0.01  
100  
100  
ms  
ms  
1
1
Start-up time for register read/write  
From power-up  
11  
SA0 = 0  
SA0 = 1  
1101000  
1101001  
I2C ADDRESS  
DIGITAL INPUTS (FSYNC, SA0, SPC, SDI, CS)  
VIH, High Level Input Voltage  
VIL, Low Level Input Voltage  
CI, Input Capacitance  
0.7*VDDIO  
V
V
0.3*VDDIO  
1
1
< 10  
pF  
DIGITAL OUTPUT (SDO, INT)  
VOH, High Level Output Voltage  
VOL1, LOW-Level Output Voltage  
VOL.INT, INT Low-Level Output Voltage  
RLOAD = 1MΩ;  
RLOAD = 1MΩ;  
0.9*VDDIO  
V
V
V
0.1*VDDIO  
0.1  
OPEN = 1, 0.3 mA sink  
Current  
Output Leakage Current  
tINT, INT Pulse Width  
OPEN = 1  
100  
50  
nA  
µs  
LATCH_INT_EN = 0  
I2C I/O (SCL, SDA)  
VIL, LOW Level Input Voltage  
VIH, HIGH-Level Input Voltage  
-0.5V  
0.3*VDDIO  
V
V
0.7*VDDIO  
VDDIO +  
0.5V  
Vhys, Hysteresis  
0.1*VDDIO  
V
V
VOL, LOW-Level Output Voltage  
IOL, LOW-Level Output Current  
3 mA sink current  
0
0.4  
1
VOL = 0.4V  
VOL = 0.6 V  
3
6
mA  
mA  
Output Leakage Current  
100  
nA  
ns  
tof, Output Fall Time from VIHmax to VILmax Cb bus capacitance in pf  
20+0.1Cb  
300  
INTERNAL CLOCK SOURCE  
FCHOICE_B = 1,2,3  
32  
8
kHz  
kHz  
2
2
SMPLRT_DIV = 0  
FCHOICE_B = 0;  
DLPFCFG = 0 or 7  
SMPLRT_DIV = 0  
FCHOICE_B = 0;  
DLPFCFG = 1,2,3,4,5,6;  
SMPLRT_DIV = 0  
Sample Rate  
1
kHz  
2
Document Number: DS-000127  
Revision: 1.1  
Page 11 of 56  
Rev Date: 03/18/2021  
ICG-20330  
Parameter  
Conditions  
MIN  
TYP  
MAX  
UNITS  
NOTES  
CLK_SEL = 0, 6 or gyro  
inactive; 25°C  
CLK_SEL = 1,2,3,4,5 and  
gyro active; 25°C  
CLK_SEL = 0,6 or gyro  
inactive  
-5  
+5  
%
1
Clock Frequency Initial Tolerance  
-1  
+1  
%
%
%
1
1
1
-10  
+10  
Frequency Variation over Temperature  
CLK_SEL = 1,2,3,4,5 and  
gyro active  
±1  
Table 3. A.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Guaranteed by design.  
3.2.3  
Other Electrical Specifications  
Typical Operating Circuit of section 0, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SERIAL INTERFACE  
100  
±10%  
Low Speed Characterization  
High Speed Characterization  
kHz  
1
SPI Operating Frequency, All  
Registers Read/Write  
1
7
MHz  
1, 2  
Modes 0  
and 3  
SPI Modes  
All registers, Fast-mode  
400  
100  
kHz  
kHz  
1
1
I2C Operating Frequency  
All registers, Standard-mode  
Table 4. Other Electrical Specifications  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. SPI clock duty cycle between 45% and 55% should be used for 7-MHz operation.  
Document Number: DS-000127  
Revision: 1.1  
Page 12 of 56  
Rev Date: 03/18/2021  
ICG-20330  
3.3 I2C TIMING CHARACTERIZATION  
Typical Operating Circuit of section 0, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted.  
Parameters  
I2C TIMING  
Conditions  
I2C FAST-MODE  
MIN  
TYP  
MAX  
UNITS  
NOTES  
fSCL, SCL Clock Frequency  
tHD.STA, (Repeated) START Condition Hold Time  
400  
kHz  
µs  
1
1
0.6  
tLOW, SCL Low Period  
1.3  
0.6  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
1
1
1
1
1
1
1
1
tHIGH, SCL High Period  
tSU.STA, Repeated START Condition Setup Time  
tHD.DAT, SDA Data Hold Time  
tSU.DAT, SDA Data Setup Time  
tr, SDA and SCL Rise Time  
tf, SDA and SCL Fall Time  
0.6  
0
100  
Cb bus cap. from 10 to 400 pF  
Cb bus cap. from 10 to 400 pF  
20+0.1Cb  
20+0.1Cb  
0.6  
300  
300  
tSU.STO, STOP Condition Setup Time  
tBUF, Bus Free Time Between STOP and START  
Condition  
1.3  
µs  
1
Cb, Capacitive Load for each Bus Line  
tVD.DAT, Data Valid Time  
< 400  
pF  
µs  
µs  
1
1
1
0.9  
0.9  
tVD.ACK, Data Valid Acknowledge Time  
Table 5. I2C Timing Characteristics  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.  
tf  
tSU.DAT  
tr  
SDA  
SCL  
70%  
30%  
70%  
30%  
continued below at  
9th clock cycle  
A
tf  
tr  
tVD.DAT  
70%  
30%  
70%  
30%  
tHD.DAT  
tHD.STA  
1/fSCL  
tLOW  
1st clock cycle  
S
tHIGH  
tBUF  
SDA  
SCL  
70%  
30%  
A
tSU.STO  
tSU.STA  
tHD.STA  
tVD.ACK  
70%  
30%  
9th clock cycle  
S
P
Sr  
Figure 1. I2C Bus Timing Diagram  
Document Number: DS-000127  
Revision: 1.1  
Page 13 of 56  
Rev Date: 03/18/2021  
ICG-20330  
3.4 SPI TIMING CHARACTERIZATION  
Typical Operating Circuit of section 0, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted.  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Parameters  
Conditions  
SPI TIMING  
fSCLK, SCLK Clock Frequency  
7
MHz  
ns  
tLOW, SCLK Low Period  
tHIGH, SCLK High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
tSU.SDI, SDI Setup Time  
tHD.SDI, SDI Hold Time  
64  
64  
8
ns  
ns  
500  
5
ns  
ns  
7
ns  
tVD.SDO, SDO Valid Time  
Cload = 20pF  
Cload = 20pF  
59  
50  
ns  
ns  
ns  
tHD.SDO, SDO Hold Time  
6
tDIS.SDO, SDO Output Disable Time  
Table 6. SPI Timing Characteristics (7 MHz Operation)  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.  
CS  
70%  
30%  
tHD;CS  
tSU;CS  
70%  
tHIGH  
1/fCLK  
SCLK  
30%  
tSU;SDI  
tHD;SDI  
tLOW  
70%  
30%  
SDI  
LSB IN  
MSB IN  
tDIS;SDO  
tVD;SDO  
70%  
30%  
SDO  
MSB OUT  
LSB OUT  
Figure 2. SPI Bus Timing Diagram  
Document Number: DS-000127  
Revision: 1.1  
Page 14 of 56  
Rev Date: 03/18/2021  
ICG-20330  
3.5 ABSOLUTE MAXIMUM RATINGS  
Stress above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to  
the absolute maximum ratings conditions for extended periods may affect device reliability.  
Parameter  
Rating  
Supply Voltage, VDD  
-0.5 V to +4 V  
Supply Voltage, VDDIO  
REGOUT  
-0.5 V to +4 V  
-0.5 V to 2 V  
Input Voltage Level (SA0, FSYNC, SCL, SDA)  
Acceleration (Any Axis, unpowered)  
Storage Temperature Range  
-0.5 V to VDD + 0.5 V  
10,000g for 0.2 ms  
-40°C to +125°C  
2 kV (HBM);  
250 V (MM)  
Electrostatic Discharge (ESD) Protection  
Latch-up  
JEDEC Class II (2),125°C  
±100 mA  
Table 7. Absolute Maximum Ratings  
Document Number: DS-000127  
Revision: 1.1  
Page 15 of 56  
Rev Date: 03/18/2021  
ICG-20330  
4 APPLICATIONS INFORMATION  
4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION  
Pin Number  
Pin Name  
VDDIO  
SCL/SPC  
SDA/SDI  
SA0/SDO  
CS  
Pin Description  
1
2
Digital I/O supply voltage  
I2C serial clock (SCL); SPI serial clock (SPC)  
3
I2C serial data (SDA); SPI serial data input (SDI)  
I2C slave address LSB (SA0); SPI serial data output (SDO)  
Chip select (0 = SPI mode; 1 = I2C mode)  
Interrupt digital output (totem pole or open-drain)  
Reserved. Do not connect.  
4
5
6
INT  
7
RESV  
FSYNC  
NC  
8
Synchronization digital input (optional). Connect to GND if unused.  
Connect to GND or do not connect  
9
10  
11  
12  
13  
14  
15  
NC  
Connect to GND or do not connect  
NC  
Connect to GND or do not connect  
NC  
Connect to GND or do not connect  
GND  
Connect to GND  
REGOUT  
RESV  
Regulator filter capacitor connection  
Reserved. Connect to GND  
16  
VDD  
Power Supply  
Table 8. Signal Descriptions  
Note: VDD, VDDIO, SCL/SPC and CS pins must be correctly managed at power-up to guarantee proper device start-up. Please refer to sections 4.17  
and 4.18 for detailed power-up instructions.  
16 15 14  
13  
12  
11  
10  
9
VDDIO  
SCL/SPC  
SDA/SDI  
SA0/SDO  
CS  
1
2
3
4
5
GND  
NC  
+Z  
ICG-20330  
NC  
I
C
G
-
2
0
3
3
NC  
0
NC  
+Y  
+X  
6
7
8
LGA Package (Top View)  
16-pin, 3 mm x 3 mm x 0.75 mm  
Typical Footprint and thickness  
