MAS3549F-FH-A3 [TDK]

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, LQFP-64;
MAS3549F-FH-A3
型号: MAS3549F-FH-A3
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, LQFP-64

文件: 总92页 (文件大小:1189K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MAS 35x9F  
MPEG Layer 2/3,  
AAC Audio Decoder,  
G.729 Annex A Codec  
June 30, 2004  
6251-505-1DS  
MICRONAS  
MAS 35x9F  
DATA SHEET  
Contents  
Page  
Section  
Title  
5
6
6
7
1.  
Introduction  
1.1.  
1.2.  
1.3.  
Features  
Features of the MAS 35x9F Family  
Application Overview  
8
2.  
Functional Description  
Overview  
8
2.1.  
8
2.2.  
Architecture of the MAS 35x9F  
DSP Core  
8
2.3.  
9
2.3.1.  
2.3.2.  
2.3.2.1.  
2.3.2.2.  
2.4.  
RAM and Registers  
9
Firmware and Software  
Internal Program ROM and Firmware, MPEG-Decoding  
Program Download Feature  
Audio Codec  
9
9
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
12  
12  
12  
13  
15  
15  
15  
15  
15  
15  
15  
15  
16  
17  
17  
18  
18  
18  
18  
18  
18  
19  
2.4.1.  
2.4.2.  
2.4.2.1.  
2.4.2.2.  
2.4.2.3.  
2.4.2.4.  
2.4.3.  
2.4.4.  
2.5.  
A/D Converter and Microphone Amplifier  
Baseband Processing  
Bass, Treble, and Loudness  
Micronas Bass (MB)  
Automatic Volume Control (AVC)  
Balance and Volume  
D/A Converters  
Output Amplifiers  
Clock Management  
2.5.1.  
2.5.2.  
2.6.  
DSP Clock  
Clock Output At CLKO  
Power Supply Concept  
Power Supply Regions  
DC/DC Converters  
2.6.1.  
2.6.2.  
2.6.3.  
2.7.  
Power Supply Configurations  
Battery Voltage Supervision  
Interfaces  
2.8.  
2.8.1.  
2.8.2.  
2.8.3.  
2.8.4.  
2.8.5.  
2.8.6.  
2.9.  
I2C Control Interface  
S/PDIF Input Interface  
S/PDIF Output  
Multiline Serial Audio Input (SDI, SDIB)  
Multiline Serial Output (SDO)  
Parallel Input/Output Interface (PIO)  
MPEG Synchronization Output  
MP3 Block Input Mode  
Functional Description of the MP3 Block Input Mode  
Setup  
2.10.  
2.10.1.  
2.10.2.  
2.10.2.1.  
2.10.2.2.  
2.11.  
Resync Timeout  
Detailed Setup  
Default Operation  
2.11.1.  
2.11.2.  
2.11.2.1.  
Stand-by Functions  
Power-Up of the DC/DC Converters and Reset  
Important Advice for Turn-on and Operating Voltage  
2
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Contents, continued  
Page  
Section  
Title  
20  
21  
21  
21  
2.11.3.  
2.11.4.  
2.11.5.  
2.11.6.  
Reset Signal Specification  
Control of the Signal Processing  
Start-up of the Audio Codec  
Power-Down  
22  
22  
22  
22  
22  
22  
23  
23  
27  
27  
28  
28  
28  
28  
29  
29  
29  
29  
29  
30  
30  
30  
31  
31  
31  
32  
32  
43  
43  
44  
44  
45  
45  
45  
46  
52  
3.  
Controlling  
2
3.1.  
I C Interface  
3.1.1.  
3.1.2.  
3.1.3.  
3.2.  
Device Address  
2
I C Registers and Subaddresses  
Naming Convention  
Direct Configuration Registers  
Write Direct Configuration Registers  
Read Direct Configuration Register  
DSP Core  
3.2.1.  
3.2.2.  
3.3.  
3.3.1.  
3.3.2.  
3.3.2.1.  
3.3.2.2.  
3.3.2.3.  
3.3.2.4.  
3.3.2.5.  
3.3.2.6.  
3.3.2.7.  
3.3.2.8.  
3.3.2.9.  
3.3.2.10.  
3.3.2.11.  
3.3.2.12.  
3.3.3.  
3.3.4.  
3.3.4.1.  
3.3.4.2.  
3.3.5.  
3.3.6.  
3.3.7.  
3.3.8.  
3.4.  
Access Protocol  
Data Formats  
Run and Freeze (Codes 0hex to 3hex)  
Read Register (Code A  
Write Register (Code B  
)
hex  
)
hex  
Read Memory (Codes C  
and D  
)
hex  
hex  
Short Read Memory (Codes C4  
and D4  
)
hex  
hex  
Write Memory (Codes Ehex and Fhex)  
Short Write Memory (Codes E4 and F4  
)
hex  
hex  
Clear SYNC Signal (Code 5hex)  
Default Read  
Fast Program Download (Code 6  
Serial Program Download  
)
hex  
Read IC Version (Code 7  
List of DSP Registers  
)
hex  
List of DSP Memory Cells  
Application Selection and Application Running  
Application Specific Control  
Ancillary Data  
Reading of the Memory Cells “Number of Bits in Ancillary Data” and “Ancillary Data”  
DSP Volume Control  
Explanation of the G.729A Data Format  
Audio Codec Access Protocol  
Write Codec Register  
3.4.1.  
3.4.2.  
3.4.3.  
3.4.4.  
Read Codec Register  
Codec Registers  
Basic MB Configuration  
Micronas  
June 30, 2004; 6251-505-1DS  
3
MAS 35x9F  
DATA SHEET  
Contents, continued  
Page  
Section  
Title  
54  
54  
57  
60  
60  
60  
60  
60  
60  
60  
61  
61  
61  
61  
61  
61  
61  
61  
62  
62  
63  
64  
65  
65  
67  
71  
72  
73  
74  
76  
77  
77  
79  
4.  
Specifications  
4.1.  
Outline Dimensions  
4.2.  
Pin Connections and Short Descriptions  
Pin Descriptions  
4.3.  
4.3.1.  
4.3.2.  
4.3.3.  
4.3.4.  
4.3.5.  
4.3.6.  
4.3.6.1.  
4.3.7.  
4.3.8.  
4.3.9.  
4.3.10.  
4.3.11.  
4.3.12.  
4.3.13.  
4.3.14.  
4.4.  
Power Supply Pins  
Analog Reference Pins  
DC/DC Converters and Battery Voltage Supervision  
Oscillator Pins and Clocking  
Control Lines  
Parallel Interface Lines  
PIO Handshake Lines  
Serial Input Interface (SDI)  
Serial Input Interface B (SDIB)  
Serial Output Interface (SDO)  
S/PDIF Input Interface  
S/PDIF Output Interface  
Analog Input Interfaces  
Analog Output Interfaces  
Miscellaneous  
Pin Configuration  
4.5.  
Internal Pin Circuits  
4.5.1.  
4.6.  
Reset Pin Configuration for MAS 3529F and MAS 3539F  
Electrical Characteristics  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Digital Characteristics  
4.6.1.  
4.6.1.1.  
4.6.2.  
4.6.2.1.  
4.6.2.2.  
4.6.2.3.  
4.6.2.4.  
4.6.2.5.  
4.6.2.6.  
4.6.2.7.  
2
I C Characteristics  
2
Serial (I S) Input Interface Characteristics (SDI, SDIB)  
Serial Output Interface Characteristics (SDO)  
S/PDIF Input Characteristics  
S/PDIF Output Characteristics  
PIO as Parallel Input Interface: DMA Mode  
PIO as Parallel Input Interface:  
Program Download Mode  
80  
81  
84  
86  
4.6.2.8.  
4.6.3.  
4.6.4.  
4.6.5.  
PIO as Parallel Output Interface  
Analog Characteristics  
DC/DC Converter Characteristics  
Typical Performance Characteristics  
89  
89  
90  
5.  
Application  
5.1.  
5.2.  
Typical Application in a Portable Player  
Recommended DC/DC Converter Application Circuit  
92  
6.  
Data Sheet History  
4
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
MPEG Layer 2/3, AAC Audio Decoder,  
G.729 Annex A Codec  
In MPEG 1 (ISO 11172-3), three hierarchical layers of  
compression have been standardized. The most  
sophisticated and complex, layer 3, allows compres-  
sion rates of approximately 12:1 for mono and stereo  
signals while still maintaining CD audio quality. Layer 2  
(widely used, e.g., in DVD) achieves a compression of  
8:1 without significant losses in audio quality.  
Release Note: Revision bars indicate significant  
changes to the previous edition. This data sheet  
applies to the MAS 35x9F version B4.  
1. Introduction  
The MAS 35x9F supports the “Advanced Audio Cod-  
ing” (AAC) that is defined as a part of MPEG 2. AAC  
provides compression rates up to 16:1. It defines sev-  
eral profiles for different applications. This IC decodes  
the “low complexity profile” that is especially optimized  
for portable applications.  
The MAS 35x9F is a single-chip, low-power MPEG  
layer 2/3 and MPEG2-AAC audio stereo decoder. It  
also contains the G.729 Annex A speech compression  
and decompression technology for use in memory-  
based or broadcast applications. Additional functional-  
ity is achievable via download software (e.g., CELP  
voice decoder, Micronas SC4 (ADPCM) encoder/  
decoder).  
The MAS 35x9F also implements a voice encoder and  
decoder that is compliant to the ITU Standard G.729  
Annex A.  
The MAS 35x9F decoding block accepts compressed  
digital data streams as serial bit streams or in parallel  
format, and provides serial PCM and S/PDIF output of  
decompressed audio. In addition to the signal process-  
ing function, the IC incorporates a high-performance  
stereo D/A converter, headphone amplifiers, a stereo  
A/D converter, a microphone amplifier, and two DC/DC  
converters.  
SC4 is a proprietary Micronas speech codec technol-  
ogy that can be downloaded to the MAS 35x9F, to  
allow recording and playing back speech at various  
sampling rates.  
Thus, the MAS 35x9F provides a true “all-in-one”  
solution that is ideally suited for highly optimized mem-  
ory-based portable music players with integrated  
speech recording and playback function.  
Micronas  
June 30, 2004; 6251-505-1DS  
5
MAS 35x9F  
DATA SHEET  
1.1. Features  
Hardware Features  
Two independent embedded DC/DC converters,  
(e.g., for DSP and flash RAM supply)  
Firmware  
– MPEG 1/2 layer 2 and layer 3 decoder  
– Low DC/DC converter start-up voltage (0.9 V)  
– DC converter efficiency up to 95%  
– Battery voltage monitor  
– Extension to MPEG 2 layer 3 for low sampling rates  
(“MPEG 2.5”)  
– Extraction of MPEG Ancillary Data  
– Low supply voltage down to 2.2 V  
– MPEG 2 AAC decoder (low-complexity profile)  
– Low power dissipation, e.g., 87 mW  
– Micronas G.729 Annex A speech compression and  
decompression  
(128kBit/s, 44.1 kHz, Headphone playback)  
– High-performance RISC DSP core  
– On-chip crystal oscillator  
– Master or slave clock operation  
– Adaptive bit rates (bit rate switching)  
– Hardware power management and power-off func-  
tions  
– Intelligent power management (processor clock is  
dependent on sampling frequencies)  
– Microphone amplifier  
– SDMI-compliant security technology  
– Stereo channel mixer  
– Stereo A/D converter for FM/AM-radio and speech  
input  
– Bass, treble, and loudness function  
– Micronas Bass (MB)  
– CD quality stereo D/A converter  
– Headphone amplifier  
– Automatic Volume Control (AVC)  
– Noise and power-optimized volume  
– External clock or crystal frequency of 13...28 MHz  
– Standby current < 10 µA  
Interfaces  
Two serial asynchronous interfaces for bit streams  
and uncompressed digital audio  
– Parallel handshake bit stream input  
2
– Serial audio output via I S and related formats  
– S/PDIF data input and output  
2
– Controlling via I C interface  
1.2. Features of the MAS 35x9F Family  
Feature  
3509  
X
3519  
X
3529  
3539  
3549 3559  
Layer 3 Decoder  
G.729 Encoder/Decoder  
AAC Decoder  
X
X
X
X
X
X
X
X
6
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
1.3. Application Overview  
The following block diagram shows an example appli-  
cation for the MAS 35x9F in a portable audio player  
device. Besides a simple controller and the external  
flash memories, all required components are inte-  
grated in the MAS 35x9F. The MAS 35x9F supports  
both speech and radio quality audio encoding, as well  
as compressed-audio decoding tasks.  
Fig. 1–1 depicts a portable power-optimized audio  
application. The two embedded DC/DC converters of  
the MAS 35x9F generate optimum power supply volt-  
ages for the DSP core and also for state-of-the art  
flash memories that typically require 2.7 to 3.3 V sup-  
ply. The performance of the DC/DC converters  
reaches efficiencies of up to 95%.  
Portable Digital Music Player  
MAS 35x9F  
optional  
line in  
Audio  
baseband  
features  
D/A  
A/D  
DSP Core  
MP3  
AAC  
G.729  
Microphone  
amplifier  
Headphone  
Headphone  
amplifier  
Volume  
Optional  
SC4  
optional  
digital in  
Downloads  
digital out  
S/PDIF and serial  
S/PDIF  
or  
serial  
Crystal  
Osc./PLL  
Battery  
Voltage  
Monitor  
2
I C  
DC/DC1  
DC/DC2  
System clock  
e.g. 2.2 V e.g. 3.0 V  
e.g. 1.0 V  
2
I C  
Display  
µC  
Keyboard  
PC Connector  
Fig. 1–1: Example of an application for the MAS 35x9F in a portable audio player device  
Micronas  
June 30, 2004; 6251-505-1DS  
7
MAS 35x9F  
DATA SHEET  
2. Functional Description  
2.1. Overview  
2.2. Architecture of the MAS 35x9F  
The hardware of the MAS 35x9F consists of a high-  
performance RISC Digital Signal Processor (DSP),  
and appropriate interfaces. A hardware overview of the  
IC is shown in Fig. 2–1.  
The MAS 35x9F is intended for use in portable con-  
sumer audio applications. It receives parallel or serial  
data streams and decodes MPEG Layer 2 and 3  
(including the low sampling frequency extensions) and  
MPEG 2 AAC. A low bit-rate speech codec, compliant  
to the ITU Standard G.729 Annex A, is integrated.  
Additional downloadable software modules (SDMI,  
other audio/speech encoders/decoders) are available  
on request.  
2.3. DSP Core  
The internal processor is a dedicated DSP for  
advanced audio applications.  
Mic. Input  
(incl. Bias)  
Audio Codec  
1
2
2
Audio  
2
Output  
Audio  
Proc.  
Line Input  
A/D  
MIX  
D/A  
DSP Core  
Serial  
S/PDIF Input 1  
S/PDIF Input 2  
ALU  
MAC  
Audio  
(I2S, SDO)  
Accumulators  
ROM  
Serial Audio  
(I2S, SDI)  
S/PDIF  
Output  
Serial Audio  
(stream, SDIB)  
Control  
V
BAT  
Volt.  
Mon.  
2
I C  
DCCF  
DCFR  
DSP  
2
D0  
D1  
I C  
control  
Interface  
Codec  
Registers  
V1  
V2  
Div.  
Parallel  
I/O Bus  
(PIO)  
Div.  
CLKO  
Xtal  
18.432 MHz  
PLL  
Synth.  
Osc.  
Scaler  
÷2  
Synthesizer  
Clock  
Fig. 2–1: The MAS 35x9F architecture  
8
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2.3.1. RAM and Registers  
selected, the Layer 2, Layer 3 or AAC bit stream is rec-  
ognized and decoded automatically.  
The DSP core has access to two RAM banks denoted  
D0 and D1. All RAM addresses can be accessed in a  
20-bit or a 16-bit mode via I C bus. For fast access of  
To add/remove MPEG layers while running in MPEG  
decoding mode (e.g. Layer 2, Layer 3 (0x0c) to  
Layer 2, Layer 3, AAC (0x1c)), the application selec-  
tion has to be reset before writing the new value.  
2
internal DSP states the processor core has an address  
space of 256 data registers which also can be  
2
accessed via I C bus. For more details, please refer to  
Section 3.3. on page 27.  
For general control purposes, the operation system  
provides a set of I C instructions that give access to  
2
internal DSP registers and memory areas.  
2.3.2. Firmware and Software  
An auxiliary digital volume control and mixer matrix is  
applied to the digital stereo audio data. This matrix is  
capable of performing the balance control and a sim-  
ple kind of stereo basewidth enhancement. All four  
factors LL, LR, RL, and RR are adjustable, please  
refer to Fig. 3–3 on page 44.  
2.3.2.1. Internal Program ROM and Firmware,  
MPEG-Decoding  
The firmware implemented in the program ROM of the  
MAS 35x9F provides MPEG 1/2 Layer 2, MPEG 1/2/  
2.5 Layer 3 and MPEG 2 AAC-decoding as well as a  
G.729 encoder and decoder.  
2.3.2.2. Program Download Feature  
The DSP operating system starts the firmware in the  
“Application Selection Mode”. By setting the appropri-  
ate bit in the Application Select memory cell (see  
Table 3–8 on page 32), the MPEG audio decoder or  
the G.729 Codec can be activated.  
The standard functions of the MAS 35x9F can be  
extended or substituted by downloading up to  
4 kWords (1 Word = 20 bits) of program code and  
additionally up to 4 kWords of coefficients into the  
internal RAM.  
The MPEG decoder provides an automatic standard  
detection mode. If all MPEG audio decoders are  
SDI  
PIO  
Encoder  
Audio  
Proc.  
LINE IN  
MIC IN  
OUT  
A/D  
MIX  
D/A  
Fig. 2–2: Encoder signal flow  
PIO  
DSP  
Volume  
Matrix  
S/PDIF  
SDO  
Decoder  
SDIB  
Audio  
Proc.  
LINE IN  
MIC IN  
OUT  
A/D  
MIX  
D/A  
Fig. 2–3: Decoder signal flow  
Micronas  
June 30, 2004; 6251-505-1DS  
9
MAS 35x9F  
DATA SHEET  
2.4. Audio Codec  
2.4.2.2. Micronas Bass (MB)  
A sophisticated set of audio converters and sound fea-  
tures has been implemented to comply with various  
kinds of operating environments that range up to high-  
end equipment (see Fig. 2–4).  
The Micronas Bass system (MB) was developed to  
extend the frequency range of loudspeakers or head-  
phones below the cutoff frequency of the speakers.  
Apart from dynamically amplifying the low-frequency  
bass signals, the MB exploits the psycho-acoustic phe-  
nomenon of the ‘missing fundamental’. Adding har-  
monics of the frequency components below the cutoff  
frequency gives the impression of actually hearing the  
low frequency fundamental, while at the same time  
retaining the loudness of the original signal. Due to the  
parametric implementation of the MB, it can be cus-  
tomized to create different bass effects and adapted to  
Mic-In  
Mic-Amplifier incl. Bias  
Mono  
A
D
D
Line-In  
A
various  
loudspeaker  
characteristics  
(see  
Section 3.4.4. and Table 3–16).  
Mixer  
Q-peak  
Mono/Stereo  
AVC  
2.4.2.3. Automatic Volume Control (AVC)  
Q-peak  
In a collection of tracks from different sources fairly  
often the average volume level varies. Especially in a  
noisy listening environment the user must adjust the  
volume to comfortably enjoy listening. The Automatic  
Volume Correction (AVC) solves this problem by  
equalizing the volume level.  
Bass/Treble  
Audio  
Codec  
Loudness  
MB  
Right invert  
D
D
A
Volume  
Balance  
To prevent clipping, the AVC's gain decreases quickly  
in dynamic boost conditions. To suppress oscillation  
effects, the gain increases rather slowly for low level  
inputs. The decay time is programmable by means of  
the AVC register (see Table 3–16 on page 46).  
Output  
A
Fig. 2–4: Signal flow block diagram of Audio Codec  
For input levels of -18 dBr to 0 dBr, the AVC maintains  
a fixed output level of -9 dBr. Fig. 2–5 shows the AVC  
output level versus its input level. For volume and  
baseband registers set to 0 dB, a level of 0 dBr corre-  
sponds to full scale input/output.  
2.4.1. A/D Converter and Microphone Amplifier  
A pair of A/D converters is provided for recording or  
loop-through purposes. In addition, a microphone  
amplifier including voltage supply function for an elec-  
tret type microphone has been integrated.  
AVC  
output level  
dBr  
off  
AVC  
on  
2.4.2. Baseband Processing  
9  
The several baseband functions are applied to the dig-  
ital audio signal immediately before D/A conversion.  
15  
21  
2.4.2.1. Bass, Treble, and Loudness  
input level  
dBr  
30  
24  
18  
12  
6  
0
+6  
Standard baseband functions such as bass, treble,  
and loudness are provided (refer to Table 3–16 for  
details).  
Fig. 2–5: Simplified AVC characteristics  
2.4.2.4. Balance and Volume  
To minimize quantization noise, the main volume con-  
trol is automatically split into a digital and an analog  
part. The volume range is 114...+12 dB with an addi-  
tional mute position. A balance function is provided.  
10  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2.4.3. D/A Converters  
2.5.1. DSP Clock  
One pair of Micronas’ unique multibit sigma-delta D/A  
converters is used to convert the audio data with high  
linearity and a superior S/N. In order to attenuate high-  
frequency noise caused by noise-shaping, internal  
low-pass filters are included. They require additional  
external capacitors between pins FILTx and OUTx  
(see Section 5.1. on page 89).  
The DSP clock has a separate divider. In order to  
reduce the power consumption, it is set to the lowest  
acceptable rate of the synthesizer clock which is capa-  
ble to allow the processor core to perform all tasks.  
2.5.2. Clock Output At CLKO  
If the DSP or audio codec functions are enabled  
2
2.4.4. Output Amplifiers  
(bits[11] or [10] in the Control Register at I C subad-  
dress 6A ), the reference clock at pin CLKO is  
hex  
The integrated output amplifiers are capable of directly  
