ICP-20100 [TDK]

气压传感器;
ICP-20100
型号: ICP-20100
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

气压传感器

传感器
文件: 总60页 (文件大小:1568K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICP-20100  
High Accuracy, Low Power, Barometric Pressure  
and Temperature Sensor IC  
GENERAL INFORMATION  
FEATURES  
The ICP-20100 pressure sensor provides a high-accuracy, low  
power, barometric pressure and temperature sensor solution,  
that integrates a capacitive pressure sensor for monitoring  
pressure changes in the range of 30 to 110 kPa.  
Digital-output pressure and temperature sensors,  
with programmable output: all-pressure, all-  
temperature or pressure & temperature  
Programmable noise performance down to  
0.5 Parms through programmable Oversampling  
Ratio (OSR)  
The ICP-20100 integrates a DSP module for on-chip  
calibration with an Analog-to-Digital converter (ADC), digital  
filtering, a FIFO and has I²C, I3CSM, and SPI interfaces  
available. The solution can be configured to achieve ultra-low  
noise or ultra-low power performance and is flexible to  
perform anywhere in-between. Additionally, the filters can be  
enabled to allow even lower noise performance or activate  
features such as filtering of pressure glitches (e.g.  
opening/closing a window).  
Digital filtering for pressure signals  
o
Finite Impulse Response (FIR) filter for  
improved noise performance  
o
Infinite Impulse Response (IIR) filter for e.g.  
filtering of pressure glitches  
Package dimensions 2x2x0.8 mm (10-pin LGA)  
96-byte FIFO buffer enables the application  
processor to read up to 16 pressure-temperature  
pairs in a burst  
The ICP-20100 is available in a closed package with a vent  
hole.  
User-programmable Interrupt  
Host interface: 12 MHz SPI/1 MHz I2C/12.5 MHz  
I3CSM  
DEVICE INFORMATION  
Temperature operating range: -40°C to 85°C  
Main Supply voltage: 1.8V ±10% or 3.3V ±10%  
I/O supply voltage externally applied (1.2V ±10%,  
PART  
NUMBER  
LID  
OPENING  
PACKAGE  
MSL**  
2x2x0.8mm  
LGA-10L  
*
*
ICP-20100*  
1-Hole  
1
1.8V ±10% or 3.3V ±10%) available only when main  
supply voltage equals 3.3V ±10%  
* Denotes RoHS and Green-Compliant Package  
** Moisture Sensitivity Level of the package  
RoHS and Green compliant  
BLOCK DIAGRAM  
TYPICAL OPERATING CIRCUIT  
GND  
GND  
VDDIO  
C2, 100nF  
APPLICATIONS  
Smartphones and Tablets  
Wearable Sensors  
Home and Building Automation  
Weather Stations  
GND  
INT  
VDDIO  
SCL  
AD0  
(VDDIO / GND)  
VDD  
C1, 100nF  
SDA  
GND  
GND  
InvenSense, Inc. reserves the right to change  
specifications and information herein without notice  
unless the product is in mass production and the  
datasheet has been designated by InvenSense in writing  
as subject to a specified Product / Process Change  
Notification Method regulation.  
InvenSense, a TDK Group Company  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
Document Number: DS-000416  
Revision: 1.3  
Release Date: 12/17/2021  
+1(408) 9887339  
invensense.tdk.com  
 
 
 
 
 
 
ICP-20100  
TABLE OF CONTENTS  
General Information ..................................................................................................................................................1  
Device Information ....................................................................................................................................................1  
Block Diagram............................................................................................................................................................1  
Applications ...............................................................................................................................................................1  
Features.....................................................................................................................................................................1  
Typical Operating Circuit ...........................................................................................................................................1  
1
2
Introduction...........................................................................................................................................................7  
1.1  
1.2  
Purpose and Scope ........................................................................................................................................7  
Product Overview ..........................................................................................................................................7  
Pressure And Temperature Sensor Specifications.................................................................................................8  
2.1  
Operation Ranges ..........................................................................................................................................8  
Operation Modes...........................................................................................................................................8  
Pressure Sensor Specifications ......................................................................................................................8  
Temperature Sensor Specifications ...............................................................................................................9  
2.2  
2.3  
2.4  
3
Electrical Specifications .......................................................................................................................................10  
3.1  
Electrical Characteristics..............................................................................................................................10  
Absolute Maximum Ratings.........................................................................................................................12  
Sensor System Timing..................................................................................................................................12  
I2C Timing Characterization .........................................................................................................................13  
I3CSM Timing Characterization .....................................................................................................................14  
SPI 4-Wire Mode Timing Characterization...................................................................................................15  
SPI 3-Wire Mode Timing Characterization...................................................................................................16  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
4
Interface Specifications .......................................................................................................................................17  
4.1  
I3CSM / I2C Interface .....................................................................................................................................17  
I2C Interface .........................................................................................................................................17  
I3CSM Interface .....................................................................................................................................17  
I2C Data Protocol..................................................................................................................................18  
I3CSM Data Protocol..............................................................................................................................18  
Supported I3CSM Common Command Codes (CCC) ..............................................................................19  
I3CSM Provisional Identifier...................................................................................................................19  
I3CSM Bus Characteristics Register .......................................................................................................20  
I3CSM Device Characteristics Register...................................................................................................20  
Fixed I2C slave address and address increment....................................................................................20  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.6  
4.1.7  
4.1.8  
4.1.9  
4.1.10 I3CSM Slave Address..............................................................................................................................20  
Document Number: DS-000416  
Revision: 1.3  
Page 2 of 60  
ICP-20100  
4.2  
SPI Interface.................................................................................................................................................20  
SPI Protocol..........................................................................................................................................21  
SPI Modes ............................................................................................................................................22  
SPI Frame Abort ...................................................................................................................................22  
Supported Commands..........................................................................................................................22  
Drive Strength Configuration.......................................................................................................................23  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.3  
5
6
Applications Information .....................................................................................................................................24  
5.1  
ICP-20100 Pin Out Diagram And Signal Description ....................................................................................24  
Typical Operating CircuitS............................................................................................................................25  
Bill of Materials for External Components...................................................................................................26  
ASIC identification........................................................................................................................................27  
5.2  
5.3  
5.4  
Pressure and Temperature Measurement ..........................................................................................................28  
6.1  
6.2  
6.2.1  
6.2.2  
6.3  
Pressure and Temperature Measurement Accuracy ...................................................................................28  
Pressure and Temperature Measurement Sequencing ...............................................................................28  
Duty Cycled Operation .........................................................................................................................28  
Triggered operation .............................................................................................................................29  
FIR Filter.......................................................................................................................................................30  
IIR Filter........................................................................................................................................................31  
Boot Sequence.............................................................................................................................................31  
Mode switching/selection ...........................................................................................................................34  
Pressure/Temperature read-out .................................................................................................................34  
Pressure conversion formula................................................................................................................34  
Temperature conversion formula ........................................................................................................35  
6.4  
6.5  
6.6  
6.7  
6.7.1  
6.7.2  
7
FIFO......................................................................................................................................................................36  
7.1  
FIFO Accessibility .........................................................................................................................................36  
FIFO Full/Empty ...........................................................................................................................................37  
FIFO Overflow/Underflow ...........................................................................................................................37  
FIFO Watermark Low/High ..........................................................................................................................37  
FIFO Flush ....................................................................................................................................................37  
Absolute Pressure VaLue Overrun/Underrun..............................................................................................37  
Delta Pressure VaLue Overrun.....................................................................................................................37  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
8
9
Interrupts.............................................................................................................................................................38  
Assembly..............................................................................................................................................................39  
9.1  
Implementation and Usage Recommendations ..........................................................................................39  
9.1.1  
Soldering ..............................................................................................................................................39  
Document Number: DS-000416  
Revision: 1.3  
Page 3 of 60  
ICP-20100  
9.1.2  
Chemical Exposure and Sensor Protection...........................................................................................39  
10  
11  
12  
13  
Package Dimensions ........................................................................................................................................40  
Part Number Part Markings.............................................................................................................................42  
Register Map....................................................................................................................................................43  
Register Map Description ................................................................................................................................44  
13.1 TRIM1_MSB .................................................................................................................................................44  
13.2 TRIM2_LSB...................................................................................................................................................44  
13.3 TRIM2_MSB .................................................................................................................................................44  
13.4 DEVICE_ID ....................................................................................................................................................44  
13.5 IO_DRIVE_STRENGTH ..................................................................................................................................45  
13.6 OTP_CONFIG1..............................................................................................................................................45  
13.7 OTP_MR_LSB ...............................................................................................................................................45  
13.8 OTP_MR_MSB..............................................................................................................................................45  
13.9 OTP_MRA_LSB .............................................................................................................................................46  
13.10  
13.11  
13.12  
13.13  
13.14  
13.15  
13.16  
13.17  
13.18  
13.19  
13.20  
13.21  
13.22  
13.23  
13.24  
13.25  
13.26  
13.27  
13.28  
13.29  
13.30  
OTP_MRA_MSB .......................................................................................................................................46  
OTP_MRB_LSB .........................................................................................................................................46  
OTP_MRB_MSB .......................................................................................................................................46  
OTP_ADDRESS..........................................................................................................................................46  
OTP_COMMAND......................................................................................................................................47  
OTP_RDATA .............................................................................................................................................47  
OTP_STATUS ............................................................................................................................................47  
OTP_DBG2 ...............................................................................................................................................47  
OTP_STATUS2 ..........................................................................................................................................47  
MASTER_LOCK .........................................................................................................................................48  
MODE_SELECT .........................................................................................................................................48  
INTERRUPT_STATUS ................................................................................................................................49  
INTERRUPT_MASK ...................................................................................................................................50  
FIFO_CONFIG ...........................................................................................................................................50  
FIFO_FILL..................................................................................................................................................51  
SPI_MODE................................................................................................................................................51  
PRESS_ABS_LSB .......................................................................................................................................52  
PRESS_ABS_MSB......................................................................................................................................52  
PRESS_DELTA_LSB ...................................................................................................................................52  
PRESS_DELTA_MSB..................................................................................................................................53  
DEVICE_STATUS .......................................................................................................................................53  
Document Number: DS-000416  
Revision: 1.3  
Page 4 of 60  
ICP-20100  
13.31  
13.32  
13.33  
13.34  
13.35  
13.36  
13.37  
13.38  
I3C_INFO..................................................................................................................................................53  
VERSION...................................................................................................................................................53  
PRESS_DATA_0 ........................................................................................................................................54  
PRESS_DATA_1 ........................................................................................................................................54  
PRESS_DATA_2 ........................................................................................................................................54  
TEMP_DATA_0.........................................................................................................................................54  
TEMP_DATA_1.........................................................................................................................................54  
TEMP_DATA_2.........................................................................................................................................55  
14  
15  
16  
17  
Tape & Reel Specification ................................................................................................................................56  
Ordering Guide ................................................................................................................................................57  
References .......................................................................................................................................................58  
Revision History ...............................................................................................................................................59  
Document Number: DS-000416  
Revision: 1.3  
Page 5 of 60  
ICP-20100  
LIST OF FIGURES  
Figure 1. I2C Bus Timing Diagram.................................................................................................................................13  
Figure 2. I3CSM Bus Timing Diagrams ...........................................................................................................................14  
Figure 3. SPI 4-Wire Mode Bus Timing Diagram..........................................................................................................15  
Figure 4. SPI 3-Wire Mode Bus Timing Diagram..........................................................................................................16  
Figure 5. I2C Data Protocol...........................................................................................................................................18  
Figure 6. I3CSM Data Protocol.......................................................................................................................................19  
Figure 7. 4-Wire SPI Transaction Overview .................................................................................................................21  
Figure 8. 3-Wire SPI Transaction Overview .................................................................................................................21  
Figure 9. Pin Out Diagram for ICP-20100, 2mm x 2mm x 0.8mm LGA ........................................................................24  
Figure 10. ICP-20100 Application Schematic (I3CSM / I2C Interface to Host) ...............................................................25  
Figure 11. ICP-20100 Application Schematic (SPI Interface to Host)...........................................................................26  
Figure 12. Duty Cycled Measurement .........................................................................................................................28  
Figure 13. Duty Cycled Measurement Without Wait ..................................................................................................29  
Figure 14. Pressure-Only Mode ...................................................................................................................................29  
Figure 15. FIR Filter......................................................................................................................................................30  
Figure 16. Pressure Output Code.................................................................................................................................34  
Figure 17. Temperature Output Code .........................................................................................................................35  
Figure 18. FIFO Read Out Modes.................................................................................................................................36  
Figure 19. ICP-20100 Package Diagrams......................................................................................................................40  
Figure 20. Part Number Part Markings for ICP-20100.................................................................................................42  
Figure 21. ICP-20100 Tape Dimensions  
....................................................................................................56  
Figure 22. ICP-20100 Tape and Reel Drawing..............................................................................................................56  
LIST OF TABLES  
Table 1. Operation Ranges.............................................................................................................................................8  
Table 2. Operation Modes .............................................................................................................................................8  
Table 3. Pressure Sensor Specifications.........................................................................................................................8  
Table 4. Temperature Sensor Specifications .................................................................................................................9  
Table 5. Electrical Supplies ..........................................................................................................................................10  
Table 6. Electrical Specifications..................................................................................................................................11  
Table 7. Absolute Maximum Ratings ...........................................................................................................................12  
Table 8. System Timing Specifications.........................................................................................................................12  
Table 9. I2C Parameters Specification..........................................................................................................................13  
Table 10. I3CSM Parameters Specification....................................................................................................................14  
Table 11. SPI 4-Wire Mode Parameters Specification .................................................................................................15  
Table 12. SPI 3-Wire Mode Parameters Specification .................................................................................................16  
Table 13. Supported I3CSM CCCs ..................................................................................................................................19  
Table 14. I3CSM Provisional Identifier ..........................................................................................................................19  
Table 15. I3CSM Bus Characteristics Register................................................................................................................20  
Table 16. SPI Data Rate Specifications.........................................................................................................................21  
Table 17. SPI Supported Commands............................................................................................................................22  
Table 18. ICP-20100 Signal Descriptions......................................................................................................................24  
Table 19. ICP-20100 Package Dimensions ...................................................................................................................41  
Table 20. Part Number Part Markings .........................................................................................................................42  
Table 21. Register Map................................................................................................................................................43  
Document Number: DS-000416  
Revision: 1.3  
Page 6 of 60  
ICP-20100  
1
INTRODUCTION  
1.1 PURPOSE AND SCOPE  
This document is a preliminary product specification, providing a description, specifications, and design related  
information for the ICP-20100 Pressure Sensor.  
Specifications are subject to change without notice. Final specifications will be updated based upon  
characterization of production silicon.  
1.2 PRODUCT OVERVIEW  
The ICP-20100 is a high accuracy, low power, barometric pressure and temperature sensor solution that integrates  
a capacitive pressure sensor for monitoring pressure changes in the range of 30 to 110kPa.  
The ICP-20100 pressure and temperature sensor device combines TDK InvenSense 2nd generation (20k-series)  
capacitive pressure sensors.  
Other industry-leading features include up to 20-bits output data, programmable digital filters, an embedded  
temperature sensor, calibration, FIFO, and programmable interrupts. The device features I2C, I3CSM, and SPI serial  
interfaces, a VDD operating range of 1.8V ±10% or 3.3V ±10%, and an externally applied VDDIO operating range of  
1.2V ±10%, 1.8V ±10% or 3.3V* ±10% (*available only when VDD voltage equals 3.3V ±10%).  
The host interface can be configured to support SPI slave or I2C/ I3CSM slave modes. The SPI interface supports  
speeds up to 12 MHz, the I2C interface supports speeds up to 1 MHz, and the I3CSM interface supports speeds up to  
12.5 MHz.  
The MEMS sensor consists of a capacitive pressure sensor whose capacitance changes according to the pressure  
applied. An integrated temperature sensor on the same MEMS sensor allows for accurate temperature  
measurements.  
Document Number: DS-000416  
Revision: 1.3  
Page 7 of 60  
ICP-20100  
2
PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS  
2.1 OPERATION RANGES  
PARAMETER  
Functional Pressure Range  
Operating Temperature Range  
VALUE  
30 to 110  
-40 to 85  
UNITS  
kPa  
°C  
Table 1. Operation Ranges  
2.2 OPERATION MODES  
The sensor can be operated in the following measurement modes to satisfy different requirements for power  
consumption vs. noise, accuracy, and measurement frequency.  
Operation mode can be selected using register field MEAS_CONFIG in register MODE_SELECT. Modes 0 to 3 are  
pre-defined while Mode 4 is user configurable. Please refer to AN-000238: ICP-20100 and ICP-20132 User  
Configurable Operation Mode and IIR Filter” for details on how to configure MODE4.  
CURRENT  
PRESSURE  
CONSUMPTION  
BW ODR  
(HZ) (HZ)  
IIR FILTER  
ENABLED  
FIR FILTER  
ENABLED  
NOISE (PARMS)  
PARAMETER  
(µA)  
TYP  
211  
222  
49  
TYP  
0.5  
1
2.5  
0.5  
0.3  
MODE0  
MODE1  
MODE2  
MODE3  
MODE4*  
6.25  
30  
10  
0.5  
12.5  
25  
120  
40  
2
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
23  
250  
25  
Table 2. Operation Modes  
Note: MODE4 is user configurable as explained in the application note “AN-000238: ICP-20100 and ICP-20132 User Configurable Operation  
Mode and IIR Filter”. MODE4 functionality shown is default device calibration, user can modify MODE4 configuration as explained in AN-  
000238.  
2.3 PRESSURE SENSOR SPECIFICATIONS  
Pressure sensor specifications are given in Table 3. Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V  
apply, unless otherwise stated.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Functional pressure range  
Absolute Accuracy  
Relative Accuracy  
Temperature Coefficient of Offset  
(TCO)  
30  
70  
±20  
±1  
110  
kPa  
Pa  
Pa  
Valid from -20°C to 65°C  
Any step ≤ 1 kPa at 25°C  
P = 100 kPa  
1
1
±0.4  
Pa/°C  
1
25°C … 45°C  
Long-Term Drift (during 1 year)  
Solder Drift  
Resolution  
±10  
±0.4  
20  
Pa  
hPa  
bits  
2
3, 4  
Board-level specification  
Table 3. Pressure Sensor Specifications  
Notes:  
1.  
Parameter specifications shown are component-level. They may be different at the board-level and may depend on PCB characteristics including but  
not limited to PCB material, number of layers, PCB thickness. They may also depend on usage conditions.  
Determined based on HTOL data.  
Derived from validation or characterization of parts, not tested in production.  
2.  
3.  
4.  
Board-level spec values depend on specific board design. For design information of boards used for device characterization, that forms the basis of the  
spec values reported here, please contact your local TDK InvenSense FAE.  
Document Number: DS-000416  
Revision: 1.3  
Page 8 of 60  
 