Orientation of Axes of Sensitivity and Polarity of Rotation  
Figure 3. Pin-out Diagram for ICG-20330 3.0x3.0x0.75 mm LGA  
Document Number: DS-000127  
Revision: 1.1  
Page 16 of 56  
Rev Date: 03/18/2021  
ICG-20330  
4.2 TYPICAL OPERATING CIRCUIT  
1.8 3.3VDC  
C2, 0.1 mF  
VDD  
C4, 2.2 mF  
REGOUT  
16 15 14  
C1, 0.47 mF  
GND  
VDDIO  
1.8 3.3 VDC  
13  
12  
11  
10  
9
1
2
3
4
5
C3, 10 nF  
SCL/SPC  
SDA/SDI  
NC  
NC  
SCL  
SDA  
AD0  
ICG-20330  
SA0/SDO  
CS  
NC  
NC  
VDDIO  
6
7
8
Figure 4. ICG-20330 LGA Application Schematic  
4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS  
Component  
Label  
Specification  
Quantity  
REGOUT Capacitor  
C1  
Ceramic, X7R, 0.47 µF ±10%, 2 V  
Ceramic, X7R, 0.1 µF ±10%, 4 V  
Ceramic, X7R, 2.2 µF ±10%, 4 V  
Ceramic, X7R, 10 nF ±10%, 4 V  
1
1
1
1
C2  
VDD Bypass Capacitors  
VDDIO Bypass Capacitor  
C4  
C3  
Table 9. Bill of Materials  
Document Number: DS-000127  
Revision: 1.1  
Page 17 of 56  
Rev Date: 03/18/2021  
ICG-20330  
4.4 BLOCK DIAGRAM  
ICG-20330  
INT  
Self  
X Gyro  
test  
ADC  
ADC  
ADC  
Interrupt  
Status  
Register  
CS  
Self  
Y Gyro  
test  
Slave I2C and  
SPI Serial  
Interface  
SA0 / SDO  
SCL / SPC  
SDA / SDI  
FIFO  
Self  
test  
Z Gyro  
User & Config  
Registers  
FSYNC  
Temp Sensor  
ADC  
Sensor  
Registers  
Charge  
Pump  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 5. ICG-20330 Block Diagram  
4.5 OVERVIEW  
The ICG-20330 is comprised of the following key blocks and functions:  
Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning  
Primary I2C and SPI serial communications interfaces  
Self-Test  
Clocking  
Sensor Data Registers  
FIFO  
Interrupts  
Digital-Output Temperature Sensor  
Bias and LDOs  
Charge Pump  
Standard Power Modes  
4.6 THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING  
The ICG-20330 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about  
the X-, Y-, and Z- Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes  
a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered  
to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip  
16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may  
be digitally programmed to ±31.25, ±62.5, ±125 and ±250 degrees per second (dps). The ADC sample rate is  
programmable up to 8,000 samples per second with user-selectable low-pass filters that enable a wide range  
of cut-off frequencies.  
Document Number: DS-000127  
Revision: 1.1  
Page 18 of 56  
Rev Date: 03/18/2021  
ICG-20330  
4.7 I2C AND SPI SERIAL COMMUNICATIONS INTERFACES  
The ICG-20330 communicates to a system processor using either a SPI or an I2C serial interface. The ICG-  
20330 always acts as a slave when communicating to the system processor. The LSB of the I2C slave address  
is set by pin 4 (SA0).  
4.7.1  
ICG-20330 Solution Using I2C Interface  
In the figure below, the system processor is an I2C master to the ICG-20330.  
Interrupt  
Status  
Register  
I2C Processor Bus: for reading all  
sensor data  
INT  
ICG-20330  
SA0  
SCL  
VDDIO or GND  
Slave I2C  
or SPI  
SCL  
SDA  
System  
Processor  
Serial  
Interface  
SDA  
FIFO  
User & Config  
Registers  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 6. ICG-20330 Solution Using I2C Interface  
Document Number: DS-000127  
Revision: 1.1  
Page 19 of 56  
Rev Date: 03/18/2021  
ICG-20330  
4.7.2  
ICG-20330 Solution Using SPI Interface  
In the figure below, the system processor is an SPI master to the ICG-20330. Pins 2, 3, 4, and 5 are used to  
support the SPC, SDI, SDO, and CS signals for SPI communications.  
Processor SPI Bus: for reading all  
data  
Interrupt  
Status  
Register  
INT  
nCS  
CS  
ICG-20330  
SDO  
SDI  
Slave I2C  
or SPI  
Serial  
Interface  
System  
Processor  
SPC  
SDI  
SPC  
SDO  
FIFO  
Config  
Register  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 7. ICG-20330 Solution Using SPI Interface  
4.8 SELF-TEST  
Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each  
measurement axis can be activated by means of the gyroscope self-test registers (registers 27 and 28).  
When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal.  
The output signal is used to observe the self-test response.  
The self-test response is defined as follows:  
Self-test response = Sensor output with self-test enabled Sensor output with self-test disabled  
The self-test response for each gyroscope axis is defined in the gyroscope specification table.  
When the value of the self-test response is within the specified min/max limits of the product specification, the  
part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to  
have failed self-test. It is recommended to use InvenSense MotionApps software for executing self-test.  
For further information on Self-Test, please refer to the register map of ICG-20330.  
Document Number: DS-000127  
Revision: 1.1  
Page 20 of 56  
Rev Date: 03/18/2021  
ICG-20330  
4.9 CLOCKING  
The ICG-20330 has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the  
internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and  
various control circuits and registers. An on-chip PLL provides flexibility in the allowable inputs for generating  
this clock.  
Allowable internal sources for generating the internal clock are:  
a) An internal relaxation oscillator  
b) Auto-select between internal relaxation oscillator and gyroscope MEMS oscillator to use the best  
available source  
The only setting supporting specified performance in all modes is option b). It is recommended that option b)  
be used.  
4.10 SENSOR DATA REGISTERS  
The sensor data registers contain the latest gyroscope and temperature measurement data. They are read-  
only registers, and are accessed via the serial interface. Data from these registers may be read anytime.  
4.11 FIFO  
The ICG-20330 contains a 512-byte FIFO register that is accessible via the Serial Interface. The FIFO  
configuration register determines which data is written into the FIFO. Possible choices include gyro data and  
temperature readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are  
contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to  
determine when new data is available.  
For further information regarding the FIFO, please refer to the register map of ICG-20330.  
4.12 INTERRUPTS  
Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include  
the INT pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that  
can trigger an interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock  
sources); (2) new data is available to be read (from the FIFO and Data registers); (3) FIFO overflow. The  
interrupt status can be read from the Interrupt Status register.  
4.13 DIGITAL-OUTPUT TEMPERATURE SENSOR  
An on-chip temperature sensor and ADC are used to measure the ICG-20330 die temperature. The readings  
from the ADC can be read from the FIFO or the Sensor Data registers.  
4.14 BIAS AND LDOS  
The bias and LDO section generates the internal supply and the reference voltages and currents required by  
the ICG-20330. Its two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO  
output is bypassed by a capacitor at REGOUT. For further details on the capacitor, please refer to the Bill of  
