MSP3430GPS [TDK]

Consumer Circuit, CMOS, PQCC68, PLASTIC, LCC-68;
MSP3430GPS
型号: MSP3430GPS
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Consumer Circuit, CMOS, PQCC68, PLASTIC, LCC-68

商用集成电路
文件: 总96页 (文件大小:653K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MSP 34x0G  
Multistandard  
Sound Processor Family  
Edition Oct. 6, 1999  
6251-476-3PD  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Contents  
Page  
Section  
Title  
5
6
6
7
1.  
Introduction  
1.1.  
1.2.  
1.3.  
Features of the MSP 34x0G Family and Differences to MSPD  
MSP 34x0G Version List  
MSP 34x0G Versions and their Application Fields  
8
2.  
Functional Description  
9
2.1.  
Architecture of the MSP 34x0G Family  
Sound IF Processing  
9
2.2.  
9
2.2.1.  
2.2.2.  
2.2.3.  
2.2.4.  
2.3.  
Analog Sound IF Input  
9
Demodulator: Standards and Features  
Preprocessing of Demodulator Signals  
Automatic Sound Select  
Preprocessing for SCART and I2S Input Signals  
Source Selection and Output Channel Matrix  
Audio Baseband Processing  
Automatic Volume Correction (AVC)  
Loudspeaker and Headphone Outputs  
Subwoofer Output  
10  
10  
10  
12  
12  
12  
12  
12  
12  
13  
13  
13  
13  
14  
14  
14  
2.4.  
2.5.  
2.5.1.  
2.5.2.  
2.5.3.  
2.5.4.  
2.6.  
Quasi-Peak Detector  
SCART Signal Routing  
2.6.1.  
2.6.2.  
2.7.  
SCART DSP In and SCART Out Select  
Stand-by Mode  
I2S Bus Interface  
2.8.  
ADR Bus Interface  
2.9.  
Digital Control I/O Pins and Status Change Indication  
Clock PLL Oscillator and Crystal Specifications  
2.10.  
15  
15  
15  
16  
17  
18  
18  
18  
18  
18  
19  
19  
19  
22  
23  
23  
24  
25  
26  
27  
3.  
Control Interface  
3.1.  
I2C Bus Interface  
3.1.1.  
3.1.2.  
3.1.3.  
3.1.4.  
3.1.4.1.  
3.1.4.2.  
3.1.4.3.  
3.1.4.4.  
3.2.  
Device and Subaddresses  
Description of CONTROL Register  
Protocol Description  
Proposals for General MSP 34x0G I2C Telegrams  
Symbols  
Write Telegrams  
Read Telegrams  
Examples  
Start-Up Sequence: Power-Up and I2C Controlling  
MSP 34x0G Programming Interface  
User Registers Overview  
3.3.  
3.3.1.  
3.3.2.  
3.3.2.1.  
3.3.2.2.  
3.3.2.3.  
3.3.2.4.  
3.3.2.5.  
3.3.2.6.  
Description of User Registers  
STANDARD SELECT Register  
Refresh of STANDARD SELECT Register  
STANDARD RESULT Register  
Write Registers on I2C Subaddress 10hex  
Read Registers on I2C Subaddress 11hex  
Write Registers on I2C Subaddress 12hex  
2
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Contents, continued  
Page  
Section  
Title  
38  
39  
39  
39  
39  
39  
40  
40  
40  
3.3.2.7.  
3.4.  
Read Registers on I2C Subaddress 13hex  
Programming Tips  
3.5.  
Examples of Minimum Initialization Codes  
B/G-FM (A2 or NICAM)  
3.5.1.  
3.5.2.  
3.5.3.  
3.5.4.  
3.5.5.  
3.5.6.  
BTSC-Stereo  
BTSC-SAP with SAP at Loudspeaker Channel  
FM-Stereo Radio  
Automatic Standard Detection  
Software Flow for Interrupt driven STATUS Check  
42  
42  
44  
47  
50  
54  
56  
56  
57  
57  
57  
58  
59  
60  
60  
61  
62  
63  
64  
65  
67  
67  
68  
71  
4.  
Specifications  
4.1.  
Outline Dimensions  
4.2.  
Pin Connections and Short Descriptions  
Pin Descriptions  
4.3.  
4.4.  
Pin Configurations  
4.5.  
Pin Circuits  
4.6.  
Electrical Characteristics  
4.6.1.  
4.6.2.  
4.6.2.1.  
4.6.2.2.  
4.6.2.3.  
4.6.2.4.  
4.6.3.  
4.6.3.1.  
4.6.3.2.  
4.6.3.3.  
4.6.3.4.  
4.6.3.5.  
4.6.3.6.  
4.6.3.7.  
4.6.3.8.  
4.6.3.9.  
4.6.3.10.  
Absolute Maximum Ratings  
Recommended Operating Conditions (TA = 0 to 70 °C)  
General Recommended Operating Conditions  
Analog Input and Output Recommendations  
Recommendations for Analog Sound IF Input Signal  
Crystal Recommendations  
Characteristics  
General Characteristics  
Digital Inputs, Digital Outputs  
Reset Input and Power-Up  
I2C-Bus Characteristics  
I2S-Bus Characteristics  
Analog Baseband Inputs and Outputs, AGNDC  
Sound IF Inputs  
Power Supply Rejection  
Analog Performance  
Sound Standard Dependent Characteristics  
74  
74  
75  
76  
76  
77  
77  
5.  
Appendix A: Overview of TV-Sound Standards  
NICAM 728  
5.1.  
5.2.  
5.3.  
5.4.  
5.5.  
5.6.  
A2-Systems  
BTSC-Sound System  
Japanese FM Stereo System (EIA-J)  
FM Satellite Sound  
FM-Stereo Radio  
MICRONAS INTERMETALL  
3
MSP 34x0G  
PRELIMINARY DATA SHEET  
Contents, continued  
Page  
Section  
Title  
78  
79  
80  
81  
81  
81  
81  
82  
82  
83  
84  
86  
86  
88  
88  
88  
88  
89  
89  
89  
89  
90  
90  
90  
90  
90  
90  
91  
91  
91  
91  
91  
91  
91  
91  
93  
93  
6.  
Appendix B: Manual/Compatibility Mode  
6.1.  
Demodulator Write and Read Registers for Manual/Compatibility Mode  
DSP Write and Read Registers for Manual/Compatibility Mode  
Manual/Compatibility Mode: Description of Demodulator Write Registers  
Automatic Switching between NICAM and Analog Sound  
Function in Automatic Sound Select Mode  
Function in Manual Mode  
6.2.  
6.3.  
6.3.1.  
6.3.1.1.  
6.3.1.2.  
6.3.2.  
6.3.3.  
6.3.4.  
6.3.5.  
6.3.6.  
6.3.7.  
6.4.  
A2 Threshold  
Carrier-Mute Threshold  
Register AD_CV  
Register MODE_REG  
FIR-Parameter, Registers FIR1 and FIR2  
DCO-Registers  
Manual/Compatibility Mode: Description of Demodulator Read Registers  
NICAM Mode Control/Additional Data Bits Register  
Additional Data Bits Register  
6.4.1.  
6.4.2.  
6.4.3.  
6.4.4.  
6.4.5.  
6.4.6.  
6.4.7.  
6.5.  
CIB Bits Register  
NICAM Error Rate Register  
PLL_CAPS Readback Register  
AGC_GAIN Readback Register  
Automatic Search Function for FM-Carrier Detection in Satellite Mode  
Manual/Compatibility Mode: Description of DSP Write Registers  
Additional Channel Matrix Modes  
6.5.1.  
6.5.2.  
6.5.3.  
6.5.4.  
6.5.5.  
6.5.6.  
6.5.7.  
6.6.  
Volume Modes of SCART1/2 Outputs  
FM Fixed Deemphasis  
FM Adaptive Deemphasis  
NICAM Deemphasis  
Identification Mode for A2 Stereo Systems  
FM DC Notch  
Manual/Compatibility Mode: Description of DSP Read Registers  
Stereo Detection Register for A2 Stereo Systems  
DC Level Register  
6.6.1.  
6.6.2.  
6.7.  
Demodulator Source Channels in Manual Mode  
Terrestric Sound Standards  
6.7.1.  
6.7.2.  
6.8.  
SAT Sound Standards  
Exclusions of Audio Baseband Features  
Phase Relationship of Analog Outputs  
6.9.  
94  
95  
96  
7.  
8.  
9.  
Appendix D: MSP 34x0G Version History  
Appendix E: Application Circuit  
Data Sheet History  
4
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Multistandard Sound Processor Family  
Other processed standards are the Japanese FM-FM  
multiplex standard (EIA-J) and the FM Stereo Radio  
standard.  