 
ICP-20100  
2.4 TEMPERATURE SENSOR SPECIFICATIONS  
Specifications of the temperature sensor are shown in Table 4.  
PARAMETER  
Temperature accuracy  
Output Data rate  
CONDITIONS  
MIN  
TYP  
±0.5  
ODR  
MAX  
UNITS  
°C  
Hz  
NOTES  
1
Table 4. Temperature Sensor Specifications  
Notes:  
1. Temperature ODR = Pressure ODR for selected mode  
Document Number: DS-000416  
Revision: 1.3  
Page 9 of 60  
 
ICP-20100  
3
ELECTRICAL SPECIFICATIONS  
3.1 ELECTRICAL CHARACTERISTICS  
Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V apply to values in Table 5 and Table 6, unless otherwise  
stated.  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.62  
2.97  
1.08  
1.62  
2.97  
-
TYP  
1.8  
MAX  
1.98  
3.63  
1.32  
1.98  
3.63  
-
UNITS  
COMMENTS  
V
V
Main Supply Voltage  
VDD  
3.3  
1.2  
V
I/O Supply Voltage  
Supply current  
VDDI0  
1.8  
V
Externally supplied  
3.3  
V
IDD  
standby  
2.65  
µA  
Table 5. Electrical Supplies  
Document Number: DS-000416  
Revision: 1.3  
Page 10 of 60  
 
ICP-20100  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SUPPLIES  
Monotonic ramp. Ramp rate is 10% to 90% of  
the final value  
0.01  
10  
50  
ms  
Supply Ramp Time  
2
2
mV  
peak-peak  
Power Supply Noise  
TEMPERATURE SENSOR  
-20  
65  
°C  
2
1
Operating Range  
ADC Resolution  
ODR  
Ambient  
15  
bits  
Hz  
1
800  
I2C ADDRESS  
AD0 = 0  
AD0 = 1  
0x63  
0x64  
I2C ADDRESS  
DIGITAL INPUTS  
0.7*VDDIO  
V
V
VIH, High Level Input Voltage  
VIL, Low Level Input Voltage  
2
2
0.3*VDDIO  
DIGITAL OUTPUTS  
0.75*VDDIO  
V
VOH, High Level Output  
Voltage  
VOL, Low-Level Output Voltage  
0.25*VDDIO  
V
0.5  
2
3
2
4
6
8
4
6
9
mA  
Drive strength for VDDIO =  
1.2V  
4
12  
1
2
4
8
2
4
8
4
8
12  
16  
mA  
Drive strength for VDDIO =  
1.8V/3.3V  
12  
INTERNAL CLOCK SOURCE  
Low clock frequency 8kHz  
Main clock frequency 1.9MHz  
-2  
+2  
%
%
2
2
Clock Frequency Initial  
Tolerance  
-3.125  
+3.125  
Table 6. Electrical Specifications  
Notes:  
1. Guaranteed by design.  
2. Derived from validation or characterization of parts, not guaranteed in production  
Document Number: DS-000416  
Revision: 1.3  
Page 11 of 60  
ICP-20100  
3.2 ABSOLUTE MAXIMUM RATINGS  
Stress levels beyond those listed in Table 7 may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these conditions cannot be guaranteed. Exposure to the absolute  
maximum rating conditions for extended periods may affect the reliability of the device.  
PARAMETER  
Supply voltage, VDD  
RATING  
-0.3V to +4.0V  
Supply Voltage, SCL & SDA  
-0.3V to VDDIO+0.3V  
-40°C to +85°C  
Operating temperature range  
Storage temperature range  
ESD HBM  
-40°C to +85°C  
1.5 kV  
ESD CDM  
500V  
Radiated EMI immunity  
Conducted EMI immunity  
4kV/m  
2Vrms  
Table 7. Absolute Maximum Ratings  
3.3 SENSOR SYSTEM TIMING  
Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V apply to TYP values listed in Table 8, unless otherwise  
stated. MAX values apply over the specified operating range of VDD and over the operating temperature range.  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
COMMENTS  
Time between VDD reaching VPU and sensor  
entering idle state; VPU is the power-up  
voltage, the minimum VDD at which start-up  
time is guaranteed, it has a value of 1.56V.  
Power-up time  
tPU  
-
2
-
ms  
Table 8. System Timing Specifications  
Document Number: DS-000416  
Revision: 1.3  
Page 12 of 60  
 