Materials for External Components.  
4.15 CHARGE PUMP  
An on-chip charge pump generates the high voltage required for the MEMS oscillator.  
Document Number: DS-000127  
Revision: 1.1  
Page 21 of 56  
Rev Date: 03/18/2021  
ICG-20330  
4.16 STANDARD POWER MODES  
The following table lists the user-accessible power modes for ICG-20330.  
Mode Name  
Gyro  
Off  
1
2
Sleep Mode  
Standby Mode  
Drive On  
Table 10. Standard Power Modes for ICG-20330  
Notes:  
1. Power consumption for individual modes can be found in section 0.  
4.17 POWER-UP SEQUENCE  
When applying VDD, the power voltage ramp is detected and a power-on-reset sequence is triggered inside  
the component. During this phase the device starts operating and internal logic levels are defined. For proper  
component initialization the power-up should be performed with both CS and SCL/SPC low, ensuring that CS  
and SCL pins are not in an undetermined state during the VDD ramp. If starting in I2C mode (CS at logic  
high), power-up should be performed with SCL/SPC low. Power-up with SCL/SPC high is not a supported  
case and must be avoided.  
It is worth noting that if the I/O pins (e.g. CS, SCL/SPC) are between VIL and VIH when the power-on-reset  
sequence is triggered, their value is undetermined and the internal logic levels may not be properly defined.  
It should also be noted that VIL and VIH are related to VDDIO and their value changes at power-up according  
to the applied VDDIO voltage ramp.  
Power-up sequences that do not respect the conditions above may not lead to proper digital interface  
initialization. In this case a preliminary soft reset operation (PWR_MGMT_1 register set 0x81) must be  
performed to reset the digital interface, as soon as both VDD and VDDIO are stable at their final voltage. Since  
the digital interface may not be properly initialized, the device may not provide the acknowledge signal if the  
I2C protocol is used.  
4.18 SENSOR INITIALIZATION AND CLOCK SOURCE SELECTION  
When power-up sequence is completed (as per section 4.17), a soft reset is required to initialize the sensor  
and let the device select the best clock source. The soft reset must be performed by setting the register  
PWR_MGMT_1 (address 0x6B) to 0x81, prior to registers initialization.  
Soft reset must be performed as first operation after the power-up sequence to ensure the proper component  
registers setting. Correct WHOAMI value is ensured only after the soft reset has been completed.  
Document Number: DS-000127  
Revision: 1.1  
Page 22 of 56  
Rev Date: 03/18/2021  
ICG-20330  
5 PROGRAMMABLE INTERRUPTS  
The ICG-20330 has a programmable interrupt system which can generate an interrupt signal on the INT pin.  
Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually.  
Interrupt Name  
FIFO Overflow  
Data Ready  
Module  
FIFO  
Sensor Registers  
Table 11. Table of Interrupt Sources  
For information regarding the interrupt enable/disable registers and flag registers, please refer to the register  
map of ICG-20330 in this document.  
Document Number: DS-000127  
Revision: 1.1  
Page 23 of 56  
Rev Date: 03/18/2021  
ICG-20330  
6 DIGITAL INTERFACE  
6.1 I2C AND SPI SERIAL INTERFACES  
The internal registers and memory of the ICG-20330 can be accessed using either I2C at 400 kHz or SPI at  
7 MHz. SPI operates in four-wire mode.  
Pin Number  
Pin Name  
VDDIO  
Pin Description  
1
4
2
3
Digital I/O supply voltage.  
SA0 / SDO  
SCL / SPC  
SDA / SDI  
I2C Slave Address LSB (SA0); SPI serial data output (SDO)  
I2C serial clock (SCL); SPI serial clock (SPC)  
I2C serial data (SDA); SPI serial data input (SDI)  
Table 12. Serial Interface  
Note:  
To prevent switching into I2C mode when using SPI, the I2C interface should be disabled by setting the  
I2C_IF_DIS configuration bit. Setting this bit should be performed immediately after waiting for the time  
specified by the “Start-Up Time for Register Read/Write” in Section 6.3.  
For further information regarding the I2C_IF_DIS bit, please refer to the register map of ICG-20330.  
6.2 I2C INTERFACE  
I2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the  
lines are open-drain and bi-directional. In a generalized I2C interface implementation, attached devices can be  
a master or a slave. The master device puts the slave address on the bus, and the slave device with the  
matching address acknowledges the master.  
The ICG-20330 always operates as a slave device when communicating to the system processor, which thus  
acts as the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is  
400 kHz.  
The slave address of the ICG-20330 is b110100X which is 7 bits long. The LSB bit of the 7-bit address is  
determined by the logic level on pin SA0. This allows two ICG-20330s to be connected to the same I2C bus.  
When used in this configuration, the address of one of the devices should be b1101000 (pin SA0 is logic low)  
and the address of the other should be b1101001 (pin SA0 is logic high).  
6.3 I2C COMMUNICATIONS PROTOCOL  
START (S) and STOP (P) Conditions  
Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is  
defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is  
considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to  
HIGH transition on the SDA line while SCL is HIGH (see figure below).  
Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.  
Document Number: DS-000127  
Revision: 1.1  
Page 24 of 56  
Rev Date: 03/18/2021  
ICG-20330  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 8. START and STOP Conditions  
Data Format / Acknowledge  
I2C data bytes are defined to be 8 bits long. There is no restriction to the number of bytes transmitted per data  
transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the  
acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal  
by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.  
If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed,  
it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave  
is ready, and releases the clock line (refer to the following figure).  
DATA OUTPUT BY  
TRANSMITTER (SDA)  
not acknowledge  
DATA OUTPUT BY  
RECEIVER (SDA)  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
clock pulse for  
acknowledgement  
START  
condition  
Figure 9. Acknowledge on the I2C Bus  
Document Number: DS-000127  
Revision: 1.1  
Page 25 of 56  
Rev Date: 03/18/2021  
ICG-20330  
Communications  
After beginning communications with the START condition (S), the master sends a 7-bit slave address followed  
by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is  
writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK)  
from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the  
slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission  
is always terminated by the master with a STOP condition (P), thus freeing the communications line. However,  
the master can generate a repeated START condition (Sr), and address another slave without first generating  
a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition.  
All SDA changes should take place when SCL is low, with the exception of start and stop conditions.  
SDA  
SCL  
1 7  
8
9
1 7  
8
9
1 7  
8
9
S
P
START  