driving stereo headphones or loudspeakers of 16 to  
32 impedance via 22 series resistors. If more out-  
put power is required, the right output signal can be  
inverted and a single loudspeaker can be connected  
as a bridge between pins OUTL and OUTR. In this  
case, the source should be set to mono for optimized  
power.  
derived from the synthesizer clock.  
Dependent on the sample rate of the decoded signal a  
scaler is applied which automatically divides the clock-  
out by 1, 2, or 4, as shown in Table 2–1. An additional  
division by 2 may be selected by setting bit[17] of the  
OutClkConfig memory cell (see Table 3–8 on  
page 32). The scaler can be disabled by setting bit[8]  
of this cell.  
The controlling at OutClkConfig is only possible as  
long as the DSP is operational (bit[10] of the Control  
Register). Settings remain valid if the DSP is disabled  
by clearing bit[10].  
MASF  
DAC  
OUTL  
DAC  
OUTR  
R 32 Ω  
Table 2–1: Settings of bits[8] and [17] in OutClkConfig  
and resulting CLKO output frequencies  
Fig. 2–6: Bridge operation mode  
Output Frequency at CLKO/MHz  
2.5. Clock Management  
Synth.  
Clock bit[8]=0, bit[17]=0  
fs/kHz bit[8]=1  
Scaler On  
Scaler Plus  
Extra Division  
bit[8]=0, bit[17]=1  
The MAS 35x9F is driven by a single crystal-controlled  
clock with a frequency of 18.432 MHz. It is possible to  
drive the MAS 35x9F with other reference clocks. In  
this case, the nominal crystal frequency must be writ-  
ten into memory location D0:348. The crystal clock  
acts as a reference for the embedded synthesizer that  
generates the internal clock.  
48  
24.576  
24.576  
12.288  
512fs  
256fs  
44.1  
32  
22.5792  
22.5792  
11.2896  
768fs  
512fs  
24.576 384fs  
12.288  
6.144  
5.6448  
6.144  
3.072  
2.8224  
3.072  
24.576  
24  
12.288  
For compressed audio data reception, the MAS 35x9F  
may act either as the clock master (Demand Mode) or  
as a slave (Broadcast Mode) as defined by bit[1] in  
IOControlMain memory cell (see Table 3–8 on  
page 32). In both modes, the output of the clock syn-  
thesizer depends on the sample rate of the decoded  
data stream as shown in Table 2–1.  
256fs  
22.05  
16  
22.5792  
24.576  
11.2896  
768fs  
512fs  
12.288 384fs  
12  
6.144  
256fs  
11.025 22.5792  
24.576 768fs  
5.6448  
In the BROADCAST MODE (PLL on), the incoming  
audio data controls the clock synthesizer via a PLL.  
8
6.144  
384fs  
In the DEMAND MODE (PLL off) the MAS 35x9F acts  
as the system master clock. The data transfer is trig-  
gered by a demand signal at pin EOD.  
Micronas  
June 30, 2004; 6251-505-1DS  
11  
MAS 35x9F  
DATA SHEET  
2.6. Power Supply Concept  
When the audio codec is enabled, the switching fre-  
quency of the converters is synchronised to the audio  
codec clock to avoid interferences into the audio band.  
The actual switching frequency can be selected via the  
I C-interface between 300 kHz and 580 kHz (for  
details see DCFR Register in Table 3–3 on page 24).  
The MAS 35x9F was designed for minimal power dis-  
sipation. In order to optimize the battery management  
in portable players, two DC/DC converters were imple-  
mented to supply the complete portable audio player  
with regulated voltages.  
2
In the PFM operation mode, the switching frequency is  
controlled by the converters themselves. It will be just  
high enough to service the output load, thus resulting  
in the best possible efficiency at low current loads. The  
PFM mode does not need a clock signal from the crys-  
tal oscillator. If both converters do not use the PWM-  
mode, the crystal clock will be shut down as long it is  
not needed by other internal blocks.  
2.6.1. Power Supply Regions  
The MAS 35x9F has five power supply regions.  
The VDD/VSS pin pair supplies all digital parts includ-  
ing the DSP core, the XVDD/XVSS pin pair is con-  
nected to the digital signal pin output buffers, the  
AVDD0/AVSS0 supply is for the analog output amplifi-  
ers, AVDD1/AVSS1 for all other analog circuits like  
clock oscillator, PLL circuits, system clock synthesizer  
and A/D and D/A converters. The I C interface has an  
own supply region via pin I2CVDD. Connecting this to  
the microcontroller supply assures that the I C bus  
always works as long as the microcontroller is alive so  
that the operating modes can be selected.  
The synchronous rectifier bypasses the external  
Schottky diode to reduce losses caused by the diode  
forward voltage providing up to 5% efficiency improve-  
ment. By default, the P-channel synchronous rectifier  
switch is turned on when the voltage at pin(s) DCSOn  
exceeds the converter’s output voltage at pin(s)  
VSENSn, and is turned off when the inductor current  
drops below a threshold. If one or both converters are  
disabled, the corresponding P-channel switch will be  
turned on, connecting the battery voltage to the DC/  
DC converters output voltage at pin VSENSn. How-  
ever, it is possible to individually disable both synchro-  
nous rectifier switches by setting the corresponding  
bits (bit[8] and [0] in DCCF-register).  
2
2
Beside these regions, the DC/DC converters have  
start-up circuits of their own which get their power via  
pin VSENSx.  
2.6.2. DC/DC Converters  
If both DC/DC-converters are off, a high signal may be  
applied at pin DCEN. This will start the converters in  
their default mode (PWM with 3.0 V output voltage).  
The PUP signal will change from low to high when  
both converters have reached their nominal output  
voltage and will return to low when both converters  
output voltages have dropped 200 mV below their pro-  
grammed output voltage. The signal at pin PUP can be  
used to control the reset of an external microcontroller  
(see Section 2.11.2. on page 18 for details on the start-  
up procedure).  
The MAS 35x9F has two embedded high-performance  
step-up DC/DC converters with synchronous rectifiers  
to supply both the DSP core itself and external circuitry  
such as a controller or flash memory at two different  
voltage levels. An overview is given in Fig. 2–7 on  
page 13.  
The DC/DC converters are designed to generate an  
output voltage between 2.0 V and 3.5 V which can be  
2
programmed separately for each converter via the I C  
interface (see table 3.3). Both converters are of boot-  
strapped type allowing to start up from a voltage down  
to 0.9 V for use with a single battery or NiCd/NiMH cell.  
The default output voltages are 3.0 V. Both converters  
are enabled with a high level at pin DCEN and  
If only DC/DC-converter 1 is used, the output of the  
unused converter 2 (VSENS2) must be connected to  
the output of converter 1 (VSENS1) to make the PUP  
signal work properly. Also, if a DC/DC-converter is not  
used (no inductor connected), the pin DCSO must be  
left vacant.  
2
enabled/disabled by the I C interface.  
The MAS 35x9F DC/DC converters feature a constant-  
frequency, low noise pulse width modulation (PWM)  
mode and a low quiescent current, pulse frequency  
modulation (PFM) mode for improved efficiencies at  
low current loads. Both modes – PWM or PFM – can  
2
be selected independently for each converter via I C  
interface. The default mode is PWM.  
In PWM mode the switching frequency of the power-  
MOSFET-switches is derived from the crystal oscilla-  
tor. Switching harmonics generated by constant fre-  
quency operation are consistent and predictable.  
12  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2.6.3. Power Supply Configurations  
If DC/DC converter 1 is used, it must supply the analog  
circuits (pins AVDD0, AVDD1) of the MAS 35x9F.  
One of the following supply configurations may be  
used:  
If only one DC/DC converter is required, DC/DC1 must  
be used. Pin DCSO2 must be left vacant, pin VSENS2  
should be connected to pin VSENS1.  
– Power-optimized solution (recommended opera-  
tion). DC/DC 1 (e.g. 2.2 V) drives the MAS 35x9F  
DSP and the audio circuitry, DC/DC 2 (e.g. 2.7 V)  
supplies controller and flash (see Fig. 2–8 on  
page 14)  
If the DC/DC converters are not used, pin DCEN must  
be connected to VSS, DCSOx must be left vacant.  
– Volume-optimized solution. DC/DC 1 (e.g. 2.7 V)  
supplies controller, flash and MAS 35x9F audio  
parts, DC/DC 2 generates e.g. 2.2 V for the  
MAS 35x9F DSP (see Fig. 2–9 on page 14).  
– Minimized external components. DC/DC 1 operates  
on, e.g., 2.7 V and feeds all components, DC/DC 2  
remains off (see Fig. 2–10 on page 14).  
– External power supply. All components are powered  
by an external source, no DC/DC converter is used  
(see Fig. 2–11 on page 14).  
battery  
voltage  
monitor  
VBAT  
supply  
I2CVDD  
2
to I C interface  
output 1  
DCCF (76  
)
L1  
hex  
DCSO2  
DCSG2  
15  
8
22 µH  
DC/DC  
converter 2  
D1  
VSENS2  
+
C1  
330 µF  
set voltage  
voltage  
monitor  
PUP2  
Start  
DCEN  
PUP  
S
Vin  
+
frequency  
divider  
R
+
system  
or crystal  
clock  
factor  
voltage  
monitor  
3
0
DCFR (77  
)
hex  
DC/DC  
converter 1  
DCCF (76  
)
hex  
7
0
VSS  
Fig. 2–7: DC/DC converter overview. The DCEN input must be connected to pin I2CVDD via start-up push button.  
Micronas  
June 30, 2004; 6251-505-1DS  
13  
MAS 35x9F  
DATA SHEET  
VSENS1  
VSENS1  
Flash  
DC/DC 1  
Flash  
DC/DC1  
on  
on  
e.g. 2.7 V  
I2CVDD  
XVDD  
I2CVDD  
XVDD  
2
2
µC  
µC  
I C  
I C  
DSP  
DSP  
VDD  
VDD  
VSENS2  
VSENS2  
DC/DC 2  
DC/DC2  
on  
off  
AVDD0/1  
AVDD0/1  
Analog  
Parts  
Analog  
Parts  
e.g. 2.7 V  
e.g. 2.2 V  
Fig. 2–8: Solution 1: Power-optimized  
Fig. 2–10: Solution 3: Minimized components  
VSENS1  
VSENS1  
Flash  
DC/DC1  
Flash  
DC/DC1  
on  
off  
I2CVDD  
XVDD  
I2CVDD  
XVDD  
2
2
I C  
µC  
µC  
I C  
DSP  
DSP  
VDD  
VDD  
VSENS2  
VSENS2  
DC/DC2  
DC/DC2  
on  
off  
External  
Supply  
AVDD0/1  
AVDD0/1  
Analog  
Parts  
Analog  
Parts  
e.g. 2.7 V  
e.g. 2.7 V  
e.g. 2.2 V  
Fig. 2–9: Solution 2: Volume-optimized  
Fig. 2–11: Solution 4: External power supply  
14  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2.7. Battery Voltage Supervision  
2.8.4. Multiline Serial Audio Input (SDI, SDIB)  
Independent of the DC/DC converters, a battery volt-  
age supervision circuit (at pin VBAT) is provided. It can  
be programmed to supervise one or two battery cells.  
The voltage is measured by subsequently setting a  
series of voltage thresholds and checking the respec-  
There are two multiline serial audio input interfaces  
(SDI, SDIB) each consisting of the three pins SI(B)C,  
SI(B)I, and SI(B)D. The standard firmware only sup-  
ports SDIB for bit-stream signals, while PCM-inputs  
should be routed to SDI.  
tive comparison result in register 77  
.
hex  
The interfaces can be configured as continuous bit-  
stream or word-oriented inputs. For the MPEG bit  
streams, the word strobe pin SIBI must always be con-  
2.8. Interfaces  
nected to V ; bits must be sent MSB first as created  
by the encoder.  
SS  
2
The MAS 35x9F uses an I C control interface, a serial  
input interface for MPEG bit streams, and digital audio  
2
output interfaces for the decoded audio data (I S and  
If the download software (refer to Download Software  
Supplement I2SPDIF (6251-505-1PDS)) is used, the  
S/PDIF). S/PDIF input is available after Software  
download. A parallel I/O interface (PIO) may be used  
for fast data exchange.  
2
interface acts as an I S-type with SI(B)I as a word-  
strobe for PCM data.  
For the Demand Mode (see Section 2.5.), the signal  
clock coming from the data source must be higher than  
the nominal data transmission rate (e.g. 128 kbit/s).  
Pin EOD is used to interrupt the data flow whenever  
the input buffer of the MAS 35x9F is filled.  
2
2.8.1. I C Control Interface  
For controlling and program download purposes, a  
standard I C slave interface is implemented. A  
2
detailed description of all functions can be found in  
Section 3.  
For controlling details, please refer to Table 3–8 on  
page 32.  
2.8.2. S/PDIF Input Interface  
2.8.5. Multiline Serial Output (SDO)  
The S/PDIF interface receives a one-wire serial bus  
signal. In addition to the signal input pin SPDI1/SPDI2,  
a reference pin SPDIR is provided to support balanced  
signal sources or twisted pair transmission lines.  
The serial audio output interface of the MAS 35x9F is  
a standard I S-like interface consisting of the data  
2
lines SOD, the word strobe SOI and the clock signal  
SOC. It is possible to choose between two standard  
interface configurations (16-bit data words with word  
strobe time offset or 32-bit data words with inverted  
SOI signal).  
The synchronization time on the input signal is  
< 50 ms.  
S/PDIF input is not supported for MPEG 1/2 Layer 2/3  
and MPEG 2 AAC.  
If the serial output generates 32 bits per audio sample,  
only the first 20 bits will carry valid audio data. The  
12 trailing bits are set to zero by default.  
Micronas has developed a download software for flexi-  
ble usage of the S/PDIF I/O and SDI/SDO interfaces. It  
is described in Download Software Supplement  
I2SPDIF (6251-505-1PDS).  
2.8.6. Parallel Input/Output Interface (PIO)  
The parallel interface of the MAS 35x9F consists of the  
8 data lines PI12...PI19 (MSB) and the control lines  
PCS, PR, PRTR, PRTW, and EOD. It can be used for  
data exchange with an external memory, for fast pro-  
gram download and for other special purposes as  
defined by the DSP software.  
2.8.3. S/PDIF Output  
The S/PDIF output of the baseband audio signals is  
implemented at pin SPDO since version B4.  
The channel status bits can be set as described in  
Table 3–8.  
For MPEG data input, the PIO interface is activated by  
setting bits[9] and [8] in D0:346 to 01. For the hand-  
shake protocol, please refer to Section 4.6.2.8. on  
page 80.  
Micronas  
June 30, 2004; 6251-505-1DS  
15  
MAS 35x9F  
DATA SHEET  
2.9. MPEG Synchronization Output  
The signal at pin SYNC is set to ‘1’ after the internal  
decoding for the MPEG header has been finished for  
one frame. The rising edge of this signal can be used  
as an interrupt input for the controller that triggers the  
read out of the control information and ancillary data.  
As soon as the MAS 35x9F has received the SYNC  
reset command (see Section 4.6.2.6. on page 77), the  
SYNC signal is cleared. If the controller does not issue  
a reset command, the SYNC signal returns to ‘0’ as  
soon as the decoding of the next MPEG frame is  
started. MPEG status and ancillary data become  
invalid until the frame is completely decoded and the  
signal at pin SYNC rises again. The controller must  
have finished reading all MPEG information before it  
becomes invalid. The MPEG Layer 2/3 frame lengths  
are given in Table 2–2. AAC has no fixed frame length.  
t
= 24...72 ms  
frame  
Vh  
Vl  
t
read  
Fig. 2–12: Schematic timing of the signal at pin SYNC.  
The signal is cleared at t when the controller has  
read  
issued a Clear SYNC Signal command (see  
Section 4.6.2.6. on page 77). If no command is  
issued, the signal returns to ‘0’ just before the  
decoding of the next MPEG frame.  
Table 2–2: Frame length in MPEG Layer 2/3  
f /kHz  
Frame Length  
Layer 2  
Frame Length  
Layer 3  
s
48  
24 ms  
24 ms  
44.1  
32  
26.12 ms  
36 ms  
26.12 ms  
36 ms  
24  
24 ms  
24 ms  
22.05  
16  
26.12 ms  
36 ms  
26.12 ms  
36 ms  
12  
not available  
not available  
not available  
48 ms  
11.025  
8
52.24 ms  
72 ms  
16  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2.10.MP3 Block Input Mode  
Table 2–3: MP3 bit rate vs. number of interrupts  
A new so-called MP3 block input mode is now avail-  
able which improves the input timing behavior of the  
MAS 35x9F MPEG 1/2/2.5 Layer 3 decoder. The fol-  
lowing sections provide a detailed description of this  
new mode.  
Bit Rate  
[kbit/s]  
Number of Interrupts  
[1/s]  
20  
16  
14  
12  
10  
8
320  
256  
224  
192  
160  
128  
112  
96  
2.10.1.Functional Description of the MP3 Block  
Input Mode  
In MP3 block input, the MAS 35x9F generates a  
demand for new input data each time one of its two  
input buffers becomes available. The controller then  
has to send one block of input data via the serial inter-  
face SDIB. The block size is 2048 byte. The demand is  
signalized via a pulse on the EOD pin.  
7
Fig. 2–13 shows that the number of interrupts per sec-  
ond does not depend on the data rate at the serial  
interface. The maximum input data bit clock rate sup-  
ported by the MAS 35x9F for all MPEG audio sampling  
rates is 1.4 MHz.  
6
80  
5
64  
4
Table 2–3 shows the average number of interrupts per  
second for several typical MP3 bit rates.  
The time period between two interrupts may vary  
slightly even for fixed bit rate input streams due to the  
MP3 specific bit reservoir.  
Interrupt  
Interrupt  
a) SIC  
b) SIC  
Data blocks in a) and b) contain the same number of bytes.  
t
Data block a) is sent with a lower data rate than data block b).  
Fig. 2–13: Data Block Timing Diagram  
Micronas  
June 30, 2004; 6251-505-1DS  
17  
MAS 35x9F  
DATA SHEET  
2.10.2.Setup  
2.11.Default Operation  
Table 3–10 on page 39 lists the new bits, UIC cells,  
and registers to setup the MP3 block input mode.  
This sections refers to the standard operation mode  
“power-optimized solution” (see Section 2.6.3.).  
2.10.2.1.Resync Timeout  
2.11.1. Stand-by Functions  
In case the MP3 decoder loses the synchronization  
(e.g. due to corrupted input data), the output is softly  
muted and a resync loop is entered where the  
MAS 35x9F can be accessed via I C. The loop is left  
and the re-synchronization procedure continues in any  
of the following cases:  
After applying the battery voltage, the system will  
remain stand-by, as long as the DCEN pin level is kept  
low. Due to the low stand-by current of CMOS circuits,  
the battery may remain connected to DCSOn/VSENSn  
at all times.  
2
– the last input data block is fully sent,  
2.11.2.Power-Up of the DC/DC Converters  
and Reset  
– the Validate bit of IOControlMain is set  
(D0:346, bit[0]),  
The battery voltage must be applied to pin DCSOn via  
the 22 µH inductor and, furthermore, to the sense pin  
VSENSn via a Schottky diode (see Fig. 2–7 on  
page 13).  
– the timeout is reached (ResyncTimeout in  
Table 3–10), the end bit is set (this bit will be reset  
by the MAS 35x9F).  
For start-up, the pin DCEN must be connected via an  
external “start” push button to the I2CVDD supply,  
which is equivalent to the battery supply voltage  
(> 0.9 V) at start-up.  
2.10.2.2.Detailed Setup  
After the MPEG audio decoder application has been  
selected, the following settings enable the MP3 block  
decoding process.  
The supply at DCEN must be applied until the DC/DC  
converters have started up (signal at pin PUP) and  
then removed for normal operation.  
Play MP3  
1. Write 0x318 into SerialInConfig.  
2. Write IOControlMain with bit[2] and bit[0] equal one.  
As soon as the output voltage at VSENSn reaches the  
default voltage monitor reset level of 3.0 V, the respec-  
tive internal PUPn bit will be set. When both PUPn bits  
are set, the signal at pin PUP will go high and can be  
used to start and reset the microcontroller.  
3. Write IOControlMain with bit[2] equals zero and  
bit[0] equals one.  
4. Write 0x0 into ResyncTimeout.  
2