Release Note: Revision bars indicate significant  
changes to the previous edition. The hardware and  
software description in this document is valid for  
the MSP 34x0G version B5 and following versions.  
Current ICs have to perform adjustment procedures in  
order to achieve good stereo separation for BTSC and  
EIA-J. The MSP 34x0G has optimum stereo perfor-  
mance without any adjustments.  
1. Introduction  
All MSP 34x0G versions are pin and software down-  
ward-compatible to the MSP 34x0D. The MSP 34x0G  
further simplifies controlling software. Standard selec-  
tion requires a single I2C transmission only.  
The MSP 34x0G family of single-chip Multistandard  
Sound Processors covers the sound processing of all  
analog TV-Standards worldwide, as well as the NICAM  
digital sound standards. The full TV sound processing,  
starting with analog sound IF signal-in, down to pro-  
cessed analog AF-out, is performed on a single chip.  
Figure 1–1 shows a simplified functional block diagram  
of the MSP 34x0G.  
The MSP 34x0G has built-in automatic functions: The  
IC is able to detect the actual sound standard automat-  
ically (Automatic Standard Detection). Furthermore,  
pilot levels and identification signals can be evaluated  
internally with subsequent switching between mono/  
stereo/bilingual; no I2C interaction is necessary (Auto-  
matic Sound Selection).  
This new generation of TV sound processing ICs now  
includes versions for processing the multichannel tele-  
vision sound (MTS) signal conforming to the standard  
recommended by the Broadcast Television Systems  
Committee (BTSC). The DBX noise reduction, or alter-  
natively, MICRONAS Noise Reduction (MNR) is per-  
formed alignment free.  
The ICs are produced in submicron CMOS technology.  
The MSP 34x0G is available in the following pack-  
ages: PLCC68, PSDIP64, PSDIP52, PQFP80, and  
PLQFP64.  
Loud-  
speaker  
Loud-  
speaker  
Sound  
Sound IF1  
De-  
modulator  
Pre-  
processing  
ADC  
DAC  
DAC  
Sound IF2  
Subwoofer  
Processing  
Headphone  
Sound  
Processing  
Headphone  
2
I S1  
Prescale  
Prescale  
2
I S2  
2
I S  
SCART1  
SCART2  
SCART3  
DAC  
DAC  
SCART  
DSP  
Input  
SCART1  
SCART2  
ADC  
SCART  
Output  
Select  
Select  
SCART4  
MONO  
Fig. 1–1: Simplified functional block diagram of the MSP 34x0G  
MICRONAS INTERMETALL  
5
MSP 34x0G  
PRELIMINARY DATA SHEET  
1.1. Features of the MSP 34x0G Family and Differences to MSPD  
Feature (New features not available for MSPD are shaded gray.)  
3400  
X
3410  
X
3420  
X
3430  
X
3440  
X
3450  
X
2
Standard Selection with single I C transmission  
Automatic Standard Detection of terrestrial TV standards  
Automatic Sound Selection (mono/stereo/bilingual), new registers MODUS, STATUS  
Two selectable sound IF (SIF) inputs  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Automatic Carrier Mute function  
X
X
X
X
X
X
Interrupt output programmable (indicating status change)  
Loudspeaker / Headphone channel with volume, balance, bass, treble, loudness  
AVC: Automatic Volume Correction  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Subwoofer output with programmable low-pass and complementary high-pass filter  
5-band graphic equalizer for loudspeaker channel  
X
X
X
X
X
X
X
X
X
X
X
X
Spatial effect for loudspeaker channel  
X
X
X
X
X
X
Four Stereo SCART (line) inputs, one Mono input; two Stereo SCART outputs  
Complete SCART in/out switching matrix  
X
X
X
X
X
X
X
X
X
X
X
X
2
2
Two I S inputs; one I S output  
X
X
X
X
X
X
Dolby Pro Logic with DPL 351xA coprocessor  
X
X
X
X
X
X
All analog FM-Stereo A2 and satellite standards; AM-SECAM L standard  
Simultaneous demodulation of (very) high-deviation FM-Mono and NICAM  
Adaptive deemphasis for satellite (Wegener-Panda, acc. to ASTRA specification)  
ASTRA Digital Radio (ADR) together with DRP 3510A  
All NICAM standards  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Demodulation of the BTSC multiplex signal and the SAP channel  
Alignment free digital DBX noise reduction for BTSC Stereo and SAP  
Alignment free digital MICRONAS Noise Reduction (MNR) for BTSC Stereo and SAP  
BTSC stereo separation (MSP 3420/40G also EIA-J) significantly better than spec.  
SAP and stereo detection for BTSC system  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Korean FM-Stereo A2 standard  
X
X
Alignment-free Japanese standard EIA-J  
Demodulation of the FM-Radio multiplex signal  
X
1.2. MSP 34x0G Version List  
Version  
Status  
Description  
MSP 3400G  
MSP 3410G  
MSP 3420G  
MSP 3430G  
MSP 3440G  
MSP 3450G  
planned  
available  
available  
available  
available  
available  
FM Stereo (A2) Version  
NICAM and FM Stereo (A2) Version  
NTSC Version (A2 Korea, BTSC with MICRONAS Noise Reduction (MNR), and Japanese EIA-J system)  
BTSC Version  
NTSC Version (A2 Korea, BTSC with DBX noise reduction, and Japanese EIA-J system)  
Global Version (all sound standards)  
6
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
1.3. MSP 34x0G Versions and their Application Fields  
Table 1–1 provides an overview of TV sound stan-  
dards that can be processed by the MSP 34x0G fam-  
ily. In addition, the MSP 34x0G is able to handle the  
terrestrial FM-Radio standard. With the MSP 34x0G, a  
complete multimedia receiver covering all TV sound  
standards together with terrestrial and satellite radio  
sound can be built; even ASTRA Digital Radio can be  
processed (with a DRP 3510A coprocessor).  
Table 1–1: TV Stereo Sound Standards covered by the MSP 34x0G IC Family (details see Appendix A)  
TV-  
System  
Position of Sound  
Carrier /MHz  
Sound  
Modulation  
Color  
System  
Broadcast e.g. in:  
MSP Version  
5.5/5.7421875  
5.5/5.85  
FM-Stereo (A2)  
PAL  
Germany  
B/G  
FM-Mono/NICAM  
AM-Mono/NICAM  
FM-Mono/NICAM  
FM-Stereo (A2, D/K1)  
FM-Stereo (A2, D/K2)  
FM-Stereo (A2, D/K3)  
PAL  
Scandinavia, Spain  
France  
L
I
6.5/5.85  
SECAM-L  
PAL  
6.0/6.552  
UK, Hong Kong  
Slovak. Rep.  
currently no broadcast  
Poland  
6.5/6.2578125  
6.5/6.7421875  
6.5/5.7421875  
6.5/5.85  
SECAM-East  
PAL  
D/K  
SECAM-East  
FM-Mono/NICAM (D/K, NICAM) PAL  
FM-Mono  
China, Hungary  
6.5  
7.02/7.2  
7.38/7.56  
etc.  
FM-Stereo  
Europe Sat.  