STOP  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
condition  
condition  
Figure 10. Complete I2C Data Transfer  
To write the internal ICG-20330 registers, the master transmits the start condition (S), followed by the I2C  
address and the write bit (0). At the 9th clock cycle (when the clock is high), the ICG-20330 acknowledges the  
transfer. Then the master puts the register address (RA) on the bus. After the ICG-20330 acknowledges the  
reception of the register address, the master puts the register data onto the bus. This is followed by the ACK  
signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK  
signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICG-  
20330 automatically increments the register address and loads the data to the appropriate register. The  
following figures show single and two-byte write sequences.  
Single-Byte Write Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
Burst Write Sequence  
Master  
Slave  
S
AD+W  
DATA  
P
ACK  
Document Number: DS-000127  
Revision: 1.1  
Page 26 of 56  
Rev Date: 03/18/2021  
ICG-20330  
To read the internal ICG-20330 registers, the master sends a start condition, followed by the I2C address and  
a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the ICG-  
20330, the master transmits a start signal followed by the slave address and read bit. As a result, the ICG-  
20330 sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal  
and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock  
cycle. The following figures show single and two-byte read sequences.  
Single-Byte Read Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
S
S
AD+R  
AD+R  
NACK  
ACK  
P
ACK  
ACK  
ACK  
ACK  
ACK DATA  
ACK DATA  
Burst Read Sequence  
Master  
Slave  
S
AD+W  
NACK  
P
DATA  
6.4 I2C TERMS  
Signal Description  
S
AD  
W
Start Condition: SDA goes from high to low while SCL is high  
Slave I2C address  
Write bit (0)  
R
Read bit (1)  
ACK  
Acknowledge: SDA line is low while the SCL line is high at the 9th  
clock cycle  
NACK Not-Acknowledge: SDA line stays high at the 9th clock cycle  
RA  
DATA  
P
ICG-20330 internal register address  
Transmit or received data  
Stop condition: SDA going from low to high while SCL is high  
Table 13. I2C Terms  
Document Number: DS-000127  
Revision: 1.1  
Page 27 of 56  
Rev Date: 03/18/2021  
ICG-20330  
6.5 SPI INTERFACE  
SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The ICG-20330  
always operates as a Slave device during standard Master-Slave SPI operation.  
With respect to the Master, the Serial Clock output (SPC), the Serial Data Output (SDO) and the Serial Data  
Input (SDI) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line  
from the master.  
CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is  
active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected  
slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they  
do not interfere with any active devices.  
SPI Operational Features  
1. Data is delivered MSB first and LSB last  
2. Data is latched on the rising edge of SPC  
3. Data should be transitioned on the falling edge of SPC  
4. The maximum frequency of SPC is 7 MHz  
5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The  
first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit  
of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The  
following 7 bits contain the Register Address. In cases of multiple-byte Read/Writes, data is two  
or more bytes:  
SPI Address format  
MSB  
LSB  
R/W A6 A5 A4 A3 A2 A1  
A0  
SPI Data format  
MSB  
LSB  
D7  
D6 D5 D4 D3 D2 D1  
D0  
6. Supports Single or Burst Read/Writes.  
SPC  
SDI  
SPI Master  
CS1  
SPI Slave 1  
SDO  
CS  
CS2  
SPC  
SDI  
SDO  
CS  
SPI Slave 2  
Figure 11. Typical SPI Master / Slave Configuration  
Document Number: DS-000127  
Revision: 1.1  
Page 28 of 56  
Rev Date: 03/18/2021  
ICG-20330  
7 SERIAL INTERFACE CONSIDERATIONS  
7.1 ICG-20330 SUPPORTED INTERFACES  
The ICG-20330 supports I2C communications on its serial interface.  
The ICG-20330’s I/O logic levels are set to be VDDIO.  
The figure below depicts a sample circuit of ICG-20330. It shows the relevant logic levels and voltage  
connections.  
VDDIO  
VDD_IO  
(0V - VDDIO)  
SYSTEM BUS  
System  
Processor IO  
VDD  
VDDIO  
VDD  
(0V - VDDIO)  
INT  
SDA  
SCL  
(0V - VDDIO)  
(0V - VDDIO)  
(0V - VDDIO)  
SYNC  
VDDIO  
ICG-20330  
VDDIO  
(0V, VDDIO)  
SA0  
Figure 12. I/O Levels and Connections  
Document Number: DS-000127  
Revision: 1.1  
Page 29 of 56  
Rev Date: 03/18/2021  
ICG-20330  
8 ASSEMBLY  
This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems  
(MEMS) gyros packaged in LGA package.  
8.1 ORIENTATION OF AXES  
The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1  
identifier () in the figure.  
+Z  
I
C
+Y  
G
-
2
0
3
3
0
+X  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation  
Document Number: DS-000127  
Revision: 1.1  
Page 30 of 56  
Rev Date: 03/18/2021  
ICG-20330  
8.2 PACKAGE DIMENSIONS  
16 Lead LGA (3x3x0.75) mm NiAu pad finish  
Document Number: DS-000127  
Revision: 1.1  
Page 31 of 56  
Rev Date: 03/18/2021  
ICG-20330  
DIMENSIONS IN MILLIMETERS  
SYMBOLS  
MIN  
NOM  
MAX  
Total Thickness  
Substrate Thickness  
Mold Thickness  
A
A1  
A2  
0.7  
0.75  
0.105  
0.63  
0.8  
REF  
REF  
D
E
2.9  
2.9  
0.2  
0.3  
3
3
3.1  
3.1  
0.3  
Body Size  
Lead Width  
Lead Length  
W
0.25  
L
e
n
0.35  
0.5  
16  
2
0.4  
BSC  
Lead Pitch  
Lead Count  
D1  
E1  
SD  
BSC  
BSC  
BSC  
Edge Ball Center to Center  
Body Center to Contact Ball  
1
---  
SE  
b
---  
---  
---  
---  
---  
---  
---  
BSC  
---  
Ball Width  
Ball Diameter  
Ball Opening  
Ball Pitch  
Ball Count  
Pre-Solder  
---  
---  
e1  
n1  
---  
Package Edge Tolerance  
aaa  
bbb  
ddd  
eee  
fff  
0.1  
0.2  
0.08  
---  
Mold Flatness  
Coplanarity  
Ball Offset (Package)  
Ball Offset (Ball)  
---  
Lead Edge to Package Edge  
M
0.01  
0.06  
0.11  
Document Number: DS-000127  
Revision: 1.1  
Page 32 of 56  
Rev Date: 03/18/2021  
ICG-20330  
9 PART NUMBER PACKAGE MARKING  
The part number package marking for ICG-20330 devices is summarized below:  
Part Number  
Part Number Package Marking  
IC2330  
ICG-20330  
Document Number: DS-000127  
Revision: 1.1  
Page 33 of 56  
Rev Date: 03/18/2021  
ICG-20330  
10 REFERENCE  
Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following  
information:  
Manufacturing Recommendations  
o
o
o
o
o
o
o
o
o
o
o
Assembly Guidelines and Recommendations  
PCB Design Guidelines and Recommendations  
MEMS Handling Instructions  
ESD Considerations  
Reflow Specification  
Storage Specifications  
Package Marking Specification  
Tape & Reel Specification  
Reel & Pizza Box Label  
Packaging  
Representative Shipping Carton Label  
Compliance  
o
o
o
Environmental Compliance  
DRC Compliance  
Compliance Declaration Disclaimer  
Document Number: DS-000127  
Revision: 1.1  
Page 34 of 56  
Rev Date: 03/18/2021  
ICG-20330  
11 REGISTER MAP  
The following table lists the register map for the ICG-20330.  
The device will come up in sleep mode upon power-up. In order to take the device out of the sleep mode set  
the PWR_MGMT_1[6] = 0 in register 107 (sleep mode bit in power management register).  