Before transmitting any I C commands, the controller  
5. Write 0x0 into SoftMute.  
must issue a power-on reset to pin POR. The separate  
supply pin I2CVDD ensures that the I C interface  
works independently from the DSP or the audio codec.  
Now the desired supply voltage can be programmed at  
2
6. Enable EODQ interrupt for sending data in controller.  
7. Set StartBit in MP3BlockConfig.  
2
8. Send data block of 2048 byte when EODQ goes  
high.  
I C subaddress 76  
.
hex  
Stop/Pause MP3  
1. Write 0x1 into SoftMute.  
2. Clear start bit in MP3BlockConfig.  
18  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2.11.2.1.Important Advice for Turn-on and Operat-  
ing Voltage  
Before the 2.2 V are programmed at the DCDC con-  
verter, DSP+Codec must be enabled.  
Operating and Turn-Off is possible down to 2.2 V.  
The sequence should be similar to the following:  
1. Start DCDC  
2. Set DCDC to 2.5 V  
Turn on DSP+Codec  
Write App-Select memory cell  
Read App-Running Mem cell  
If okay: Set DCDC to 2.2 V  
Set other mem cells  
Set other codec registers  
.....  
3. Demute...send data  
4. Mute...stop data.....loop "3)" "4)"...  
5. Turn off DSP+Codec  
goto "2)"  
etc.....  
The signal at pin PUP will return to low only when both  
2
PUPn flags (I C subaddress 76 ) have returned to  
hex  
zero. Care must be taken when changing both DC/DC  
output voltages to higher values. In this case, both out-  
put voltages are momentarily insufficient to keep the  
PUPn flags up; the resulting dip in the signal at the  
PUP pin may, in turn, reset the microcontroller. To  
avoid this condition, only one DC/DC output voltage  
should be changed at a time. Before modifying the  
second voltage, the microcontroller must wait for the  
PUPn flag of the first voltage to be set again.  
If only DC/DC converter 1 is used, the reference volt-  
age of the second, unused converter should be set to  
a lower value than that of converter 1, and its pin  
VSENS2 should be connected to VDD.  
The operating mode pulse width modulation, or pulse  
2
frequency modulation, are controlled at I C subad-  
2
dress 76 , the operating frequency at I C subad-  
hex  
dress 77  
.
hex  
Micronas  
June 30, 2004; 6251-505-1DS  
19  
MAS 35x9F  
DATA SHEET  
2.11.3. Reset Signal Specification  
After power-up, a reset signal should be applied to the pin POR by the microcontroller as follows:  
V
2.2 V min.  
DD  
V
DD  
POR 2.2 V min.  
POR  
see Note 1  
2
I C access works without  
0.5 µs min. delay  
additional delay from this point  
time  
Fig. 2–14: Reset signal at pin POR  
Note: The slew rate of POR should be as high as pos-  
sible, but must be glitch-free in any case.  
Slew rate typ.: 1 µs for 10% to 90% level transition,  
Slew rate max.: 20 µs for 10% to 90% level transition.  
20  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2.11.4.Control of the Signal Processing  
2.11.5.Start-up of the Audio Codec  
Before starting the DSP, the controller should check  
Before enabling the audio codec, the controller should  
for a sufficient voltage supply (respective flag PUPn at  
check for a sufficient voltage supply (respective flag  
2
2
I C subaddress 76 ). The DSP is enabled by setting  
PUPn at I C subaddress 76 ).  
hex  
hex  
2
the appropriate bit in the Control register (I C subad-  
dress 6A ). The nominal frequency of the crystal  
The audio codec is enabled by setting the appropriate  
hex  
2
oscillator must be written into D0:348. After an initial-  
ization phase of 5 ms, the DSP data registers can be  
bit at the Control register (I C subaddress 6A ). After  
hex  
an initialization phase of 5 ms, the DSP data registers  
2
2
accessed via I C.  
can be accessed via I C. The A/D and the D/A con-  
verters must be switched on explicitly (register  
2
Input and output control is performed via memory loca-  
tion D0:346 and D0:347. The serial input interface  
SDIB is the default. The decoded audio can be routed  
to either the S/PDIF, the SDO and the analog outputs.  
The output clock signal at pin CLKO is defined in  
D0:349.  
00 00  
at I C subaddress 6C ). The D/A convert-  
hex  
hex  
ers may either accept data from the A/D converters or  
the output of the DSP, or a mix of both (register  
1)  
2
00 06  
and 00 07  
at I C subaddress 6C ).  
hex  
hex  
hex  
Finally, an appropriate output volume (register  
2
00 10  
at I C subaddress 6C ) must be selected.  
hex  
hex  
All changes in the D0 memory cells become effective  
synchronously upon setting the LSB of Main I/O Con-  
trol (see Table 3–8 on page 32). Therefore, this cell  
should always be written last.  
2.11.6.Power-Down  
All analog outputs should be muted and the A/D and  
the D/A converters must be switched off (register  
2
The digital volume control (see Table 3–8 on page 32)  
is applied to the output signal of the DSP. The  
decoded audio data will be available at the SPDO out-  
put interface in the next version.  
00 10  
and 00 00  
at I C subaddress 6C ). The  
hex  
hex  
hex  
DSP and the audio codec must be disabled (clear  
DSP_EN and CODEC_EN bits in the Control register,  
I C subaddress 6A ). By clearing both DC/DC  
enable flags in the Control register (I C subaddress  
2
hex  
2
The DSP does not have to be started if its functions  
are not required, e.g., for routing audio through the  
codec part of the IC via the A/D and the D/A convert-  
ers.  
6A ), the microcontroller can power down the com-  
plete system.  
hex  
1) mixer available in version A2 and later; in version  
A1, please use selector 00 0F  
.
hex  
Micronas  
June 30, 2004; 6251-505-1DS  
21  
MAS 35x9F  
DATA SHEET  
3. Controlling  
nibble.  
– Data values in nibbles are always shown in hexa-  
decimal notation.  
2
3.1. I C Interface  
Controlling between the MAS 35x9F and the external  
controller is done via an I C slave interface.  
– A hexadecimal 20-bit number d is written, e.g. as  
2
d = 17C63 , its five nibbles are  
hex  
d0 = 3 , d1 = 6 , d2 = C , d3 = 7 , and  
hex  
hex  
hex  
hex  
hex  
3.1.1. Device Address  
d4 = 1  
.
Variables used in the following descriptions:  
The device addresses are 3C/3E  
(device write  
hex  
I²C address:  
“DW”) and 3D/3F  
(device read, “DR”) as shown in  
hex  
2
DW3C/3E I C device write  
hex  
Table 3–1. The device address pair 3C/3D  
the DVS pin is connected to VSS, the device address  
applies if  
hex  
2
DR3D/3F I C device read  
hex  
DSP core:  
pair 3E/3F  
I2CVDD.  
applies if the DVS pin is connected to  
hex  
data_write68 DSP data write  
hex  
data_read69 DSP data read  
hex  
Codec:  
2
Table 3–1: I C device address  
codec_write6C codec write  
hex  
codec_read6D codec read  
hex  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
W/R  
Bus signals  
S
P
A
N
Start  
Stop  
0
0
1
1
1
1
DVS  
0/1  
ACK = Acknowledge  
NAK = Not acknowledge  
2
I C clock synchronization is used to slow down the  
interface if required.  
2
W Wait = I C clock line is held low  
while the MAS 35x9F is processing  
the current I C command  
2
2
3.1.2. I C Registers and Subaddresses  
Symbols in the telegram examples  
The interface uses one level of subaddresses. The  
MAS 35x9F interface has 7 subaddresses allocated  
for the corresponding I C registers. The registers can  
be divided into three categories as shown in Table 3–  
2.  
<
>
Start Condition  
Stop  
2
dd  
xx  
data bytes  
ignore  
All telegram numbers are hexadecimal, data origi-  
nating from the MAS 35x9F are represented as gray  
letters.  
Example:  
The address 6A  
and task select. The other addresses are used for data  
transfer from/to the MAS 35x9F.  
is used for basic control, i.e. reset  
hex  
<DW 68 dd dd >  
write data to DSP  
<DW 69 <DR dd dd > read data from DSP  
2
The I C registers of the MAS 35x9F are 16 bits wide,  
2
the MSB is denoted as bit[15]. Transmissions via I C  
bus have to take place in 16-bit words (two byte trans-  
fers, MSB sent first); thus, for each register access,  
2
Fig. 3–1 shows I C bus protocols for write and read  
operations of the interface; the read operations require  
an extra start condition and repetition of the chip  
address with the device read command (DR). Fields  
with signals/data originating from the MAS 35x9F are  
marked by a gray background.  
2
two 8-bit data words must be sent/received via I C  
bus.  
3.1.3. Naming Convention  
The description of the various controller commands  
uses the following formalism:  
Note: In some cases the data reading process must  
be concluded by a NAK condition.  
Abbreviations used in the following descriptions:  
a
d
n
o
r
address  
data value  
count value  
offset value  
register number  
don’t care  
3.2. Direct Configuration Registers  
x
The task selection of the DSP and the DC/DC convert-  
ers are controlled in the direct configuration registers  
CONTROL, DCCF, and DCFR.  
– Memory addresses, like D1:89f, are always in hexa-  
decimal notation.  
– A data value is split into 4-bit nibbles which are  
numbered beginning with 0 for the least significant  
22  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2
Table 3–2: I C subaddresses  
3.2.1. Write Direct Configuration Registers  
2
S
DW  
W
A
subaddr.  
A
d3,d2  
A
d1,d0  
A
P
Sub-  
I C-  
Function  
address Register  
(hex) Name  
The write protocol for the direct configuration registers  
only consists of device address, subaddress and one  
16-bit data word.  
Direct Configuration  
6A  
76  
77  
CONTROL  
DCCF  
Controller writes to  
MAS 35x9F CONTROL  
register  
3.2.2. Read Direct Configuration Register  
S
DW  
W
A
subaddr.  
A
S
DR  
W
A
Controller writes to first  
DC/DC configuration reg-  
ister  
d3,d2  
A
d1,d0  
N
P
To check the PUP1 and PUP2 power-up flags, it is  
necessary to read back the content of the direct config-  
uration registers.  
DCFR  
Controller writes to  
second DC/DC configura-  
tion register  
DSP Core Access  
68  
data_write  
Controller writes to  
MAS 35x9F DSP  
69  
data_read  
Controller reads from  
MAS 35x9F DSP  
Codec Access  
6C  
codec_write Controller writes to  
MAS 35x9F codec regis-  
ter  
6D  
codec_read Controller reads from  
MAS 35x9F codec regis-  
ter  
Example: I2C write access  
DW  
S
W
A
A
subaddress  
subaddress  
A
A
high byte data  
A
low byte data  
W
N
A
P
P
2
Example: I C read access  
S
DW  
W
S
DR  
W
A
high byte data  
A
low byte data  
W
W = Wait  
A = Acknowledge (Ack)  
N = Not Acknowledge (NAK)  
S = Start  
SDA  
SCL  
1
0
P
S
P = Stop  
2
Fig. 3–1: Example of an I C bus protocol for the MAS 35x9F (MSB first; data must be stable while clock is high)  
Micronas  
June 30, 2004; 6251-505-1DS  
23  
MAS 35x9F  
DATA SHEET  
Table 3–3: Direct configuration registers  
2
I C Sub-  
address  
(hex)  
Function  
Name  
6A  
Control Register (reset value = 3000  
)
CONTROL  
hex  
bit[15:14]  
Analog supply voltage range  
Code  
00  
01  
AGNDC  
1.1 V  
1.3 V  
recommended for voltage range of AVDD  
2.0 ... 2.4 V (reset)  
2.4 ... 3.0 V  
10  
1.6 V  
3.0 ... 3.6 V  
11  
reserved  
reserved  
Higher voltage ranges permit higher output levels and thus a better signal-to-  
noise ratio.  
bit[13]  
bit[12]  
Enable DC/DC 2 (reset=1)  
Enable DC/DC 1 (reset=1)  
Both DC/DC converters are switched on by default with DCEN = high (1).  
2)  
bit[11]  
bit[10]  
Enable and reset audio codec  
Enable and reset DSP core  
2)  
For normal operation (MPEG-decoding and D/A conversion), both, the DSP  
core and the audio codec have to be enabled after the power-up procedure.  
The DSP can be left off if an audio signal is routed from the analog inputs to  
the analog outputs (set bit[15] in codec register 00 0F ). The audio codec  
hex  
can be left off if the DSP uses digital inputs and outputs only.  
bit[9]  
bit[8]  
Reset codec  
Reset DSP core  
bit[7]  
Enable crystal input clock divider of 1.5  
(extended range up to 28 MHz)  
1)  
bit[6:0]  
Reserved, must be set to zero  
1)  
refer to Section 4.6.3. on page 81  
refer to Section 2.11.2.1.  
2)  
24  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Table 3–3: Direct configuration registers, continued  
2
I C Sub-  
address  
(hex)  
Function  
Name  
76  
DCCF Register (reset = 5050  
)
DCCF  
hex  
DC/DC Converter 2  
bit[15]  
PUP2: Voltage monitor 2 flag (readback)  
2)  
bit[14:11]  
Converter 2 output voltage with respect to VREF  
Code  
Nominal  
set level  
reset level  
output volt. of PUP2  
of PUP2  
3.3 V  
3.2 V  
3.1 V  
3.0 V  
2.9 V  
2.8 V (reset)  
2.7 V  
2.6 V  
2.5 V  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
0111  
0110  
0101  
3.5 V  
3.4 V  
3.3 V  
3.2 V  
3.1 V  
3.0 V  
2.9 V  
2.8 V  
2.7 V  
2.6 V  
2.5 V  
2.4 V  
2.3 V  
2.2 V  
3.4 V  
3.3 V  
3.2 V  
3.1 V  
3.0 V  
2.9 V  
2.8 V  
2.7 V  
2.6 V  
2.5 V  
2.4 V  
2.3 V  
2.2 V  
2.1 V  
2.4 V  
2.3 V  
2.2 V  
2.1 V  
1)  
0100  
0011  
0010  
1)  
1)  
2.0 V  
bit[10]  
Mode  
1
0
pulse frequency modulation (PFM)  
pulse width modulation (PWM) (reset)  
bit[9:8]  
Reserved, must be set to zero  
The DC/DC converters are up-converters only. Thus, if the battery voltage is  
higher than the selected nominal voltage, the output voltage will exceed the  
nominal voltage.  
DC/DC Converter 1  
bit[7]  
PUP1: Voltage monitor 1 flag (readback)  
bit[6:3]  
Converter 1 output voltage at VSENS1 with respect to VREF  
(see bits 14 to 11)  
2)  
bit[2]  
Mode  
1
0
pulse frequency modulation (PFM)  
pulse width modulation (PWM) (reset)  
bit[1:0]  
Reserved, must be set to zero  
Note, that the reference voltage for DC/DC converter 1 is derived from the  
main reference source supplied via pin AVDD1. Therefore, if this DC/DC con-  
verter is used, its output must be connected to the analog supply.  
The DC/DC converters are up-converters only. Thus, if the battery voltage is  
higher than the selected nominal voltage, the output voltage will exceed the  
nominal voltage.  
1)  
refer to Section 4.3.3. on page 60  
refer to Section 2.11.2.1.  
2)  
Micronas  
June 30, 2004; 6251-505-1DS  
25  
MAS 35x9F  
DATA SHEET  
Table 3–3: Direct configuration registers, continued  
2
I C Sub-  
address  
(hex)  
Function  
Name  
77  
DCFR Register (reset = 00  
)
DCFR  
hex  
Battery Voltage Monitor  
bit[15]  
Comparison result (readback)  
1
0
input voltage at pin VBAT above defined threshold  
input voltage at pin VBAT below defined threshold  
bit[14]  
Number of battery cells  
0
1
1 cell (range 0.8...1.5 V) (reset)  
2 cells (range 1.6...3.0 V)  
bit[13:10]  
Voltage threshold level  
1 cell  
2 cells  
3.0 V  
2.9 V  
1111  
1110  
...  
1.5  
1.45  
0010  
0001  
0000  
0.85  
0.8  
1.7 V  
1.6 V  
battery voltage supervision off (reset)  
bit[9:8]  
Reserved, must be set to 0  
The result is stable 1 ms after enabling. The setup time for switching between  
two thresholds is negligibly small.  
For power management reasons, the battery voltage monitor should be  
switched off by setting bit[13:10] to zero when the measurement is completed.  
DC/DC Converter Frequency Control (PWM)  
bit[7:4]  
bit[3:0]  
Reserved, must be set to 0  
Frequency of DC/DC converter  
Reference: 24.576  
22.5792  
18.432 MHz  
297.3 kHz  
307.2 kHz  
317.8 kHz  
329.1 kHz  
341.3 kHz  
354.5 kHz  
368.6 kHz  
384.0 kHz (reset)  
400.7 kHz  
418.9 kHz  
438.9 kHz  
460.8 kHz  
485.1 kHz  
512.0 kHz  
542.1 kHz  
576.0 kHz  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
315.1  
323.4  
332.1  
341.3  
351.1  
361.4  
372.4  
384.0  
396.4  
409.6  
423.7  
438.9  
455.1  
472.6  
491.5  
512.0  
289.5  
297.1  
305.1  
313.6  
322.6  
332.0  
342.1  
352.8  
364.2  
376.3  
389.3  
403.2  
418.1  
434.2  
451.6  
470.4  
2
If the audio codec is not enabled (bit[11] of the CONTROL register at I C-sub-  
address 6A is zero), the clock for the DC/DC converters is directly derived  
hex  
from the crystal frequency (nominal 18.432 MHz). Otherwise, the synthesizer  
clock is used as the reference (please refer to the respective column in  
Table 2–1 on page 11).  
26  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
3.3. DSP Core  
S
DW  
W
A
data_write  
A
Code,...  
A
...,...  
A
...  
3.3.1. Access Protocol  
Fig. 3–2: General core access protocol  
2
The I C data register is used to communicate with the  
internal firmware of the MAS 35x9F. It is readable  
(subaddress “data_read”) and writable (subaddress  
“data_write”) and also has a length of 16 bits. The data  
transfer is done with the most significant bit (m) first.  
Table 3–5 gives an overview over the different com-  
mands which the DSP Core receives via the I C data  
register. The “Code” is always the first data nibble  
transmitted after the “data_write” subaddress byte. A  
second auxiliary code nibble is used for the short  
memory (16-bit) access commands.  
2
Table 3–4: Data register bit assignment  
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00  
2
The MAS 35x9F firmware scans the I C interface peri-  
m
l
odically and checks for pending or new commands.  
The commands are then executed by the DSP during  
its normal operation without any loss or interruption of  
the incoming data or outgoing audio data stream.  
However, due to some time critical firmware parts, a  
certain latency time for the response has to be  
expected at the locations marked with a “W” (= wait).  
The theoretical worst case response time does not  
exceed 4 ms. However, the typical response time is  
less than 0.5 ms.  
A special command language is used that allows the  
controller to access the DSP registers and RAM cells  
and thus monitor internal states, set the parameters for  
the DSP firmware, control the hardware, and even pro-  
vide a download of alternative software modules. The  
DSP commands consist of a “Code” which is sent to  
2
the I C data register together with additional parame-  
ters.  
2
Due to the 16-bit width of the I C data register, all  
actions transmit telegrams with multiples of 16 data  
bits.  
Table 3–5: Basic controller command codes  
Code Command  
(hex)  
Function  
0...3  
Run  
Start execution of an internal program. Run with start address 0 means  
freeze the operating system.  
5
6
7
a
b
c
d
e
f
Read Ancillary Data  
Fast Program Download  
Read IC Version  
The controller reads a block of MPEG Ancillary Data from the MAS 35x9F  
The controller downloads custom software via the PIO interface  
The controller reads the version information of the IC  
The controller reads an internal register of the MAS 35x9F  
The controller writes an internal register of the MAS 35x9F  
The controller reads a block of the DSP memory  
Read from Register  
Write to Register  
Read D0 Memory  
Read D1 Memory  
Write D0 Memory  
Write D1 Memory  
The controller reads a block of the DSP memory  
The controller writes a block of the DSP memory  
The controller writes a block of the DSP memory  
Micronas  
June 30, 2004; 6251-505-1DS  
27  
MAS 35x9F  
DATA SHEET  
3.3.2. Data Formats  
The entry point of the default software will be accessed  
automatically after a reset, thus issuing a Run or  
Freeze command is only necessary for starting down-  
loaded software or special program modules which are  
not part of the standard set.  
The internal data word size is 20 bits. All RAM-  
addresses can be accessed in a 20-bit mode via I C  
bus. Because of the 16-bit width of the I C data regis-  