ASTRA  
Satellite  
PAL  
ASTRA Digital Radio (ADR)  
with DRP 3510A  
4.5/4.724212  
FM-Stereo (A2)  
FM-FM (EIA-J)  
NTSC  
Korea  
M/N  
4.5  
NTSC  
Japan  
4.5  
BTSC-Stereo + SAP  
FM-Stereo Radio  
NTSC, PAL  
USA, Argentina  
USA, Europe  
FM-Radio  
10.7  
33 34 39 MHz  
4.5 9 MHz  
SAW Filter  
Sound  
IF  
Mixer  
Tuner  
Loudspeaker  
Subwoofer  
1
Mono  
Vision  
Demo-  
dulator  
MSP 34x0G  
2
2
2
2
SCART1  
SCART2  
SCART3  
SCART4  
Headphone  
SCART  
Inputs  
2
2
SCART1  
SCART2  
Composite  
Video  
SCART  
Outputs  
2
2
I S1  
ADR  
I S2  
Dolby  
ADR  
Decoder  
DRP 3510A  
Pro Logic  
Processor  
DPL 351xA  
Fig. 1–2: Typical MSP 34x0G application  
MICRONAS INTERMETALL  
7
Automatic  
Sound Select  
AGC  
DACM_L  
DACM_R  
FM/AM  
Deemphasis:  
50/75 µs  
DBX/MNR  
Panda1  
Bass/  
Treble  
or  
A
Comple-  
mentary  
Highpass  
FM/AM  
Stereo or A / B  
Stereo or A  
ANA_IN1+  
ANA_IN2+  
Loudspeaker  
Channel  
Matrix  
D
Volume  
Spatial  
Effects  
DEMODULATOR  
(incl. Carrier Mute)  
AVC  
Σ
Beeper  
Σ
Loudness  
Balance  
D
Equalizer  
Prescale  
NICAM  
Decoded Standards:  
NICAM  
A2  
AM  
BTSC  
EIA-J  
SAT  
Level  
Adjust  
A
Lowpass  
DACM_SUB  
Deemphasis:  
J17  
Stereo or B  
Prescale  
FM-Radio  
Volume  
DACA_L  
Standard and  
Sound  
Detection  
D
2
Headphone  
Channel  
Matrix  
I C  
Bass/  
Treble  
Loudness  
Balance  
Read Register  
A
DACA_R  
ADR-Bus Interface  
2
I S1  
2
2
I S  
I S  
2
I S  
I2S_DA_IN1  
Channel  
Matrix  
Interface  
I2S_DA_OUT  
Interface  
Prescale  
2
I S2  
2
I S  
I2S_DA_IN2  
Interface  
Quasi-Peak  
Channel  
Matrix  
2
I C  
Quasi-Peak  
Detector  
Prescale  
Read Register  
Volume  
Volume  
D
SCART1  
Channel  
Matrix  
SCART  
A
SCART1_L/R  
SCART2_L/R  
A
A
D
Prescale  
SC1_OUT_L  
SC1_OUT_R  
D
SCART2  
Channel  
Matrix  
SC1_IN_L  
SC1_IN_R  
SC2_IN_L  
SC2_IN_R  
SC2_OUT_L  
SC2_OUT_R  
SC3_IN_L  
SC3_IN_R  
SC4_IN_L  
SC4_IN_R  
MONO_IN  
Fig. 2–1: Signal flow block diagram of the MSP 34x0G (input and output names correspond to pin names)  
PRELIMINARY DATA SHEET  
MSP 34x0G  
2.1. Architecture of the MSP 34x0G Family  
BTSC-Mono + SAP: Detection and FM demodulation  
of the aural carrier resulting in the MTS/MPX signal.  
Detection and evaluation of the pilot carrier, detection  
and FM demodulation of the SAP subcarrier. Process-  
ing of DBX noise reduction or MICRONAS Noise  
Reduction (MNR).  
Fig. 2–1 on page 8 shows a simplified block diagram of  
the IC. The block diagram contains all features of the  
MSP 3450G. Other members of the MSP 34x0G fam-  
ily do not have the complete set of features: The  
demodulator handles only a subset of the standards  
presented in the demodulator block; NICAM process-  
ing is only possible in the MSP 3410G and  
MSP 3450G.  
Japan Stereo: Detection and FM demodulation of the  
aural carrier resulting in the MPX signal. Demodulation  
and evaluation of the identification signal and FM  
demodulation of the (LR)-carrier.  
2.2. Sound IF Processing  
FM-Satellite Sound: Demodulation of one or two FM  
carriers. Processing of high-deviation mono or narrow  
bandwidth mono, stereo, or bilingual satellite sound  
according to the ASTRA specification.  
2.2.1. Analog Sound IF Input  
The input pins ANA_IN1+, ANA_IN2+, and ANA_IN−  
offer the possibility to connect two different sound IF  
(SIF) sources to the MSP 34x0G. The analog-to-digital  
conversion of the preselected sound IF signal is done  
by an A/D-converter. An analog automatic gain circuit  
(AGC) allows a wide range of input levels. The high-  
pass filters formed by the coupling capacitors at pins  
ANA_IN1+ and ANA_IN2+ see Section 8. “Appendix  
E: Application Circuit” on page 95 are sufficient in most  
cases to suppress video components. Some combina-  
tions of SAW filters and sound IF mixer ICs, however,  
show large picture components on their outputs. In this  
case, further filtering is recommended.  
FM-Stereo-Radio: Detection and FM demodulation of  
the aural carrier resulting in the MPX signal. Detection  
and evaluation of the pilot carrier and AM demodula-  
tion of the (LR)-carrier.  
The demodulator blocks of all MSP 34x0G versions  
have identical user interfaces. Even completely differ-  
ent systems like the BTSC and NICAM systems are  
controlled the same way. Standards are selected by  
means of MSP Standard Codes. Automatic processes  
handle standard detection and identification without  
controller interaction. The key features of the  
MSP 34x0G demodulator blocks are  
2.2.2. Demodulator: Standards and Features  
Standard Selection: The controlling of the demodula-  
tor is minimized: All parameters, such as tuning fre-  
quencies or filter bandwidth, are adjusted automati-  
cally by transmitting one single value to the  
STANDARD SELECT register. For all standards, spe-  
cific MSP standard codes are defined.  
The MSP 34x0G is able to demodulate all TV-sound  
standards worldwide including the digital NICAM sys-  
tem. Depending on the MSP 34x0G version, the fol-  
lowing demodulation modes can be performed:  
A2 Systems: Detection and demodulation of two sep-  
arate FM carriers (FM1 and FM2), demodulation and  
evaluation of the identification signal of carrier FM2.  
Automatic Standard Detection: If the TV sound stan-  
dard is unknown, the MSP 34x0G can automatically  
detect the actual standard, switch to that standard, and  
respond the actual MSP standard code.  
NICAM Systems: Demodulation and decoding of the  
NICAM carrier, detection and demodulation of the ana-  
log (FM or AM) carrier. For D/K-NICAM, the FM carrier  
may have a maximum deviation of 384 kHz.  
Automatic Carrier Mute: To prevent noise effects or  
FM identification problems in the absence of an FM  
carrier, the MSP 34x0G offers a carrier mute feature,  
which is activated automatically if the TV sound stan-  
dard is selected by means of the STANDARD SELECT  
register. If no FM carrier is available at one of the two  
MSP demodulator channels, the corresponding  
demodulator output is muted.  
Very high deviation FM-Mono: Detection and robust  
demodulation of one FM carrier with a maximum devi-  
ation of 540 kHz.  
BTSC-Stereo: Detection and FM demodulation of the  
aural carrier resulting in the MTS/MPX signal. Detec-  
tion and evaluation of the pilot carrier, AM demodula-  
tion of the (LR)-carrier and detection of the SAP sub-  
carrier. Processing of DBX noise reduction or  
MICRONAS Noise Reduction (MNR).  
MICRONAS INTERMETALL  
9
MSP 34x0G  
PRELIMINARY DATA SHEET  
2.2.3. Preprocessing of Demodulator Signals  
“Stereo or A” channel: Analog or digital mono  
sound, stereo if available. In case of bilingual broad-  
cast, it contains language A (on left and right).  
The NICAM signals must be processed by a deempha-  
sis filter and adjusted in level. The analog demodu-  
lated signals must be processed by a deemphasis fil-  
ter, adjusted in level, and dematrixed. The correct  
deemphasis filters are already selected by setting the  
standard in the STANDARD SELECT register. The  
level adjustment has to be done by means of the FM/  
AM and NICAM prescale registers. The necessary  
dematrix function depends on the selected sound stan-  
dard and the actual broadcasted sound mode (mono,  
stereo, or bilingual). It can be manually set by the FM  
Matrix Mode register or automatically set by the Auto-  
matic Sound Selection.  
“Stereo or B” channel: Analog or digital mono  
sound, stereo if available. In case of bilingual broad-  
cast, it contains language B (on left and right).  
Fig 2–2 shows the source channel assignment of the  
demodulated signals in case of manual mode. If man-  
ual mode is required, more information can be found in  
the section “Demodulator Source Channels in Manual  
Mode” on page 91. Fig 2–3 and Table 2–2 show the  
source channel assignment of the demodulated sig-  
nals in case of Automatic Sound Select mode for all  
sound standards.  
Note: The analog primary input channel contains the  
signal of the mono FM/AM carrier or the L+R signal of  
the MPX carrier. The secondary input channel contains  
the signal of the 2nd FM carrier, the LR signal of the  
MPX carrier, or the SAP signal.  
2.2.4. Automatic Sound Select  
In the Automatic Sound Select mode, the dematrix  
function is automatically selected based on the identifi-  
cation information in the STATUS register. No I2C  
interaction is necessary when the broadcasted sound  
mode changes (e.g. from mono to stereo).  
2.3. Preprocessing for SCART and  
I2S Input Signals  
The demodulator supports the identification check by  
switching between mono compatible standards (stan-  
dards that have the same FM mono carrier) automati-  
cally and non-audible. If B/G-FM or B/G-NICAM is  
selected, the MSP will switch between these stan-  
dards. The same action is performed for the stan-  
dards: D/K1-FM, D/K2-FM, and D/K-NICAM. Switching  
is only done in the absence of any stereo or bilingual  
identification. If identification is found, the MSP keeps  
the detected standard.  