Accessible in  
Sleep and  
LPA Modes?  
Addr  
(Hex)  
Addr  
Serial  
I/F  
Register Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
(Dec.)  
00  
READ/  
WRITE  
00  
01  
02  
04  
SELF_TEST_X_GYRO  
SELF_TEST_Y_GYRO  
SELF_TEST_Z_GYRO  
XG_OFFS_TC_H  
N
N
N
N
XG_ST_DATA[7:0]  
YG_ST_DATA[7:0]  
ZG_ST_DATA[7:0]  
READ/  
WRITE  
01  
READ/  
WRITE  
02  
READ/  
WRITE  
XG_OFFS_  
TC_H [9]  
XG_OFFS_  
TC_H [8]  
04  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
READ/  
WRITE  
05  
07  
08  
0A  
0B  
05  
07  
08  
10  
11  
XG_OFFS_TC_L  
YG_OFFS_TC_H  
YG_OFFS_TC_L  
ZG_OFFS_TC_H  
ZG_OFFS_TC_L  
N
N
N
N
N
XG_OFFS_TC_L [7:0]  
READ/  
WRITE  
YG_OFFS_  
TC_H [9]  
YG_OFFS_  
TC_H [8]  
-
-
READ/  
WRITE  
YG_OFFS_TC_L [7:0]  
READ/  
WRITE  
ZG_OFFS_  
TC_H [9]  
ZG_OFFS_  
TC_H [8]  
-
-
READ/  
WRITE  
ZG_OFFS_TC_L [7:0]  
READ/  
WRITE  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
23  
19  
20  
21  
22  
23  
24  
25  
26  
27  
35  
XG_OFFS_USRH  
XG_OFFS_USRL  
YG_OFFS_USRH  
YG_OFFS_USRL  
ZG_OFFS_USRH  
ZG_OFFS_USRL  
SMPLRT_DIV  
N
N
N
N
N
N
Y
N
N
N
X_OFFS_USR [15:8]  
X_OFFS_USR [7:0]  
Y_OFFS_USR [15:8]  
Y_OFFS_USR [7:0]  
Z_OFFS_USR [15:8]  
Z_OFFS_USR [7:0]  
SMPLRT_DIV[7:0]  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
FIFO_  
MODE  
CONFIG  
-
EXT_SYNC_SET[2:0]  
FS_SEL [1:0]  
ZG_FIFO_E  
DLPF_CFG[2:0]  
READ/  
WRITE  
GYRO_CONFIG  
FIFO_EN  
XG_ST  
YG_ST  
ZG_ST  
-
-
FCHOICE_B[1:0]  
READ/  
WRITE  
TEMP  
_FIFO_EN  
XG_FIFO_E  
N
YG_FIFO_E  
N
-
-
-
-
-
-
N
READ  
to  
CLEA  
R
FSYNC_IN  
T
36  
54  
FSYNC_INT  
N
-
-
-
-
FSYNC  
_INT_MOD  
E_EN  
READ/  
WRITE  
LATCH  
_INT_EN  
INT_RD  
_CLEAR  
FSYNC_INT  
_LEVEL  
37  
38  
55  
56  
INT_PIN_CFG  
INT_ENABLE  
Y
Y
-
-
INT_OPEN  
-
-
-
FIFO  
_OFLOW  
_EN  
READ/  
WRITE  
GDRIVE_IN  
T_EN  
DATA_RDY  
_INT_EN  
-
-
WOM_EN  
-
READ  
to  
CLEA  
R
FIFO  
_OFLOW  
_INT  
GDRIVE_IN  
T
DATA  
_RDY_INT  
3A  
41  
58  
65  
INT_STATUS  
TEMP_OUT_H  
N
N
-
-
READ  
TEMP_OUT[15:8]  
Document Number: DS-000127  
Revision: 1.1  
Page 35 of 56  
Rev Date: 03/18/2021  
ICG-20330  
Accessible in  
Sleep and  
LPA Modes?  
Addr  
(Hex)  
Addr  
(Dec.)  
Serial  
I/F  
Register Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
42  
43  
44  
45  
46  
47  
48  
66  
67  
68  
69  
70  
71  
72  
TEMP_OUT_L  
GYRO_XOUT_H  
GYRO_XOUT_L  
GYRO_YOUT_H  
GYRO_YOUT_L  
GYRO_ZOUT_H  
GYRO_ZOUT_L  
READ  
READ  
READ  
READ  
READ  
READ  
READ  
N
N
N
N
N
N
N
TEMP_OUT[7:0]  
GYRO_XOUT[15:8]  
GYRO_XOUT[7:0]  
GYRO_YOUT[15:8]  
GYRO_YOUT[7:0]  
GYRO_ZOUT[15:8]  
GYRO_ZOUT[7:0]  
READ/  
WRITE  
TEMP  
_RST  
68  
6A  
6B  
6C  
104  
106  
107  
108  
SIGNAL_PATH_RESET  
USER_CTRL  
N
N
Y
Y
-
-
-
-
-
-
-
-
-
-
-
READ/  
WRITE  
I2C_IF  
_DIS  
FIFO  
_RST  
SIG_COND  
_RST  
FIFO_EN  
SLEEP  
-
-
READ/  
WRITE  
DEVICE_  
RESET  
GYRO_  
STANDBY  
PWR_MGMT_1  
PWR_MGMT_2  
TEMP_DIS  
-
CLKSEL[2:0]  
STBY_YG  
READ/  
WRITE  
-
-
-
-
STBY_XG  
STBY_ZG  
72  
73  
114  
115  
FIFO_COUNTH  
FIFO_COUNTL  
READ  
READ  
Y
Y
FIFO_COUNT[12:8]  
FIFO_COUNT[7:0]  
READ/  
WRITE  
74  
75  
116  
117  
FIFO_R_W  
WHO_AM_I  
Y
N
FIFO_DATA[7:0]  
WHOAMI[7:0]  
READ  
Table 14. ICG-20330 Register Map  
Note: Register Names ending in _H and _L contain the high and low bytes, respectively, of an internal register  
value.  
In the detailed register tables that follow, register names are in capital letters, while register values are in capital  
letters and italicized. For example, the GYRO_XOUT_H register (Register 59) contains the 8 most significant  
bits, GYRO_XOUT[15:8], of the 16-bit X-Axis Gyroscope measurement, GYRO_XOUT.  
The reset value is 0x00 for all registers other than the registers below, also the self-test registers contain pre-  
programmed values and will not be 0x00 after reset.  
Register 107 (0x01) Power Management 1  
Register 117 (0x92) WHO_AM_I  
Document Number: DS-000127  
Revision: 1.1  
Page 36 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12 REGISTER DESCRIPTIONS  
This section describes the function and contents of each register within the ICG-20330.  
Note: The device will come up in active mode upon power-up.  
12.1 REGISTERS 0 TO 2 GYROSCOPE SELF-TEST REGISTERS  
Register Name: SELF_TEST_X_GYRO, SELF_TEST_Y_GYRO, SELF_TEST_Z_GYRO  
Type: READ/WRITE  
Register Address: 00, 01, 02 (Decimal); 00, 01, 02 (Hex)  
REGISTER  
BIT NAME  
FUNCTION  
The value in this register indicates the self-test  
output generated during manufacturing tests. This  
value is to be used to check against subsequent  
self-test outputs performed by the end user.  
SELF_TEST_X_GYRO [7:0] XG_ST_DATA[7:0]  
SELF_TEST_Y_GYRO [7:0] YG_ST_DATA[7:0]  
SELF_TEST_Z_GYRO [7:0] ZG_ST_DATA[7:0]  
The value in this register indicates the self-test  
output generated during manufacturing tests. This  
value is to be used to check against subsequent  
self-test outputs performed by the end user.  
The value in this register indicates the self-test  
output generated during manufacturing tests. This  
value is to be used to check against subsequent  
self-test outputs performed by the end user.  
The equation to convert self-test codes in OTP to factory self-test measurement is:  
ST _OTP = (2620/2FS )*1.01(ST _code1) (lsb)  
where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is  
based on the Self-Test value (ST_ FAC) determined in InvenSense’s factory final test and calculated based  
on the following equation:  
log(ST _ FAC /(2620 / 2FS ))  
ST _ code = round(  
) +1  
log(1.01)  
Document Number: DS-000127  
Revision: 1.1  
Page 37 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.2 REGISTER 4 GYROSCOPE OFFSET TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: XG_OFFS_TC_H  
Register Type: READ/WRITE  
Register Address: 04 (Decimal); 04 (Hex)  
BIT  
NAME  
FUNCTION  
[7:2]  
[1:0]  
-
Reserved  
XG_OFFS_TC_H[9:8] Bits 9 and 8 of the 10-bit offset of X gyroscope (2s complement)  
12.3 REGISTER 5 GYROSCOPE OFFSET TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: XG_OFFS_TC_L  
Type: READ/WRITE  
Register Address: 05 (Decimal); 05 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
XG_OFFS_TC_L[7:0]] Bits 7 to 0 of the 10-bit offset of X gyroscope (2s complement)  
Description:  
The temperature compensation (TC) registers are used to reduce gyro offset variation due to  
temperature change. The TC feature is always enabled. However, the compensation only  
happens when a TC coefficient is programed during factory trim which gets loaded into these  
registers at power up or after a DEVICE_RESET. If these registers contain a value of zero,  
temperature compensation has no effect on the offset of the chip. The TC registers have a 10-  
bit magnitude and sign adjustment in all full scale modes with a resolution of 2.52 mdps/C steps.  
If these registers contain a non-zero value after power up, the user may write zeros to them to  
see the offset values without TC with temperature variation. Note that doing so may result in  
offset values that exceed data sheet “Initial ZRO Tolerance” in other than normal ambient  
temperature (~25 °C). The TC coefficients maybe restored by the user with a power up or a  