ter the full transfer of all 20 bits requires two 16-bit I C  
2
2
2
words. Some commands only access the lower 16 bits  
of a cell. For fast access of internal DSP states the  
processor core also has an address space of 256 data  
registers.  
3.3.2.2. Read Register (Code A  
)
hex  
1) send command  
S
DW  
W
A
data_write  
A
a,r1  
A
r0,0  
W
W
A
N
P
P
The internal data format is a 20 bit two’s complement  
denoted “r”. If in some cases a fixed point notation “v”  
is necessary. The conversion between the two forms  
of notation is done as follows:  
2) get register value  
S
DW  
x,x  
W
A
A
data_read  
A
A
S
DR  
W
A
x,d4  
W
d3,d2  
A
d1,d0  
r = v*524288.0+0.5; (1.0 v < 1.0)  
v = r/524288.0; (524288 < r < 524287)  
The MAS 35x9F has an address space of 256 DSP-  
registers. Some of the registers (r = r1,r0 in the figure  
above) are direct control inputs for various hardware  
blocks, others control the internal program flow. In  
Table 3–7, the registers of interest are described in  
detail. In contrast to memory cells, registers cannot be  
accessed as a block but must always be addressed  
individually.  
3.3.2.1. Run and Freeze (Codes 0  
to 3  
)
hex  
hex  
S
DW  
W
A
data_write  
A
a3,a2  
A
a1,a0  
W
A
P
The Run command causes the start of a program part  
at address a = (a3,a2,a1,a0). Since nibble a3 is also  
the command code (see Table 3–5), it is restricted to  
values between 0 and 3. This command is used to  
start alternate code or downloaded code from a RAM-  
area that has been configured as program RAM.  
Example:  
Read the content of register C8  
:
hex  
<DW 68 ac 80>  
<DW 69 <DR xx xd dd dd >  
define register  
and read  
If the start address is 1000  
a < 3FFF  
and the  
hex  
hex  
3.3.2.3. Write Register (Code B  
)
hex  
respective RAM area has been configured as program  
RAM (see Table 3–7 on page 31), the MAS 35x9F  
continues execution with a custom program already  
downloaded to this area.  
S
DW  
W
A
data_write  
A
b,r1  
A
A
r0,d4  
d1,d0  
W
W
A
A
d3,d2  
P
Example 1: Start program execution at address  
The controller writes the 20-bit value (d = d4,d3,d2,  
d1,d0) into the MAS 35x9F register (r = r1,r0). A list of  
registers needed for control purposes is given in Table  
3–7.  
345  
:
hex  
<DW 68 03 45>  
Example 2: Start execution of a downloaded code at  
Example: Writing the value 81234  
into the register  
hex  
address 1000  
:
hex  
with the number AA  
:
hex  
<DW 68 10 00>  
<DW 68 ba a8 12 34>  
Freeze is a special run command with start address 0.  
It suspends all normal program execution. The operat-  
ing system will enter an idle loop so that all registers  
and memory cells can be watched. This state is useful  
for operations like downloading code or contents of  
memory cells because the internal program cannot  
overwrite these values. This freezing will be required if  
alternative software is downloaded into the internal  
RAM of the MAS 35x9F.  
2
Freeze has the following I C protocol:  
<DW 68 00 00>  
28  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
3.3.2.4. Read Memory (Codes C  
and D  
)
hex  
3.3.2.6. Write Memory  
(Codes E and F  
hex  
)
hex  
hex  
The MAS 35x9F has 2 memory areas of 2048 words  
denoted D0 and D1. The memory areas D0 and D1  
The memory areas D0 and D1 can be written by using  
the codes E and F , respectively.  
can be written by using the codes C  
respectively.  
and D  
,
hex  
hex  
hex  
hex  
S
DW  
W
A
data_write  
A
e,0  
A
A
A
A
0,0  
W
W
W
W
A
A
A
A
1) send command (Read D0)  
n3,n2  
a3,a2  
d3,d2  
n1,n0  
a1,a0  
d1,d0  
S
DW  
W
A
data_write  
A
c,0  
A
A
A
0,0  
W
W
W
A
A
n3,n2  
a3,a2  
n1,n0  
a1,a0  
x,x  
x,x  
A
A
x,d4  
W
A
A
P
....repeat for n data values....  
2) get register value  
x,d4  
W
A
d3,d2  
A
d1,d0  
W
A
P
S
DW  
x,x  
W
A
A
data_read  
A
A
S
DR  
W
A
x,d4  
W
d3,d2  
A
d1,d0  
W
W
A
N
With the Write D0/D1 Memory command n 20-bit  
memory cells in D0 can be initialized with new data.  
....repeat for n data values....  
x,x  
A
x,d4  
W
A
d3,d2  
A
d1,d0  
P
Example: Write 80234  
I C protocol:  
to D1:456 has the following  
hex  
2
The Read D0 Memory command gives the controller  
access to all 20 bits of the D0/D1 memory cells. The  
telegram to read 3 words starting at location D1:100 is  
<3a 68 f0 00  
00 01  
write D1 memory  
1 word to write  
start address  
04 56  
<DW 68 d0 00 00 03 01 00>  
<DW 69 <DR xx xd dd dd  
xx xd dd dd xx xd dd dd >  
00 08  
value = 80234  
hex  
02 34>  
3.3.2.7. Short Write Memory  
(Codes E4 and F4  
3.3.2.5. Short Read Memory  
)
hex  
hex  
(Codes C4  
and D4  
)
hex  
hex  
S
DW  
W
A
data_write  
A
A
A
A
e,4  
A
A
A
A
0,0  
W
W
W
W
A
A
A
A
Because most cells in the user interface are only 16  
bits wide, it is faster and more convenient to access  
the memory locations with a special 16-bit mode for  
reading:  
n3,n2  
a3,a2  
d3,d2  
n1,n0  
a1,a0  
d1,d0  
....repeat for n data values....  
1) send command (e.g. Short Read D0)  
A
d3,d2  
A
d1,d0  
W
A
P
S
DW  
W
A
data_write  
A
c,4  
A
A
A
0,0  
W
W
W
A
A
A
n3,n2  
a3,a2  
n1,n0  
a1,a0  
For faster access only the lower 16 bits of each mem-  
ory cell are written. The 4 MSBs of the cell are cleared.  
P
The command uses the same codes E  
and F  
for  
2) get register value  
hex  
hex  
D0/D1 as for the 20-bit command but followed by a 4  
rather than a 0.  
S
DW  
W
A
data_read  
A
S
DR  
W
A
d3,d2  
A
d1,d0  
W
W
A
N
....repeat for n data values....  
3.3.2.8. Clear SYNC Signal  
d3,d2  
A
d1,d0  
P
(Code 5  
)
hex  
This command is similar to the normal 20 bit read com-  
S
DW  
W
A
data_write  
A
5,0  
A
0,0  
W
A
P
mand and uses the same command code C  
and  
hex  
D
for D0 and D1 memory, respectively, however it is  
hex  
followed by a 4  
rather than a 0  
.
After a successful decoding of an MPEG frame the sig-  
nal at pin SYNC rises and thus generates an interrupt  
event for the microcontroller. Issuing this command  
lets the signal at pin SYNC return to ‘0’.  
hex  
hex  
2
Example: Read 16 bits of D1:123 has the following I C  
protocol:  
<DW 68 d4 00  
00 01  
read 16 bits from D1  
1 word to be read  
start address  
01 23  
<DW 69 DR  
dd dd >  
start reading  
and read  
Micronas  
June 30, 2004; 6251-505-1DS  
29  
MAS 35x9F  
DATA SHEET  
3.3.2.9. Default Read  
– Issue a Run command to start program execution at  
entry point of downloaded code  
The Default Read command is the fastest way to get  
information from the MAS 35x9F. Executing the  
Default Read in a polling loop can be used to detect a  
special state during decoding.  
Example for Fast Program Download command:  
Download 5 words starting at D0:800,  
then download 4 words starting at D1:200:  
<DW 68 00 00>  
Freeze  
S
DW  
W
A
data_read  
A
S
DR  
W
A
A
d3,d2  
d1,d0  
W
N
P
<DW 68 b3 b0 03 18>Stop all internal transfers  
<DW 68 b4 30 03 00>  
The Default Read command immediately returns the  
lower 16 bit content of a specific RAM location as  
defined by the pointer D0:ffb. The pointer must be  
loaded before the first Default Read action occurs. If  
the MSB of the pointer is set, it points to a memory  
location in D1 rather than to one in D0.  
<DW 68 b4 b0 00 00>  
<DW 68 b5 30 03 18>  
<DW 68 b6 b0 00 00>  
<DW 68 bb b0 03 18>  
<DW 68 bc 30 03 00>  
<DW 68 b0 60 00 00>  
<DW 68 60 05  
08 00>  
initiate download of 5 words  
start at address D0:800  
Example: For watching D1:123 the pointer D0:ffb must  
be loaded with 8123  
:
hex  
Now transfer 5 20-bit words via the parallel PIO-port:  
<DW 68 e0 00  
00 01  
write to D0 memory  
1 word to write  
start address ffb  
value = 8...  
d4,d3 d2,d1 d0,d4 d3,d2 d1,d0  
d4,d3 d2,d1 d0,d4 d3,d2 d1,d0  
d4,d3 d2,d1 d0,x  
0f fb  
00 08  
01 23>  
...0123  
hex  
<DW 68 60 05  
82 00>  
initiate download of 4 words  
start at address D1:200  
Now the Default Read commands can be issued as  
often as desired:  
Now transfer 4 20-bit words via the parallel PIO-port:  
<DW 69 <DR  
Default Read command  
16 bit content of the  
address as defined by the  
pointer  
dd dd >  
d4,d3 d2,d1 d0,d4 d3,d2 d1,d0  
d4,d3 d2,d1 d0,d4 d3,d2 d1,d0  
<DW 69 <DR dd dd > ... and do it again  
<DW 68 b6 bc 00 00>switch the memory area  
D0:800 ... D0:fff from  
3.3.2.10.Fast Program Download (Code 6  
)
hex  
data to program usage  
<DW 68 10 0a>  
start program execution at  
address D0:100a  
S
DW  
W
A
data_write  
A
6,n2  
A
A
n1,n0  
a1,a0  
W
A
a3,a2  
W
A
P
The Fast Program Download command introduces a  
data transfer via the parallel port. n = n2,n1,n0  
denotes the number of 20-bit data words to be trans-  
ferred, a = a3,a2,a1,a0 gives the start address. The  
data must be organized in two times five nibbles to get  
two words of 20-bit length. If the number n of 20-bit  
data words is odd, the very last word has to be padded  
with one additional nibble.  
3.3.2.11.Serial Program Download  
Program downloads may also be performed via the  
2
I C-interface by using the Write D0/D1 Memory com-  
mands. A similar command sequence as in the Fast  
Program Download (Freeze, stop transfers...) applies.  
The download must be initiated in the following order:  
– Issue Freeze command  
– Stop all DMA-transfers  
– Issue Fast Program Download command  
– Download code via PIO-interface  
– Switch appropriate memory area to act as program  
RAM (register ED  
)
hex  
30  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
3.3.2.12.Read IC Version (Code 7  
)
hex  
0 1  
0
0 2  
(hex)  
Derivate (0..F)  
1) send command  
1
Version character (0 = “A”,.., F = “P”)  
Version number (01..FF)  
S
DW  
W
A
data_write  
A
A
7,0  
A
0,0  
W
A
P
P
2) get version information  
0 2  
S
DW  
W
A
data_read  
S
DR  
W
A
n3,n2  
d3,d2  
A
A
n1,n0  
d1,d0  
W
W
A
N
3.3.3. List of DSP Registers  
The PSelect_Shadow register in Table 3–7 is used to  
switch four RAM areas from data to program usage  
and thus enabling the DSP’s program counter to  
access downloaded program code stored at these  
locations. For normal operation (firmware in ROM),  
this register must be kept to zero.  
With this command the version of the IC is read in two  
16 bit words. The first word n = n3,n2,n1,n0 contains  
the IC’s major number (one nibble for each digit). The  
second word (d = d3,d2,d1,d0) returns the version as  
shown in Table 3–6.  
Table 3–6: Second word of version information  
Note: DSP registers not given in Table 3–7 must not  
be written.  
Bit  
Nibble  
d3  
Content  
15:12  
11:8  
IC family derivate  
Coded character of order  
3.3.4. List of DSP Memory Cells  
d2  
version (add 41  
content of d2 to get ASCII)  
to the  
hex  
Among the user interface control memory cells there  
are some which have a global meaning and some  
which control application specific parts of the DSP  
core. In Table 3–8 and Table 3–9, this is reflected by  
the key words All, MPEG, and G.729.  
7:0  
d1,d0  
Digit of order version  
Example:  
Read the version information for MAS 35x9F, derivate  
0, order version B2:  
<DW 68 70 00  
<DW 69 <DR  
35 09  
send version command  
and read  
MAS 3509F  
derivate 0, version B2  
(see Section 2.2. on page 8)  
01 02 >  
Table 3–7: Program Download registers  
Address  
(hex)  
R/W Function  
Mode  
Default  
(hex)  
Name  
6B  
R/W Configuration of Variable RAM Areas  
Download 0000  
PSelect_Shadow  
Affected RAM area  
bit[19]  
bit[18]  
bit[17]  
bit[16]  
D0:800 ... D0:BFF  
D0:C00 ... D0:FFF  
D1:800 ... D1:BFF  
D1:C00 ... D1:FFF  
For details of program code download please refer to  
Section 3.3.2.10. on page 30.  
Micronas  
June 30, 2004; 6251-505-1DS  
31  
MAS 35x9F  
DATA SHEET  
3.3.4.1. Application Selection and  
Application Running  
3.3.4.2. Application Specific Control  
The configuration of the MPEG Layer 2/3, AAC decod-  
ing and the G.729 codec firmware is done via the con-  
trol memory cells described in Table 3–9. The changes  
applied to any of the control memory cells have to be  
validated by setting bit[0] of memory cell Main I/O Con-  
trol. This bit will be reset automatically after the  
changes have been taken over by the DSP.  
The AppSelect cell is a global user interface configura-  
tion cell, which has to be written in order to start a spe-  
cific application.  
The AppRunning cell is a global user interface status  
cell, which indicates, which application loop is actually  
running.  
The status memory cells in Table 3–11 are used to  
read the decoder status and to get additional MPEG  
bitstream information.  
1. Write “0” to AppSelect  
2. Check AppRunning for “0”  
3. Write value to AppSelect according to Table 3–8  
(determines start time of Application program)  
Note: DSP memory cells not given in Table 3–8 or  
Table 3–9 must not be written.  
4. Apply necessary/wanted control settings  
(D0:346..357)  
Table 3–8: D0 control memory cells: mode selection  
Memory  
Address  
(hex)  
Function  
Name  
D0:34b  
Application Selection  
All AppSelect  
AppSelect is used for selecting an application. This is done by setting the  
appropriate bit to one. It is principally allowed to set more than one bit to one,  
e.g. setting AppSelect to 1C  
will select all MPEG audio decoders. The  
hex  
auto-detection feature will automatically detect the Layer 2, Layer 3, or AAC  
data. Setting bit[0] or bit[1] will make the DSP loop in the OS loop or the Top  
Level loop respectively.  
To add/remove MPEG layers while running in MPEG decoding mode (e.g.  
change from Layer 2, Layer 3 (0C ) to Layer 2, Layer 3, AAC (1C )), the  
hex  
hex  
application selection has to be reset to 00  
before writing the new value.  
hex  
bit[5]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
G.729 Codec  
MPEG AAC Decoder  
MPEG Layer 3 Decoder  
MPEG Layer 2 Decoder  
Top Level  
Operating System  
D0:34c  
Application Running  
All AppRunning  
The AppRunning cell is a global user interface status cell, that indicates which  
application loop is actually running. Prior to writing any of the configuration  
registers or memory cells (except AppSelect), it has to be checked whether  
the appropriate bit(s) in the AppRunning cell is set.  
bit[5]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
G.729 Codec  
MPEG AAC Decoder  
MPEG Layer 3 Decoder  
MPEG Layer 2 Decoder  
Top Level  
Operating System  
32  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Table 3–9: D0 control memory cells  
Memory  
Address  
(hex)  
Function  
Name  
D0:346  
Main I/O Control (reset = 8025  
)
MPEG  
IOControlMain  
hex  
IOControlMain is used for selecting/deselecting the appropriate data input  
interface and for setting up the serial data output interface. In serial input  
mode the coded audio data (Layer 2, Layer 3, AAC) is expected at the serial  
input interface SDIB (default). In the 8-bit-parallel input mode the PIO pins  
PI[19:12] are used.  
bit[15]  
MP3 block input selection  
0: MP3 block input mode OFF  
1: MP3 block input mode ON  
bit[14]  
Invert serial output clock (SOC)  
0 (reset)  
1
do not invert SOC  
invert SOC  
bit[13:12]  
bit[11]  
Reserved, must be set to zero  
Serial data output delay  
0 (reset)  
1
no additional delay (reset)  
additional delay of data related to word strobe  
bit[10]  
Reserved, must be set to zero  
bit[9:8]  
Input Select Main  
00 (reset) serial input at interface B  
01  
10  
11  
parallel input at PIO pins PI[19...12]  
reserved for future use  
reserved for future use  
bit[7:6]  
bit[5]  
Reserved, must be set to zero  
SDO Word Strobe Invert  
0
do not invert  
1 (reset)  
invert outgoing word strobe signal  
bit[4]  
Bits per Sample at SDO  
0 (reset)  
1
32 bits/sample  
16 bits/sample  
bit[3]  
bit[2]  
Reserved, must be set to zero  
Serial data input interface B clock invert (pin SIBC)  
0
not inverted (data latched at rising clock edge)  
incoming clock signal is inverted (data latched at  
falling clock edge)  
1 (reset)  
bit[1]  
bit[0]  
0 (reset)  
1
DEMAND MODE (PLL off, MAS 35x9F is clock  
master)  
BROADCAST MODE (PLL on, clock of MAS 35x9F  
locks on data stream)  
Validate  
0 (reset)  
1
no forced evaluation of control memory cells  
changes in control memory will become effective  
Bit[0] is reset after the DSP has recognized the changes. The controller  
should set this bit after the other D0 control memory cells have been initialized  
with the desired values.  
Micronas  
June 30, 2004; 6251-505-1DS  
33  
MAS 35x9F  
DATA SHEET  
Table 3–9: D0 control memory cells, continued  
Memory  
Address  
(hex)  
Function  
Name  
D0:347  
Interface Status Control (reset = 05  
)
MPEG  
InterfaceControl  
hex  
This control cell allows to enable/disable the data I/O interfaces. In addition,  
the clock of the output data interface interfaces, S/PDIF and SDO, can be set  
to a low-impedance mode.  
bit[6]  
S/PDIF input selection (used for download modules)  
0 (reset)  
1
select S/PDIF input 1  
select S/PDIF input 2  
bit[5]  
Enable/disable S/PDIF output  
0 (reset)  
1
enable S/PDIF output  
S/PDIF output (invalid)  
bit[4]  
bit[3]  
Reserved, must be set to zero  
Enable/disable serial data output SDO  
0 (reset)  
1
SDO valid data  
SDO invalid data  
bit[2]  
Output clock characteristic (SDO and S/PDIF outputs)  
0
low impedance  
high impedance  
1 (reset)  
bit[1]  
bit[0]  
reserved, must be set to zero  
1)  
Enable/Disable SDI  
0
enable  
disable  
1 (reset)  
2
Both digital outputs, S/PDIF and I S, and the D/A converters may use the  
decoded audio independent of each other.  
Changes at this memory address must be validated by setting bit[0] of  
D0:346  
.
hex  
D0:348  
Oscillator Frequency (reset = 18432  
)
All  
OfreqControl  
dec  
bit[19:0]  
oscillator frequency in kHz  
In order to achieve a correct internal operating frequency of the DSP, the nom-  
inal crystal frequency has to be deposited into this memory cell.  
Changes at this memory address must be validated by setting bit[0] of  
D0:346  
.
hex  
1)  
Note: The pins SIC, SII, SID are switched to output mode, if bit [0] = 1 (Reset value).  
34  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Table 3–9: D0 control memory cells, continued  
Memory  
Address  
(hex)  
Function  
Name  
D0:349  
Output Clock Configuration (affects pin CLKO) (reset = 80000  
)
All  
OutClkConfig  
hex  
bit[19]  
CLKO configuration  
0
output clock signal at CLKO  
CLKO is tristate  
1 (reset)  
The CLKO output pin of the MAS 35x9F can be disabled via bit[19].  
bit[18]  
bit[17]  
Reserved, must be set to zero  
Additional division by 2 if scaler is on (bit[8] cleared)  
0 (reset)  
1
oversampling factor 512/768  
oversampling factor 256/384  
bit[16:9]  
bit[8]  
Reserved, must be set to zero  
Output clock scaler  
0 (reset)  
1
set output clock according to audio sample rate  
(see Table 2–1)  
output clock fixed at 24.576 or 22.5792 MHz  
For a list of output frequencies at pin CLKO please refer to Table 2–1.  
bit[7:0] reserved, must be set to zero  
Changes at this memory address must be validated by setting bit[0] of  
D0:346.  
D0:350  
D0:351  
Soft Mute  
MPEG  
SoftMute  
%0 (reset) mute off  
%1  
mute on  
S/PDIF channel status bits category code setting (reset = 8200 ) All  
SpdOutBits  
hex  
Micronas  
June 30, 2004; 6251-505-1DS  
35  
MAS 35x9F  
DATA SHEET  
Table 3–9: D0 control memory cells, continued  
Memory  
Address  
(hex)  