The SCART and I2S inputs need only be adjusted in  
level by means of the SCART and I2S prescale regis-  
ters.  
LS Ch.  
Matrix  
primary  
channel  
FM/AM  
Prescale  
FM-Matrix  
FM/AM  
0
1
Output-Ch.  
Matrices  
must be set  
according  
the standard  
secondary  
channel  
In case of high bit-error rates, the MSP 34x0G auto-  
matically falls back from digital NICAM sound to ana-  
log FM or AM mono.  
NICAM A  
NICAM B  
NICAM  
NICAM  
(Stereo or A/B)  
Prescale  
SC2 Ch.  
Matrix  
Table 2–1 summarizes all actions that take place when  
Automatic Sound Select is switched on.  
Fig. 2–2: Source channel assignment of demodulated  
signals in Manual Mode  
To provide more flexibility, the Automatic Sound Select  
block prepares four different source channels of  
demodulated sound (Fig 2–3). By choosing one of the  
four demodulator channels, the preferred sound mode  
can be selected for each of the output channels (loud-  
speaker, headphone, etc.). This is done by means of  
the Source Select registers.  
LS Ch.  
Matrix  
primary  
channel  
FM/AM  
0
1
FM/AM  
Prescale  
secondary  
channel  
Automatic  
Sound  
Select  
Output-Ch.  
Matricesmust  
be set once to  
stereo  
Stereo or A/B  
The following source channels of demodulated sound  
are defined:  
NICAM A  
NICAM B  
NICAM  
Stereo or A  
Stereo or B  
3
4
“FM/AM” channel: Analog mono sound, stereo if  
available. In case of NICAM, analog mono only  
(FM or AM mono).  
Prescale  
SC2 Ch.  
Matrix  
Fig. 2–3: Source channel assignment of demodulated  
signals in Automatic Sound Select Mode  
“Stereo or A/B” channel: Analog or digital mono  
sound, stereo if available. In case of bilingual broad-  
cast, it contains both languages A (left) and B  
(right).  
10  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Table 2–1: Performed actions of the Automatic Sound Selection  
Selected TV Sound Standard  
Performed Actions  
B/G-FM, D/K-FM, M-Korea,  
and M-Japan  
Evaluation of the identification signal and automatic switching to mono, stereo, or bilingual. Preparing four  
demodulator source channels according to Table 2–2. Identification is acquired after 500 ms.  
B/G-NICAM, L-NICAM, I-NICAM,  
and D/K-NICAM  
Evaluation of NICAM-C-bits and automatic switching to mono, stereo, or bilingual. Preparing four  
demodulator source channels according to Table 2–2. NICAM detection is acquired within 150 ms.  
In case of bad or no NICAM reception, the MSP switches automatically to FM/AM mono and switches  
back to NICAM if possible. A hysteresis prevents periodical switching.  
B/G-FM, B/G-NICAM  
or  
D/K1-FM, D/K2-FM, D/K3-FM,  
and D/K-NICAM  
Automatic searching for stereo/bilingual-identification in case of mono transmission. Automatic and non-  
audible changes between Dual-FM and FM-NICAM standards while listening to the basic FM-Mono sound  
carrier.  
Example: If starting with B/G-FM-Stereo, there will be a periodical alternation to B/G-NICAM in the  
absence of FM-Stereo/Bilingual or NICAM-identification. Once an identification is detected, the MSP  
keeps the corresponding standard.  
BTSC-STEREO, FM Radio  
BTSC-SAP  
Evaluation of the pilot signal and automatic switching to mono or stereo. Preparing four demodulator  
source channels according to Table 2–2. Detection of the SAP carrier. Pilot detection is acquired after  
200 ms.  
In the absence of SAP, the MSP switches to BTSC-Stereo if available. If SAP is detected, the MSP  
switches automatically to SAP (see Table 2–2).  
Table 2–2: Sound modes for the demodulator source channels with Automatic Sound Select  
Source Channels in Automatic Sound Select Mode  
Broadcasted Selected  
Broadcasted  
Sound Mode  
FM/AM  
(source select: 0)  
Stereo or A/B  
(source select: 1)  
Stereo or A  
(source select: 3)  
Stereo or B  
(source select: 4)  
Sound  
MSP Standard  
Standard  
Code3)  
M-Korea  
B/G-FM  
D/K-FM  
M-Japan  
02  
MONO  
Mono  
Mono  
Mono  
Stereo  
A
Mono  
Stereo  
B
03, 081)  
04, 05, 07, 0B1)  
30  
STEREO  
Stereo  
Stereo  
BILINGUAL:  
Left = A  
Left = A  
Languages A and B  
Right = B  
Right = B  
B/G-NICAM  
L-NICAM  
08, 032)  
09  
NICAM not available or analog Mono  
error rate too high  
analog Mono  
analog Mono  
analog Mono  
I-NICAM  
0A  
0B, 042), 052)  
0C  
MONO  
analog Mono  
analog Mono  
analog Mono  
NICAM Mono  
NICAM Stereo  
NICAM Mono  
NICAM Stereo  
NICAM A  
NICAM Mono  
NICAM Stereo  
NICAM B  
D/K-NICAM  
D/K-NICAM  
(with high  
STEREO  
deviation FM)  
BILINGUAL:  
Languages A and B  
Left = NICAM A  
Right = NICAM B  
20, 21  
20  
MONO  
Mono  
Stereo  
Mono  
Stereo  
Mono  
Stereo  
Mono  
Stereo  
Mono  
Stereo  
Mono  
Stereo  
Mono  
Mono  
Stereo  
Mono  
Stereo  
SAP  
STEREO  
MONO+SAP  
STEREO+SAP  
MONO+SAP  
BTSC  
21  
Left = Mono  
Right = SAP  
Left = Mono  
Right = SAP  
STEREO+SAP  
Left = Mono  
Right = SAP  
Left = Mono  
Right = SAP  
Mono  
SAP  
FM Radio  
40  
MONO  
Mono  
Mono  
Mono  
Mono  
STEREO  
Stereo  
Stereo  
Stereo  
Stereo  
1)  
The Automatic Sound Select process will automatically switch to the mono compatible analog standard.  
The Automatic Sound Select process will automatically switch to the mono compatible digital standard.  
The MSP Standard Codes are defined in Table 3–7 on page 22.  
2)  
3)  
MICRONAS INTERMETALL  
11  
MSP 34x0G  
PRELIMINARY DATA SHEET  
2.4. Source Selection and Output Channel Matrix  
output level  
[dBr]  
The Source Selector makes it possible to distribute all  
source signals (one of the demodulator source chan-  
nels, SCART, or I2S input) to the desired output chan-  
nels (loudspeaker, headphone, etc.). All input and out-  
put signals can be processed simultaneously. Each  
source channel is identified by a unique source  
address.  
12  
18  
24  
For each output channel, the sound mode can be set  
to sound A, sound B, stereo, or mono by means of the  
output channel matrix.  
30  
24  
18  
12  
6  
0
+6  
input level  
[dBr]  
If Automatic Sound Select is on, the output channel  
matrix can stay fixed to stereo (transparent) for  
demodulated signals.  
Fig. 2–4: Simplified AVC characteristics  
2.5. Audio Baseband Processing  
2.5.2. Loudspeaker and Headphone Outputs  
2.5.1. Automatic Volume Correction (AVC)  
The following baseband features are implemented in  
the loudspeaker and headphone output channels:  
bass/treble, loudness, balance, and volume. A square  
wave beeper can be added to the loudspeaker and  
headphone channel. The loudspeaker channel addi-  
tionally performs: equalizer (not simultaneously with  
bass/treble), spatial effects, and a subwoofer cross-  
over filter.  
Different sound sources (e.g. terrestrial channels, SAT  
channels, or SCART) fairly often do not have the same  
volume level. Advertisements during movies usually  
have a higher volume level than the movie itself. This  
results in annoying volume changes. The Automatic  
Volume Correction (AVC) solves this problem by  
equalizing the volume level.  
To prevent clipping, the AVC’s gain decreases quickly  
in dynamic boost conditions. To suppress oscillation  
effects, the gain increases rather slowly for low level  
inputs. The decay time is programmable by means of  
the AVC register (see page 31).  
2.5.3. Subwoofer Output  
The subwoofer signal is created by combining the left  
and right channels directly behind the loudness block  
using the formula (L+R)/2. Due to the division by 2, the  
D/A converter will not be overloaded, even with full  
scale input signals. The subwoofer signal is filtered by  
a third-order low-pass with programmable corner fre-  
quency followed by a level adjustment. At the loud-  
speaker channels, a complementary high-pass filter  
can be switched on. Subwoofer and loudspeaker out-  
put use the same volume (Loudspeaker Volume Reg-  
ister).  