DEVICE_RESET.  
The above description also applies to registers 7-8 and 10-11.  
Document Number: DS-000127  
Revision: 1.1  
Page 38 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.4 REGISTER 07 GYROSCOPE OFFSET TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: YG_OFFS_TC_H  
Register Type: READ/WRITE  
Register Address: 07 (Decimal); 07 (Hex)  
BIT  
NAME  
FUNCTION  
[7:2]  
[1:0]  
-
Reserved  
YG_OFFS_TC_H[9:8] Bits 9 and 8 of the 10-bit offset of Y gyroscope (2s complement)  
12.5 REGISTER 08 GYROSCOPE OFFSET TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: YG_OFFS_TC_L  
Register Type: READ/WRITE  
Register Address: 08 (Decimal); 08 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
YG_OFFS_TC_L[7:0]] Bits 7 to 0 of the 10-bit offset of Y gyroscope (2s complement)  
12.6 REGISTER 10 GYROSCOPE OFFSET TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: ZG_OFFS_TC_H  
Register Type: READ/WRITE  
Register Address: 10 (Decimal); 0A (Hex)  
BIT  
NAME  
FUNCTION  
[7:2]  
[1:0]  
-
Reserved  
ZG_OFFS_TC_H[9:8] Bits 9 and 8 of the 10-bit offset of Z gyroscope (2s complement)  
Document Number: DS-000127  
Revision: 1.1  
Page 39 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.7 REGISTER 11 GYROSCOPE OFFSET TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: ZG_OFFS_TC_L  
Register Type: READ/WRITE  
Register Address: 11 (Decimal); 0B (Hex)  
BIT  
NAME  
FUNCTION  
ZG_OFFS_TC_L[7:0]]  
[7:0]  
Bits 7 to 0 of the 10-bit offset of Z gyroscope (2s complement)  
12.8 REGISTERS 19 GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: XG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 19 (Decimal); 13 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of X gyroscope (2s complement).  
This register is used to remove DC bias from the sensor output.  
The value in this register is added to the gyroscope sensor value  
before going into the sensor register.  
[7:0]  
X_OFFS_USR[15:8]  
12.9 REGISTERS 20 GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: XG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 20 (Decimal); 14 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of X gyroscope (2s complement).  
This register is used to remove DC bias from the sensor output.  
The value in this register is added to the gyroscope sensor value  
before going into the sensor register.  
[7:0]  
X_OFFS_USR[7:0]  
Document Number: DS-000127  
Revision: 1.1  
Page 40 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.10 REGISTERS 21 GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: YG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 21 (Decimal); 15 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of Y gyroscope (2s complement).  
This register is used to remove DC bias from the sensor output.  
The value in this register is added to the gyroscope sensor value  
before going into the sensor register.  
[7:0]  
Y_OFFS_USR[15:8]  
12.11 REGISTERS 22 GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: YG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 22 (Decimal); 16 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of Y gyroscope (2s complement).  
This register is used to remove DC bias from the sensor output.  
The value in this register is added to the gyroscope sensor value  
before going into the sensor register.  
[7:0]  
Y_OFFS_USR[7:0]  
12.12 REGISTERS 23 GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: ZG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 23 (Decimal); 17 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of Z gyroscope (2s complement).  
This register is used to remove DC bias from the sensor output.  
The value in this register is added to the gyroscope sensor value  
before going into the sensor register.  
[7:0]  
Z_OFFS_USR[15:8]  
Document Number: DS-000127  
Revision: 1.1  
Page 41 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.13 REGISTER 24 GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: ZG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 24 (Decimal); 18 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of Z gyroscope (2s complement).  
This register is used to remove DC bias from the sensor output.  
The value in this register is added to the gyroscope sensor value  
before going into the sensor register.  
[7:0]  
Z_OFFS_USR[7:0]  
12.14 REGISTER 25 SAMPLE RATE DIVIDER  
Register Name: SMPLRT_DIV  
Register Type: READ/WRITE  
Register Address: 25 (Decimal); 19 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
SMPLRT_DIV[7:0]  
Divides the internal sample rate (see register CONFIG) to generate the  
sample rate that controls sensor data output rate, FIFO sample rate. NOTE:  
This register is only effective when FCHOICE_B register bits are 2’b00, and  
(0 < DLPF_CFG < 7).  
This is the update rate of the sensor register:  
SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV)  
Where INTERNAL_SAMPLE_RATE = 1kHz  
Document Number: DS-000127  
Revision: 1.1  
Page 42 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.15 REGISTER 26 CONFIGURATION  
Register Name: CONFIG  
Register Type: READ/WRITE  
Register Address: 26 (Decimal); 1A (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
-
Reserved.  
[6]  
FIFO_MODE  
When set to ‘1’, when the FIFO is full, additional writes will not be written to  
FIFO.  
When set to ‘0’, when the FIFO is full, additional writes will be written to the  
FIFO, replacing the oldest data.  
[5:3] EXT_SYNC_SET[2:0]  
Enables the FSYNC pin data to be sampled.  
EXT_SYNC_SET  
FSYNC bit location  
function disabled  
0
1
2
3
4
TEMP_OUT_L[0]  
GYRO_XOUT_L[0]  
GYRO_YOUT_L[0]  
GYRO_ZOUT_L[0]  
FSYNC will be latched to capture short strobes. This will be done such that if  
FSYNC toggles, the latched value toggles, but won’t toggle again until the new  
latched value is captured by the sample rate strobe.  
[2:0] DLPF_CFG[2:0]  
For the DLPF to be used, FCHOICE_B[1:0] is 2’b00.  
See the table below.  
The DLPF is configured by DLPF_CFG, when FCHOICE_B [1:0] = 2b’00. The gyroscope and  
temperature sensor are filtered according to the value of DLPF_CFG and FCHOICE_B as shown in  
the table below.  
Temperature  
FCHOICE_B  
<1> <0>  
Gyroscope  
Sensor  
DLPF_CFG  
3-dB  
BW  
(Hz)  
Noise  
Rate Delay  
3-dB BW  
(Hz)  
BW (Hz) (kHz) (ms)  
X
1
X
X
0
1
2
7
8173  
8595.1  
3451.0  
306.6  
177.0  
108.6  
32  
32  
8
1
1
0.064  
0.11  
0.97  
2.9  
3.9  
0.17  
4000  
4000  
4000  
188  
98  
4000  
1
0
0
0
0
0
0
0
0
0
3281  
250  
176  
92  
3281  
3451.0  
8
Document Number: DS-000127  
Revision: 1.1  
Page 43 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.16 REGISTER 27 GYROSCOPE CONFIGURATION  
Register Name: GYRO_CONFIG  
Register Type: READ/WRITE  
Register Address: 27 (Decimal); 1B (Hex)  
BIT  
[7]  
[6]  
[5]  
NAME  
XG_ST  
YG_ST  
ZG_ST  
FUNCTION  
X Gyro self-test.  
Y Gyro self-test.  
Z Gyro self-test.  
Gyro Full Scale Select:  
00 = ±31.25 dps  
01= ±62.5 dps  
10 = ±125 dps  
11= ±250 dps  
[4:3]  
FS_SEL[1:0]  
[2]  
-
Reserved.  
[1:0]  
FCHOICE_B[1:0]  
Used to bypass DLPF as shown in table 1 above.  
Document Number: DS-000127  
Revision: 1.1  
Page 44 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.17 REGISTER 35 FIFO ENABLE  