Function  
Name  
D0:34d  
Operation Mode Selection (reset = 0  
)
G.729  
UserControl  
hex  
The register is used to switch between basic G.729 operation modes.  
bit[19:7]  
bit[6]  
Reserved, set to 0  
Page headers  
0
1
enable  
disable  
If the page headers bit is 0, a header frame is transfered before each page of  
50 data frames. If the header bit is 1, all the frames are G.729 data frames.  
Please (see Section 3.3.8. on page 44).  
bit[5:4]  
Decoding speed  
00  
01  
10  
11  
8 kHz (normal)  
6 kHz (slow)  
12 kHz (fast)  
not allowed  
The recording (encoding) is always done with a sampling rate of 8 kHz. During  
decoding this control can be used to speed up or slow down the playback.  
bit[3]  
bit[2]  
Reserved, set to 0  
Pause encoder/decoder  
0
1
normal operation  
pause  
If the pause bit is set, the processing continues until the current page is fin-  
ished and then en-/decoding is paused. The pause mode lasts until the pause  
bit is cleared again or the mode is set to 0.  
bit[1:0]  
Mode  
00  
idle  
01  
10  
11  
decode  
not allowed  
encode  
To switch to encoder operation mode, UserControl has to be set to 3 . Then  
hex  
50 frames are encoded and sent via the PIO interface. This is repeated until  
the UserControl register is changed. If the transmission of headers is enabled,  
each page of 50 frames is preceeded by a header frame as shown in Fig. 3–4  
on page 44.  
To switch to decoder operation mode, UserControl has to be set to 1 . For  
hex  
decoding with slow speed, UserControl must be 11 , for decoding with fast  
hex  
speed it must be 21 . Then the decoder is requesting several frames via the  
hex  
PIO interface to fill its internal buffer. If enough data is available, 50 frames are  
decoded. This is repeated until the UserControl register is changed. If the  
transmission of headers is enabled, a header frame has to be sent before  
each page of 50 frames (see Fig. 3–4 on page 44).  
To switch off the encoder or decoder, UserControl has to be set to 0 . Then  
hex  
the encoding/decoding and sending/receiving of frames continues until the  
end of the current page and the operation mode is set to stop.  
36  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Table 3–9: D0 control memory cells, continued  
Memory  
Address  
(hex)  
Function  
Name  
2
D0:34e  
I S Audio Input/Output Interface (reset = 60  
)
G.729  
SDISDOConfig  
hex  
bit[19:15]  
bit[14]  
Reserved, set to 0  
Output clock signal  
0
1
standard signal  
inverted signal  
bit[13]  
bit[12]  
Reserved, set to 0  
Additional delay of input data related to  
word strobe  
0
1
no delay  
1 bit delay  
bit[11]  
Additional delay of output data related to  
word strobe  
0
1
no delay  
1 bit delay  
bit[10:7]  
bit[6]  
Reserveded, set to 0  
Input word strobe signal  
0
1
standard signal  
inverted signal  
bit[5]  
bit[4]  
Output word strobe signal  
0
1
standard signal  
inverted signal  
Wordlength  
0
1
32 bits/sample  
16 bits/sample  
This setting affects the wordlength on the SDI and SDO interfaces.  
bit[3]  
Input clock signal  
0
1
standard signal  
inverted signal  
bit[2:0]  
Reserved, set to 0  
Changes become effective when the codec is started or the mode is changed  
by writing to the UserControl memory cell.  
Micronas  
June 30, 2004; 6251-505-1DS  
37  
MAS 35x9F  
DATA SHEET  
Table 3–9: D0 control memory cells, continued  
Memory  
Address  
(hex)  
Function  
Name  
D0:34f  
Interface Status Control (reset = 25  
)
G.729  
g729_InterfaceCont  
rol  
hex  
This control cell is used to enable/disable interfaces in G.729 mode.  
bit[6],[4]  
bit [5]  
reserved, must be set to zero  
reserved, must be set to one  
bit[3]  
Enable/disable serial data output SDO  
0 (reset)  
1
SDO valid data  
SDO invalid data  
bit[2]  
Output clock characteristic (SDO and S/PDIF outputs)  
0
low impedance  
high impedance  
1 (reset)  
bit[1]  
bit[0]  
reserved, must be set to zero  
1)  
Enable/Disable SDI  
0
enable  
disable  
1 (reset)  
D0:352  
D0:353  
D0:354  
D0:355  
D0:356  
Volume input control: left gain  
Volume input control: right gain  
(reset=80000  
)
G.729  
G.729  
All  
in_L  
hex  
(reset=0  
)
in_R  
hex  
Volume output control: left left gain (reset=80000  
)
out_LL  
out_LR  
out_RL  
out_RR  
hex  
Volume output control: left right gain (reset=0  
)
All  
hex  
Volume output control: right left gain(reset=0  
)
All  
hex  
D0:357  
Volume control: right right gain (reset=80000  
)
All  
hex  
1)  
Note: The pins SIC, SII, SID are switched to output mode, if bit [0] = 1 (Reset value).  
38  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Table 3–10: MP3 block input mode user interface (all addresses in hex notation)  
Addr.  
Name  
Description  
bit[15] MP3 block input select  
D0:346 IOControlMain  
0: MP3 block input mode OFF  
1: MP3 block input mode ON  
works for input at serial input interface B  
(bit[9:8] of IOControlMain = 00  
)
bin  
Reset value is 0x8024 (see Table 3–2).  
R0:68  
MP3BlockConfig  
bit[17]  
data end bit  
Disables resync timeout. Should be set by the controller at the end of  
an input file (file end, stop, or pause) when the last requested data  
block has been fully sent.  
0: resync timeout enabled  
1: resync timeout disable no wait for end of block  
bit[16]  
bit[15]  
reserved, set to “0”  
start data request  
0: MP3 decoder does not send data requests (wait loop)  
1: MP3 decoder in operational mode, new input data will be requested  
via pulses at the demand pin.  
bit[14:0] input block size specific value, do not modify  
Reset value is 0x6670. To set the start bit, the controller must write 0xe670.  
R0:7e  
PulseDelayCounter  
bit[13:0] determines the variable fraction of the demand pulse length.  
pulseLenVar[ns] = value * 88.58.  
D0:34e ResyncTimeout  
bit[19:0] timeout after resync: timeout[µs] = value * 3.32.  
19  
The default value is 2 -1, which results in a timeout of 1.74 seconds.  
For an optimized resync behavior, it is recommended to set this value  
to zero.  
R0:5b  
SerialInConfig  
bit[14:0] configuration of the serial input interface  
D0:350 SoftMute  
bit[0]  
MP3 soft mute  
0: audio output on  
1: audio output soft muted  
Micronas  
June 30, 2004; 6251-505-1DS  
39  
MAS 35x9F  
DATA SHEET  
Table 3–11: D0 status memory cells  
Memory  
Address  
Function  
Name  
D0:FCF  
D0:FD0  
AAC bitrate in bit/s  
AACbitrate  
MPEG Frame Counter  
MPEGFrameCount  
bit[19:0]  
number of MPEG frames after synchronization  
The counter will be incremented with every new frame that is decoded. With  
an invalid MPEG bit stream at its input (e.g. an invalid header is detected), the  
MAS 35x9F resets the MPEGFrameCount to ‘0’.  
D0:FD1  
MPEG Header and Status Information  
MPEGStatus1  
bit[15]  
reserved, must be set to zero  
bit[14:13]  
MPEG ID, Bits 12, 11 of the MPEG header  
00  
01  
10  
11  
MPEG 2.5  
reserved  
MPEG 2  
MPEG 1  
not valid in case of AAC decoding (bit[12:11] = 00)  
bit[12:11]  
bit[10]  
Bits 14 and 13 of the MPEG header  
00  
01  
10  
11  
AAC  
Layer 3  
Layer 2  
Layer 1  
CRC Protection  
0
1
bitstream protected by CRC  
bitstream not protected by CRC  
bit[9:2]  
bit[1]  
Reserved  
CRC error  
0
1
no CRC error  
CRC error  
bit[0]  
Invalid frame  
0
1
no invalid frame´  
invalid frame  
This location contains bits 15...11 of the original MPEG header and other sta-  
tus bits. It will be set each frame directly after the header has been decoded  
from the bit stream.  
40  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Table 3–11: D0 status memory cells, continued  
Memory  
Address  
Function  
Name  
D0:FD2  
MPEG Header Information  
MPEGStatus2  
bit[15:12]  
MPEG Layer 2/3 Bitrate  
MPEG1, L2  
MPEG1, L3  
MPEG2+2.5, L2/3  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
free  
32  
48  
56  
64  
free  
32  
40  
48  
56  
64  
80  
96  
112  
128  
160  
192  
224  
256  
320  
forbidden  
free  
8
16  
24  
32  
40  
48  
56  
64  
80  
96  
112  
128  
160  
192  
224  
256  
320  
384  
forbidden  
80  
96  
112  
128  
144  
160  
forbidden  
bit[13:10]  
Sampling frequency for MPEG2-AAC in Hz  
0000..0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
reserved  
48000  
44100  
32000  
24000  
22050  
16000  
12000  
11025  
8000  
1011  
1100..1111  
reserved  
...  
Micronas  
June 30, 2004; 6251-505-1DS  
41  
MAS 35x9F  
DATA SHEET  
Table 3–11: D0 status memory cells, continued  
Memory  
Address  
Function  
Name  
D0:FD2  
MPEG Header Information, continued  
MPEGStatus2  
(continued)  
bit[11:10]  
Sampling frequencies in Hz  
MPEG1  
MPEG2  
MPEG2.5  
00  
01  
10  
11  
44100  
48000  
32000  
reserved  
22050  
24000  
16000  
reserved  
11025  
12000  
8000  
reserved  
bit[9]  
Padding Bit  
reserved  
bit[8]  
bit[7:6]  
Mode  
00  
stereo  
01  
10  
joint_stereo (intensity stereo / m/s stereo)  
dual channel  
11  
single channel  
bit[5:4]  
Mode extension (applies to joint stereo only)  
intensity stereo  
m/s stereo  
00  
01  
10  
11  
off  
on  
off  
on  
off  
off  
on  
on  
bit[3]  
Copyright Protect Bit  
0/1 not copyright protected/copyright protected  
bit[2]  
Copy/Original Bit  
0/1  
bitstream is a copy/bitstream is an original  
bit[1:0]  
Emphasis, indicates the type of emphasis  
00  
01  
10  
11  
none  
50/15 µs  
reserved  
CCITT J.17  
This memory cell contains the 16 LSBs of the MPEG header. It will be set  
directly after synchronizing to the bit stream.  
Note that for AAC four bits are needed to define the sampling frequency while  
for Layer2/Layer3 two bits are sufficient. This leads to an inconsistency in the  
format of bits 13...10.  
D0:FD3  
D0:FD4  
MPEG CRC Error Counter  
CRCErrorCount  
The counter will be increased by each CRC error detected in the MPEG bis-  
stream. It will not be reset when losing the synchronization.  
Number of Bits in Ancillary Data  
NumberOfAncillary-  
Bits  
Number of valid ancillary bits in the current MPEG frame.  
D0:FD5  
...  
D0:FF1  
Ancillary Data  
AncillaryData  
(see Section 3.3.6. on page 43).  
42  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
3.3.5. Ancillary Data  
3.3.6. Reading of the Memory Cells “Number of  
Bits in Ancillary Data” and “Ancillary Data”  
The memory fields D0:FD5...D0:ff1 contain the ancil-  
lary data. It is organized in 28 words of 16 bit each.  
The last ancillary bit of a frame is placed at bit 0 in  
D0:FD5. The position of the first ancillary data bit  
received can be located via the content of  
When in Broadcast Mode, reading of the cells “Num-  
ber of Bits in Ancillary Data” and “Ancillary Data” will  
lead to unpredictable results. These cells are  
described in Table 3–11 on page 43.  
NumberOfAncillaryBits because  
The same applies to the “Number of Bits in Ancillary  
Data” and “Ancillary Data” of the preliminary data  
sheet MAS 3587F.  
int[(NumberOfAncillaryBits-1)/16] + 1  
of memory words are used.  
Example:  
First get the content of ‘NumberOfAncillaryBits’  
<DW 68 c4 00 00 01 0f d4>  
<DW 69 <DR dd dd>  
Assume that the MAS 35x9F has received 19 ancillary  
data bits. Therefore, it is necessary to read two 16-bit  
words:  
<DW 68 c4 00  
Short Read from D0  
00 02 0f d5> read 2 words starting at D0:fd5  
<DW 69 <DR dd dd  
dd dd>  
receive the 2 16-bit words  
The first bit received from the MPEG source is at posi-  
tion 2 of D0:FD6; the last bit received is at the LSB of  
D0:fd5.  
Table 3–12: Content of D0:fd5 after reception of 19 ancillary bits.  
D0:fd5  
MSB 14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
LSB  
Ancillary  
Data  
4th  
bit  
5th  
bit  
6th  
bit  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
17th  
bit  
18th  
bit  
last  
bit  
Table 3–13: Content of D0:fd6 after reception of 19 ancillary bits.  
D0:fd6  
MSB 14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
LSB  
Ancillary  
Data  
x
x
x
x
x
x
x
x
x
x
x
x
x
first  
bit  
2nd  
bit  
3rd  
bit  
Micronas  
June 30, 2004; 6251-505-1DS  
43  
MAS 35x9F  
DATA SHEET  
3.3.7. DSP Volume Control  
Table 3–14: Settings for the digital volume matrix  
The digital baseband volume matrix is used for control-  
ling the digital gain as shown in Fig. 3–3. This volume  
control is effective on both, the digital audio output and  
the data stream to the D/A converters. The values are  
in 20-bit 2’s complement notation.  
Memory  
Name  
D0:354 D0:355 D0:356 D0:357  
LL  
LR  
RL  
RR  
Stereo  
1.0  
0
0
1.0  
(default)  
Table 3–14 shows the proposed settings for the 4 vol-  
ume matrix coefficients for stereo, left and right mono.  
Mono left  
1.0  
1.0  
0
0
The gain factors are given in fixed point notation  
19  
Mono right  
0
0
1.0  
1.0  
(1.0×2 = 80000 ).  
hex  
If channels are mixed, care must be taken to prevent  
clipping at high amplitudes. Therefore, the sum of the  
absolute values of coefficients for one output channel  
must be less than 1.0.  
3.3.8. Explanation of the G.729A Data Format  
The codec is working on a page basis where the  
encoding and decoding is performed in blocks of 50  
G.729 frames, whereas each frame consists of  
10 bytes in byte-swapped order (see Fig. 3–4). There-  
fore most changes to the UserControl register become  
effective when processing of the current page is fin-  
ished. The pages are optionally preceeded by 10 byte  
header frames (see Table 3–15).  
For normal operating conditions it is recommended to  
use the main volume control of the audio codec  
instead (register 00 10  
of the audio codec).  
hex  
left audio  
+
1  
LL  
Table 3–15: Content of page header  
1  
1  
LR  
RL  
Byte  
1
2
3
4
5
6
7
8
9
10  
Value 64 6d 72 31 64 61 74 61 F4 01  
(hex)  
Switching directly from encoding to decoding mode (or  
vice versa) is not allowed. Instead, the controller has to  
send a stop request to the MAS 35x9F (writing 0  
to  
hex  
+
UserControl) and must keep on sending data in decod-  
ing mode or receive data in encoding mode until the  
current page of 50 frames is finished. After this run-out  
time, the encoding or decoding can be started again.  
1  
RR  
right audio  
Fig. 3–3: Digital volume matrix  
page frame frame frame  
frame frame page frame frame  
49 49 header 51 52  
frame frame page frame frame  
99 100 header 101 102  
...  
...  
...  
header  
1
2
3
10 ms  
10 ms  
...  
...  
byte byte byte byte byte byte byte byte byte byte  
10  
64 6D 72 31 64 61 74 61 F4 01  
2
1
4
3
6
5
8
7
9
Fig. 3–4: Schematic timing of the data transmission with preceeding header  
44  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
3.4. Audio Codec Access Protocol  
The MAS 35x9F has 16-bit wide registers for the con-  
trol of the audio codec. These registers are accessed  
2
via the I C subaddresses codec_write (6C ) and  
hex  
codec_read (6D ).  
hex  
3.4.1. Write Codec Register  
S
DW  
W
A
codec_write  
A
r3,r2  
A
A
r1,r0  
A
A
d3,d2  
d1,d0  
P
The controller writes the 16-bit value (d = d3,d2,d1,d0)  
into the MAS 35x9F codec register (r = r3,r2,r1,r0). A  
list of registers is given in Table 3–16.  
Example: Writing the value 1234  
into the codec reg-  
hex  
ister with the number 00 1B  
:
hex  
<DW 6c 00 1b 12 34>  
3.4.2. Read Codec Register  
1) send command  
S
DW  
W
A
codec_write  
codec_read  
A
r3,r2  
A
r1,r0  
A
P
P
2) get register value  
S
DW  
W
A
A
S
DR  
W
A
N
d3,d2  
A
d1,d0  
Reading the codec registers also needs a set-up for  
the register address and an additional start condition  
during the actual read cycle. A list of status registers is  
given in Table 3–17.  
Micronas  
June 30, 2004; 6251-505-1DS  
45  
MAS 35x9F  
DATA SHEET  
3.4.3. Codec Registers  
2
Table 3–16: Codec control registers on I C subaddress 6C  
hex  
Register  
Address  
(hex)  
Function  
Name  
CONVERTER CONFIGURATION  
00 00  
Audio Codec Configuration  
CONV_CONF  
0 dB is related to the D/A full-scale output voltage  
Please refer to (see Section 4.6.3. on page 81).  
bit[15:12]  
bit[11:8]  
A/D converter left amplifier gain = n*1.53 [dB]  
A/D converter right amplifier gain = n*1.53 [dB]  
1111  
1110  
...  
+19.5 dB  
+18.0 dB  
...  
0011  
0010  
0001  
0000  
+1.5 dB  
0.0 dB  
1.5 dB  
3.0 dB  
bit[7:4]  
bit[3]  
Microphone amplifier gain = n*1.5+21 [dB]  
1111  
1110  
...  
+43.5 dB  
+42.0 dB  
...  
0001  
0000  
+22.5 dB  
+21.0 dB  
Input selection for left A/D converter channel  
0
1
line-in  
microphone  
1)  
bit[2]  
bit[1]  
bit[0]  
Enable left A/D converter  
1)  
Enable right A/D converter  
1)  
Enable D/A converter  
1)  
The generation of the internal DC reference voltage for the D/A converter is also controlled with this bit. In order  
to avoid click noise, the reference voltage at pin AGNDC should have reached a near ground potential before  
repowering the D/A converter after a short down phase.  
Alternatively, at least one of the A/D converters (bits[2] or [1]) should remain set during short power-down phases  
of the D/A. Then the DC reference voltage generation for the D/A converter will not be interrupted.  
46  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2
Table 3–16: Codec control registers on I C subaddress 6C , continued  
hex  
Register  
Address  
(hex)  
Function  
Name  
INPUT MODE SELECT  
00 08 Input Mode Setting  
ADC_IN_MODE  
bit[15]  
Mono switch  
0
1
stereo input mode  
left channel is copied into the right channel  
bit[14:2]  
bit[1:0]  
Reserved, must be set to 0  
Deemphasis select  
0
1
2
deemphasis off  
deemphasis 50 µs  
deemphasis 75 µs  
OUTPUT MODE SELECT  
D/A Converter Source Mixer  
MIX ADC scale  
MIX DSP scale  
bit[15:8] Linear scaling factor (hex)  
00 06  
00 07  
DAC_IN_ADC  
DAC_IN_DSP  
0
off  
20  
40  
7f  
50 % (6 dB gain)  
100 % (0 dB gain)  
200 % (+6 dB gain)  
In the sum of both mixing inputs exceeds 100 %, clipping may occur in the  
successive audio processing.  
00 0E  
D/A Converter Output Mode  
DAC_OUT_MODE  
bit[15]  
bit[14]  
bit[1:0]  
Mono switch  
0
1
stereo through  
mono matrix applied  
Invert right channel  
0
1
through  
right channel is inverted  
Reserved, must be set to 0  
In order to achieve more output power a single loudspeaker can be connected  
as a bridge between pins OUTL and OUTR. In this mode bit[15] and bit[14]  
must be set.  
Micronas  
June 30, 2004; 6251-505-1DS  
47  
MAS 35x9F  
DATA SHEET  
2
Table 3–16: Codec control registers on I C subaddress 6C , continued  
hex  
Register  
Address  
(hex)  
Function  
Name  
BASEBAND FEATURES  
00 14  
Bass  
BASS  
bit[15:8]  
Bass range  
60  
58  
...  
+12 dB  
+11 dB  
hex  
hex  
08  
00  
F8  
...  
+1 dB  
0 dB  
1 dB  
hex  
hex  
hex  
A8  
A0  
11 dB  
12 dB  
hex  
hex  
Higher resolution is possible, one LSB step results in a gain step of about  
1/8 dB.  
With positive bass settings clipping of the output signal may occur. Therefore,  
it is not recommended to set bass to a value that, in conjunction with volume,  
would result in an overall positive gain.  
The settings require: max (bass, treble) + loudness + volume 0 dB  
bit[7:0]  
Not used, must be set to 0  
00 15  
Treble  
TREBLE  
bit[15:8]  
Treble range  
60  
58  
...  
+12 dB  
+11 dB  
hex  
hex  
08  
00  
F8  
...  
+1 dB  
0 dB  
1 dB  
hex  
hex  
hex  
A8  
A0  
11 dB  
12 dB  
hex  
hex  
Higher resolution is possible, one LSB step results in a gain step of about  