For input signals ranging from 24 dBr to 0 dBr, the  
AVC maintains a fixed output level of 18 dBr. Fig. 2–4  
shows the AVC output level versus its input level. For  
prescale and volume registers set to 0 dB, a level of  
0 dBr corresponds to full scale input/output. This is  
– SCART input/output 0 dBr = 2.0 Vrms  
– Loudspeaker and Aux output 0 dBr = 1.4 Vrms  
2.5.4. Quasi-Peak Detector  
The quasi-peak readout register can be used to read  
out the quasi-peak level of any input source. The fea-  
ture is based on following filter time constants:  
attack time: 1.3 ms  
decay time: 37 ms  
12  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
2.6. SCART Signal Routing  
2.7. I2S Bus Interface  
2.6.1. SCART DSP In and SCART Out Select  
It is possible to route in an external coprocessor for  
special effects, like surround processing and sound  
field processing. Routing can be done with each input  
source and output channel via the I2S inputs and out-  
puts.  
The SCART DSP Input Select and SCART Output  
Select blocks include full matrix switching facilities. To  
design a TV set with four pairs of SCART-inputs and  
two pairs of SCART-outputs, no external switching  
hardware is required. The switches are controlled by  
the ACB user register (see page 37).  
Two possible interface formats are supported:  
1. The SONY format: I2S_WS changes at the word  
boundaries.  
2.6.2. Stand-by Mode  
2. The PHILIPS format: I2S_WS changes one I2S_CL  
period before the word boundaries.  
If the MSP 34x0G is switched off by first pulling  
STANDBYQ low and then (after >1 µs delay) switching  
off the 5-V, but keeping the 8-V power supply (‘Stand-  
by’-mode), the SCART switches maintain their posi-  
tion and function. This allows the copying from  
selected SCART-inputs to SCART-outputs in the TV  
set’s stand-by mode.  
The I2S bus interface consists of five pins:  
1. I2S_DA_IN1, I2S_DA_IN2:  
For input, four channels (two channels per line,  
2*16 bits) per sampling cycle (32 kHz) are transmit-  
ted.  
2. I2S_DA_OUT:  
In case of power on or starting from stand-by (switch-  
ing on the 5-V supply, RESETQ going high 2 ms later),  
all internal registers except the ACB register (page 37)  
are reset to the default configuration (see Table 3–5 on  
page 20). The reset position of the ACB register  
becomes active after the first I2C transmission into the  
Baseband Processing part (subaddress 12hex). By  
transmitting the ACB register first, the reset state can  
be redefined.  
For output, two channels (2*16 bits) per sampling  
cycle (32 kHz) are transmitted.  
3. I2S_CL:  
Gives the timing for the transmission of I2S serial  
data (1.024 MHz).  
4. I2S_WS:  
The I2S_WS word strobe line defines the left and  
right sample.  
The MSP 34x0G normally serves as the master on the  
I2S interface. In this case, the clock and word strobe  
lines are driven by the MSP 34x0G. In slave mode,  
these lines are input to the MSP 34x0G and the master  
clock is synchronized to 576 times the I2S_WS rate  
(32 kHz). NICAM operation is not possible in this  
mode.  
All I2S options can be set by means of the MODUS  
register (see page 25).  
A precise I2S timing diagram is shown in Fig. 4–26 on  
page 65.  
MICRONAS INTERMETALL  
13  
MSP 34x0G  
PRELIMINARY DATA SHEET  
2.8. ADR Bus Interface  
2.10. Clock PLL Oscillator and Crystal Specifications  
For the ASTRA Digital Radio System (ADR), the  
MSP 3400G, MSP 3410G and MSP 3450G performs  
preprocessing such as carrier selection and filtering.  
Via the 3-line ADR-bus, the resulting signals are trans-  
ferred to the DRP 3510A coprocessor, where the  
source decoding is performed. To be prepared for an  
upgrade to ADR with an additional DRP board, the fol-  
lowing lines of MSP 34x0G should be provided on a  
feature connector:  
The MSP 34x0G derives all internal system clocks  
from the 18.432-MHz oscillator. In NICAM or in I2S-  
Slave mode, the clock is phase-locked to the corre-  
sponding source. Therefore, it is not possible to use  
NICAM and I2S-Slave mode at the same time.  
For proper performance, the MSP clock oscillator  
requires a 18.432-MHz crystal. Note that for the  
phase-locked modes (NICAM, I2S-Slave), crystals with  
tighter tolerance are required.  
– AUD_CL_OUT  
Remark on using the crystal:  
– I2S_DA_IN1 or I2S_DA_IN2  
– I2S_DA_OUT  
External capacitors at each crystal pin to ground are  
required. They are necessary for tuning the open-loop  
frequency of the internal PLL and for stabilizing the fre-  
quency in closed-loop operation. The higher the  
capacitors, the lower the resulting clock frequency.  
The nominal free running frequency should match  
18.432 MHz as closely as possible.  
– I2S_WS  
– I2S_CL  
– ADR_CL, ADR_WS, ADR_DA  
For more details, please refer to the DRP 3510A data  
sheet.  
Clock measurements should be done at pin  
AUD_CL_OUT. This pin must be activated for this pur-  
pose (see Table 3–9 on page 25).  
2.9. Digital Control I/O Pins and  
Status Change Indication  
The static level of the digital input/output pins  
D_CTR_I/O_0/1 is switchable between HIGH and  
LOW via the I2C-bus by means of the ACB register  
(see page 37). This enables the controlling of external  
hardware switches or other devices via I2C-bus.  
The digital input/output pins can be set to high imped-  
ance by means of the MODUS register (see page 25).  
In this mode, the pins can be used as input. The cur-  
rent state can be read out of the STATUS register (see  
page 26).  
Optionally, the pin D_CTR_I/O_1 can be used as an  
interrupt request signal to the controller, indicating any  
changes in the read register STATUS. This makes poll-  
ing unnecessary, I2C bus interactions are reduced to a  
minimum (see STATUS register on page 26 and  
MODUS register on page 25).  
14  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
3. Control Interface  
performed some other function (for example, servicing  
an internal interrupt), it will hold the clock line I2C_CL  
LOW to force the transmitter into a wait state. The  
positions within a transmission where this may happen  
are indicated by ’Wait’ in section 3.1.3. The maximum  
wait period of the MSP during normal operation mode  
is less than 1 ms.  
3.1. I2C Bus Interface  
3.1.1. Device and Subaddresses  
The MSP 34x0G is controlled via the I2C bus slave  
interface.  
The IC is selected by transmitting one of the  
MSP 34x0G device addresses. In order to allow up to  
three MSP ICs to be connected to a single bus, an  
address select pin (ADR_SEL) has been implemented.  
With ADR_SEL pulled to high, low, or left open, the  
MSP 34x0G responds to different device addresses. A  
device address pair is defined as a write address (80,  
84, or 88 hex) and a read address (81, 85, or 89 hex)  
(see Table 3–1).  
Internal hardware error handling:  
In case of any internal hardware error (e.g. interruption  
of the power supply of the MSP), the MSP’s wait  
period is extended to 1.8 ms. After this time period  
elapses, the MSP releases data and clock lines.  
Indication and solving of the error status:  
Writing is done by sending the device write address,  
followed by the subaddress byte, two address bytes,  
and two data bytes. Reading is done by sending the  
write device address, followed by the subaddress byte  
and two address bytes. Without sending a stop condi-  
tion, reading of the addressed data is completed by  
sending the device read address (81, 85, or 89 hex)  
and reading two bytes of data. Refer to section 3.1.3.  
for the I2C bus protocol and to section “Programming  
Tips” on page 39 for proposals of MSP 34x0G I2C tele-  
grams. See Table 3–2 for a list of available subad-  
dresses.  
1. MSP 34x0G-versions until B5: To indicate the  
error status, all further acknowledge bits will be left  
high. The MSP can then be reset by transmitting the  
reset condition to CONTROL while ignoring the miss-  
ing acknowledge bits.  
2. MSP 34x0G-versions from B6 on: To indicate the  
error status, the remaining acknowledge bits of the ac-  
tual I2C-protocol will be left high. Additionally, bit[14] of  
CONTROL is set to one. The MSP can then be reset  
via the I2C bus by transmitting the reset condition to  
CONTROL.  
Besides the possibility of hardware reset, the MSP can  
also be reset by means of the RESET bit in the CON-  
TROL register by the controller via I2C bus.  
Indication of reset (only versions from B6 on):  
Any reset, even caused by an unstable reset line etc.,  
is indicated in bit[15] of CONTROL.  