Register Name: FIFO_EN  
Register Type: READ/WRITE  
Register Address: 35 (Decimal); 23 (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
1 Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate;  
If enabled, buffering of data occurs even if data path is in standby.  
TEMP_FIFO_EN  
0 Function is disabled.  
1 Write GYRO_XOUT_H and GYRO_XOUT_L to the FIFO at the sample  
rate; If enabled, buffering of data occurs even if data path is in standby.  
[6]  
[5]  
[4]  
XG_FIFO_EN  
YG_FIFO_EN  
ZG_FIFO_EN  
0 Function is disabled.  
1 Write GYRO_YOUT_H and GYRO_YOUT_L to the FIFO at the sample  
rate; If enabled, buffering of data occurs even if data path is in standby.  
0 Function is disabled.  
Note: Enabling any one of the bits corresponding to the Gyros or Temp data  
paths, data is buffered into the FIFO even though that data path is not  
enabled.  
1 Write GYRO_ZOUT_H and GYRO_ZOUT_L to the FIFO at the sample  
rate; If enabled, buffering of data occurs even if data path is in standby.  
0 Function is disabled.  
Reserved.  
[3]  
-
-
[2:0]  
Reserved.  
Document Number: DS-000127  
Revision: 1.1  
Page 45 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.18 REGISTER 54 FSYNC INTERRUPT STATUS  
Register Name: FSYNC_INT  
Register Type: READ to CLEAR  
Register Address: 54 (Decimal); 36 (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
This bit automatically sets to 1 when a FSYNC interrupt has been  
generated. The bit clears to 0 after the register has been read.  
FSYNC_INT  
12.19 REGISTER 55 INT PIN / BYPASS ENABLE CONFIGURATION  
Register Name: INT_PIN_CFG  
Register Type: READ/WRITE  
Register Address: 55 (Decimal); 37 (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
1 The logic level for INT pin is active low.  
INT_LEVEL  
0 The logic level for INT pin is active high.  
1 INT pin is configured as open drain.  
[6]  
[5]  
[4]  
[3]  
[2]  
INT_OPEN  
0 INT pin is configured as push-pull.  
1 INT pin level held until interrupt status is cleared.  
0 INT pin indicates interrupt pulse’s width is 50 ms.  
1 Interrupt status is cleared if any read operation is performed.  
0 Interrupt status is cleared only by reading INT_STATUS register.  
1 The logic level for the FSYNC pin as an interrupt is active low.  
0 The logic level for the FSYNC pin as an interrupt is active high.  
LATCH_INT_EN  
INT_RD_CLEAR  
FSYNC_INT_LEVEL  
FSYNC_INT_MODE_EN  
When this bit is equal to 1, the FSYNC pin will trigger an interrupt when  
it transitions to the level specified by FSYNC_INT_LEVEL. When this  
bit is equal to 0, the FSYNC pin is disabled from causing an interrupt.  
Reserved.  
[1]  
[0]  
-
-
Reserved.  
Document Number: DS-000127  
Revision: 1.1  
Page 46 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.20 REGISTER 56 INTERRUPT ENABLE  
Register Name: INT_ENABLE  
Register Type: READ/WRITE  
Register Address: 56 (Decimal); 38 (Hex)  
BIT  
NAME  
FUNCTION  
‘111’ – Enable WoM interrupt.  
[7:5] WOM_EN  
‘000’ – Disable WoM interrupt. This is the default setting.  
1 Enables a FIFO buffer overflow to generate an interrupt.  
0 Function is disabled.  
[4]  
FIFO_OFLOW_EN  
[3]  
[2]  
[1]  
[0]  
-
Reserved.  
GDRIVE_INT_EN  
Gyroscope Drive System Ready interrupt enable.  
Reserved.  
-
DATA_RDY_INT_EN  
Data ready interrupt enable.  
12.21 REGISTER 58 INTERRUPT STATUS  
Register Name: INT_STATUS  
Register Type: READ to CLEAR  
Register Address: 58 (Decimal); 3A (Hex)  
BIT  
[7]  
[6]  
[5]  
NAME  
FUNCTION  
Reserved.  
Reserved.  
Reserved.  
-
-
-
This bit automatically sets to 1 when a FIFO buffer overflow has been  
generated. The bit clears to 0 after the register has been read.  
[4]  
FIFO_OFLOW_INT  
[3]  
[2]  
[1]  
-
Reserved.  
GDRIVE_INT  
-
Gyroscope Drive System Ready interrupt.  
Reserved.  
This bit automatically sets to 1 when a Data Ready interrupt is  
generated. The bit clears to 0 after the register has been read.  
[0]  
DATA_RDY_INT  
Document Number: DS-000127  
Revision: 1.1  
Page 47 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.22 REGISTERS 65 AND 66 TEMPERATURE MEASUREMENT  
Register Name: TEMP_OUT_H  
Register Type: READ only  
Register Address: 65 (Decimal); 41 (Hex)  
BIT  
NAME  
FUNCTION  
High byte of the temperature sensor output.  
[7:0] TEMP_OUT[15:8]  
Register Name: TEMP_OUT_L  
Register Type: READ only  
Register Address: 66 (Decimal); 42 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the temperature sensor output.  
TEMP_degC  
= ((TEMP_OUT –  
[7:0] TEMP_OUT[7:0]  
RoomTemp_Offset)/Temp_Sensitivity)  
+ 25degC  
Document Number: DS-000127  
Revision: 1.1  
Page 48 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.23 REGISTERS 67 TO 72 GYROSCOPE MEASUREMENTS  
Register Name: GYRO_XOUT_H  
Register Type: READ only  
Register Address: 67 (Decimal); 43 (Hex)  
BIT  
NAME  
FUNCTION  
High byte of the X-Axis gyroscope output.  
[7:0] GYRO_XOUT[15:8]  
Register Name: GYRO_XOUT_L  
Register Type: READ only  
Register Address: 68 (Decimal); 44 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the X-Axis gyroscope output.  
GYRO_XOUT = Gyro_Sensitivity * X_angular_rate  
[7:0] GYRO_XOUT[7:0]  
Nominal  
FS_SEL = 0  
Conditions  
Gyro_Sensitivity = 131 LSB/(º/s)  
Register Name: GYRO_YOUT_H  
Register Type: READ only  
Register Address: 69 (Decimal); 45 (Hex)  
BIT  
NAME  
FUNCTION  
High byte of the Y-Axis gyroscope output.  
[7:0] GYRO_YOUT[15:8]  
Register Name: GYRO_YOUT_L  
Register Type: READ only  
Register Address: 70 (Decimal); 46 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the Y-Axis gyroscope output.  
GYRO_YOUT = Gyro_Sensitivity * Y_angular_rate  
[7:0] GYRO_YOUT[7:0]  
Nominal  
FS_SEL = 0  
Conditions  
Gyro_Sensitivity = 131 LSB/(º/s)  
Document Number: DS-000127  
Revision: 1.1  
Page 49 of 56  
Rev Date: 03/18/2021  
ICG-20330  
Register Name: GYRO_ZOUT_H  
Register Type: READ only  
Register Address: 71 (Decimal); 47 (Hex)  
BIT  
NAME  
FUNCTION  
High byte of the Z-Axis gyroscope output.  
[7:0] GYRO_ZOUT[15:8]  
Register Name: GYRO_ZOUT_L  
Register Type: READ only  
Register Address: 72 (Decimal); 48 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the Z-Axis gyroscope output.  
GYRO_ZOUT = Gyro_Sensitivity * Z_angular_rate  
[7:0] GYRO_ZOUT[7:0]  
Nominal  
FS_SEL = 0  
Conditions  
Gyro_Sensitivity = 131 LSB/(º/s)  
12.24 REGISTER 104 SIGNAL PATH RESET  
Register Name: SIGNAL_PATH_RESET  
Register Type: READ/WRITE  
Register Address: 104 (Decimal); 68 (Hex)  
BIT  
NAME  
FUNCTION  
[7:1]  
Reserved.  
-
Reset temp digital signal path.  
[0]  
TEMP_RST  
Note: Sensor registers are not cleared. Use SIG_COND_RST to clear  
sensor registers.  
Document Number: DS-000127  
Revision: 1.1  
Page 50 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.24 REGISTER 106 USER CONTROL  
Register Name: USER_CTRL  
Register Type: READ/WRITE  
Register Address: 106 (Decimal); 6A (Hex)  
BIT  
[7]  
NAME FUNCTION  
-
Reserved.  
1 Enable FIFO operation mode.  
[6]  
FIFO_EN  
0 Disable FIFO access from serial interface. To disable FIFO writes by  
DMA, use FIFO_EN register.  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
-
Reserved.  
1 Reset I2C Slave module and put the serial interface in SPI mode only.  