1/8 dB.  
With positive treble settings, clipping of the output signal may occur. There-  
fore, it is not recommended to set treble to a value that, in conjunction with  
loudness and volume, would result in an overall positive gain.  
The settings require: max (bass, treble) + loudness + volume 0 dB  
bit[7:0]  
Not used, must be set to 0  
48  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2
Table 3–16: Codec control registers on I C subaddress 6C , continued  
hex  
Register  
Address  
(hex)  
Function  
Name  
00 1E  
Loudness  
LDNESS  
bit[15:8] Loudness Gain  
44  
40  
...  
+17 dB  
+16 dB  
hex  
hex  
04  
00  
+1 dB  
0 dB  
hex  
hex  
bit[7:0]  
Loudness Mode  
00  
04  
normal (constant volume at 1 kHz)  
Super Bass (constant volume at 2 kHz)  
hex  
hex  
Higher resolution of Loudness Gain is possible: An LSB step results in a gain  
step of about 1/4 dB.  
Loudness increases the volume of low- and high-frequency signals, while  
keeping the amplitude of the 1-kHz reference frequency constant. The  
intended loudness has to be set according to the actual volume setting.  
Because loudness introduces gain, it is not recommended to set loudness to a  
value that, in conjunction with volume, would result in an overall positive gain.  
The settings should be: max (bass, treble) + loudness + volume 0 dB  
The corner frequency for bass amplification can be set to two different values.  
In Super Bass mode, the corner frequency is shifted up. The point of constant  
volume is shifted from 1 kHz to 2 kHz.  
Micronas  
June 30, 2004; 6251-505-1DS  
49  
MAS 35x9F  
DATA SHEET  
2
Table 3–16: Codec control registers on I C subaddress 6C , continued  
hex  
Register  
Address  
(hex)  
Function  
Name  
Micronas Bass (MB)  
00 22  
MB Effect Strength  
MB_STR  
MB_HAR  
bit[15:8]  
00  
7F  
MB off (default)  
maximum MB  
hex  
hex  
The MB effect strength can be adjusted in 1dB steps. A value of 40 will  
yield a medium MB effect.  
hex  
00 23  
MB Harmonics  
bit[15:8]  
00  
64  
7F  
no harmonics are added (default)  
50% fundamentals + 50% harmonics  
100% harmonics  
hex  
hex  
hex  
The MB exploits the psychoacoustic phenomenon of the ‘missing fundamental  
by creating harmonics of the frequencies below the center frequency of the  
bandpass filter (MB_FC). This enables a loudspeaker to display frequencies  
that are below its cutoff frequency. The Variable MB_HAR describes the ratio  
of the harmonics towards the original signal.  
00 24  
MB Center Frequency  
MB_FC  
bit[15:8]  
2
3
20 Hz  
30 Hz  
...  
30  
300 Hz  
The MB Center Frequency defines the center frequency of the MB bandpass  
filter (see Fig. 3–5 on page 52). The center frequency should approximately  
match the cutoff frequency of the loudspeakers. For high end loudspeakers,  
this frequency is around 50 Hz, for low end speakers around 90 Hz  
00 21  
MB Shape  
MB_SHAPE  
bit[15:8]  
5...30  
corner frequency in 10-Hz steps  
(range: 50...300 Hz)  
With a second lowpass filter the steepness of the falling edge of the MB band-  
pass can be increased (see Fig. 3–5 on page 52). Choosing the corner fre-  
quency of this filter close to the center frequency of the bandpass filter  
(MB_FC) results in a narrow MB frequency range. The smaller this range, the  
harder the bass sounds. The recommended value is around 1.5 × MB_FC  
MB Switch  
MB_SWITCH  
bit[7:2]  
bit[1]  
reserved, must be set to zero  
MB switch  
MB off  
MB on  
0
1
bit [0]  
reserved,must be set to zero  
50  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2
Table 3–16: Codec control registers on I C subaddress 6C , continued  
hex  
Register  
Address  
(hex)  
Function  
Name  
VOLUME  
00 12  
Automatic Volume Correction (AVC) Loudspeaker Channel  
AVC  
bit[15:12] 0  
8
AVC off (and reset internal variables)  
AVC on  
hex  
hex  
bit[11:8]  
8
4
2
1
8 s decay time  
4 s decay time  
2 s decay time  
20 ms decay time (intended for quick adaptation to the  
average volume level after track or source change)  
hex  
hex  
hex  
hex  
Note: To reset the internal variables, the AVC should be switched off and then  
on again during any track or source change. For standard applications, the  
recommended decay time is 4 s.  
00 11  
Balance  
BALANCE  
bit[15:8] Balance range  
7F  
7E  
...  
left 127 dB, right 0 dB  
left 126 dB, right 0 dB  
hex  
hex  
01  
00  
FF  
left 1 dB, right 0 dB  
left 0 dB, right 0 dB  
left 0 dB, right 1 dB  
hex  
hex  
hex  
...  
81  
80  
left 0 dB, right 127 dB  
left 0 dB, right 128 dB  
hex  
hex  
Positive balance settings reduce the left channel without affecting the right  
channel; negative settings reduce the right channel leaving the left channel  
unaffected.  
00 10  
Volume Control  
VOLUME  
bit[15:8] Volume table with 1 dB step size  
7F  
7E  
...  
+12 dB (maximum volume)  
+11 dB  
hex  
hex  
74  
73  
72  
...  
+1 dB  
0 dB  
1 dB  
hex  
hex  
hex  
02  
01  
00  
113 dB  
114 dB  
mute (reset)  
hex  
hex  
hex  
bit[7:0]  
Not used, must be set to 0  
This main volume control is applied to the analog outputs only. It is split  
between a digital and an analog function. In order to avoid noise due to large  
changes of the setting, the actual setting is internally low-pass filtered.  
With large scale input signals, positive volume settings may lead to signal clip-  
ping.  
Micronas  
June 30, 2004; 6251-505-1DS  
51  
MAS 35x9F  
DATA SHEET  
2
Table 3–17: Codec status registers on I C subaddress 6D  
hex  
Register  
Address  
(hex)  
Function  
Name  
INPUT QUASI-PEAK  
00 0A  
A/D Converter Quasi-Peak Detector Readout Left  
QPEAK_L  
QPEAK_R  
bit[14:0]  
positive 15-bit value, linear scale  
0%  
25% (12 dBFS)  
50% (6 dBFS)  
100% (0 dBFS)  
0000  
2000  
4000  
7FFF  
00 0B  
A/D Converter Quasi-Peak Detector Readout Right  
bit[14:0]  
positive 15-bit value, linear scale  
0%  
25% (12 dBFS)  
50% (6 dBFS)  
100% (0 dBFS)  
0000  
2000  
4000  
7FFF  
OUTPUT QUASI-PEAK  
00 0C  
Audio Processing Input Quasi-Peak Detector Readout Left  
bit[14:0] positive 15-bit value, linear scale  
Audio Processing Input Quasi-Peak Detector Readout Right  
bit[14:0] positive 15-bit value, linear scale  
DQPEAK_L  
DQPEAK_R  
00 0D  
3.4.4. Basic MB Configuration  
(which results in a softer/harder bass sound), turn  
on/off the MB  
With the parameters described in Table 3–16, the Mic-  
ronas Bass system (MB) can be customized to create  
different bass effects, as well as to fit the MB to various  
loudspeaker characteristics. The easiest way to find a  
good set of parameter is by selecting one of the set-  
tings below, listening to music with strong bass content  
and adjusting the MB parameters:  
– MB_STR: Increase/decrease the strength of the MB  
effect  
– MB_HAR: Increase/decrease the content of low fre-  
quency harmonics  
Frequency  
MB_SHAPE  
MB_FC  
– MB_FC: Shift the MB effect to lower/higher frequen-  
cies  
Fig. 3–5: Micronas Bass (MB): Bass boost in relation  
to input signal level  
– MB_SHAPE: Widen/narrow MB frequency range  
Table 3–18: Suggested MB settings  
Function  
MB_STR  
MB_HAR  
MB_FC  
MB_SHAPE  
(22  
)
(23  
)
(24  
)
(21  
)
hex  
hex  
hex  
hex  
MB off  
xxxx  
xxxx  
xxxx  
xx00  
hex  
hex  
hex  
hex  
Low end headphones, medium effect  
5000  
3000  
0600  
0902  
hex  
hex  
hex  
hex  
52  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Micronas  
June 30, 2004; 6251-505-1DS  
53  
MAS 35x9F  
DATA SHEET  
4. Specifications  
4.1. Outline Dimensions  
Fig. 4–1:  
3
PLQFP64-1: Plastic Low Quad Flat Package, 64 leads, 10 × 10 × 1.4 mm  
Ordering code: FH  
Weight approximately 0.66 g  
54  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Fig. 4–2:  
3
PMQFP64-2: Plastic Metric Quad Flat Package, 64 leads, 10 × 10 × 2 mm  
Ordering code: QI  
Weight approximately 0.5 g  
Micronas  
June 30, 2004; 6251-505-1DS  
55  
MAS 35x9F  
DATA SHEET  
Fig. 4–3:  
3
PQFN64-1: Plastic Quad Flat Non-leaded package, 64 pins, 9 × 9 × 0.85 mm , 0.5 mm pitch  
Ordering code: XK  
Weight approximately 0.23 g  
56  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
4.2. Pin Connections and Short Descriptions  
NC = not connected, leave vacant  
LV = if not used, leave vacant  
S.T.B. = shorted to BAGNDI if not used  
DVSS = if not used, connect to DVSS  
OBL = obligatory; connect as described in circuit diagram  
AHVSS = connect to AHVSS  
Pin No.  
Pin Name  
Type  
Connection  
(If not used)  
Short Description  
PLQFP  
64-1  
PMQFP PQFN  
64-2  
64-1  
1
2
1
1
AGNDC  
MICIN  
OBL  
LV  
Analog reference voltage  
2
2
IN  
Input for internal micro-  
phone amplifier  
3
4
5
6
7
3
4
5
6
7
3
4
5
6
7
MICBI  
INL  
IN  
IN  
IN  
IN  
IN  
LV  
Bias for internal microphone  
Left A/D input  
LV  
INR  
TE  
LV  
Right A/D input  
OBL  
OBL  
Test enable  
XTI  
Crystal oscillator (ext. clock)  
input  
8
8
8
XTO  
OUT  
LV  
Crystal oscillator output  
Power on reset, active low  
DSP supply ground  
9
9
9
POR  
IN  
OBL  
OBL  
OBL  
OBL  
OBL  
OBL  
OBL  
VDD  
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
VSS  
SUPPLY  
SUPPLY  
SUPPLY  
SUPPLY  
SUPPLY  
IN  
XVSS  
VDD  
Digital output supply ground  
DSP supply  
XVDD  
I2CVDD  
DVS  
Digital output supply  
2
I C supply  
2
I C device address selector  
VSENS1  
IN/OUT  
Sense input and power out-  
put  
of DC/DC 1 converter  
17  
18  
19  
20  
21  
17  
18  
19  
20  
21  
17  
18  
19  
20  
21  
DCSO1  
DCSG1  
DCSG2  
DCSO2  
VSENS2  
SUPPLY  
SUPPLY  
SUPPLY  
SUPPLY  
IN/OUT  
LV  
DC/DC 1 switch output  
DC/DC 1 switch ground  
DC/DC 2 switch ground  
DC/DC 2 switch output  
VSS  
VSS  
LV  
VDD  
Sense input and power out-  
put  
of DC/DC 2 converter  
22  
22  
22  
DCEN  
IN  
VSS  
DC/DC enable (both con-  
verters)  
Micronas  
June 30, 2004; 6251-505-1DS  
57  
MAS 35x9F  
DATA SHEET  
Pin No.  
Pin Name  
Type  
Connection  
(If not used)  
Short Description  
PLQFP  
64-1  
PMQFP PQFN  
64-2  
64-1  
23  
24  
25  
26  
27  
23  
23  
CLKO  
I2CC  
I2CD  
SYNC  
VBAT  
OUT  
LV  
Clock output  
2
24  
24  
IN/OUT  
IN/OUT  
OUT  
OBL  
OBL  
LV  
I C clock  
2
25  
25  
I C data  
26  
26  
Sync output  
27  
27  
IN  
LV  
Battery voltage monitor  
input  
28  
28  
28  
PUP  
OUT  
LV  
DC Converters Power-Up  
Signal  
29  
30  
29  
30  
29  
30  
EOD  
OUT  
OUT  
LV  
LV  
PIO end of DMA, active low  
PRTR  
PIO ready to read, active  
low  
31  
32  
31  
32  
31  
32  
PRTW  
PR  
OUT  
IN  
LV  
PIO ready to write, active  
low  
VDD  
PIO DMA request, active  
high  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
PCS  
PI19  
PI18  
PI17  
PI16  
PI15  
PI14  
PI13  
PI12  
SOD  
SOI  
IN  
VSS  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
PIO chip select, active low  
PIO data bit[7] (MSB)  
PIO data bit[6]  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
OUT  
PIO data bit[5]  
PIO data bit[4]  
PIO data bit[3]  
PIO data bit[2]  
PIO data bit[1]  
PIO data bit[0] (LSB)  
Serial output data  
OUT  
Serial output word identifi-  
cation  
44  
45  
46  
44  
45  
46  
44  
45  
46  
SOC  
SID  
SII  
OUT  
LV  
Serial output clock  
IN/OUT  
IN/OUT  
OBL  
OBL  
Serial input data, interface A  
Serial input word identifica-  
tion, interface A  
47  
47  
47  
SIC  
IN/OUT  
OBL  
Serial input clock, interface  
A
48  
49  
48  
49  
48  
49  
SPDO  
SIBD  
OUT  
IN  
LV  
S/PDIF output interface  
VSS  
Serial input data, interface B  
58  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Pin No.  
PMQFP PQFN  
Pin Name  
Type  
Connection  
(If not used)  
Short Description  
PLQFP  
64-1  
64-2  
64-1  
50  
51  
52  
53  
54  
55  
56  
50  
50  
SIBC  
IN  
VSS  
VSS  
LV  
Serial input clock, interface  
B
51  
52  
53  
54  
55  
56  
51  
52  
53  
54  
55  
56  
SIBI  
IN  
Serial input word identifica-  
tion, interface B  
SPDI2  
SPDI1  
SPDIR  
FILTL  
AVDD0  
IN  
Active differential S/PDIF  
input 2  
IN  
LV  
Active differential S/PDIF  
input 1  
IN  
LV  
Reference differential S/  
PDIF input 1 and 2  
IN  
OBL  
OBL  
Feedback input for left  
amplifier  
SUPPLY  
Analog supply for output  
amplifiers  
57  
58  
59  
57  
58  
59  
57  
58  
59  
OUTL  
OUTR  
AVSS0  
OUT  
LV  
Left analog output  
Right analog output  
OUT  
LV  
SUPPLY  
OBL  
Analog ground for output  
amplifiers  
60  
60  
60  
FILTR  
IN  
OBL  
Feedback for right output  
amplifier  
61  
62  
63  
64  
61  
62  
63  
64  
61  
62  
63  
64  
AVSS1  
VREF  
SUPPLY  
OBL  
OBL  
OBL  
OBL  
Analog ground  
Analog reference ground  
Internal power supply  
Analog Supply  
PVDD  
AVDD1  
SUPPLY  
SUPPLY  
Micronas  
June 30, 2004; 6251-505-1DS  
59  
MAS 35x9F  
DATA SHEET  
4.3. Pin Descriptions  
VSENS1/VSENS2  
IN  
Sense input and power output of DC/DC converters. If  
the respective DC/DC converter is not used, this pin  
should be connected to a supply to enable proper  
function of the PUP-signals.  
4.3.1. Power Supply Pins  
The use of all power supply pins is mandatory to  
achieve correct function of the MAS 35x9F.  
DCEN  
IN  
VDD, VSS  
Digital supply pins.  
SUPPLY  
SUPPLY  
SUPPLY  
Enable signal for both DC/DC converters. If none of  
the DC/DC converters is used, this pin must be con-  
nected to VSS.  
XVDD, XVSS  
Supply for digital output pins.  
PUP  
OUT  
Power-up. This signal is set when the required volt-  
ages are available at both DC/DC converter output  
pins VSENS1 and VSENS2. The signal is cleared  
when both voltages have dropped below the reset  
level in the DCCF Register.  
I2CVDD  
2
Supply for I C interface circuitry. This net uses VSS or  
XVSS as the ground return line.  
PVDD  
SUPPLY  
Auxiliary pin for analog circuitry. This pin has to be  
connected via a 3 nF capacitor to AVDD1. Extra care  
should be taken to achieve a low-inductance PCB line.  
VBAT  
IN  
Analog input for battery voltage supervision.  
AVDD0/AVSS0  
SUPPLY  
4.3.4. Oscillator Pins and Clocking  
Supply for analog output amplifier.  
XTI  
IN  
AVDD1/AVSS1  
SUPPLY  
XTO  
OUT  
Supply for internal analog circuits (A/D, D/A convert-  
ers, clock, PLL, S/PDIF input).  
The XTI pin is connected to the input of the internal  
crystal oscillator, the XTO pin to its output. Each pin  
should be directly connected to the crystal and to a  
ground-connected capacitor (see application diagram,  
Fig. 5–1 on page 89).  
AVDD0/AVSS0 and AVDD1/AVSS1 should receive the  
same supply voltages.  
CLKO  
OUT  
4.3.2. Analog Reference Pins  
The CLKO can drive an output clock line.  
AGNDC  
Internal analog reference voltage. This pin serves as  
the internal ground connection for the analog circuitry.  
4.3.5. Control Lines  
I2CC  
I2CD  
SCL  
SDA  
IN/OUT  
IN/OUT  
VREF  
2
Analog reference ground. All analog inputs and out-  
puts should drive their return currents using separate  
traces to a ground starpoint close to this pin. Connect  
to AVSS1. This reference pin should be as noise-free  
as possible.  
Standard I C control lines.  
DVS  
IN  
2
I C device address selector. Connect this pin either to  
2
2
VDD (I C device address: 3E/3F ) or VSS (I C  
device address: 3C/3D ) to select a proper I C  
hex  
2
hex  
device address (see also Table 3–2 on page 23).  
4.3.3. DC/DC Converters and  
Battery Voltage Supervision  
4.3.6. Parallel Interface Lines  
DCSG1/DCSG2  
SUPPLY  
DC/DC converters switch ground. Connect using sep-  
arate wide trace to negative pole of battery cell. Con-  
nect also to AVSS0/1 and VSS/XVSS, VREF.  
PI12..PI19  
IN/OUT  
The PIO input pins PI12..PI19 are used as 8-bit I/O  
interface to a microcontroller in order to transfer com-  
pressed and uncompressed data. PI12 is the LSB,  
PI19 the MSB.  
DCSO1/DCSO2  
SUPPLY  
DC/DC converter switch connection. If the respective  
DC/DC converter is not used, this pin must be left  
vacant.  
60  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
4.3.6.1. PIO Handshake Lines  
PCS  
The PIO chip select PCS must be set to ‘0’ to activate  
the PIO in operation mode.  
specification are used in conjunction with download  
software only. A switch at D0:ff6 selects one of these  
pins at a time. The SPDIR pin is a common reference  
for both input lines (see Fig. 5–1 on page 89).  
IN  
PR  
IN  
4.3.11. S/PDIF Output Interface  
Pin PR must be set to ‘1’ to validate data output from  
MAS 35x9F PIO pins.  
SPDO  
OUT  
The SPDO pin provides an digital output with standard  
CMOS level that is compliant to the IEC 958 consumer  
specification.  
PRTR  
OUT  
Ready to read. This signal indicates that the  
MAS 35x9F is able to receive data in PIO input mode.  
PRTW  
OUT  
4.3.12. Analog Input Interfaces  
Ready to write. This pin indicates that MAS 35x9F has  
data available for PIO output mode.  
In the standard MPEG-decoding DSP firmware the  
analog inputs are not used. However, they can be  
selected as a source for the D/A converters  
EOD  
OUT  
EOD indicates the end of an DMA cycle in the IC’s PIO  
input mode. In ’serial’ input mode it is used as Demand  
signal, that indicates that new input data are required.  
(set MIX ADC scale of the D/A Converter Source  
Mixer, Register 00 06  
in Table 3–16).  
hex  
MICIN  
MICBI  
IN  
IN  
4.3.7. Serial Input Interface (SDI)  
The MICIN input may be directly used as electret  
microphone input, which should be connected as  
described in application information (see Fig. 5–1 on  
page 89). The MICBI signal provides the supply volt-  
age for these microphones.  
SID  
SII  
DATA  
WORD STROBE  
CLOCK  
IN/OUT  
IN/OUT  
IN/OUT  
SIC  
2
I S compatible serial interface A for digital audio data.  
In the standard firmware this interface is not used.  
Note: Please refer to Bit [0] of Table 3–5  
INL  
INR  
IN  
IN  
INL and INR are analog line-in input lines. They are  
connected to the embedded stereo A/D converter of  
the MAS 35x9F. The sources should be AC-coupled.  
The reference ground for these analog input pins is the  
VREF pin.  
4.3.8. Serial Input Interface B (SDIB)  
SIBD  
SIBI  
DATA  
WORD STROBE  
CLOCK  
IN  
IN  
IN  
SIBC  
The serial interface B is primarily used as bitstream  
input interface. The SIBI line must be connected to  
VSS in the standard application.  
4.3.13. Analog Output Interfaces  
OUTL  
OUTR  
OUT  
OUT  
OUTL and OUTR are left and right analog outputs, that  
may be directly connected to the headphones as  
described in the application information (see Fig. 5–1  
on page 89).  
4.3.9. Serial Output Interface (SDO)  
SOD  
SOI  
SOC  
DATA  
WORD STROBE  
CLOCK  
OUT  
OUT  
IN/OUT  
FILTL  
FILTR  
IN  
IN  
Data, Frame Indication, and Clock line of the serial  
output interface. The SOI is reconfigurable and can be  
Connection to input terminal of output amplifier.Can be  
used to connect a capacitance from OUTL respectively  
OUTR to FILTL respectively FILTR in parallel to feed-  
back resistor and thus implement a low pass filter to  
reduce the out-of-band noise of the DAC.  
2
adapted to several I S compliant modes.  
4.3.10. S/PDIF Input Interface  
SPDI1  
SPDI2  
SPDIR  
IN  
IN  
IN  
SPDIF1 and SPDIF2 are alternative input pins for  
S/PDIF sources according to the IEC 958 consumer  
Micronas  
June 30, 2004; 6251-505-1DS  
61  
MAS 35x9F  
DATA SHEET  
4.3.14. Miscellaneous  
SYNC  
OUT  
The SYNC signal indicates the detection of a frame  