 
ICP-20100  
3.4 I2C TIMING CHARACTERIZATION  
Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V apply to values in Table 9, unless otherwise stated.  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
I2C TIMING  
I2C FAST-MODE PLUS  
fSCL, SCL Clock Frequency  
1
MHz  
ns  
1
1
tHD.STA, (Repeated) START Condition Hold Time  
260  
500  
tLOW, SCL Low Period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
1
1
1
1
1
1
260  
tHIGH, SCL High Period  
260  
tSU.STA, Repeated START Condition Setup Time  
tHD.DAT, SDA Data Hold Time  
tSU.DAT, SDA Data Setup Time  
tr, SDA and SCL Rise Time 2  
tf, SDA and SCL Fall Time 2  
5
55  
20*(VDD/5.5V)  
20*(VDD/5.5V)  
260  
120  
120  
Cb bus cap. From 10 to 400 pF  
Cb bus cap. From 10 to 400 pF  
tSU.STO, STOP Condition Setup Time  
500  
tBUF, Bus Free Time Between STOP and START  
Condition  
ns  
1
Cb, Capacitive Load for each Bus Line  
tVD.DAT, Data Valid Time  
550  
450  
450  
pF  
ns  
ns  
1
1
1
tVD.ACK, Data Valid Acknowledge Time  
Table 9. I2C Parameters Specification  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.  
Figure 1. I2C Bus Timing Diagram  
Document Number: DS-000416  
Revision: 1.3  
Page 13 of 60  
 
ICP-20100  
3.5 I3CSM TIMING CHARACTERIZATION  
Default conditions of 25 °C, VDD = 1.8V and VDDIO = 1.8V apply to values in Table 10, unless otherwise stated.  
PARAMETERS  
CONDITIONS  
I3CSM SDR mode  
MIN  
TYP  
MAX  
UNITS  
NOTES  
I3CSM TIMING  
fSCL, SCL Clock Frequency  
tLOW, SCL Low Period  
12.5  
12.9  
MHz  
ns  
From 30% to 30%  
From 30% to 70%  
24  
32  
tDIG_L, SCL Low Period (to high transition)  
ns  
tHIGH_MIXED, SCL High Period for Mixed Bus  
tDIG_H_MIXED, SCL High Period for Mixed Bus  
tHIGH, SCL High Period  
From 70% to 70%  
From 70% to 30%  
From 70% to 70%  
24  
32  
24  
ns  
ns  
ns  
45  
tDIG_H, SCL High Period  
From 70% to 30%  
32  
ns  
tSCO, Clock in to Data Out for Slave  
tCR, SCL Rise Time  
12  
12  
12  
ns  
ns  
ns  
ns  
Capped at 60  
Capped at 60  
Slave  
tCF, SCL Fall Time  
tHD_PP, SDA Signal Data Hold in Push-Pull mode  
0
3
tSU_PP, SDA Signal Data Setup in Push-Pull mode  
Cb, Capavitive Load per Bus Line  
ns  
pF  
SDA/SCL  
50  
Table 10. I3CSM Parameters Specification  
Figure 2. I3CSM Bus Timing Diagrams  
Document Number: DS-000416  
Revision: 1.3  
Page 14 of 60  
 
ICP-20100  
3.6 SPI 4-WIRE MODE TIMING CHARACTERIZATION  
Default conditions of 25°C and 1.8V supply voltage apply to values in Table 11, unless otherwise stated.  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SPI TIMING  
fSPC, SCL Clock Frequency  
tLOW, SCL Low Period  
tHIGH, SCL High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
12  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
1
1
1
1
1
1
1
1
2
2
40  
40  
20  
20  
5
tSU.SDI, SDI Setup Time  
tHD.SDI, SDI Hold Time  
tVD.SDO, SDO Valid Time  
tHD.SDO, SDO Hold Time  
tDIS.SDO, SDO Output Disable Time  
tFall, SCLK Fall Time  
20  
Cload = 50 pF  
Cload = 50 pF  
32  
5
25  
5
tRise, SCLK Rise Time  
5
Table 11. SPI 4-Wire Mode Parameters Specification  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
Based on other parameter values  
2.  
Figure 3. SPI 4-Wire Mode Bus Timing Diagram  
Document Number: DS-000416  
Revision: 1.3  
Page 15 of 60  
 
ICP-20100  
3.7 SPI 3-WIRE MODE TIMING CHARACTERIZATION  
Default conditions of 25°C and 1.8V supply voltage apply to values in Table 12, unless otherwise stated.  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SPI TIMING  
fSPC, SCL Clock Frequency  
tLOW, SCL Low Period  
tHIGH, SCL High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
12  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
40  
40  
1
20  
20  
5
1
1
tSU.SDI, SDI Setup Time  
tHD.SDI, SDI Hold Time  
tVD.SDO, SDO Valid Time  
tHD.SDO, SDO Hold Time  
tDIS.SDO, SDO Output Disable Time  
tFall, SCLK Fall Time  
1, 3  
1, 3  
1, 3  
1, 3  
20  
Cload = 50 pF  
Cload = 50 pF  
32  
5
25  
5
1, 3  
2
5
tRise, SCLK Rise Time  
2
Table 12. SPI 3-Wire Mode Parameters Specification  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
2. Based on other parameter values  
3. Separate SDI and SDO times are provided to account for input and output transactions on the SDIO interface for 3-wire SPI mode  
Figure 4. SPI 3-Wire Mode Bus Timing Diagram  
Document Number: DS-000416  
Revision: 1.3  
Page 16 of 60  
 
ICP-20100  
4
INTERFACE SPECIFICATIONS  
The ICP-20100 supports I3CSM, I2C, SPI host-interface options. The ICP-20100 always operates as a slave when  
connected to the host. Selection between SPI and I3CSM/I2C is done with the CSB pin. If the pin is pulled low, the  
SPI interface is active and I3CSM/I2C are disabled. If CSB is high, I3CSM/I2C is selected.  
4.1 I3CSM / I2C INTERFACE  
The I3CSM/I2C interface can operate in I2C legacy mode or I3CSM SDR mode (SCL clock frequency up to 12.5 MHz).  
After reset, the device requires a minimum of 10 clock cycles to initialize the I3CSM/I2C interface. Before doing this,  
no communication is possible through I3CSM/I2C. This initialization can be done through a dummy write transaction  
to address 0xEE.  
4.1.1 I2C Interface  
The ICP-20100 I2C slave interface can operate in following modes:  
Standard mode (SCL clock frequency up to 100 kHz)  
Fast mode (SCL clock frequency up to 400 kHz)  
Fast mode plus (SCL clock frequency up to 1 MHz)  
4.1.2 I3CSM Interface  
I3CSM is a new 2-wire digital interface comprised of the signals serial data (SDA) and serial clock (SCLK). I3CSM is  
intended to improve upon the I2C interface, while preserving backward compatibility.  
I3CSM carries the advantages of I²C in simplicity, low pin count, easy board design, and multi-drop (vs. point to  
point), but provides the higher data rates, simpler pads, and lower power of SPI. I3CSM adds higher throughput for  
a given frequency, dynamic addressing.  
The I3CSM interface complies with “MIPI I3C Specification -- public edition”, version 1.0, 23 December 2016.  
By default, the I2C protocol is used. Only when the device detects that it is connected to an I3CSM bus, will it  
permanently switch to the I3CSM protocol and the glitch filter will be disabled.  
The I3CSM interface supports:  
SDR data rate up to 12.5 MHz  
Dynamic Addressing  
Error detection (Parity)  
Common Command Codes described in Table 13.  
Document Number: DS-000416  
Revision: 1.3  
Page 17 of 60  
ICP-20100  
4.1.3 I2C Data Protocol  
A transfer is always started by addressing the device with an I2C write header followed by the targeted 8-bit  
register address.  
For write accesses, the master continues sending the 8-bit data word.  
For read accesses, the master must change the transfer direction from write to read by sending an I2C read header  
with the correct address. The device then transmits the data word (if available). An address increment feature  
enables reading multiple data bytes in a row.  
All commands and memory locations are mapped to an 8-bit register space which can be accessed via the I2C  
interface. Data is always transferred as 8-bit words. Figure 5 illustrates the different transfer types.  
Figure 5. I2C Data Protocol  
The I2C interface has access to all registers needed for functional operation.  
Every byte transmitted from the I2C master to the slave device must be acknowledged.  
In read direction, the master indicates with the acknowledge if an address increment read needs to be initiated.  
An ACK from the master indicates a request for an address increment read. A NACK from the master indicates the  
end of the read transfer and needs to be followed by a STOP condition.  
Every last I2C bus transaction to ICP-20100 should end with read to address 0x00. At least once in every 255 I2C  
read or burst read transactions (Burst read accesses treated as one read transaction independent of burst size) on  
the bus to other I2C devices, the host should perform a read to ICP-20100 address 0x00.  
One possible implementation of the requirement above would be to add a dummy read from ICP-20100 address  
0x00 after any I2C transactions.  
Another possible implementation is to perform a dummy read from ICP-20100 address 0x00 after each last I2C bus  
transaction to ICP-20100 and add a dummy read from ICP-20100 address 0x00 at a constant rate of 110Hz.  
4.1.4 I3CSM Data Protocol  
The device is switched to I3CSM mode by sending the reserved byte 7’h7E.  
While in I3CSM mode, the device is addressed with an I3CSM write header containing the dynamic device address,  
followed by the targeted 8-bit register address.  
For write accesses, the master continues sending the 8-bit data word.  
For read accesses, the master must change the transfer direction from write to read by sending an I3CSM read  
header containing the dynamic device address. The device then transmits the data word. An address increment  
feature allows to read out multiple data bytes in a row.  
All commands and memory locations are mapped to an 8-bit register space which can be accessed via the I3CSM  
interface. Data is always transferred as 8-bit words. Figure 6 illustrates the different transfer types.  
Document Number: DS-000416  
Revision: 1.3  
Page 18 of 60  
 