Due to the internal architecture of the MSP 34x0G, the  
IC cannot react immediately to an I2C request. The  
typical response time is about 0.3 ms. If the MSP can-  
not accept another complete byte of data until it has  
A general timing diagram of the I2C bus is shown in  
Fig. 4–25 on page 63.  
MICRONAS INTERMETALL  
15  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 3–1: I2C Bus Device Addresses  
ADR_SEL  
Low  
High  
Read  
Left Open  
Mode  
Write  
Read  
Write  
Write  
Read  
MSP device address  
80 hex  
81 hex  
84 hex  
85 hex  
88 hex  
89 hex  
Table 3–2: I2C Bus Subaddresses  
Name  
Binary Value  
Hex Value  
Mode  
Function  
CONTROL  
0000 0000  
00  
Read/Write  
Write: Software reset of MSP (see Table 3–3)  
Read: Hardware error status of MSP  
TEST  
0000 0001  
0001 0000  
0001 0001  
0001 0010  
0001 0011  
01  
10  
11  
12  
13  
Write  
Write  
Write  
Write  
Write  
only for internal use  
WR_DEM  
RD_DEM  
WR_DSP  
RD_DSP  
write address demodulator  
read address demodulator  
write address DSP  
read address DSP  
3.1.2. Description of CONTROL Register  
Table 3–3: CONTROL as a Write Register  
Name  
Subaddress  
Bit[15] (MSB)  
Bits[14:0]  
CONTROL 00 hex  
1 : RESET  
0 : normal  
0
Table 3–4: CONTROL as a Read Register (only MSP 34x0G-versions from B6 on)  
Name Subaddress Bit[15] (MSB) Bit[14]  
CONTROL 00 hex Reset status after last reading of CONTROL: Internal hardware status:  
Bits[13:0]  
not of interest  
0 : no reset occured  
1 : reset occured  
0 : no error occured  
1 : internal error occured  
Reading of CONTROL will reset the bits[15,14] of CONTROL. After Power-on, bit[15] of CONTROL will be set; it must be  
read once to be resetted.  
16  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
3.1.3. Protocol Description  
Write to DSP or Demodulator  
S
write  
device  
address  
Wait ACK sub-addr ACK addr-byte ACK addr-byte ACK data-byte- ACK data-byte ACK  
high low high low  
P
Read from DSP or Demodulator  
S
write  
device  
address  
Wait ACK sub-addr ACK addr-byte ACK addr-byte ACK  
high low  
S
read  
device  
address  
Wait ACK data-byte- ACK data-byte NAK  
high low  
P
Write to Control or Test Registers  
S
write  
device  
address  
Wait ACK sub-addr ACK data-byte ACK data-byte ACK P  
high  
low  
Note: S =  
P =  
I2C-Bus Start Condition from master  
I2C-Bus Stop Condition from master  
ACK = Acknowledge-Bit: LOW on I2C_DA from slave (= MSP, light gray)  
or master (= controller dark gray)  
NAK = Not Acknowledge-Bit: HIGH on I2C_DA from master (dark gray) to indicate ‘End of Read’  
or from MSP indicating internal error state  
Wait = I2C-Clock line is held low, while the MSP is processing the I2C command. This waiting time is  
max. 1 ms  
1
0
I2C_DA  
S
P
I2C_CL  
Fig. 3–1: I2C bus protocol (MSB first; data must be stable while clock is high)  
MICRONAS INTERMETALL  
17  
MSP 34x0G  
PRELIMINARY DATA SHEET  
3.1.4. Proposals for General MSP 34x0G I2C Telegrams  
3.1.4.1. Symbols  
daw  
dar  
<
write device address (80hex, 84hex or 88hex  
)
read device address (81hex, 85hex or 89hex  
Start Condition  
)
>
Stop Condition  
aa  
dd  
Address Byte  
Data Byte  
3.1.4.2. Write Telegrams  
<daw 00 d0 00>  
<daw 10 aa aa dd dd>  
<daw 12 aa aa dd dd>  
write to CONTROL register  
write data into demodulator  
write data into DSP  
3.1.4.3. Read Telegrams  
<daw 11 aa aa <dar dd dd>  
<daw 13 aa aa <dar dd dd>  
read data from demodulator  
read data from DSP  
3.1.4.4. Examples  
<80 00 80 00>  
<80 00 00 00>  
RESET MSP statically  
Clear RESET  
<80 10 00 20 00 03>  
<80 11 02 00 <81 dd dd>  
<80 12 00 08 01 20>  
Set demodulator to stand. 03hex  
Read STATUS  
Set loudspeaker channel source to NICAM and Matrix to STEREO  
More examples of typical application protocols are listed in section “Programming Tips” on page 39.  
18  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
3.2. Start-Up Sequence:  
Power-Up and I2C Controlling  
After POWER ON or RESET (see Fig. 4–24), the IC is  
in an inactive state. All registers are in the reset posi-  
tion (see tables 3–5 and 3–6), the analog outputs are  
muted. The controller has to initialize all registers for  
which a non-default setting is necessary.  
3.3. MSP 34x0G Programming Interface  
3.3.1. User Registers Overview  
The MSP 34x0G is controlled by means of user regis-  
ters. The complete list of all user registers is given in  
the following tables. The registers are partitioned into  
the Demodulator section (Subaddress 10hex for writ-  
ing, 11hex for reading) and the Baseband Processing  
sections (Subaddress 12hex for writing, 13hex for read-  
ing).  
Write and read registers are 16-bit wide, whereby the  
MSB is denoted bit [15]. Transmissions via I2C bus  
have to take place in 16-bit words (two byte transfers, with  
the most significant byte transferred first). All write regis-  
ters, except the demodulator write registers, are readable.  
Unused parts of the 16-bit write registers must be zero.  
Addresses not given in this table must not be written.  
For reasons of software compatibility to the  
MSP 34x0D, an Manual/Compatibility Mode is avail-  
able. More read and write registers together with a  
detailed description of this mode can be found in the  
“Appendix B: Manual/Compatibility Mode” on page 78.  
An overview of all MSP 34x0G Write Registers is  
shown in Table 3–5; all Read Registers are given in  
Table 3–6.  
MICRONAS INTERMETALL  
19  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 3–5: List of MSP 34x0G Write Registers  
Write Register  
Address Bits  
(hex)  
Description and Adjustable Range  
Reset  
See  
Page  
2
I C Subaddress = 10  
; Registers are not readable  
hex  
STANDARD SELECT  
MODUS  
00 20  
00 30  
[15..0]  
[15..0]  
Initial Programming of complete Demodulator  
00 00  
00 00  
23  
25  
2
Demodulator, Automatic and I S options  
2
2
I C Subaddress = 12  
; Registers are all readable by using I C Subaddress = 13  
hex  
hex  
Volume loudspeaker channel  
00 00  
[15..8]  
[7..0]  
[+12 dB ... 114 dB, MUTE]  
MUTE  
30  
31  
Volume / Mode loudspeaker channel  
1/8 dB Steps,  
Reduce Volume / Tone Control / Compromise  
00  
hex  
Balance loudspeaker channel [L/R]  
00 01  
[15..8]  
[0...100 / 100% and 100 / 0...100%]  
100%/100%  
[127...0 / 0 and 0 / 127...0 dB]  
Balance mode loudspeaker  
Bass loudspeaker channel  
Treble loudspeaker channel  
Loudness loudspeaker channel  
Loudness filter characteristic  
[7..0]  
[Linear mode / logarithmic mode]  
[+20 dB ... 12 dB]  
linear mode  
0 dB  
00 02  
00 03  
00 04  
[15..8]  
[15..8]  
[15..8]  
[7..0]  
32  
33  
34  
[+15 dB ... 12 dB]  
0 dB  
[0 dB ... +17 dB]  
0 dB  
[NORMAL, SUPER_BASS]  
[100%...OFF...+100%]  
[SBE, SBE+PSE]  
NORMAL  
OFF  
Spatial effect strength loudspeaker ch. 00 05  
Spatial effect mode/customize  
[15..8]  
[7..0]  
35  
30  
SBE+PSE  
MUTE  
Volume headphone channel  
Volume / Mode headphone channel  
Volume SCART1 output channel  
Loudspeaker source select  
Loudspeaker channel matrix  
Headphone source select  
Headphone channel matrix  
SCART1 source select  
00 06  
[15..8]  
[7..0]  
[+12 dB ... 114 dB, MUTE]  
1/8 dB Steps, Reduce Volume / Tone Control  
[+12 dB ... 114 dB, MUTE]  
00  
hex  
00 07  
00 08  
[15..8]  
[15..8]  
[7..0]  
MUTE  
36  
29  
29  
29  
29  
29  
29  
29  
29  
29  
29  
28  
27  
28  
28  
28  
37  
37  
28  
32  
2
2
[FM/AM, NICAM, SCART, I S1, I S2]  
FM/AM  
[SOUNDA, SOUNDB, STEREO, MONO...]  