start in the input data of MAS 35x9F. Usually this sig-  
nal generates an interrupt in the controller.  
POR  
IN  
The Power-On Reset pin is used to reset the whole  
MAS 35x9F. The POR is an active-low signal (see  
Fig. 5–1 on page 89).  
TE  
IN  
The TE pin is for production test only and must be con-  
nected with VSS in all applications.  
4.4. Pin Configuration  
PI12  
SOD  
SOI  
PI13  
PI14  
PI15  
PI16  
PI17  
PI18  
PI19  
SOC  
SID  
SII  
SIC  
SPDO  
PCS  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
SIBD 49  
SIBC 50  
32 PR  
31 PRTW  
30 PRTR  
29 EOD  
SIBI 51  
SPDI2 52  
SPDI1 53  
SPDIR 54  
FILTL 55  
AVDD0 56  
OUTL 57  
OUTR 58  
AVSS0 59  
FILTR 60  
AVSS1 61  
VREF 62  
PVDD 63  
AVDD1 64  
28 PUP  
27 VBAT  
26 SYNC  
25 I2CD  
MAS 35x9F  
24 I2CC  
23 CLKO  
22 DCEN  
21 VSENS2  
20 DCSO2  
19 DCSG2  
18 DCSG1  
17 DCSO1  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
AGNDC  
VSENS1  
MICIN  
MICBI  
DVS  
I2CVDD  
XVDD  
VDD  
XVSS  
VSS  
POR  
INL  
INR  
TE  
XTI  
XTO  
Fig. 4–4: PLQFP64-1/PMQFP64-2 and PQFN64-1 package  
62  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
4.5. Internal Pin Circuits  
VDD  
TTLIN  
N
VSS  
Fig. 4–5: Input pins PCS, PR  
Fig. 4–10: Input/output pins I2CC, I2CD  
VSENS  
P
Fig. 4–6: Input pin TE, DVS, POR  
DCSO  
N
DCSG  
Fig. 4–11: Input/output pins DCSO1/2, DCSG1/2,  
VSENS1/2  
Fig. 4–7: Input pin DCEN  
XVDD  
P
XVDD  
P
N
N
XVSS  
XVSS  
Fig. 4–12: Output pins PRTW, EOD, PRTR, CLKO,  
SYNC, PUP  
Fig. 4–8: Input/output pins SOC, SOI, SOD,  
PI12...PI19, SPDO  
AVDD  
XVDD  
P
P
XTI  
P
P
N
XTO  
N
XVSS  
N
Enable  
N
Fig. 4–9: Input pins SIC, SII, SID  
AVSS  
Fig. 4–13: Clock oscillator XTI, XTO  
Micronas  
June 30, 2004; 6251-505-1DS  
63  
MAS 35x9F  
DATA SHEET  
MICIN  
INL  
INR  
XVDD  
A
+
SPDI1,  
SPDI2  
D
+
SPDIR  
AGNDC  
XVDD  
Fig. 4–14: Analog input pins MICIN, INL, INR  
Bias  
Fig. 4–18: S/PDIF inputs  
+
AGNDC  
MICBI  
VBAT  
+
VREF  
programmable  
=
Fig. 4–15: Microphone bias pin (MICBI)  
VSS  
VSS  
Fig. 4–19: Battery voltage monitor VBAT  
FILTL(R)  
4.5.1.Reset Pin Configuration for MAS 3529F and  
MAS 3539F  
D
I
+
A
OUTL(R)  
The Power-On Reset pin POR is used to reset the  
entire MAS 35x9F. The POR is an active-low signal.  
AGNDC  
Note: If a pull-up resistor is used for building a delay  
time here (see Fig. 5–1 on page 89), referred to  
the VDD pins, the maximum allowed value for  
this resistor is 3.3 kOhm!  
Fig. 4–16: Analog outputs OUTL(R) and connections  
for filter capacitors FILTL(R)  
+
AGNDC  
1.25 V  
VREF  
Fig. 4–17: Analog ground generation with pin to  
connect external capacitor  
64  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
4.6. Electrical Characteristics  
Abbreviations:  
tbd = to be defined  
vacant = not applicable  
positive current values mean current flowing into the chip  
4.6.1. Absolute Maximum Ratings  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these conditions is not implied. Exposure to absolute  
maximum rating conditions for extended periods will affect device reliability.  
This device contains circuitry to protect the inputs and outputs against damage due to high static voltages or electric  
fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than abso-  
lute maximum-rated voltages to this high-impedance circuit.  
All voltages listed are referenced to ground (V  
V
V
= 0 V) except where noted.  
SUP1, SUP2, SUP3  
All GND pins must be connected to a low-resistive ground plane close to the IC.  
Do not insert the device into a live socket. Instead, apply power by switching on the external power supply. For  
power up/down sequences, see the instructions in Section 2.6. of this document.  
Table 4–1: Absolute Maximum Ratings  
Symbol  
Parameter  
Pin Name  
Limit Values  
Unit  
Min.  
Max.  
1)  
2)  
T
Ambient Temperature  
°C  
A
- operating conditions  
- extended temperature range  
10  
40  
85  
85  
1)  
T
Case Temperature  
PLQFP64-1  
PMQFP64-2  
PQFN64-1  
°C  
C
10  
10  
10  
115  
120  
120  
T
Storage Temperature  
40  
125  
°C  
S
3)  
P
V
Maximum Power Dissipation  
PLQFP64-1  
PMQFP64-2  
VDD, XVDD,  
AVDD0/1,  
I2CVDD  
W
MAX  
0.67  
0.63  
0.87  
PQFN64-1  
Supply Voltage 1  
VDD, XVDD,  
I2CVDD,  
0.3  
6
V
SUP1  
4)  
AVDD0/1  
1)  
2)  
Data sheet parameters are valid for “operating conditions” only. The functionality of the device in the “extended  
temperature range” was checked by electrical characterization on sample base.  
A power-optimized board layout is recommended. The Case Temperature mentioned in the “Absolute Maxi-  
mum Ratings” must not be exceeded at worst case conditions of the application.  
3)  
4)  
Package limits  
Both AVDD0 and AVDD1 have to be connected together!  
Micronas  
June 30, 2004; 6251-505-1DS  
65  
MAS 35x9F  
DATA SHEET  
Table 4–1: Absolute Maximum Ratings, continued  
Symbol  
Parameter  
Pin Name  
Limit Values  
Unit  
Min.  
Max.  
V
V
Supply Voltage 2  
VDD, XVDD,  
I2CVDD,  
AVDD0/1  
0.3  
6
V
SUP2  
SUP3  
1)  
Supply Voltage 3  
VDD, XVDD,  
I2CVDD,  
0.3  
0.3  
6
6
V
V
1)  
AVDD0/1  
2
V
V
Input Voltage, I C pins  
I2CC,  
I2CD  
II2C  
ID  
Input Voltage  
all digital inputs  
all digital inputs  
0.3  
20  
V
+ 0.3  
V
SUP  
I
Input Current  
+20  
mA  
V
ID  
V
Input Voltage  
all analog inputs 0.3  
all analog inputs 5  
V
+ 0.3  
SUP  
IA  
I
I
I
I
I
Input Current  
+5  
mA  
A
IA  
2)  
Output Current, audio output  
OUTL/R  
0.2  
50  
0.2  
+50  
1.5  
1.5  
Oaudio  
Odig  
3)  
Output Current, all digital outputs  
mA  
A
Output Current DCDC converter 1  
Output Current DCDC converter 2  
DCSO1  
DCSO2  
Odcdc1  
Odcdc2  
A
1)  
2)  
3)  
Both AVDD0 and AVDD1 have to be connected together!  
These pins are not short-circuit-proof!  
Total chip power dissipation must not exceed maximum rating.  
66  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
4.6.1.1. Recommended Operating Conditions  
Functional operation of the device beyond those indicated in the “Recommended Operating Conditions/Characteris-  
tics” is not implied and may result in unpredictable behavior, reduce reliability and lifetime of the device.  
All voltages listed are referenced to ground (V  
V
V
= 0 V) except where noted.  
SUP1, SUP2, SUP3  
All GND pins must be connected to a low-resistive ground plane close to the IC.  
Do not insert the device into a live socket. Instead, apply power by switching on the external power supply. For  
power up/down sequences, see the instructions in section Section 2.11.2. of this document.  
Symbol  
Parameter  
Pin Name  
Limit Values  
Typ.  
Unit  
Min.  
Max.  
1)  
T
Ambient Operating Temperature  
PLQFP64-1  
PMQFP64-2  
°C  
A
0
0
0
25  
25  
25  
85  
85  
85  
PQFN64-1  
T
Case Operating Temperature  
PLQFP64-1  
PMQFP64-2  
°C  
C
15  
20  
15  
95  
100  
95  
100  
105  
100  
PQFN64-1  
P
P
P
P
V
MP3 Decoder (SC4 En-/Decoder)  
AAC Decoder/G729 Encoder  
G.729 Decoder  
VDD  
80  
122  
50  
7
mW  
mW  
mW  
mW  
V
MAX_D1  
MAX_D2  
MAX_D3  
MAX_A  
VDD  
VDD  
DAC-Headphone Playback  
AVDD0/1  
VDD  
1)  
Digital supply voltage (MP3  
decoder, G729 Decoder)  
2.2  
2.5  
2.5  
3.6  
3.6  
SUPD1  
V
V
Digital supply voltage  
(G.729 A encoder/MP3 Decoder  
and SD Decryption/AAC Decoder)  
2.7  
SUPD2  
SUPI2C  
2
2)  
I C bus supply voltage  
I2CVDD  
XVDD  
V
3.9  
V
SUPDn  
at VDD  
VSUPx  
PIN supply voltage  
2.2  
2.5  
2.7  
3.6  
V
V
PIN supply voltage in relation to  
digital supply voltage  
0.62 *  
1.6 *  
2)  
2)  
2)  
2)  
V
V
SUPDn  
SUPDn  
VSUPA  
Analog audio supply voltage  
AVDD0/1  
2.2  
3.6  
V
V
Analog audio supply voltage in rela-  
tion to the digital supply voltage  
0.62 *  
1.6 *  
V
V
SUPDn  
SUPDn  
V
Voltage differences within supply  
domains  
V
SUPDX  
1)  
2)  
A power-optimized board layout is recommended. The Case Operating Temperatures mentioned in the  
“Recommended Operating Conditions” must not be exceeded at worst case conditions of the application.  
For turn-on voltage of DSP and codec, please refer to Section 2.11.2.1.  
n = 1 or 2  
Micronas  
June 30, 2004; 6251-505-1DS  
67  
MAS 35x9F  
DATA SHEET  
Table 4–2: Reference Frequency Generation and Crystal Recommendation  
Symbol  
External Clock Input Recommendations  
Clock frequency  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
f
XTI, XTO  
13.00  
0.7  
18.432  
20.00  
1.05  
MHz  
CLK  
V
Clockamplitude of external clock XTI  
fed into XTI at V = 2.2 V  
V
PP  
CLKI  
AVDD  
Clockamplitude of external clock  
fed into XTI at V = 2.7 V  
0.55  
0.45  
1.25  
0.75  
0.55  
45  
1.5  
1.75  
2.2  
2.7  
3.3  
55  
AVDD  
Clockamplitude of external clock  
fed into XTI at V = 3.3 V  
AVDD  
Clockamplitude of external clock XTO  
fed into XTO at V = 2.2 V  
AVDD  
Clockamplitude of external clock  
fed into XTO at V = 2.7 V  
AVDD  
Clockamplitude of external clock  
fed into XTO at V  
= 3.3 V  
AVDD  
Duty cycle  
XTI, XTO  
XTI, XTO  
50  
%
Crystal Recommendations  
Load resonance frequency at  
f
18.432  
MHz  
ppm  
ppm  
P
C = 20 pF  
I
f/f  
f/f  
Accuracy of frequency adjust-  
ment  
50  
50  
50  
50  
S
Frequency variation vs. temper-  
ature  
S
R
C
Equivalent series resistance  
Shunt (parallel) capacitance  
12  
3
30  
5
EQ  
0
pF  
68  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Table 4–3: Input clock frequency  
Symbol  
Parameter  
Pin Name  
Limit Values  
Typ.  
Unit  
Min.  
Max.  
1)  
f
G.729 Decoder  
G.729 Encoder  
XTI, XTO  
16.4  
13.7  
MHz  
MHz  
CLK  
MPEG Decoder (SC4 En-  
Decoder)  
11.0  
MHz  
1)  
Minimum F  
for SD-card decryption is defined in a supplement.  
CLK  
Table 4–4: Input levels  
Symbol Parameter  
Pin Name  
Limit Values  
Typ.  
Unit  
Min.  
1.4  
0.9  
V
Max.  
V
V
V
V
V
V
Input low voltage  
Input high voltage  
Input low voltage  
Input high voltage  
Input low voltage  
Input high voltage  
I2CC,  
I2CD  
0.3  
0.2  
0.3  
V
V
V
V
V
V
IL  
IH  
POR,  
DCEN  
IL  
IH  
PI<I>,  
SI(B)I,  
SI(B)C,  
SI(B)D, PR,  
PCS,  
ILD  
IHD  
SUPx  
0.5  
TE, DVS  
Micronas  
June 30, 2004; 6251-505-1DS  
69  
MAS 35x9F  
DATA SHEET  
Table 4–5: Analog input and output recommendations  
Symbol  
Parameter  
Pin Name  
Limit Values  
Typ.  
Unit  
Min.  
1.0  
3
Max.  
Analog Reference  
C
C
C
Analog filter capacitor  
AGNDC  
PVDD  
3.3  
10  
µF  
nF  
nF  
AGNDC1  
AGNDC2  
PVDD  
Ceramic capacitor in parallel  
Capacitor for analog circuitry  
Analog Audio Inputs  
C
C
C
DC-decoupling capacitor at A/D- INL/R  
converter inputs  
390  
390  
nF  
nF  
nF  
inAD  
DC-decoupling capacitor at  
microphone-input  
MICIN  
MICBI  
inMI  
Minimum-Capacitance at micro-  
phone bias  
3.3  
LMICBI  
Analog Audio Filter Outputs  
C
Filter capacitor for headphone  
amplifier  
FILTL/R  
OUTL/R  
20 %  
470  
+20 %  
pF  
FILT  
high-Q type,  
NP0 or C0G material  
Analog Audio Output  
Z
Analog output load with stereo  
headphones  
OUTL/R  
16  
AOL_HP  
100  
330  
pF  
DC/DC-Converter External Circuitry (please refer to application example)  
C
VSENS blocking  
(<100 mESR)  
VSENS1/2  
µF  
V
1
V
L
Schottky diode threshold voltage DCSO1/2  
VSENS1/2  
0.39  
TH  
Ferrite core coil inductance  
DCSO1/2  
22  
µH  
S/PDIF Interface Analog Input  
S/PDIF coupling capacitor  
C
SPDI1/2  
SPDIR  
100  
nF  
SPI  
70  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
4.6.2. Digital Characteristics  
at T = T , V  
, V  
= 2.2 ... 3.6 V, f  
= 18.432 MHz, Typ. values for T = 25 °C in P(L/M)QFP package  
A
SUPD SUPA  
Crystal A  
Limit Values  
Typ.  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Max.  
Digital Supply Voltage  
I
I
I
Current consumption  
VDD,  
XVDD,  
I2CVDD  
36  
23  
15  
mA  
mA  
mA  
2.2 V, sampling fre-  
quency 32 kHz  
SUPD  
SUPD  
SUPD  
Current consumption  
Current consumption  
2.2 V, sampling fre-  
quency 24 kHz  
2.2 V, sampling fre-  
quency  
12 kHz  
I
Total current at stand-by  
10  
µA  
DSP off, Codec off,  
DC/DC off, AD and  
DAC off, no I C access  
STANDBY  
2
Digital Outputs and Inputs  
O
O
Output low voltage  
Output low voltage  
PI<I>,  
SOI,  
SOC,  
0.3  
V
V
I
I
= 2 mA  
DigL  
DigH  
load  
load  
V
0.3  
= 2 mA  
SUPx  
SOD,  
EOD,  
PRTR,  
PRTW,  
CLKO,  
SYNC, PUP,  
SPDO  
Z
Input impedance  
ALLDIGITAL  
INPUTS  
7
1
pF  
µA  
DigI  
I
Digital input leakage cur-  
rent  
1  
0 V < V < V  
pin SUPD  
DLeak  
Micronas  
June 30, 2004; 6251-505-1DS  
71  
MAS 35x9F  
DATA SHEET  
2
4.6.2.1. I C Characteristics  
at T = 25°C, V  
= 2.2...3.6 V in P(L/M)QFP package  
SUPI2C  
Limit Values  
Typ.  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Max.  
I2C Input Specifications  
fI2C  
Upper limit I2C bus frequency I2CC  
operation  
400  
300  
300  
kHz  
ns  
tI2C1  
I2C START condition setup  
time  
I2CC, I2CD  
I2CC, I2CD  
tI2C2  
I2C STOP condition setup  
time  
ns  
tI2C3  
tI2C4  
tI2C5  
I2C clock low pulse time  
I2C clock high pulse time  
I2CC  
I2CC  
I2CC  
1250  
1250  
80  
ns  
ns  
ns  
I2C data setup time before  
rising edge of clock  
tI2C6  
I2C data hold time after falling I2CC  
edge of clock  
80  
ns  
VI2COL  
II2COH  
I2C output low voltage  
I2CC, I2CD  
I2CC, I2CD  
0.4  
1
V
Iload = 3 mA  
I2C output high leakage  
current  
µA  
tI2COL1  
I2C data output hold time after I2CC, I2CD  
falling edge of clock  
20  
ns  
ns  
tI2COL2  
I2C data output setup time  
before rising edge of clock  
I2CC, I2CD  
250  
fI2C = 400 kHz  
VI2CIL  
VI2CIH  
tW  
I2C input low voltage  
I2C input high voltage  
Wait time  
I2CC, I2CD  
I2CC, I2CD  
I2CC, I2CD  
0.3  
4
VSUPI2C  
VSUPI2C  
ms  
0.6  
0
0.5  
1/f  
I2C  
t
t
I2C3  
I2C4  
H
L
I2CC  
t
t
t
t
I2C2  
I2C1  
I2C5  
I2C6  
H
L
I2CD as input  
t
t
IC2OL1  
I2COL2  
H
L
I2CD as output  
2
Fig. 4–20: I C timing diagram  
72  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
2
4.6.2.2. Serial (I S) Input Interface Characteristics (SDI, SDIB)  
at T = T , V  
, V  
= 2.2 ... 3.6 V, f  
= 18.432 MHz, Typ. values for T = 25 °C in P(L/M)QFP package  
CRYSTAL A  
A
SUPD SUPA  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
tSICLK  
I2S clock input clock period  
SI(B)C  
325  
ns  
fS = 48 kHz Stereo,  
32 bits per sample  
(for demand mode see  
Table 4–6)  
tSIDS  
I2S data setup time before  
rising edge of clock (for  
continuous data stream:  
falling edge)  
SI(B)C,  
SI(B)D  
50  
ns  
tSIDH  
tSIIS  
I2S data hold time  
SI(B)D  
50  
50  
ns  
ns  
I2S ident setup time before  
rising edge of clock (for  
continuous data stream:  
falling edge)  
SI(B)C,  
SI(B)I  
tSIIH  
tbw  
I2S ident hold time  
Burst wait time  
SI(B)I  
50  
ns  
SI(B)C, SI(B)D 480  
Table 4–6: Maximum allowed sample clock frequency in Demand Mode  
f
(kHz)  
f (MHz)  
min. t  
162  
(ns)  
SICLK  
Sample  
C
48, 32  
44.1  
6.144  
5.6448  
3.072  
177  
24, 16  
22.05  
12, 8  
325  
2.8224  
1.536  
354  
651  
11.025  
1.4112  
708  
T
SICLK  
H
SI(B)C  
SI(B)I  
L
H
L
H
L
SI(B)D  
T
T
SIDH  
SIDS  
Fig. 4–21: Continuous data stream at serial input A or B. In this mode, the word strobe SI(B)I is not used and the  
data are read at the falling edge of the clock (bit[2] in D0:346 is set).  
Micronas  
June 30, 2004; 6251-505-1DS  
73  
MAS 35x9F  
DATA SHEET  
Table 4–7: Allowed transmission delays of external data source MPEG1/2 Layer 2/3  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
tSTART48-320 Allowed delay time before  
start of serial data  
EOD  
3.1  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
48 kHz/s, 320 kbit/s  
48 kHz/s, 64 kbit/s  
24 kHz/s, 320 kbit/s  
24 kHz/s, 32 kbit/s  
12 kHz/s, 64 kbit/s  
12 kHz/s, 16 kbit/s  
8 kHz/s, 64 kbit/s  
8 kHz/s, 8 kbit/s  
tSTART48-64  
tSTART24-320  
tSTART24-32  
tSTART12-64  
tSTART12-16  
tSTART8-64  
tSTART8-8  
5.7  
transmission after assertion  
of signal at EOD  
4.2  
9.2  
23.1  
25.6  
34.8  
38.4  
1.3  
tSTOP  
Allowed delay time before  
stop of serial data  
Clock rate of input data  
1 Mbit/s  
EOD  
transmission after  
deassertion of signal at EOD  
T
SICLK  
H
SI(B)C  
L
H
SI(B)I  
L
T
T
T
SIIS  
SIIH  
H
SI(B)D  
L
T
SIDH  
SIDS  
2
Fig. 4–22: Serial input of I S signal  
4.6.2.3. Serial Output Interface Characteristics (SDO)  
at T = T , V  
, V  
= 2.2 ... 3.6 V, f  
= 18.432 MHz, Typ. values for T = 25 °C in P(L/M)QFP package  
CRYSTAL A  
A
SUPD SUPA  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
tSOCLK  
tSOISS  
tSOODC  
I2S clock output frequency  
SOC  
325  
ns  
ns  
ns  
fS = 48 kHz Stereo  
32 bits per sample  
I2S word strobe delay time  
after falling edge of clock  
SOC,  
SOI  
0
0
I2S data delay time after  
falling edge of clock  
SOC,  
SOD  
74  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
T
SOCLK  
H
SOC  
L
H
SOI  
L
T
T
SOISS  
SOISS  
H
SOD  
L
T
SOODC  
Fig. 4–23: Serial output interface timing  
Vh  
SOC  
Vl  
Vh  
7
6 5 4 3 2 1 0  
15 14 13 12 11 10  
14  
15  
13 12 11 10  
8
9
9
8
7 6 5 4 3 2 1 0  
SOD  
SOI  
Vl  
Vh  
Vl  
right 16-bit audio sample  
left 16-bit audio sample  
Fig. 4–24: Sample timing of the SDO interface in 16 bit/sample mode  
D0:346 settings are  
bit[14] = 0 (SOC not inverted)  
bit[11] = 1 (SOI delay)  
bit[5] = 0 (word strobe not inverted)  
bit[4] = 1 (16 bits/sample)  
Vh  
...  
...  
SOC  
Vl  
Vh  
SOD  
SOI  
...  
31  
30 29 28 27 26 25 ... 7  
0
6 5 4 3 2 1 0  
31 30 29 28 27 26 25  
7
6
5
4
3
2
1
Vl  
Vh  
Vl  
right 32-bit audio sample  
left 32-bit audio sample  
Fig. 4–25: Sample timing of the SDO interface in 32 bit/sample mode  
D0:346 settings are  
bit[14] = 0 (SOC not inverted)  
bit[11] = 0 (no SOI delay)  
bit[5] = 1 (word strobe inverted)  
bit[4] = 0 (32 bits/sample)  
Micronas  
June 30, 2004; 6251-505-1DS  
75  
MAS 35x9F  
DATA SHEET  
4.6.2.4. S/PDIF Input Characteristics  
at T = T , V  
, V  
= 2.2 ... 3.6 V, f  
= 18.432 MHz, Typ. values for T = 25 °C in P(L/M)QFP package.  
Crystal A  
A
SUPD SUPA  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
VS  
fs1  
fs2  
fs3  
tP  
Signal amplitude  
Bi-phase frequency  
Bi-phase frequency  
Bi-phase frequency  
Bi-phase period  
Rise time  
SPDI1, SPDI2, 200  
SPDIR  
500  
1000  
mVpp  
MHz  
MHz  
MHz  
ns  
SPDI1, SPDI2,  
SPDIR  
2.048  
2.822  
3.072  
326  
±1000 ppm, fs = 48 kHz  
SPDI1, SPDI2,  
SPDIR  
±1000 ppm,  
fs = 44.1 kHz  
SPDI1, SPDI2,  
SPDIR  
±1000 ppm, fs = 32 kHz  
SPDI1, SPDI2,  
SPDIR  
at fs = 48 kHz, (highest  
sampling rate)  
tR  
SPDI1, SPDI2,  
SPDIR  
0
65  
ns  
at fs = 48 kHz, (highest  
sampling rate)  
tF  
Fall time  
SPDI1, SPDI2,  
SPDIR  
0
65  
ns  
at fs = 48 kHz, (highest  
sampling rate)  
Duty cycle  
SPDI  
40  
81  
50  
60  
%
at bit value=1 and  
fs = 48 kHz  
tH1,L1  
SPDI  
163  
ns  
minimum/maximum pulse  
duration with a level  
above 90 % or below  
10 % and at fs = 48 kHz  
tH0,L0  
SPDI  
163  
244  
ns  
minimum/maximum pulse  
duration with a level  
above 90 % or below  
10 % and at fs = 48 kHz  
t
t
R
F
t
t
H1  
L1  
Bit value = 1  
Bit value = 0  
t
t
L0  
H0  
t
P
Fig. 4–26: Timing of the S/PDIF input  
76  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
4.6.2.5. S/PDIF Output Characteristics  
at T = T , V  
, V  
= 2.2 ... 3.6 V, f  
= 18.432 MHz, Typ. values for T = 25 °C in P(L/M)QFP package.  
CRYSTAL A  
A
SUPD SUPA  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
fs1  
fs2  
fs3  
tP  