ICP-20100  
Figure 6. I3CSM Data Protocol  
The I3CSM interface has access to all registers needed for functional operation.  
Every last I3C bus transaction to ICP-20100 should end with read to address 0x00. At least once in every 255 I3C  
read or burst read transactions (Burst read accesses treated as one read transaction independent of burst size) on  
the bus to other I3C devices, the host should perform a read to ICP-20100 address 0x00.  
One possible implementation of the requirement above would be to add a dummy read from ICP-20100 address  
0x00 after any I3C transactions.  
Another possible implementation is to perform a dummy read from ICP-20100 address 0x00 after each last I3C bus  
transaction to ICP-20100 and add a dummy read from ICP-20100 address 0x00 at a constant rate of 110Hz.  
4.1.5 Supported I3CSM Common Command Codes (CCC)  
I3CSM features CCCs that allow the master to manage the bus and its connected slaves, either directly or through a  
broadcast.  
The I3CSM master should not use any unsupported CCCs.  
CODE  
CCC TYPE  
MNEMONIC  
DESCRIPTION  
0x06  
0x07  
0x86  
0x87  
0x88  
0x8D  
0x8E  
0x8F  
0x90  
broadcast  
broadcast  
direct  
direct  
direct  
direct  
direct  
direct  
direct  
RSTDAA  
ENTDAA  
RSTDAA  
SETDASA  
SETNEWDA  
GETPID  
GETBCR  
GETDCR  
GETSTATUS  
Reset Dynamic Address Assignment  
Enter Dynamic Address Assignment  
Reset Dynamic Address Assignment (p2p)  
Set Dynamic Address from Static Address  
Set New Dynamic Address  
Get Provisional ID  
Get Bus Characteristics Register  
Get Device Characteristics Register  
Get Device Status  
Table 13. Supported I3CSM CCCs  
4.1.6 I3CSM Provisional Identifier  
The Provision Identifier (PID) is hardwired as:  
FIXED  
BIT  
NAME  
NOTE  
VALUE  
47:33  
32  
31:16  
15:12  
11:0  
MIPI Manufacturer ID  
PID Type Selector  
Part ID  
15’h0235  
TDK Manufacturer ID  
0 = PID fixed value  
0
0
0
0
Instance ID  
Vendor defined  
Table 14. I3CSM Provisional Identifier  
Document Number: DS-000416  
Revision: 1.3  
Page 19 of 60  
ICP-20100  
4.1.7 I3CSM Bus Characteristics Register  
The Bus Characteristics Register (BCR) is hardwired as:  
FIXED  
BIT  
NAME  
NOTE  
VALUE  
7
6
5
4
3
2
1
0
Device Role [1]  
Device Role [0]  
Data Rate support  
Bridge Identifier  
Offline Capable  
IBI Payload  
IBI Request Capable  
Max Data Speed Limit  
0
0
0
0
0
0
0
0
fixed (slave role)  
fixed (slave role)  
fixed (SDR only)  
fixed (no bridge)  
fixed (not offline capable)  
fixed (IBI not supported)  
fixed (IBI not supported)  
fixed (no speed limit, GETMXDS not supported)  
Table 15. I3CSM Bus Characteristics Register  
4.1.8 I3CSM Device Characteristics Register  
The Device Characteristics Register (DCR) byte [7:0] is hardwired to the fixed value 0x62, which corresponds to the  
“Environment Pressure Sensor” as defined by MIPI. (see  
https://www.mipi.org/MIPI_I3C_device_characteristics_register)  
4.1.9 Fixed I2C slave address and address increment  
The value assigned on AD0 allows to adapt the I2C address as follows:  
AD0 = 0 : I2C address = 0x63  
AD0 = 1 : I2C address = 0x64  
4.1.10 I3CSM Slave Address  
I3CSM supports dynamic addressing feature which allows master and slaves to do dynamic address arbitration on  
the I3CSM bus.  
The concatenation of {PID[15:0],BCR[7:0],DCR[7:0]} is used to determine the priority for dynamic addressing by the  
Master.  
Since there is already a static address present for I2C, this can be used via the SETDASA command if known by the  
Master up front. When applicable, the address increment is applied as well.  
4.2 SPI INTERFACE  
The ICP-20100 SPI slave interface can operate in the following modes:  
3-wire mode using pins CSB, SDIO and SCL  
4-wire mode using pins CSB, SDI, SDO and SCL  
The SPI interface has access to all registers needed for functional operation.  
Document Number: DS-000416  
Revision: 1.3  
Page 20 of 60  
ICP-20100  
4.2.1 SPI Protocol  
The SPI frame format is as follows:  
1. SPI master pulls CSB low  
2. SPI master sends 1 command byte  
3. SPI master sends 1 address byte  
4. For write frames, SPI master sends a master data byte  
5. For read frames, IFPS replies with a number of slave data bytes  
6. SPI master releases CSB  
This is pictured in the Figure 7 and Figure 8 respectively for 4-wire SPI and 3-wire SPI.  
Figure 7. 4-Wire SPI Transaction Overview  
Figure 8. 3-Wire SPI Transaction Overview  
A transmitter conceptually produces data bits at the falling edge of the SPI clock SCL, and a receiver samples the  
data bits at the rising edge of the SPI clock.  
Bytes are transmitted in the order MSB to LSB.  
The slave keeps SDO in high-Z unless a reply is expected from the command (read request).  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
COMMENTS  
spi_speed  
Data rate of the SPI protocol  
DC  
12  
Mbps  
Table 16. SPI Data Rate Specifications  
Document Number: DS-000416  
Revision: 1.3  
Page 21 of 60  
 
 
ICP-20100  
4.2.2 SPI Modes  
The ICP-20100 supports SPI MODE0 and MODE3.  
When the SPI interface is idle, SCL is low. Data is propagated on the clock's falling edge and captured on the clock's  
rising edge.  
4.2.3 SPI Frame Abort  
The SPI master can abort an SPI frame by de-asserting CSB.  
4.2.4 Supported Commands  
Table 17 shows the supported commands via the SPI interface.  
COMMAND CODE  
COMMAND  
DESCRIPTION  
0x3C  
0x33  
CMD_READ_REG  
CMD_WRITE_REG  
Read from register  
Write to register  
Table 17. SPI Supported Commands  
Document Number: DS-000416  
Revision: 1.3  
Page 22 of 60  
 
ICP-20100  
4.3 DRIVE STRENGTH CONFIGURATION  
The device starts up with drive strength 2 mA in 1.8V IO supply mode. If the application requires high speed  
communication (>1 MHz) or uses VDDIO=1.2V, the drive strength settings need to be adapted. This is done by  
reconfiguring register IO_DRIVE_STRENGTH (section 13.5 in this datasheet).  
This section provides MATLAB sample code on how to do this. The following terminology is used in this code for  
register map references:  
regMap.Register_Name.Register_Field_Name.Write(Value)  
where  
-
-
-
-
“Register_Name” is the register name;  
“Register_Field_Name” is the name of the register field in the register;  
“Write” is a write operation for the specified register field;  
“Value” is the value being written to the specified register field  
Please refer to sections 12 and 13 for information about the registers/register fields shown in the sample code.  
function PowerMode(self)  
%% PowerMode: function to move into power mode  
global regMap  
%% Move to power mode if not already inside  
if (regMap.MODE_SELECT.POWER_MODE.read==0)  
fprintf('Moving into power mode...\n')  
regMap.MODE_SELECT.POWER_MODE.write(1);  
pause(0.001);  
end  
end  
function Configure_drive_strength(self)  
%% Configure_drive_strength: sample code on how to configure the drive strength  
%
after a reset of the device  
global regMap  
self.PowerMode;  
%% Configure the drive strength mirror registers  
%
This example configures a drive strength of 12mA for 1.8V IO supply  
regMap.IO_DRIVE_STRENGTH.IO_DS.write('0x3');  
end  
Document Number: DS-000416  
Revision: 1.3  
Page 23 of 60  
ICP-20100  
5
APPLICATIONS INFORMATION  
5.1 ICP-20100 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION  
PIN NUMBER  
PIN NAME  
CSB  
DESCRIPTION  
SPI Chip Select  
I3CSM / I2C / SPI Serial Clock  
Power Supply Ground  
1
2
3
SCL  
VSS  
SDA: I3CSM / I2C serial data; SDIO: SPI serial data I/O (3-wire mode);  
SDI: SPI serial data input (4-wire mode)  
Power Supply Voltage  
4
5
6
SDA / SDIO / SDI  
VDD  
SDO: SPI serial data output (4-wire mode);  
AD0: I3CSM / I2C slave address LSB  
Interrupt Output  
SDO / AD0  
7
8
9
INT  
RESV  
RESV  
VDDIO  
Connect to Ground  
Connect to Ground  
IO Power Supply  
10  
Table 18. ICP-20100 Signal Descriptions  
8
9
10  
RESV  
RESV  
VDDIO  
7
1
INT  
CSB  
BOTTOM VIEW  
2
6
SDO / AD0  
SCL  
4
5
3
SDA / SDIO  
/ SDI  
VDD  
VSS  
Figure 9. Pin Out Diagram for ICP-20100, 2mm x 2mm x 0.8mm LGA  
Document Number: DS-000416  
Revision: 1.3  
Page 24 of 60  
ICP-20100  
5.2 TYPICAL OPERATING CIRCUITS  
GND  
GND  
VDDIO  
C2, 100nF  
GND  
INT  
VDDIO  
SCL  
AD0  
(VDDIO / GND)  
VDD  
C1, 100nF  
SDA  
GND  
GND  
Figure 10. ICP-20100 Application Schematic (I3CSM / I2C Interface to Host)  
Note: I2C lines are open drain and pull-up resistors (e.g. 5kΩ) are required.  
Document Number: DS-000416  
Revision: 1.3  
Page 25 of 60  
ICP-20100  
GND  
GND  
VDDIO  
C2, 100nF  
GND  
INT  
CSB  
SCL  
SDO  
VDD  
C1, 100nF  
SDIO  
/ SDI  
GND  
GND  
Figure 11. ICP-20100 Application Schematic (SPI Interface to Host)  
5.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS  
COMPONENT  
LABEL  
C1  
SPECIFICATION  
X7R, 100nF ±10%  
X7R, 100nF ±10%  
QUANTITY  
VDD Bypass Capacitor  
VDDIO Bypass Capacitor  
1
1
C2  
Document Number: DS-000416  
Revision: 1.3  
Page 26 of 60  
ICP-20100  
5.4 ASIC IDENTIFICATION  
For identifying this device, please use following procedure:  
1) Power-on the ASIC  
2) Initialize the I2C interface by toggling the clock line a few times. The easiest way to do that is by  
inserting a dummy I2C write transaction. You can, for example, execute the first transaction (write to  
lock register) twice.  
3) Check that the value from register regMap.device_id equals 0x63  
4) Check the value from register regMap.version:  
0x00 indicates a device version A  
0xB2 indicates a device version B  
Document Number: DS-000416  
Revision: 1.3  
Page 27 of 60  
ICP-20100  
6
PRESSURE AND TEMPERATURE MEASUREMENT  
The ICP-20100 uses a 2nd order ADC with time-multiplexed pressure and temperature measurements.  
Integration time for measurement, or over-sampling ratio (OSR) can be configured independently for pressure and  
temperature.  
6.1 PRESSURE AND TEMPERATURE MEASUREMENT ACCURACY  
Increasing the pressure OSR improves the noise on the pressure measurement but also results in more current  
consumption due to a delayed return to STANDBY mode.  
Increasing the temperature OSR improves the noise on the temperature measurement and on the pressure  
measurement due to the non-linear pressure compensation as a function of the temperature but also results in  
more current consumption due to a delayed return to STANDBY.  
The pressure and temperature OSR values are limited by the Output Data Rate (ODR) selection. For details of the  
relationship between these parameters, refer to section 6.2.  
For given OSR and ODR settings, the noise can further be optimized by using an IIR filter. Refer to section 0 for  
details of the IIR filter.  
6.2 PRESSURE AND TEMPERATURE MEASUREMENT SEQUENCING  
Pressure and temperature measurements are time-multiplexed, with pressure measurement performed first and  
followed by temperature measurement.  
A measurement can be started either automatically (duty cycled operation) or manually (triggered operation).  
6.2.1 Duty Cycled Operation  
In duty cycled operation Pressure/Temperature measurements are automatically started.  
The time between 2 measurements is defined by the ODR (Output Data Rate) setting and is timed based on the  
low power clock.  
In Figure 12 and Figure 13, TOSR_P is the pressure sensor OSR and TOSR_T is the temperature sensor OSR.  
Figure 12. Duty Cycled Measurement  
If the configured ODR period is smaller than the conversion time for pressure and temperature, the actual ODR is  
adapted to match the conversion time.  
Document Number: DS-000416  
Revision: 1.3  
Page 28 of 60  
 