SOUNDA  
FM/AM  
2
2
00 09  
00 0A  
00 0B  
00 0C  
[15..8]  
[7..0]  
[FM/AM, NICAM, SCART, I S1, I S2]  
[SOUNDA, SOUNDB, STEREO, MONO...]  
SOUNDA  
FM/AM  
2
2
[15..8]  
[7..0]  
[FM/AM, NICAM, SCART, I S1, I S2]  
SCART1 channel matrix  
[SOUNDA, SOUNDB, STEREO, MONO...]  
SOUNDA  
FM/AM  
2
2
2
I S source select  
[15..8]  
[7..0]  
[FM/AM, NICAM, SCART, I S1, I S2]  
2
I S channel matrix  
[SOUNDA, SOUNDB, STEREO, MONO...]  
SOUNDA  
FM/AM  
2
2
Quasi-peak detector source select  
Quasi-peak detector matrix  
Prescale SCART input  
Prescale FM/AM  
[15..8]  
[7..0]  
[FM/AM, NICAM, SCART, I S1, I S2]  
[SOUNDA, SOUNDB, STEREO, MONO...]  
SOUNDA  
00 0D  
00 0E  
[15..8]  
[15..8]  
[7..0]  
[00  
[00  
... 7F  
... 7F  
]
]
00  
00  
hex  
hex  
hex  
hex  
hex  
hex  
FM matrix  
[NO_MAT, GSTEREO, KSTEREO]  
NO_MAT  
Prescale NICAM  
00 10  
00 12  
[15..8]  
[15..8]  
[15..0]  
[15..0]  
[15..8]  
[15..8]  
[00  
[00  
... 7F ] (MSP 3410G, MSP 3450G only)  
00  
10  
00  
hex  
hex  
hex  
hex  
hex  
hex  
2
Prescale I S2  
... 7F  
]
hex  
ACB : SCART Switches a. D_CTR_I/O 00 13  
Bits [15..0]  
Beeper  
00 14  
00 16  
00 20  
[00  
... 7F ]/[00  
... 7F  
]
00/00  
hex  
hex  
hex  
hex  
hex  
hex  
2
Prescale I S1  
[00  
... 7F  
]
10  
hex  
hex  
Mode tone control  
[BASS/TREBLE, EQUALIZER]  
BASS/TREB  
20  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Table 3–5: List of MSP 34x0G Write Registers, continued  
Write Register  
Address Bits  
(hex)  
Description and Adjustable Range  
Reset  
See  
Page  
Equalizer loudspeaker ch. band 1  
Equalizer loudspeaker ch. band 2  
Equalizer loudspeaker ch. band 3  
Equalizer loudspeaker ch. band 4  
Equalizer loudspeaker ch. band 5  
Automatic Volume Correction  
Subwoofer level adjust  
00 21  
00 22  
00 23  
00 24  
00 25  
00 29  
00 2C  
00 2D  
[15..8] [+12 dB ... 12 dB]  
[15..8] [+12 dB ... 12 dB]  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
off  
33  
33  
33  
33  
33  
31  
36  
36  
36  
[15..8] [+12 dB ... 12 dB]  
[15..8] [+12 dB ... 12 dB]  
[15..8] [+12 dB ... 12 dB]  
[15..8] [off, on, decay time]  
[15..8] [0 dB ... 30 dB, mute]  
[15..8] [50 Hz ... 400 Hz]  
0 dB  
Subwoofer corner frequency  
00  
off  
hex  
Subwoofer complementary high-pass  
Balance headphone channel [L/R]  
[7..0]  
[off, on]  
00 30  
[15..8] [0...100 / 100% and 100 / 0...100%]  
100 %/100 % 31  
[127...0 / 0 and 0 / 127...0 dB]  
Balance mode headphone  
Bass headphone channel  
Treble headphone channel  
Loudness headphone channel  
Loudness filter characteristic  
Volume SCART2 output channel  
SCART2 source select  
[7..0]  
[Linear mode / logarithmic mode]  
linear mode  
00 31  
00 32  
00 33  
[15..8] [+20 dB ... 12 dB]  
[15..8] [+15 dB ... 12 dB]  
[15..8] [0 dB ... +17 dB]  
0 dB  
32  
33  
34  
0 dB  
0 dB  
[7..0]  
[NORMAL, SUPER_BASS]  
NORMAL  
00 40  
00 41  
[15..8] [+12 dB ... 114 dB, MUTE]  
00  
36  
29  
29  
hex  
2
2
[15..8] [FM, NICAM, SCART, I S1, I S2]  
FM  
SCART2 channel matrix  
[7..0]  
[SOUNDA, SOUNDB, STEREO, MONO...]  
SOUNDA  
Table 3–6: List of MSP 34x0G Read Registers  
Read Register  
Address Bits  
(hex)  
Description and Adjustable Range  
See  
Page  
2
I C Subaddress = 11  
; Registers are not writable  
hex  
STANDARD RESULT  
00 7E  
[15..0] Result of Automatic Standard Detection (see Table 3–8)  
[15..0] Monitoring of internal settings e.g. Stereo, Mono, Mute etc. .  
26  
26  
STATUS  
02 00  
; Registers are not writable  
00 19  
2
I C Subaddress = 13  
hex  
Quasi peak readout left  
Quasi peak readout right  
[15..0] [00  
[15..0] [00  
[15..8] [00  
... 7FFF ]16 bit two’s complement  
38  
38  
38  
38  
38  
38  
hex  
hex  
hex  
hex  
hex  
hex  
hex  
00 1A  
... 7FFF ]16 bit two’s complement  
hex  
MSP hardware version code  
MSP major revision code  
MSP product code  
00 1E  
... FF  
... FF  
... FF  
... FF  
]
hex  
[7..0]  
[15..8] [00  
[7..0] [00  
[00  
]
hex  
00 1F  
]
hex  
MSP ROM version code  
]
hex  
MICRONAS INTERMETALL  
21  
MSP 34x0G  
PRELIMINARY DATA SHEET  
3.3.2. Description of User Registers  
Table 3–7: Standard Codes for STANDARD SELECT register  
MSP Standard Code TV Sound Standard  
(Data in hex)  
Sound Carrier  
Frequencies in MHz  
MSP 34x0G Version  
Automatic Standard Detection  
Start Automatic Standard Detection  
00 01  
all  
Standard Selection  
00 02  
00 03  
00 04  
00 05  
00 06  
M-Dual FM-Stereo  
4.5/4.724212  
5.5/5.7421875  
6.5/6.2578125  
6.5/6.7421875  
6.5  
3400, -10, -20, -40, -50  
3400, -10, -50  
1)  
B/G -Dual FM-Stereo  
2)  
2)  
D/K1-Dual FM-Stereo  
D/K2-Dual FM-Stereo  
3)  
D/K -FM-Mono with HDEV3 , not detectable by Automatic  
Standard Detection,  
3)  
HDEV3 SAT-Mono (i.e. Eutelsat, s. Table 6–17)  
00 07  
00 08  
00 09  
00 0A  
00 0B  
00 0C  
D/K3-Dual FM-Stereo  
6.5/5.7421875  
5.5/5.85  
1)  
B/G -NICAM-FM  
3410, -50  
L -NICAM-AM  
I -NICAM-FM  
6.5/5.85  
6.0/6.552  
6.5/5.85  
2)  
D/K -NICAM-FM  
4)  
D/K -NICAM-FM with HDEV2 , not detectable by Automatic  
6.5/5.85  
Standard Detection, for China  
3)  
00 0D  
D/K -NICAM-FM with HDEV3 , not detectable by Automatic  
6.5/5.85  
4.5  
Standard Detection, for China  
00 20  
00 21  
00 30  
00 40  
00 50  
00 51  
BTSC-Stereo  
3420, -30, -40, -50  
BTSC-Mono + SAP  
M-EIA-J Japan Stereo  
FM-Stereo Radio  
4.5  
3420, -40, -50  
10.7  
6.5  
3420, -30, -40, -50  
3400, -10, -50  
SAT-Mono (s. Table 6–17)  
SAT-Stereo (s. Table 6–17)  
SAT ADR (Astra Digital Radio)  
7.02/7.20  
7.2  
00 60  
1)  
In case of Automatic Sound Select, the B/G-codes 3  
and 8  
are equivalent.  
hex  
hex  
2)  
3)  
4)  
In case of Automatic Sound Select, the D/K-codes 4 , 5  
and B  
are equivalent.  
hex hex  
hex  
HDEV3: Max. FM deviation must not exceed 540 kHz  
HDEV2: Max. FM deviation must not exceed 360 kHz  
22  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
3.3.2.1. STANDARD SELECT Register  
3.3.2.2. Refresh of STANDARD SELECT Register  
The TV sound standard of the MSP 34x0G demodula-  
tor is determined by the STANDARD SELECT register.  