This bit auto clears after one clock cycle of the internal 20 MHz clock.  
I2C_IF_DIS  
-
Reserved.  
1 Reset FIFO module. Reset is asynchronous. This bit auto clears after  
one clock cycle of the internal 20 MHz clock.  
FIFO_RST  
-
Reserved  
1 Reset all gyro digital signal path and temp digital signal path. This bit also  
clears all the sensor registers.  
SIG_COND_RST  
Document Number: DS-000127  
Revision: 1.1  
Page 51 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.25 REGISTER 107 POWER MANAGEMENT 1  
Register Name: PWR_MGMT_1  
Register Type: READ/WRITE  
Register Address: 107 (Decimal); 6B (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
1 Reset the internal registers and restores the default settings. The bit  
automatically clears to 0 once the reset is done.  
DEVICE_RESET  
[6]  
[5]  
SLEEP  
-
When set to 1, the chip is set to sleep mode.  
Reserved.  
When set, the gyro drive and pll circuitry are enabled, but the sense paths  
are disabled. This is a low power mode that allows quick enabling of the  
gyros.  
[4]  
[3]  
GYRO_STANDBY  
TEMP_DIS  
When set to 1, this bit disables the temperature sensor.  
Code Clock Source  
0
1
Internal 20 MHz oscillator  
Auto selects the best available clock source PLL if ready, else  
use the Internal oscillator.  
2
3
4
5
Auto selects the best available clock source PLL if ready, else  
use the Internal oscillator.  
Auto selects the best available clock source PLL if ready, else  
use the Internal oscillator.  
[2:0] CLKSEL[2:0]  
Auto selects the best available clock source PLL if ready, else  
use the Internal oscillator.  
Auto selects the best available clock source PLL if ready, else  
use the Internal oscillator.  
6
7
Internal 20 MHz oscillator.  
Stops the clock and keeps timing generator in reset.  
Note: The default value of CLKSEL[2:0] is 000. It is required that CLKSEL[2:0] be set to 001 to achieve full  
gyroscope performance.  
Document Number: DS-000127  
Revision: 1.1  
Page 52 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12 26REGISTER 108 POWER MANAGEMENT 2  
Register Name: PWR_MGMT_2  
Register Type: READ/WRITE  
Register Address: 108 (Decimal); 6C (Hex)  
BIT  
[7]  
[6]  
[5]  
[4]  
[3]  
NAME  
FUNCTION  
-
-
-
-
-
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
1 X gyro is disabled.  
0 X gyro is on.  
1 Y gyro is disabled.  
0 Y gyro is on.  
1 Z gyro is disabled.  
0 Z gyro is on.  
[2]  
[1]  
[0]  
STBY_XG  
STBY_YG  
STBY_ZG  
12.27 REGISTER 114 AND 115 FIFO COUNT REGISTERS  
Register Name: FIFO_COUNTH  
Register Type: READ Only  
Register Address: 114 (Decimal); 72 (Hex)  
BIT  
NAME  
FUNCTION  
[7:5]  
Reserved.  
-
High bits. Count indicates the number of written bytes in the FIFO.  
[4:0] FIFO_COUNT[12:8]  
Reading this byte latches the data for both FIFO_COUNTH, and  
FIFO_COUNTL.  
Register Name: FIFO_COUNTL  
Register Type: READ Only  
Register Address: 115 (Decimal); 73 (Hex)  
BIT  
NAME  
FUNCTION  
Low Bits. Count indicates the number of written bytes in the FIFO.  
[7:0] FIFO_COUNT[7:0]  
Note: Must read FIFO_COUNTH to latch new data for both  
FIFO_COUNTH and FIFO_COUNTL.  
Document Number: DS-000127  
Revision: 1.1  
Page 53 of 56  
Rev Date: 03/18/2021  
ICG-20330  
12.28 REGISTER 116 FIFO READ WRITE  
Register Name: FIFO_R_W  
Register Type: READ/WRITE  
Register Address: 116 (Decimal); 74 (Hex)  
BIT  
NAME  
FUNCTION  
Read/Write command provides Read or Write operation for  
the FIFO.  
[7:0] FIFO_DATA[7:0]  
Description:  
This register is used to read and write data from the FIFO buffer.  
Data is written to the FIFO in order of register number (from lowest to highest). If all the FIFO enable  
flags (see below) are enabled, the contents of registers 59 through 72 will be written in order at the  
Sample Rate.  
The contents of the sensor data registers (Registers 59 to 72) are written into the FIFO buffer when  
their corresponding FIFO enable flags are set to 1 in FIFO_EN (Register 35).  
If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is automatically set to 1. This bit  
is located in INT_STATUS (Register 58). When the FIFO buffer has overflowed, the oldest data will  
be lost and new data will be written to the FIFO unless register 26 CONFIG, bit[6] FIFO_MODE = 1.  
If the FIFO buffer is empty, reading register FIFO_DATA will return a unique value of 0xFF until new  
data is available. Normal data is precluded from ever indicating 0xFF, so 0xFF gives a trustworthy  
indication of FIFO empty.  
12.29 REGISTER 117 WHO AM I  
Register Name: WHO_AM_I  
Register Type: READ only  
Register Address: 117 (Decimal); 75 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0] WHOAMI  
Register to indicate to user which device is being accessed.  
This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID.  
The default value of the register is 0x92. This is different from the I2C address of the device as seen  
on the slave I2C controller by the applications processor. The I2C address of the ICG-20330 is 0x68 or  
0x69 depending upon the value driven on AD0 pin.  
Document Number: DS-000127  
Revision: 1.1  
Page 54 of 56  
Rev Date: 03/18/2021  
ICG-20330  
13REVISION HISTORY  
REVISION  
REVISION DESCRIPTION  
DATE  
06/15/2016  
1.0  
1.1  
Initial Release  
Added Note on page 16; Added Sections 4.17 and 4.18  
03/18/2021  
Document Number: DS-000127  
Revision: 1.1  
Page 55 of 56  
Rev Date: 03/18/2021  
ICG-20330  
This information furnished by InvenSense, Inc. (“InvenSense”) is believed to be accurate and reliable. However, no responsibility is assumed by  
InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to  
change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its  
design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and  
specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this  
document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement  
of patents, copyrights, mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or  
otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks  
that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development,  
storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well  
as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power  
plant equipment, disaster prevention and crime prevention equipment.  
©2021 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR,  
and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may  
be trademarks of the respective companies with which they are associated.  
©2021 InvenSense. All rights reserved.  
Document Number: DS-000127  
Revision: 1.1  
Page 56 of 56  
Rev Date: 03/18/2021  

相关型号:

ICG-20660

High Performance 6-Axis OIS/EIS Optimized MEMS Sensor
TDK

ICG-20660L

High Performance 6-Axis OIS/EIS Optimized MEMS Sensor
TDK

iCG05006A006V-001-R

DC-DC开关电源
TDK

iCG05006A006V-003-R

6A Non-isolated SMT Point Of Load
TDK

iCG05006A006V-006-R

DC-DC开关电源
TDK

iCG05006A006V-007-R

DC-DC开关电源
TDK

ICG12006A007V

ICG Series – Non-isolated SMT Power Module
TDK

iCG12006A007V-001-R

DC-DC开关电源
TDK

iCG12006A007V-003-R

6A Non-isolated SMT Point Of Load
TDK

iCG12006A007V-006-R

DC-DC开关电源
TDK

iCG12006A007V-007-R

DC-DC开关电源
TDK

ICG2130

DC-3000 MHz GENERAL PURPOSE AMPLIFIER
ICMIC