 
ICP-20100  
Figure 13. Duty Cycled Measurement Without Wait  
By disabling the pressure or temperature measurement through setting its respective OSR configuration register  
(refer to the application note “AN-000238: ICP-20100 and ICP-20132 User Configurable Operation Mode and IIR  
Filter”) to value 0, a temperature-only or pressure-only measurement can be configured.  
If a pressure-only setting is combined with an ODR period setting that is smaller than the conversion time, a  
maximal conversion rate can be established in which no settling is needed for each individual sample and a higher  
ODR can be reached. The same principle applies for temperature-only setting.  
Figure 14. Pressure-Only Mode  
The maximum ODR can be calculated based on the pressure and temperature OSR by the following formula:  
ODRMAX(Hz)= 106/(168+2.1*1.5*(OSRPRESS+OSRTEMP))  
with OSRPRESS, OSRTEMP the pressure and temperature Over Sampling Ratio.  
where 푂푆푅푃푅퐸푆푆 = (푂푆푅_푃푅퐸푆푆푟푒푔푖푠푡푒푟 + 1) ∗ 25 and 푂푆푅푇퐸푀푃 = (푂푆푅_푇퐸푀푃푟푒푔푖푠푡푒푟 + 1) ∗ 25  
6.2.2 Triggered operation  
Triggered operation (also called forced measurement mode) performs a single Pressure, Temperature, or  
Pressure/Temperature pair measurement. After the measurement, the device returns to standby mode.  
Triggered operation is only supported for MODE4.  
Document Number: DS-000416  
Revision: 1.3  
Page 29 of 60  
ICP-20100  
6.3 FIR FILTER  
The ICP-20100 includes a FIR filter in the signal path.  
The FIR filter is a low pass filter, filtering off the remaining noise above ODR/4.  
Figure 15. FIR Filter  
In case the FIR filter is enabled first 14 samples should be ignored after mode change. This can be done by  
configuring ICP-20100 in required mode and poll for FIFO count to be 14 and flushing FIFO or by using FIFO  
watermark interrupt. The following sequence will explain ignoring first 14 samples using FIFO watermark interrupt:  
1) Power-on the ASIC  
2) Only for I2C: initialize the I2C interface by toggling the clock line a few times. The easiest way to do that  
is by inserting a dummy I2C write transaction.  
3) Configure the FIFO watermark high to 14 samples  
regMap.FIFO_CONFIG = 0xE0  
4) Unmask the watermark high interrupt  
regMap.INTERRUPT_MASK = 0xFB  
5) Start a measurement  
regMap.MODE_SELECT.MEAS_CONFIG = M (M is the selected mode)  
regMap.MODE_SELECT.MEAS_MODE = 1  
regMap.MODE_SELECT.POWER_MODE = 0  
6) Wait for the interrupt  
7) Stop the measurement  
regMap.MODE_SELECT = 0x00  
wait 10us;  
8) Flush the FIFO  
regMap.FIFO_FILL = 0x80;  
9) Reconfigure the interrupt settings if required for the application and detection of measurement data  
10) Start a measurement  
regMap.MODE_SELECT.MEAS_CONFIG = M (M is the selected mode)  
regMap.MODE_SELECT.MEAS_MODE = 1  
regMap.MODE_SELECT.POWER_MODE = 0  
Document Number: DS-000416  
Revision: 1.3  
Page 30 of 60  
ICP-20100  
11) Wait for the interrupt or use another mechanism (polling, fixed wait) to detect if measurement data is  
available  
12) Read the data from FIFO registers  
Press[7:0] = regMap.PRESS_DATA_0  
Press[15:8] = regMap.PRESS_DATA_1  
Press[19:16] = regMap.PRESS_DATA_2  
Temp[7:0] = regMap.TEMP_DATA_0  
Temp[15:8] = regMap.TEMP_DATA_1  
Temp[19:16] = regMap.TEMP_DATA_2  
13) Repeat step 12 until the FIFO is empty  
In case FIR filter is disabled (for operation mode 4) the first sample after mode change need to be ignored.  
6.4 IIR FILTER  
The ICP-20100 includes an IIR filter in the signal path, to filter out pressure glitches due to sudden pressure  
changes caused by events such as slamming door, or wind blowing on the sensor. The IIR filter is a 1st order filter  
with programmable cut-off frequency.  
For details on how to program and use the IIR filter, refer to the application note AN-000238: ICP-20100 and ICP-  
20132 User Configurable Operation Mode and IIR Filter.”  
6.5 BOOT SEQUENCE  
Before starting any measurement, the device needs to be configured. This section lists the different steps to be  
taken before being able to conduct a measurement.  
The following terminology is used in this code for register map references:  
regMap.Register_Name.Register_Field_Name = Value  
where  
-
-
-
“Register_Name” is the register name  
“Register_Field_Name” is the name of the register field in the register  
“Value” is the value being written to the specified register field  
1) Power-on the ASIC  
2) Initialize the I2C interface by toggling the clock line a few times. The easiest way to do that is by  
inserting a dummy I2C write transaction. You can for example execute the first transaction (write to  
lock register) twice.  
3) Check the value from register regMap.version:  
If 0x00 (version A), continue to step 4.  
If 0xB2 (version B), no further initialization is required.  
4) Check the value from register regMap. OTP_STATUS2. BOOT_UP_STATUS  
Document Number: DS-000416  
Revision: 1.3  
Page 31 of 60  
ICP-20100  
If 1, ICP-20100 didn’t go through power cycle after previous boot up sequence. No further  
initialization is required.  
If 0, boot up config is not done after ICP-20100 power on. Continue to step 5  
5) Bring the ASIC in power mode to activate the OTP power domain and get access to the main registers  
regMap.MODE_SELECT.POWER_MODE = 1  
Wait 4ms;  
6) Unlock the main registers  
regMap.MASTER_LOCK.LOCK = 0x1f  
7) Enable the OTP and the write switch  
regMap.OTP_CONFIG1.OTP_ENABLE = 1;  
regMap.OTP_CONFIG1.OTP_WRITE_SWITCH = 1;  
wait 10μs;  
8) Toggle the OTP reset pin  
regMap.OTP_DBG2.RESET = 1  
wait 10us  
regMap.OTP_DBG2.RESET = 0  
wait 10us  
9) Program redundant read  
regMap.OTP_MRA_LSB = 0x04  
regMap.OTP_MRA_MSB = 0x04  
regMap.OTP_MRB_LSB = 0x21  
regMap.OTP_MRB_MSB = 0x20  
regMap.OTP_MR_LSB = 0x10  
regMap.OTP_MR_MSB = 0x80  
10) Write the address content and read command  
regMap.OTP_ADDRESS.ADDRESS = 8’hF8  
regMap.OTP_COMMAND.ADDRESS = 4’h0  
regMap.OTP_COMMAND.COMMAND = 1  
// for offset  
// read action  
11) Wait for the OTP read to finish  
Monitor regMap.OTP_STATUS.BUSY to be 0  
12) Read the data from register  
Offset = regMap.OTP_RDATA.VALUE  
13) Write the next address content and read command  
regMap.OTP_ADDRESS.ADDRESS = 8’hF9  
regMap.OTP_COMMAND.ADDRESS = 4’h0  
// for gain  
Document Number: DS-000416  
Revision: 1.3  
Page 32 of 60  
ICP-20100  
regMap.OTP_COMMAND.COMMAND = 1  
// read action  
14) Wait for the OTP read to finish  
Monitor regMap.OTP_STATUS.BUSY to be 0  
15) Read the data from register  
Gain = regMap.OTP_RDATA.VALUE  
16) Write the next address content and read command  
regMap.OTP_ADDRESS.ADDRESS = 8’hFA  
regMap.OTP_COMMAND.ADDRESS = 4’h0  
regMap.OTP_COMMAND.COMMAND = 1  
// for HFosc  
// read action  
17) Wait for the OTP read to finish  
Monitor regMap.OTP_STATUS.BUSY to be 0  
18) Read the data from register  
HFosc = regMap.OTP_RDATA.VALUE  
19) Disable OTP and write switch  
regMap.OTP_CONFIG1.OTP_ENABLE = 0;  
regMap.OTP_CONFIG1.OTP_WRITE_SWITCH = 0;  
wait 10μs;  
20) Write the Offset to the main registers  
regMap.TRIM1_MSB.PEFE_OFFSET_TRIM = Offset[5:0]  
21) Write the Gain to the main registers without touching the parameter BG_PTAT_TRIM  
Rdata = regMap.TRIM2_MSB  
Rdata[6:4] = Gain[2:0]  
regMap.TRIM2_MSB = Rdata  
22) Write the HFosc trim value to the main registers  
regMap.TRIM2_LSB = HFosc  
23) Lock the main registers  
regMap.MASTER_LOCK.LOCK = 0x00  
24) Move to standby  
regMap.MODE_SELECT.POWER_MODE = 0  
25) Write bootup config status to 1 to avoid re initialization with out power cycle.  
regMap. OTP_STATUS2. BOOT_UP_STATUS = 1  
Note: The bootup sequence should be run only once for every powerup. Running the boot sequence multiple times  
could create issues.  
Document Number: DS-000416  
Revision: 1.3  
Page 33 of 60  
ICP-20100  
6.6 MODE SWITCHING/SELECTION  
Mode switching/selection is done by  
Making sure the previous mode is selected by reading the register field MODE_SYNC_STATUS of register  
DEVICE_STATUS until it is set to ‘1’.  
Starting the new mode by selecting it in the register field MEAS_CONFIG of register MODE_SELECT.  
6.7 PRESSURE/TEMPERATURE READ-OUT  
Pressure and temperature are read out by  
Waiting until the FIFO contains data (either by polling the FIFO_LEVEL register field in register FIFO_FILL or  
though configuration of the FIFO watermark high interrupt).  
Read out registers PRESS_DATA_0, PRESS_DATA_1, PRESS_DATA_2, TEMP_DATA_0 , TEMP_DATA_1, and  
TEMP_DATA_2 using the address increment burst feature of the SPI, I2C or I3CSM interface. The FIFO read  
pointer will automatically increment on reading the last register TEMP_DATA_2. The read address will  
automatically wrap to address PRESS_DATA_0 (in case of Pressure first mode refer to section 7). This  
means that multiple FIFO locations can be read out by continuously using the interface address increment  
function until the FIFO is empty.  
6.7.1 Pressure conversion formula  
The 20-bit output pressure value represents a two’s complement integer from -219 till 219-1  
To convert this value into pressure, use the formula  
P = (POUT/217)*40kPa + 70kPa  
-
P: pressure in kPa  
-
POUT: two’s complement representation of the pressure output code  
Figure 16. Pressure Output Code  
Document Number: DS-000416  
Revision: 1.3  
Page 34 of 60  
ICP-20100  
6.7.2 Temperature conversion formula  
The 20-bit output temperature value represents a two’s complement integer from -219 till 219-1  
To convert this value into temperature, use the formula  
T = (TOUT/218)*65C + 25C  
-
T: temperature in degrees Celsius  
-
TOUT: two’s complement representation of the temperature output code  