Bi-phase frequency  
Bi-phase frequency  
Bi-phase frequency  
Bi-phase period  
SPDO  
SPDO  
SPDO  
SPDO  
3.072  
2.822  
2.048  
326  
MHz  
MHz  
MHz  
ns  
fs = 48 kHz  
fs = 44.1 kHz  
fs = 32 kHz  
at fs = 48 kHz, (highest  
sampling rate)  
tR  
tF  
Rise time  
Fall time  
SPDO  
SPDO  
SPDO  
SPDO  
0
0
2
2
ns  
ns  
%
Cload = 10 pF  
Cload = 10 pF  
Duty cycle  
50  
tH1,L1  
tH0,L0  
VS  
163  
ns  
minimum/maximum pulse  
duration with a level  
above 90% or below 10%  
and at fs = 48 kHz  
SPDO  
SPDO  
326  
ns  
minimum/maximum pulse  
duration with a level  
above 90% or below 10%  
and at fs = 48 kHz  
Signal amplitude  
VSUPD  
t
t
R
F
t
t
H1  
L1  
Bit value = 1  
Bit value = 0  
t
t
L0  
H0  
t
P
Fig. 4–27: Timing of the S/PDIF output  
4.6.2.6. PIO as Parallel Input Interface: DMA Mode  
the controller. Please refer to Figure for the exact tim-  
ing.  
In decoding mode, the data transfer can be started  
after the EOD pin of the MAS 35x9F is set to “high”.  
After verifying this, the controller signalizes the send-  
ing of data by activating the PR line. The MAS 35x9F  
responds by setting the RTR line to the “low” level. The  
MAS 35x9F reads the data PI[19:12] and sets RTR to  
low after rising edge of PR. After RTR is set to high,  
the mC sets PR to low. The next data word write oper-  
ation will be initialized again by setting the PR line via  
The procedure above will be repeated until the  
MAS 35x9F sets the EOD signal to “0” which indicates  
that the transfer of one data block has been executed.  
Subsequently, the controller should set PR to “0”, wait  
until EOD rises again and then repeat the procedure to  
send the next block of data. The DMA buffer for MPEG  
decoding is 30 bytes long. The size for G.729 is 10  
bytes.  
Micronas  
June 30, 2004; 6251-505-1DS  
77  
MAS 35x9F  
DATA SHEET  
Table 4–8: PIO input DMA mode timing  
Table 4–9: t_clm in MP3  
Symbol  
Pin Name Min.  
Max.  
Sample rate  
[kHz]  
t_clm [ns]  
f_clm [MHz]  
t
t
t
PR, EOD  
PR, RTR  
PI[19:12]  
10 ns  
2000 µs  
t_clm  
st  
48 or 32  
44.1  
41  
24.5760  
22.5792  
12.2880  
11.2896  
6.1440  
r
44  
2*t_clm-  
33 ns  
set1  
24 or 16  
22.05  
81  
t
t
t
PI[19:12]  
PI[19:12]  
RTR  
dep. on  
appl.  
89  
set2  
h
12 or 8  
11.025  
163  
177  
5*t_  
clm  
5.6448  
MP3:  
60*t_clm  
5*t_  
clm  
rtrq  
AAC:  
140*t_clm  
Table 4–10: t_clm in AAC  
Sample rate  
[kHz]  
t_clm [ns]  
f_clm [MHz]  
t
PR  
5*t_  
clm  
pr  
48 or 32  
44.1  
33  
30.720  
28.224  
15.360  
14.112  
7.680  
t
t
t
PR, RTR  
PR, EOD  
EOD  
t_clm  
rpr  
35  
t_clm  
eod  
eodq  
150*t_clm1)  
200 ms1)  
24 or 16  
22.05  
65  
1) See Parallel I/O Application Note,  
Order no. 6251-590-2-1IC.  
71  
12 or 8  
11.025  
130  
142  
7.056  
tst  
teod  
teodq  
/EOD  
/EOD  
GPIO  
tpr = Twr  
tr  
PR  
/CS  
/WR  
PR  
MAS3509F  
/RTR  
trtrq  
trpr  
Customer IC  
GPIO  
/RTR  
tset1 = Tchl_dov  
th  
tset2  
Twrh  
_csh  
PI(19:12)  
PI(19:12)  
D7-D0  
Fig. 4–28: Handshake protocol for writing MPEG data to the PIO-DMA  
78  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
4.6.2.7. PIO as Parallel Input Interface:  
Program Download Mode  
Table 4–11: PIO Program Download Mode timing  
Symbol Pin  
Min.  
0
Max.  
Unit  
µs  
Handshake for PIO input in Program Download  
Mode is accomplished through the RTR, PCS, and  
PI12..PI19 signal lines (see Fig. 4–29). The PR line  
should be set to low level.  
t
t
t
t
t
t
RTR, PCS  
PCS  
0
1
2
3
4
5
150  
0
ns  
PCS, RTR  
RTR  
30  
5
ns  
The MAS 35x9F will drive RTR low as soon as it is  
ready to receive a byte and RTR will stay low until one  
byte has been written. Writing of a byte is performed  
with a PCS pulse, driven by the microcontroller. The  
MAS 35x9F reads data after the falling edge of PCS  
and will finish the cycle by setting RTR to high level  
after the rising edge of PCS. The next data transfer is  
initialized by the MAS 35x9F by driving the RTR line.  
0.4  
50  
50  
µs  
PI  
ns  
PI  
ns  
t
t
t
t
0
1
2
3
RTW  
PIxx  
PCS  
t
t
4
5
Fig. 4–29: PIO program download mode timing  
Micronas  
June 30, 2004; 6251-505-1DS  
79  
MAS 35x9F  
DATA SHEET  
4.6.2.8. PIO as Parallel Output Interface  
Table 4–12: PIO output mode timing  
Some downloadable software may use the PIO inter-  
face (lines PI19...PI12) as output. The data transfer  
rate and conditions are defines by the software func-  
tion.  
Symbol Pin  
Min.  
RTW, PCS 0.010  
PCS 0.330  
PCS, RTW 0.010  
Max.  
Unit  
µs  
t
t
t
t
t
t
1800  
0
1
2
3
4
5
µs  
Handshaking for PIO output mode is accomplished  
through the RTW, PCS, and PI12..PI19 signal lines  
(see Fig. 4–30). The PR line has to be set to high level.  
µs  
RTW  
PI  
0.330  
0.330  
0.081  
10000  
µs  
RTW will go low as soon as a byte is available in the  
output buffer and will stay low until a byte has been  
read. Reading of a byte is performed with a PCS  
pulse. Data is latched out from the MAS on the falling  
edge of PCS and removed from the bus on the rising  
edge of PCS.  
µs  
PI  
µs  
t
t
t
t
0
1
2
3
RTW  
PIxx  
PCS  
t
t
4
5
Fig. 4–30: Output timing  
80  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
4.6.3. Analog Characteristics  
at T = T , V  
, V  
= 2.2 to 3.6 V, V  
= 2.2 to 3.6 V, f  
= 13 to 20 MHz,  
A
SUPDn  
SUPx  
SUPA  
CRYSTAL  
typical values at T = 25 °C and f  
= 18.432 MHz in P(L/M)QFP package  
A
CRYSTAL  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
Analog Supply  
IAVDD  
Current consumption analog  
audio  
AVDD0/1  
AVDD0/1  
5
mA  
VSUPA = 2.2 V, Mute  
IQOSC  
Current consumption crystal  
oscillator  
200  
µA  
Codec = off  
DSP = off  
DC/DC = on  
ISTANDBY  
10  
Codec = off  
DSP = off  
DC/DC = off  
Crystal Oscillator  
VDCCLK  
VACLK  
DC voltage at oscillator pins  
XTI, XTO  
0.5  
VSUPA  
Clock amplitude  
0.5  
VSUPA VPP  
if crystal is used  
VSUPA = 2.2 V  
0.5  
CIN  
Input capacitance  
Output resistance  
3
pF  
ROUT  
XTO  
220  
125  
94  
V
V
SUPA = 2.7 V  
SUPA = 3.3 V  
Analog Reference  
VAGNDC Analog Reference Voltage  
AGNDC  
V
RL >> 10 MΩ,  
referred to VREF  
VSUPA  
bits[15], [14] in  
register 6Ahex  
1.1  
1.3  
1.6  
>2.2 V  
>2.4 V  
>3.0 V  
VSUPA  
00  
01  
10  
VMICBI  
Bias voltage for microphone  
MICBI  
MICBI  
bits[15], [14] in  
register 6Ahex  
1.8  
>2.2 V  
>2.4 V  
>3.0 V  
00  
01  
10  
2.13  
2.62  
180  
RMICBI  
IMAX  
Source resistance  
Maximum current microphone MICBI  
bias  
µA  
VSUPA  
>2.2 V  
bits[15], [14] in  
register 6Ahex  
300  
00  
Micronas  
June 30, 2004; 6251-505-1DS  
81  
MAS 35x9F  
DATA SHEET  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
Analog Audio Input  
VAI  
Analog line input clipping  
level (at minimum analog  
INL/R  
Vpp  
VSUPA  
bits[15], [14] in  
register 6Ahex  
input gain, i.e. 3 dB)  
2.2  
2.6  
3.2  
>2.2 V  
>2.4 V  
>3.0 V  
VSUPA  
00  
01  
10  
VMI  
Microphone input clipping  
level (at minimum analog  
input gain, i.e. +21 dB)  
MICIN  
mVpp  
bits[15], [14] in  
register 6Ahex  
141  
167  
282  
97  
>2.0 V  
>2.4 V  
>3.0 V  
00  
01  
10  
RinAI  
Analog line input resistance  
Microphone input resistance  
INL/R  
kΩ  
kΩ  
at minimum analog input  
gain, i.e. 3 dB  
20  
at maximum analog input  
gain, i.e. +19.5 dB  
67  
94  
not selected  
RinMI  
MICIN  
at minimum analog input  
gain, i.e. 21 dB  
8
at maximum analog input  
gain, i.e. +43.5 dB  
94  
74  
not selected  
SNRAI  
SNRMI  
THDAI  
Signal-to-noise ratio of line  
input  
INL/R  
dB(A) BW = 20 Hz...20 kHz,  
analog gain = 0 dB,  
input 1 kHz at VAI20 dB  
Signal-to-noise ratio of  
microphone input  
MICIN  
73  
dB(A) BW = 20 Hz...20 kHz,  
analog gain = +21 dB,  
input 1 kHz at VMI20 dB  
Total harmonic distortion of  
analog inputs  
INL/R  
MICIN  
0.01  
0.02  
%
BW = 20 Hz...20 kHz,  
analog gain = 0 dB,  
resp. 24 dB,  
input 1 kHz at  
3 dBFS = VAI6 dB  
resp. VMI6 dB  
XTALKAI  
PSRRAI  
Crosstalk attenuation  
left/right channel  
(analog inputs)  
INL/R  
MICIN  
80  
dB  
f = 1 kHz, sine wave,  
analog gain = 0 dB,  
input = 3 dBFS  
Power supply rejection ratio  
for analog audio inputs  
AVDD0/1,  
INL/R  
MICIN  
45  
20  
dB  
dB  
1 kHz sine at 100 mVrms  
100 kHz sine at  
100 mVrms  
82  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
Audio Output  
VAO1  
Analog output voltage AC  
OUTL/R  
RL 1 kΩ  
input = 0 dBFS digital  
VSUPA  
bits[15], [14] in  
register 6Ahex  
at 0 dB output gain  
at +3 dB output gain  
1.56  
1.84  
2.27  
2.20  
2.60  
3.20  
Vpp  
Vpp  
mV  
>2.2 V  
>2.4 V  
>3.0 V  
>2.2 V  
>2.6 V  
>3.2 V  
00  
01  
10  
00  
01  
10  
dVAO1  
Deviation of DC-level at  
analog output for AGNDC-  
Voltage  
OUTL/R  
20  
20  
VAO2  
Analog output voltage AC  
OUTL/R  
RLis 16 headphone and  
22 series resistor  
Input = 0 dBFS digital  
(see Fig. 5–1 on page 89)  
VSUPA  
bits[15], [14] in  
register 6Ahex  
at 0 dB output gain  
1.56  
1.84  
2.27  
2.00  
2.40  
3.00  
Vpp  
Vpp  
>2.2 V  
>2.4 V  
>3.0 V  
>2.2 V  
>2.6 V  
>3.2 V  
00  
01  
10  
00  
01  
10  
at +3 dB output gain  
RoutAO  
SNRAO  
Analog output resistance  
OUTL/R  
6
analog gain = +3 dB,  
input = 0 dBFS digital  
Signal-to-noise ratio of analog OUTL/R  
output  
94  
dB(A) RL16 Ω  
BW = 20 Hz...20 kHz,  
analog gain = 0 dB  
input = 20 dBFS  
THDAO  
Total harmonic distortion  
(headphone)  
OUTL/R  
OUTL/R  
0.03  
0.05  
%
for RL16 plus 22 Ω  
series resistor  
(see Fig. 5–1 on page 89)  
for RL1 kΩ  
0.003 0.01  
LevMuteAO  
Mute level  
113  
dBV  
A-weighted  
BW = 20 Hz...22 kHz,  
no digital input signal,  
analog gain = mute  
Micronas  
June 30, 2004; 6251-505-1DS  
83  
MAS 35x9F  
DATA SHEET  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
XTALKAO  
Crosstalk attenuation left/right OUTLR  
channel (headphone)  
80  
dB  
f = 1 kHz, sine wave,  
OUTL/R: RL16 Ω  
(see Fig. 5–1 on page 89)  
analog gain = 0 dB  
input = 3 dBFS  
PSRRAO  
Power supply rejection ratio  
for analog audio outputs  
AVDD0/1  
OUTL/R  
70  
35  
dB  
dB  
1 kHz sine at 100 mVrms  
100 kHz sine at  
100 mVrms  
4.6.4. DC/DC Converter Characteristics  
at T = T , V = 1.2 V, V = 3.0 V, f = 18.432 MHz, f = 384 kHz, PWM mode, L = 22 µH, in P(L/M)QFP pack-  
A
in  
outn  
clk  
sw  
age (unless otherwise noted) Typ. values for T = 25 °C  
A
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
VIN  
VIN  
Minimum start-up input  
voltage  
0.9  
V
ILOAD 1 mA,  
DCCF = 5050hex (reset)  
1)  
Minimum operating input  
voltage  
DC1  
DC2  
0.7  
0.8  
V
V
V
ILOAD = 50 mA,  
DCCF = 5050hex (reset)  
DC1  
DC2  
1.1  
1.2  
ILOAD = 200 mA,  
DCCF = 5050hex (reset)  
VOUT  
Programmable output voltage VSENSn  
range  
2.0  
3.5  
Voltage settings in DCCF  
register (I2C subaddress  
76hex  
)
VOTOL  
ILOAD1  
ILOAD2  
Output voltage tolerance  
VSENSn  
VSENSn  
−4  
4
%
ILOAD = 20 mA  
TA = 25 °C  
2)  
Output current  
1 battery cell  
200  
600  
mA  
mA  
%/V  
%
VIN = 0.9...1.5 V, 330 µF  
VIN = 1.8...3.0 V, 330 µF  
ILOAD = 20 mA  
Output current  
2 battery cells  
dVOUT  
/
Line regulation  
VSENSn  
VSENSn  
0.7  
dVIN/VOUT  
dVOUT  
/
Load regulation  
1.8  
ILOAD = 20...200 mA,  
VIN = 2.4 V, VOUT = 3.5 V  
VOUT  
hmax  
Maximum efficiency  
Switching frequency  
95  
%
fswitch  
DCSOn  
DCSOn  
297  
384  
250  
576  
kHz  
(see Section 2.6.2. on  
page 12), (see Table 3–3)  
fstartup  
Switching frequency during  
start-up  
kHz  
VSENSn < 1.9 V  
1) Since the regulators are bootstrapped, once started they will operate down to 0.7 V input voltage  
2) PFM mode regulates approx. 1% higher  
84  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Limit Values  
Symbol  
Parameter  
Pin Name  
Unit  
µA  
Test Conditions  
Min.  
Typ.  
75  
Max.  
3)  
IsupPFM1  
IsupPFM2  
IsupPWM1  
IsupPWM2  
Ilnmax  
Supply current in PFM mode  
VSENS1  
VSENS2  
135  
265  
325  
1
Supply current in PWM mode VSENS1  
VSENS2  
µA  
VSENSn  
3)  
4)  
NMOS switch current limit  
(low side switch)  
DCSOn,  
DCSGn  
A
PWM-Mode  
PFM-Mode  
0.4  
70  
A
IIptoff  
PMOS switch turnoff current  
(rectifier switch)  
DCSOn  
VSENSn  
mA  
Ron  
NMOS switch on Resistance  
(low side switch)  
DCSO1,  
DCSG1  
170  
280  
0.1  
mΩ  
mΩ  
µA  
DCSO2,  
DCSG2  
ILEAK  
Leakage current  
DCSOn,  
DCSGn  
Converter off, no load  
3) Current into VSENSn Pin. VIN > VOUT + 0.4V; no DC/DC-Converter switching action present  
4) Add. current of oscillator at PIN AVDD0/1, (see Section 4.6.3. on page 81)  
Micronas  
June 30, 2004; 6251-505-1DS  
85  
MAS 35x9F  
DATA SHEET  
4.6.5. Typical Performance Characteristics  
Efficiency vs. Load Current  
Efficiency vs. Load Current  
DCDC1 (V  
= 3.5 V)  
DCDC2 (V  
= 3.5 V)  
OUT  
OUT  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
3.0 V  
3.0 V  
1.8 V  
1.8 V  
V :  
3.0 V  
2.4 V  
1.8 V  
V :  
3.0 V  
2.4 V  
1.8 V  
IN  
IN  
PFM  
PWM  
PFM  
PWM  
4  
4  
3  
2  
1  
3  
2  
1  
10  
1
10  
1
10  
10  
10  
10  
10  
10  
Load Current (A)  
Load Current (A)  
Efficiency vs. Load Current  
Efficiency vs. Load Current  
DCDC1 (V  
= 3.0 V)  
DCDC2 (V  
= 3.0 V)  
OUT  
OUT  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
2.4 V  
2.4 V  
0.9 V  
0.9 V  
V :  
V :  
IN  
IN  
2.4 V  
1.5 V  
1.2 V  
0.9 V  
2.4 V  
1.5 V  
1.2 V  
0.9 V  
PFM  
PFM  
PWM  
PWM  
4  
4  
3  
2  
1  
3  
2  
1  
10  
1
10  
1
10  
10  
10  
10  
10  
10  
Load Current (A)  
Load Current (A)  
Fig. 4–31: Efficiency vs. Load Current  
86  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Efficiency vs. Load Current  
Efficiency vs. Load Current  
DCDC1 (V  
= 2.2 V)  
DCDC2 (V  
= 2.2 V)  
OUT  
OUT  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
1.5 V  
1.5 V  
0.9 V  
0.9 V  
V :  
1.5 V  
1.2 V  
0.9 V  
V :  
1.5 V  
1.2 V  
0.9 V  
IN  
IN  
PFM  
PFM  
PWM  
PWM  
4  
4  
3  
2  
1  
3  
2  
1  
10  
1
10  
1
10  
10  
10  
10  
10  
10  
Load Current (A)  
Load Current (A)  
Maximum Load Current  
vs. Input Voltage  
Maximum Load Current  
vs. Input Voltage  
0.8  
0.6  
0.4  
0.2  
0.8  
0.6  
0.4  
DCDC1  
DCDC2  
V
:
V
:
out  
out  
2.2 V  
3.0 V  
3.5 V  
2.2 V  
3.0 V  
3.5 V  
PFM  
PFM  
PWM  
PWM  
0.2  
0
0
0.0  
0.0  
1.0  
2.0  
3.0  
1.0  
2.0  
3.0  
Input Voltage (V)  
Fig. 4–32: Maximum Load Current vs. Input Voltag  
Note: Efficiency is measured as V × I / (V × I ).  
Input Voltage (V)  
SENSn  
LOAD  
in  
in  
I
is not included (Oscillator current)  
AVDD  
Micronas  
June 30, 2004; 6251-505-1DS  
87  
MAS 35x9F  
DATA SHEET  
Loadregulation  
Loadregulation  
at V  
= 2.7 V, 2.5 V  
at V  
= 3.0 V, 3.5 V  
OUT  
OUT  
2.75  
2.7  
3.55  
3.5  
1.5 V  
1.5 V  
2.65  
3.45  
0.9 V  
0.9 V  
V :  
1.5 V  
V :  
1.5 V  
IN  
IN  
2.6  
3.4  
1.2 V  
0.9 V  
1.2 V  
0.9 V  
2.55  
3.05  
2.5  
3.0  
2.45  
2.4  
2.95  
2.9  
DCDC1  
50  
DCDC1  
50  
0
100  
150  
200  
0
100  
150  
200  
Load Current (mA)  
Load Current (mA)  
No-Load Battery Current  
V
= 3.0 V  
OUT  
10  
8
Both DCDC running in PWM  
One DCDC running in PFM  
6
4
2
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Voltage (V)  
88  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
5. Application  
5.1. Typical Application in a Portable Player  
MMC/SDI-Card or SMC/CF2+ used as storage media  
Dashed lines show optional (external) devices  
PCSQ  
PI19  
PI18  
PI17  
PI16  
PI15  
PI14  
PI13  
PI12  
SOD  
SOI  
VSENS1  
DVS  
I2CVDD  
XVDD  
VDD  
XVSS  
VSS  
POR  
XTO  
XTI  
TE  
INR  
SOC  
SID  
INL  
SII  
MICBI  
SIC  
MICIN  
AGNDC  
SPDO  
Fig. 5–1: Application circuit of the MAS 35x9F. For connections of the DC/DC converters, please refer to Fig. 5–2.  
Micronas  
June 30, 2004; 6251-505-1DS  
89  
MAS 35x9F  
DATA SHEET  
5.2. Recommended DC/DC Converter Application Circuit  
(Power optimized scenario, (see Fig. 2–7 on page 13)).  
VBAT  
L1 = 22 µH  
DCSO1  
D1, Schottky  
+
AVDD0/1  
VSENS1  
C3 = 330 µF  
Vin (Input Voltage)  
(0.9..1.5 V)  
VDC1  
e.g. 2.2 V  
C1 = 330 µF  
(low ESR)  
+
DCSG1  
VSS, XVSS  
D
DCEN  
Power-On Push Button  
L2 = 22 µH  
DCSO2  
D2, Schottky  
VSENS2  
VDC2  
e.g. 3.0 V  
for µC,  
Storage Media  
C2 = 330 µF  
(low ESR)  
+
Star Point  
Ground Connection  
very close to Pins  
DCSG2  
DCSG1 and DCSG2  
VREF  
D
AVSS0/1  
A
A
Fig. 5–2: External circuitry for the DC/DC converters  
For turn-on voltage of DSP and codec, please refer  
to Section 2.11.2.1.  
90  
June 30, 2004; 6251-505-1DS  
Micronas  
DATA SHEET  
MAS 35x9F  
Micronas  
June 30, 2004; 6251-505-1DS  
91  
MAS 35x9F  
DATA SHEET  
6. Data Sheet History  
1. Preliminary data sheet: “MAS 35x9F, MPEG Layer  
2/3, AAC Audio Decoder, G.729 Annex A Codec”,  
Aug. 01, 2001, 6251-505-1PD. First release of the  
preliminary data sheet.  
2. Data Sheet: “MAS 35X9F MPEG Layer 2/3, AAC  
Audio Decoder, G.729 Annex A Codec”, June 30,  
2004, 6251-505-1DS. First release of the data  
sheet.  
Major changes:  
– New package diagrams were included for  
PLQFP64-1, PMQFP64-2, PQFN64-1  
– Functional description of the MP3 Block Input Mode  
now available for improved input timing behavior of  
the MPEG 1/2/2.5 Layer3 decoder  
– Important advice for turn-on and operating voltage  
– Changes in configuration registers  
Tables were added: PIO input DMA mode timing;  
Sample rate in MP3; Sample rate in AAC  
– Handshake protocol for writing MPEG data to the  
PIO-DMA was added.  
All information and data contained in this data sheet are without any  
commitment, are not to be considered as an offer for conclusion of a  
contract, nor shall they be construed as to create any liability. Any new  
issue of this data sheet invalidates previous issues. Product availability  
and delivery are exclusively subject to our respective order confirmation  
form; the same applies to orders based on development samples deliv-  
ered. By this publication, Micronas GmbH does not assume responsibil-  
ity for patent infringements or other rights of third parties which may  
result from its use.  
Further, Micronas GmbH reserves the right to revise this publication  
and to make changes to its content, at any time, without obligation to  
notify any person or entity of such revisions or changes.  
No part of this publication may be reproduced, photocopied, stored on a  
retrieval system, or transmitted without the express written consent of  
Micronas GmbH.  
Micronas GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
E-mail: docservice@micronas.com  
Internet: www.micronas.com  
Printed in Germany  
Order No. 6251-505-1DS  
92  
June 30, 2004; 6251-505-1DS  
Micronas  

相关型号:

MAS3549FBF

Consumer Circuit, PBGA81, PLASTIC, LFBGA-81
TDK

MAS3549FBL

Consumer Circuit, PBGA81, PLASTIC, LFBGA-81
TDK

MAS3559F

MAS 35x9F MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A Codec
MICRONAS

MAS3559FBF

Consumer Circuit, PBGA81, PLASTIC, LFBGA-81
TDK

MAS3559FBL

Consumer Circuit, PBGA81, PLASTIC, LFBGA-81
TDK

MAS3559FFH

Consumer Circuit, PDSO64, PLASTIC, QFP-64
TDK

MAS3559FQI

Consumer Circuit, PQFP64, 10 X 10 MM, 2 MM HEIGHT, PLASTIC, MQFP-64
TDK

MAS3587F

MPEG Layer 3 Audio Encoder/Decoder
ETC

MAS35X9F

MAS 35x9F MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A Codec
MICRONAS

MAS36

Incremental Encoder
CUI

MAS3690CB

Mil-Std-1553 Controller, 2 Channel(s), 0.125MBps, CMOS, CDIP48
DYNEX

MAS3690CC

1553B Bus Controller/Remote Terminal
DYNEX