Figure 17. Temperature Output Code  
Document Number: DS-000416  
Revision: 1.3  
Page 35 of 60  
ICP-20100  
7
FIFO  
A 96-bytes FIFO allows to buffer up to 16 pressure and temperature measurement pairs before reading them out  
through I2C, I3CSM or SPI.  
Four modes are supported when reading out the FIFO with address increment:  
Pressure first: The address wraps to the start address of the Pressure value  
Temperature only: The address wraps to the start address of the Temperature value  
Temperature first: Temperature and pressure locations are switched, the address wraps to the start  
address of the Temperature value  
Pressure only: Temperature and pressure locations are switched, the address wraps to the start address  
of the Pressure value  
Figure 18. FIFO Read Out Modes  
7.1 FIFO ACCESSIBILITY  
The Measurement FIFO registers are accessible from the I2C/I3CSM/SPI interface in all operating modes, including  
Standby mode.  
The Measurement FIFO registers need to be read out in burst mode for I2C/I3CSM. The data that is read out is not  
guaranteed to be consistent if every byte is addressed separately.  
Document Number: DS-000416  
Revision: 1.3  
Page 36 of 60  
ICP-20100  
7.2 FIFO FULL/EMPTY  
A FIFO full flag is raised when the FIFO level reaches the FIFO size.  
Data is not written to the FIFO if it is full. The FIFO full flag is reset when the FIFO level drops below the FIFO size by  
fetching a FIFO word through from the I2C/I3CSM/SPI interface.  
A FIFO empty flag is raised when the FIFO level reaches 0.  
A read transaction from the FIFO returns 0x00 values if it is empty. The FIFO empty flag is reset when the FIFO level  
increases above 0.  
7.3 FIFO OVERFLOW/UNDERFLOW  
A FIFO overflow flag is raised when a new pressure/temperature pair is written to the FIFO while it is full. The  
written pressure/temperature pair is ignored. The FIFO overflow flag is latched and can be reset by setting it  
through the I2C/I3CSM/SPI interface.  
A FIFO underflow flag is raised when a pressure/temperature pair is fetched from the FIFO while it is empty. The  
data read from the FIFO contains 0x00 values. The FIFO underflow flag is latched and can be reset by setting it  
through the I2C/I3CSM/SPI interface.  
7.4 FIFO WATERMARK LOW/HIGH  
Two FIFO watermark register fields, FIFO_WMK_LOW and FIFO_WMK_HIGH, can be used to manage the data flow  
from the sensor to the host.  
The watermark high flag is set when the FIFO level reaches the high value watermark specified by  
FIFO_WMK_HIGH.  
The watermark low flag is set when the FIFO level reaches the low value watermark specified by FIFO_WMK_LOW.  
The FIFO watermark flags are latched and can be reset by setting them through the I2C/I3CSM/SPI interface.  
7.5 FIFO FLUSH  
A FIFO flush command allows the user to flush the FIFO. The register field FLUSH should be set to 1 to flush the  
FIFO.  
7.6 ABSOLUTE PRESSURE VALUE OVERRUN/UNDERRUN  
An absolute pressure value overrun flag is raised when the pressure value crosses a configurable 16-bit pressure  
overrun/underrun value. This value is configurable in the user register map using registers PRESS_ABS_LSB and  
PRESS_ABS_MSB.  
7.7 DELTA PRESSURE VALUE OVERRUN  
A delta pressure value overrun flag is raised when the absolute difference between 2 consecutive pressure values  
exceeds a configurable 16-bit delta pressure overrun value. This value is configurable in the user register map,  
using registers PRESS_DELTA_LSB and PRESS_DELTA_MSB.  
Document Number: DS-000416  
Revision: 1.3  
Page 37 of 60  
ICP-20100  
8
INTERRUPTS  
The interrupt pin is open-drain. It is pulled high by default by an internal pull-up resistor. On an interrupt event, it  
is driven low until the interrupt source has been cleared through the I2C/I3CSM/SPI interface.  
The interrupt can be configured to be connected to any of the following interrupt sources:  
FIFO overflow  
FIFO underflow  
FIFO watermark low  
FIFO watermark high  
Absolute pressure threshold overrun  
Absolute pressure threshold underrun  
Delta pressure threshold overrun  
Each interrupt source can be individually masked.  
Document Number: DS-000416  
Revision: 1.3  
Page 38 of 60  
ICP-20100  
9
ASSEMBLY  
This section provides general guidelines for assembling TDK Micro Electro-Mechanical Systems (MEMS) pressure  
sensors.  
9.1 IMPLEMENTATION AND USAGE RECOMMENDATIONS  
9.1.1 Soldering  
When soldering, use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures of 260°C.  
ICP-20100 may exhibit a pressure offset after soldering, some settling time may be required depending on  
soldering properties, PCB properties, and ambient conditions.  
ICP-20100 devices have MSL rating 1, appropriate JEDEC J-STD-020 guidelines should be followed to avoid  
damaging the part.  
9.1.2 Chemical Exposure and Sensor Protection  
The ICP-20100 is an open cavity package and should not be exposed to particulates or liquids. If any type of  
protective coating must be applied to the circuit board, the sensor must be protected during the coating process.  
Document Number: DS-000416  
Revision: 1.3  
Page 39 of 60  
ICP-20100  
10 PACKAGE DIMENSIONS  
Package dimensions for the ICP-20100:  
Top View: ICP-20100  
Bottom View: ICP-20100  
Figure 19. ICP-20100 Package Diagrams  
Document Number: DS-000416  
Revision: 1.3  
Page 40 of 60  
ICP-20100  
DIMENSIONS IN MILLIMETERS  
SYMBOLS  
MIN.  
0.750  
0.655  
0.200  
0.100  
1.950  
1.820  
1.950  
1.820  
0.450  
0.275  
0.025  
0.250  
NOM.  
0.800  
0.675  
0.250  
0.125  
2.000  
1.850  
2.000  
1.850  
0.500  
0.375  
0.075  
0.300  
MAX.  
0.850  
0.695  
0.300  
0.150  
2.050  
1.880  
2.050  
1.880  
0.550  
0.425  
0.100  
0.325  
A
A3  
b
c
D
D1  
E
E1  
e
L
L1  
L3  
Table 19. ICP-20100 Package Dimensions  
Document Number: DS-000416  
Revision: 1.3  
Page 41 of 60  
ICP-20100  
11 PART NUMBER PART MARKINGS  
The part number part markings for ICP-20100 devices are summarized below:  
PART NUMBER  
PART MARKING  
ICP-20100  
S1  
Table 20. Part Number Part Markings  
TOP VIEW  
S1  
Part Number  
Lot Traceability Code  
Date Code: (Y)Year(W)WorkWeek  
XXXX  
YW  
1-Hole (ICP-20100)  
Figure 20. Part Number Part Markings for ICP-20100  
Document Number: DS-000416  
Revision: 1.3  
Page 42 of 60  
ICP-20100  
12 REGISTER MAP  
This section lists the register map for ICP-20100.  
Addr  
(Hex)  
Addr  
(Dec.)  
Serial  
I/F  
Register Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
5
5
TRIM1_MSB  
TRIM2_LSB  
R/W  
R/W  
R/W  
RO  
-
PEFE_OFFSET_TRIM  
HF_OSC_TRIM  
6
6
7
7
TRIM2_MSB  
-
PEFE_GAIN_TRIM  
BG_PTAT_TRIM  
C
12  
DEVICE_ID  
VALUE  
D
13  
IO_DRIVE_STRENGTH  
OTP_CONFIG1  
OTP_MR_LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
-
IO_DS  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B5  
B6  
B8  
B9  
BC  
BE  
172  
173  
174  
175  
176  
177  
178  
181  
182  
184  
185  
188  
190  
-
OTP_EN  
OTP_WR  
VALUE_LSB  
VALUE_MSB  
OTP_MR_MSB  
OTP_MRA_LSB  
OTP_MRA_MSB  
OTP_MRB_LSB  
OTP_MRB_MSB  
OTP_ADDRESS_REG  
OTP_COMMAND_REG  
OTP_RDATA  
VALUE_LSB  
VALUE_MSB  
VALUE_LSB  
VALUE_MSB  
OTP_ADDRESS_LSB  
-
COMMAND  
OTP_ADDRESS_MSB  
VALUE  
OTP_STATUS  
R
-
BUSY  
OTP_DBG2  
R/W  
W
RESET  
-
MASTER_LOCK  
LOCK  
BOOT_UP  
_STATUS  
BF  
C0  
191  
192  
OTP_STATUS2  
MODE_SELECT  
R/W  
R/W  
-
FORCED_  
MEAS_MO  
MEAS_TRI  
DE  
POWER_M  
ODE  
MEAS_CONFIG  
FIFO_READOUT_MODE  
GGER  
FIFO_WM  
K_LOW_IN  
T
FIFO_WM  
K_HIGH_I  
NT  
FIFO_UND  
ERFLOW_I  
NT  
FIFO_OV  
ERFLOW  
_INT  
PRESS_D  
ELTA_INT  
PRESS_A  
BS_INT  
C1  
C2  
193  
194  
INTERRUPT_STATUS  
INTERRUPT_MASK  
R/W  
R/W  
-
-
-
-
PRESS_D  
ELTA_MA  
SK  
FIFO_WM  
K_LOW_M  
ASK  
FIFO_WM  
K_HIGH_M  
ASK  
FIFO_UND  
ERFLOW_  
MASK  
FIFO_OV  
ERFLOW  
_MASK  
PRESS_A  
BS_MASK  
C3  
C4  
195  
196  
FIFO_CONFIG  
FIFO_FILL  
R/W  
R/W  
FIFO_WM_HIGH  
FIFO_WM_LOW  
FIFO_LEVEL  
FIFO_FLU  
SH  
FIFO_EMP  
TY  
FIFO_FUL  
L
SPI_MOD  
E
C5  
197  
SPI_MODE  
R/W  
-
C7  
C8  
C9  
CA  
199  
200  
201  
202  
PRESS_ABS_LSB  
PRESS_ABS_MSB  
PRESS_DELTA_LSB  
PRESS_DELTA_MSB  
R/W  
R/W  
R/W  
R/W  
PRESS_ABS_LSB  
PRESS_ABS_MSB  
PRESS_DELTA_LSB  
PRESS_DELTA_MSB  
MODE_S  
YNC_ST  
ATUS  
CD  
205  
DEVICE_STATUS  
R
-
CE  
D3  
FA  
FB  
FC  
FD  
FE  
FF  
206  
211  
250  
251  
252  
253  
254  
255  
I3C_INFO  
R
R
R
R
R
R
R
R
I3C_INFO  
VERSION  
MAJOR  
MINOR  
PRESS_DATA_0  
PRESS_DATA_1  
PRESS_DATA_2  
TEMP_DATA_0  
TEMP_DATA_1  
TEMP_DATA_2  
PRESS_DATA_0  
PRESS_DATA_1  
-
-
PRESS_DATA_2  
TEMP_DATA_2  
TEMP_DATA_0  
TEMP_DATA_1  
Table 21. Register Map  
Document Number: DS-000416  
Revision: 1.3  
Page 43 of 60  
ICP-20100  
13 REGISTER MAP DESCRIPTION  
This section describes the function and contents of each register.  
13.1 TRIM1_MSB  
Name: TRIM1_MSB  
Address: 5 (0x05)  
Serial IF: R/W  
Reset value: Device dependent  
BIT NAME  
7:6  
FUNCTION  
Reserved  
-
5:0 PEFE_OFFSET_TRIM  
Trim value for the pressure front-end  
13.2 TRIM2_LSB  
Name: TRIM2_LSB  
Address: 6 (0x06)  
Serial IF: R/W  
Reset value: Device dependent  
BIT NAME  
FUNCTION  
7
-
Reserved  
6:0 HFOSC_TRIM  
Trim value for the high frequency oscillator  
13.3 TRIM2_MSB  
Name: TRIM1_MSB  
Address: 7 (0x07)  
Serial IF: R/W  
Reset value: Device dependent  
BIT NAME  
FUNCTION  
7
-
Reserved  
6:4 PEFE_GAIN_TRIM  
3:0 BG_PTAT_TRIM  
Trim value for the pressure front-end  
Trim value for PTAT current  
13.4 DEVICE_ID  
Name: DEVICE_ID  
Address: 12 (0x0C)  
Serial IF: RO  
Reset value: 0x63  
BIT NAME  
FUNCTION  
7:0 VALUE  
8-bit Device ID  
Document Number: DS-000416  
Revision: 1.3  
Page 44 of 60  
ICP-20100  
13.5 IO_DRIVE_STRENGTH  
Name: IO_DRIVE_STRENGTH  
Address: 13 (0x0D)  
Serial IF: R/W  
Reset value: 0x03  
BIT NAME  
FUNCTION  
7:3  
-
Reserved  
IO drive strength value  
000: 2 mA for 1.8V IO supply  
001: 4 mA for 1.8V IO supply  
010: 8 mA for 1.8V IO supply  
011: 12 mA for 1.8V IO supply  
100: 2 mA for 1.2V IO supply  
101: 4 mA for 1.2V IO supply  
110: 6 mA for 1.2V IO supply  
111: 8 mA for 1.2V IO supply  
2:0 IO_DS  
13.6 OTP_CONFIG1  
Name: OTP_CONFIG1  
Address: 172 (0xAC)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:2 RESERVED  
-
Connect OTP VCC to VCORE. This is needed for OTP write. VCORE should be  
3V3 in this case  
Enable the OTP  
1
0
OTP_WRITE_SWITCH  
OTP_ENABLE  
13.7 OTP_MR_LSB  
Name: OTP_MR_LSB  
Address: 173 (0xAD)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 VALUE_LSB  
OTP MR register bits 7:0  
13.8 OTP_MR_MSB  
Name: OTP_MR_MSB  
Address: 174 (0xAE)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 VALUE_MSB  
OTP MR register bits 15:8  
Document Number: DS-000416  
Revision: 1.3  
Page 45 of 60  
ICP-20100  
13.9 OTP_MRA_LSB  
Name: OTP_MRA_LSB  
Address: 175 (0xAF)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 VALUE_LSB  
OTP MRA register bits 7:0  
13.10OTP_MRA_MSB  
Name: OTP_MRA_MSB  
Address: 176 (0xB0)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 VALUE_MSB  
OTP MRA register bits 15:8  
13.11OTP_MRB_LSB  
Name: OTP_MRB_LSB  
Address: 177 (0xB1)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 VALUE_LSB  
OTP MRB register bits 7:0  
13.12OTP_MRB_MSB  
Name: OTP_MRB_MSB  
Address: 178 (0xB2)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 VALUE_MSB  
OTP MRB register bits 15:8  
13.13OTP_ADDRESS  
Name: OTP_ADDRESS  
Address: 181 (0xB5)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 ADDRESS  
OTP address [7:0] to read from or to write to  
Document Number: DS-000416  
Revision: 1.3  
Page 46 of 60  
ICP-20100  
13.14OTP_COMMAND  
Name: OTP_COMMAND  
Address: 182 (0xB6)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7
RESERVED  
-
6:4 COMMAND  
3:0 ADDRESS  
OTP access command  
OTP address [11:8] to read from or to write to  
13.15OTP_RDATA  
Name: OTP_RDATA  
Address: 184 (0xB8)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 VALUE  
OTP read data word  
13.16OTP_STATUS  
Name: OTP_STATUS  
Address: 185 (0xB9)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:1 RESERVED  
-
0
BUSY  
OTP controller BUSY flag  
13.17OTP_DBG2  
Name: OTP_DBG2  
Address: 188 (0xBC)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7
RESET  
Value of the OTP port RESET  
-
6:0 RESERVED  
13.18 OTP_STATUS2  
Name: OTP_STATUS2  
Address: 191 (0xBF)  
Serial IF: R/W  
Reset value: 0xF0  
BIT NAME  
FUNCTION  
7:1 RESERVED  
-
Document Number: DS-000416  
Revision: 1.3  
Page 47 of 60  
ICP-20100  
Boot up config status.  
0
BOOT_UP_STATUS  
Host can set this bit to 1 when boot up config is done and read later to know  
if ICP-20100 is power cycled and needs boot up config.  
13.19MASTER_LOCK  
Name: MASTER_LOCK  
Address: 190 (0xBE)  
Serial IF: W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
Write 8'h1F to unlock write access to all main registers  
Write any other value to lock write access to all main registers  
The OTP mirror registers are not locked by this register  
7:0 LOCK  
13.20MODE_SELECT  
Name: MODE_SELECT  
Address: 192 (0xC0)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
Measurement Configuration (the modes listed below are described in  
section 2.2)  
000: Mode0  
001: Mode1  
010: Mode2  
7:5 MEAS_CONFIG  
011: Mode3  
100: Mode4  
101 to 111: Reserved  
Initiate Triggered Operation (also called Forced Measurement Mode)  
0: Stay in Standby mode  
1: Trigger for forced measurement (only supported for Mode4)  
Measurement Mode Selection  
0: Standby or trigger forced measurement based on the field  
FORCED_MEAS_TRIGGER  
4
3
FORCED_MEAS_TRIGGER  
MEAS_MODE  
1: Continuous Measurements (duty cycled): Measurements are started  
based on the selected mode ODR_REG  
Power Mode Selection  
0: Normal Mode: Device is in standby and goes to active mode during the  
execution of a measurement  
2
POWER_MODE  
1: Active Mode: Power on DVDD and enable the high frequency clock  
FIFO Readout Mode Selection (refer to the FIFO section for further  
information)  
00: Pressure first.  
When you start reading from address 0xFA with address increment, you will  
read out press(n), temp(n), press(n+1), temp(n+1), …  
01: Temperature only.  
1:0 FIFO_READOUT_MODE  
When you start reading from address 0xFD with address increment, you will  
read out temp(n), temp(n+1), …  
Document Number: DS-000416  
Revision: 1.3  
Page 48 of 60  
ICP-20100  
10: Temperature first.  
When you start reading from address 0xFA with address increment, you will  
read out temp(n), press(n), temp(n+1), press(n+1), …  
11: Pressure only.  
When you start reading from address 0xFD with address increment, you will  
read out press(n), press(n+1), …  
Notes:  
-
Make sure DEVICE_STATUS.MODE_SYNC_STATUS bit is set before writing this register.  
13.21INTERRUPT_STATUS  
Name: INTERRUPT_STATUS  
Address: 193 (0xC1)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7
6
-
Reserved  
Delta pressure overrun  
Read  
0: The difference between 2 consecutive pressure measurements after  
filtering didn't exceed the programmed delta pressure overrun value. The  
interrupt has not triggered  
1: The difference between 2 consecutive pressure measurements after  
filtering exceeded the programmed delta pressure overrun value. The  
interrupt has triggered  
PRESS_DELTA_INT  
Write policy is W1C  
0: the press_delta_int interrupt status bit is unchanged  
1: the press_delta_int interrupt status bit is cleared  
Pressure underrun/overrun  
Read  
0: The pressure value didn't cross the programmed pressure  
underrun/overrun value. The interrupt has not triggered  
1: The pressure value crossed the programmed pressure underrun/overrun  
value. The interrupt has triggered  
5
4
3
PRESS_ABS_INT  
Write policy is W1C  
0: the press_abs interrupt status bit is unchanged  
1: the press_abs interrupt status bit is cleared  
Reserved  
FIFO watermark low  
Read  
0: The FIFO fill level didn't reach in downward direction the programmed  
watermark low value. The interrupt has not triggered  
1: The FIFO fill level reached in downward direction the programmed  
watermark low value. The interrupt has triggered  
Write policy is W1C  
-
FIFO_WMK_LOW_INT  
0: the fifo_wmk_low interrupt status bit is unchanged  
1: the fifo_wmk_low interrupt status bit is cleared  
FIFO watermark high  
Read  
0: The FIFO fill level didn't reach in upward direction the programmed  
watermark high value. The interrupt has not triggered  
1: The FIFO fill level reached in upward direction the programmed  
watermark high value. The interrupt has triggered  
2
FIFO_WMK_HIGH_INT  
Document Number: DS-000416  
Revision: 1.3  
Page 49 of 60  
ICP-20100  
Write policy is W1C  
0: the fifo_wmk_high interrupt status bit is unchanged  
1: the fifo_wmk_high interrupt status bit is cleared  
FIFO underflow  
Read  
0: No new pressure/temperature pair was fetched from the FIFO while it was  
empty. The interrupt has not triggered  
1: A new pressure/temperature pair was fetched from the FIFO while it was  
empty. The interrupt has triggered  
1
FIFO_UNDERFLOW_INT  
Write policy is W1C  
0: the fifo_underflow interrupt status bit is unchanged  
1: the fifo_underflow interrupt status bit is cleared  
FIFO overflow  
Read  
0: No new pressure/temperature pair was written to the FIFO while it was  
full. The interrupt has not triggered  
0
FIFO_OVERFLOW_INT  
1: A new pressure/temperature pair was written to the FIFO while it was full.  
The interrupt has triggered  
Write policy is W1C  
0: the fifo_overflow interrupt status bit is unchanged  
1: the fifo_overflow interrupt status bit is cleared  
13.22INTERRUPT_MASK  
Name: INTERRUPT_MASK  
Address: 194 (0xC2)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7
6
-
Reserved (program to 1)  
0: PRESS_DELTA interrupt is not masked  
1: PRESS_DELTA interrupt is masked  
0: PRESS_ABS interrupt is not masked  
1: PRESS_ABS interrupt is masked  
Reserved  
0: FIFO_WMK_LOW interrupt is not masked  
1: FIFO_WMK_LOW interrupt is masked  
0: FIFO_WMK_HIGH interrupt is not masked  
1: FIFO_WMK_HIGH interrupt is masked  
0: FIFO_UNDERFLOW interrupt is not masked  
1: FIFO_UNDERFLOW interrupt is masked  
0: FIFO_OVERFLOW interrupt is not masked  
1: FIFO_OVERFLOW interrupt is masked  
PRESS_DELTA_MASK  
5
4
3
PRESS_ABS_MASK  
-
FIFO_WMK_LOW_MASK  
2
1
0
FIFO_WMK_HIGH_MASK  
FIFO_UNDERFLOW_MASK  
FIFO_OVERFLOW_MASK  
13.23FIFO_CONFIG  
Name: FIFO_CONFIG  
Address: 195 (0xC3)  
Serial IF: R/W  
Reset value: 0x00  
Document Number: DS-000416  
Revision: 1.3  
Page 50 of 60  
ICP-20100  
BIT NAME  
FUNCTION  
FIFO high watermark value. Interrupt is triggered when the FIFO fill level  
reaches this value in the upward direction. A value of 0 disables the high  
watermark check.  
7:4 FIFO_WM_HIGH  
FIFO low watermark value. Interrupt is triggered when the FIFO fill level  
reaches this value in the downward direction.  
3:0 FIFO_WM_LOW  
13.24FIFO_FILL  
Name: FIFO_FILL  
Address: 196 (0xC4)  
Serial IF: R/W  
Reset value: 0x40  
BIT NAME  
FUNCTION  
FIFO flush command. (This field should not be modified while doing a  
measurement)  
0: No change  
7
FIFO_FLUSH  
1: FIFO is flushed. Flushing the FIFO will empty it.  
FIFO empty indication.  
0: The FIFO level is above 0  
1: The FIFO level is at 0  
FIFO full indication.  
0: The FIFO level is below the FIFO size  
1: The FIFO level has reached the FIFO size  
FIFO fill level  
6
5
FIFO_EMPTY  
FIFO_FULL  
00000: Empty  
00001: 1/16 full  
00010: 2/16 full  
00011: 3/16 full  
00100: 4/16 full  
00101: 5/16 full  
00110: 6/16 full  
00111: 7/16 full  
4:0 FIFO_LEVEL  
01000: 8/16 full  
01001: 9/16 full  
01010: 10/16 full  
01011: 11/16 full  
01100: 12/16 full  
01101: 13/16 full  
01110: 14/16 full  
01111: 15/16 full  
10000: Full  
10001 to 11111: Reserved  
13.25SPI_MODE  
Name: SPI_MODE  
Address: 197 (0xC5)  
Serial IF: R/W  
Reset value: 0x00  
Document Number: DS-000416  
Revision: 1.3  
Page 51 of 60  
ICP-20100  
BIT NAME  
FUNCTION  
7:1  
-
Reserved  
0: SPI 4-wire mode enabled  
1: SPI 3-wire mode enabled  
0
SPI_MODE  
13.26PRESS_ABS_LSB  
Name: PRESS_ABS_LSB  
Address: 199 (0xC7)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
LSB part of the 16bit pressure overrun/underrun value.  
The 16bit value represents pressure values according to the formula  
PABS = (P(kPa)-70kPa)/40kPa*213  
7:0 PRESS_ABS_LSB  
For example, 80 kPa threshold results in value 0x0800, 50 kPa results in  
value 0xF000  
This register should not be modified while doing a measurement.  
13.27PRESS_ABS_MSB  
Name: PRESS_ABS_MSB  
Address: 200 (0xC8)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
MSB part of the 16bit pressure overrun/underrun value.  
The 16bit value represents pressure values according to the formula  
PABS = (P(kPa)-70kPa)/40kPa*213  
7:0 PRESS_ABS_MSB  
For example, 80kPa threshold results in value 0x0800, 50 kPa results in value  
0xF000  
This register should not be modified while doing a measurement.  
13.28PRESS_DELTA_LSB  
Name: PRESS_DELTA_LSB  
Address: 201 (0xC9)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
LSB part of the 16bit delta pressure overrun/underrun value.  
The 16bit value represents pressure values according to the formula  
PDELTA = (P(kPa)/80)* 214  
7:0 PRESS_DELTA_LSB  
For example, a delta pressure of 0.5 kPa is represented by the value 0x0066  
This register should not be modified while doing a measurement.  
Document Number: DS-000416  
Revision: 1.3  
Page 52 of 60  
ICP-20100  
13.29PRESS_DELTA_MSB  
Name: PRESS_DELTA_MSB  
Address: 202 (0xCA)  
Serial IF: R/W  
Reset value: 0x00  
BIT NAME  
FUNCTION  
MSB part of the 16bit delta pressure overrun/underrun value.  
The 16bit value represents pressure values according to the formula  
PDELTA = (P(kPa)/80)* 214  
7:0 PRESS_DELTA_MSB  
For example, a delta pressure of 0.5 kPa is represented by the value 0x0066  
This register should not be modified while doing a measurement.  
13.30DEVICE_STATUS  
Name: DEVICE_STATUS  
Address: 205 (0xCD)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:6  
0
-
Reserved  
0: Synchronization of the selected mode to the internal clock domain is  
ongoing. MODE_SELECT register is not accessible by the user.  
1: Synchronization of the selected mode to the internal clock domain is  
finished. MODE_SELECT register is accessible by the user.  
MODE_SYNC_STATUS  
13.31I3C_INFO  
Name: I3C_INFO  
Address: 206 (0xCE)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
7:0 I3C_INFO  
FUNCTION  
This register contains the I3CSM dynamic slave address  
13.32VERSION  
Name: VERSION  
Address: 211 (0xD3)  
Serial IF: R  
Reset value: 0x00 (version A); 0xB2 (version B)  
BIT  
7:4  
3:0  
NAME  
MAJOR  
MINOR  
FUNCTION  
Major version number  
Minor version number  
Document Number: DS-000416  
Revision: 1.3  
Page 53 of 60  
ICP-20100  
13.33PRESS_DATA_0  
Name: PRESS_DATA_0  
Address: 250 (0xFA)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 PRESS_DATA_0  
Pressure data bits [7:0]  
13.34PRESS_DATA_1  
Name: PRESS_DATA_1  
Address: 251 (0xFB)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 PRESS_DATA_1  
Pressure data bits [15:8]  
13.35PRESS_DATA_2  
Name: PRESS_DATA_2  
Address: 252 (0xFC)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:4  
-
Reserved  
3:0 PRESS_DATA_2  
Pressure data bits [19:16]  
13.36TEMP_DATA_0  
Name: TEMP_DATA_0  
Address: 253 (0xFD)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 TEMP_DATA_0  
Temperature data bits [7:0]  
13.37TEMP_DATA_1  
Name: TEMP_DATA_1  
Address: 254 (0xFE)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:0 TEMP_DATA_1  
Temperature data bits [15:8]  
Document Number: DS-000416  
Revision: 1.3  
Page 54 of 60  
ICP-20100  
13.38TEMP_DATA_2  
Name: TEMP_DATA_2  
Address: 255 (0xFF)  
Serial IF: R  
Reset value: 0x00  
BIT NAME  
FUNCTION  
7:4  
-
Reserved  
3:0 TEMP_DATA_2  
Temperature data bits [19:16]  
Document Number: DS-000416  
Revision: 1.3  
Page 55 of 60  
ICP-20100  
14 TAPE & REEL SPECIFICATION  
Figure 21. ICP-20100 Tape Dimensions  
Figure 22. ICP-20100 Tape and Reel Drawing  
Document Number: DS-000416  
Revision: 1.3  
Page 56 of 60  
ICP-20100  
15 ORDERING GUIDE  
PART  
TEMP RANGE  
PACKAGE BODY  
PACKAGE LID  
QUANTITY PACKAGING  
2x2x0.8mm LGA-  
10L  
13” Tape  
and Reel  
ICP-20100†  
−40°C to +85°C  
1-Hole  
10,000  
†Denotes RoHS and Green-Compliant Package  
Document Number: DS-000416  
Revision: 1.3  
Page 57 of 60  
ICP-20100  
16 REFERENCES  
Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” and “Pressure Sensor PCB  
Design Guidelines (AN-000140)for the following information:  
Manufacturing Recommendations  
o
o
o
o
Assembly Guidelines and Recommendations  
PCB Design Guidelines and Recommendations  
MEMS Handling Instructions  
ESD Considerations  
o
Reflow Specification  
o
Storage Specifications  
o
Package Marking Specification  
o
Reel & Pizza Box Label  
o
Packaging  
o
Representative Shipping Carton Label  
Compliance  
o
o
o
Environmental Compliance  
DRC Compliance  
Compliance Declaration Disclaimer  
Document Number: DS-000416  
Revision: 1.3  
Page 58 of 60  
ICP-20100  
17 REVISION HISTORY  
REVISION DATE  
REVISION  
DESCRIPTION  
10/12/2020  
0.1  
Initial Release  
Updated ASIC Identification Procedure (Section 5.4); Updated Duty Cycled Operation  
Description (Section 6.2.1); Updated FIFO FULL/EMPTY Description (Section 7.2);  
Moved sections on FIFO OVERFLOW/UNDERFLOW, FIFO WATERMARK LOW/HIGH,  
ABSOLUTE PRESSURE VALUE OVERRUN/UNDERRUN, DELTA PRESSURE VALUE  
OVERRUN from Section 7 to Section 8.  
03/12/2021  
0.2  
Updated Pressure Sensor Specifications (Table 3); Updated ASIC Identification  
Procedure (Section 5.4); Updated Duty Cycled Operation Description (Section 6.2.1);  
Updated Interrupts (Section 8).  
04/01/2021  
0.3  
05/03/2021  
07/09/2021  
09/15/2021  
0.4  
1.0  
1.1  
Added MSL information (Cover Page); Added Tape & Reel Specification (Section 14).  
Updated Pressure Sensor Specifications (Table 3); Updated References (Section 16)  
Updated Table 3 Notes and Conditions; Added OSRPRESS and OSRTEMP Calculation  
(Section 6.2.1); Updated FIFO_FLUSH Register Field Description (Section 13.23)  
Updated Drive Strength for VDDIO = 1.2V and for VDDIO = 1.8V/3.3V (Section 3.1);  
Updated HBM from 2kV to 1.5kV (Section 3.2); Added new dummy reads for I2C and  
I3C (Section 4.1.3 and Section 4.1.4); Updated Drive Strength Configuration (Section  
4.3); Updated FIR Filter section (Section 6.3); Updated drive strength (Section 13.5,  
3.1); Updated boot section (Section 6.5); Updated ASIC identification section (Section  
5.4, 13.31); Added register OTP_STATUS2 (Section 12, 13.18); Updated IO_DS  
description (Section 13.5); Added Notes (Section 13.20)  
12/08/2021  
12/17/2021  
1.2  
1.3  
Updated Boot Sequence (Section 6.5)  
Document Number: DS-000416  
Revision: 1.3  
Page 59 of 60  
ICP-20100  
This information furnished by InvenSense or its affiliates (“TDK InvenSense”) is believed to be accurate and reliable. However, no responsibility  
is assumed by TDK InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use.  
Specifications are subject to change without notice. TDK InvenSense reserves the right to make changes to this product, including its circuits  
and software, in order to improve its design and/or performance, without prior notice. TDK InvenSense makes no warranties, neither expressed  
nor implied, regarding the information and specifications contained in this document. TDK InvenSense assumes no responsibility for any claims  
or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is  
not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or  
otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied.  
Trademarks that are registered trademarks are the property of their respective companies. TDK InvenSense sensors should not be used or sold  
in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life  
threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear  
instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.  
©20202021 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps,  
DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and  
product names may be trademarks of the respective companies with which they are associated.  
©20202021 InvenSense. All rights reserved.  
Document Number: DS-000416  
Revision: 1.3  
Page 60 of 60  

相关型号:

ICP-2020-01

Voice Grade Channel Processor
ETC

ICP-2020-02

Voice Grade Channel Processor
ETC

ICP-2020SERIES

Voice Grade Channel Processor
ETC

ICP-2120-01

Voice Grade Channel Processor
ETC

ICP-2120-02

Voice Grade Channel Processor
ETC

ICP-F15

Silicon Surge Protector
ROHM

ICP-F20

Silicon Surge Protector
ROHM

ICP-F25

Silicon Surge Protector
ROHM

ICP-F38

Silicon Surge Protector
ROHM

ICP-F50

Silicon Surge Protector
ROHM

ICP-N10

Circuit protection elements
ROHM

ICP-N10T104

Circuit protection elements
ROHM