There are two ways to use the STANDARD SELECT  
register:  
A general refresh of the STANDARD SELECT register  
is not allowed. However, the following method  
enables watching the MSP 34x0G “alive” status and  
detection of accidental resets (only versions B6 and  
later):  
– Setting up the demodulator for a TV sound standard  
by sending the corresponding standard code with a  
single I2C-Bus transmission.  
– After Power-on, bit[15] of CONTROL will be set; it  
must be read once to enable the reset-detection  
feature.  
– Starting the Automatic Standard Detection for ter-  
restrial TV standards. This is the most comfortable  
way to set up the demodulator. Within 0.5 s, the  
detection and set-up of the actual TV sound stan-  
dard is performed. The detected standard can be  
read out of the STANDARD RESULT register by the  
control processor. This feature is recommended for  
the primary set-up of a TV set. Outputs should be  
muted during Automatic Standard Detection.  
– Reading of the CONTROL register and checking  
the reset indicator bit[15] .  
– If bit[15] is “0”, any refresh of the STANDARD  
SELECT register is not allowed.  
– If bit[15] is “1”, indicating a reset, a refresh of the  
STANDARD SELECT register and all other MSPG  
registers is necessary.  
The Standard Codes are listed in Table 3–7.  
Selecting a TV sound standard via the STANDARD  
SELECT register initializes the demodulator. This  
includes: AGC, tuning frequency, band-pass filters,  
demodulation mode (FM, AM, or NICAM), carrier  
mute, deemphasis, and identification mode.  
If a present sound standard is impossible for a specific  
MSP version, it switches to the analog mono sound of  
this standard. In that case stereo or bilingual process-  
ing will not be possible.  
For a complete setup of the TV sound processing from  
analog IF input to the source selection, the transmis-  
sions as shown in Section 3.5. are necessary.  
Note: The FM matrix is set automatically if Automatic  
Sound Select is active (MODUS[0]=1). In this case, the  
FM matrix will be initialized with “Sound A Mono”. Dur-  
ing operation, the FM matrix will be automatically  
selected according to the actual identification informa-  
tion.  
For reasons of software compatibility to the  
MSP 34x0D, an Manual/Compatibility Mode is avail-  
able. A detailed description of this mode can be found  
on page 78.  
MICRONAS INTERMETALL  
23  
MSP 34x0G  
PRELIMINARY DATA SHEET  
3.3.2.3. STANDARD RESULT Register  
Table 3–8: Results of the Automatic Standard  
Detection  
If Automatic Standard Detection is selected in the  
STANDARD SELECT register, status and result of the  
Automatic Standard Detection process can be read out  
of the STANDARD RESULT register. The possible  
results are based on the mentioned Standard Code  
and are listed in Table 3–8.  
Broadcasted Sound  
Standard  
STANDARD RESULT Register  
Read 007Ehex  
Automatic Standard  
Detection could not  
find a sound standard  
0000hex  
In cases where no sound standard has been detected  
(no standard present, too much noise, strong interfer-  
ers, etc.) the STANDARD RESULT register contains  
00 00hex. In that case, the controller has to start further  
actions (for example, set the standard according to a  
preference list or by manual input).  
B/G-FM  
B/G-NICAM  
I
0003hex  
0008hex  
000Ahex  
FM-Radio  
0040hex  
As long as the STANDARD RESULT register contains  
a value greater than 07 FFhex, the Automatic Standard  
Detection is still active. During this period, the MODUS  
and STANDARD SELECT register must not be written.  
The STATUS register will be updated when the Auto-  
matic Standard Detection has finished.  
M-Korea  
M-Japan  
BTSC  
0002hex (if MODUS[14,13]=00)  
0020hex (if MODUS[14,13]=01)  
0030hex (if MODUS[14,13]=10)  
0009hex (if MODUS[12]=0)  
0004hex (if MODUS[12]=1)  
0009hex (if MODUS[12]=0)  
000Bhex (if MODUS[12]=1)  
>07FFhex  
L-AM  
D/K1  
D/K2  
If a present sound standard is impossible for a specific  
MSP version, it detects and switches to the analog  
mono sound of this standard.  
L-NICAM  
D/K-NICAM  
Example:  
Automatic Standard  
Detection still active  
The MSPs 3430G and 3440G will detect a B/G-NICAM  
signal as standard 3 and will switch to the analog FM-  
Mono sound.  
24  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
3.3.2.4. Write Registers on I2C Subaddress 10hex  
Table 3–9: Write Registers on I2C Subaddress 10hex  
Register  
Address  
Function  
Name  
STANDARD SELECTION  
00 20hex  
STANDARD SELECTION Register  
STANDARD_SEL  
Defines TV Sound or FM-Radio Standard  
bit [15:0] 00 01hex start Automatic Standard Detection  
00 02hex Standard Codes (see Table 3–7))  
...  
00 60hex  
MODUS  
00 30hex  
MODUS Register  
MODUS  
General MSP 34x0G Options  
bit [0]  
bit [1]  
0/1  
0/1  
off/on: Automatic Sound Select  
disable/enable STATUS change indication by means of  
the digital I/O pin D_CTR_I/O_1  
Necessary condition: MODUS[3] = 0 (active)  
bit [2]  
bit [3]  
0
0
undefined, must be 0  
state of digital output pins D_CTR_I/O_0 and _1  
active: D_CTR_I/O_0 and _1 are output pins  
(can be set by means of the ACB register.  
see also: MODUS[1])  
1
tristate: D_CTR_I/O_0 and _1 are input pins  
(level can be read out of STATUS[4,3])  
bit [4]  
bit [5]  
0/1  
0/1  
active/tristate state of I2S output pins  
master/slave mode of I2S interface (must be set to 0  
(= Master) in case of NICAM mode)  
bit [6]  
bit [7]  
0/1  
0/1  
Sony/Philips format of I2S word strobe  
active/tristate state of audio clock output pin  
AUD_CL_OUT  
bit [8]  
0/1  
0
ANA_IN_1+/ANA_IN_2+;  
select analog sound IF input pin  
bit [11:9]  
undefined, must be 0  
Preference in Automatic Standard Detection:  
bit [12]  
detected 6.5 MHz carrier is interpreted as:1)  
0
1
standard L (SECAM)  
standard D/K1, D/K2 or D/K NICAM  
bit [14:13]  
detected 4.5 MHz carrier is interpreted as:1)  
standard M (Korea)  
standard M (BTSC)  
standard M (Japan)  
carrier at 4.5 MHz is ignored (chroma carrier)  
0
1
2
3
bit [15]  
0
undefined, must be 0  
1) Valid at the next start of Automatic Standard Detection.  
MICRONAS INTERMETALL  
25  
MSP 34x0G  
PRELIMINARY DATA SHEET  
3.3.2.5. Read Registers on I2C Subaddress 11hex  
Table 3–10: Read Registers on I2C Subaddress 11hex  
Register  
Address  
Function  
Name  
STANDARD RESULT  
00 7Ehex  
STANDARD RESULT Register  
STANDARD_RES  
Readback of the detected TV Sound or FM-Radio Standard  
bit [15:0] 00 00hex Automatic Standard Detection could not find  
a sound standard  
00 02hex MSP Standard Codes (see Table 3–8)  
...  
00 40hex  
>07 FFhex Automatic Standard Detection still active  
STATUS  
02 00hex  
STATUS Register  
STATUS  
Contains all user relevant internal information about the status of the MSP  
bit [0]  
bit [1]  
undefined  
0
1
detected primary carrier (Mono or MPX carrier)  
no primary carrier detected  
bit [2]  
0
1
detected secondary carrier (2nd A2 or SAP carrier)  
no secondary carrier detected  
bit [3]  
0/1  
0/1  
low/high level of digital I/O pin D_CTR_I/O_0  
low/high level of digital I/O pin D_CTR_I/O_1  
bit [4]  
bit [5,9]  
00  
01  
10  
analog sound standard (FM or AM) active  
not obtainable  
digital sound (NICAM) available (MSP 3410G and  
MSP 3450G only)  
11  
bad reception condition of digital sound (NICAM) due to:  
a. high error rate  
b. unimplemented sound code  
c. data transmission only  
bit [6]  
bit [7]  
0/1  
0/1  
mono/stereo indication  
“1” indicates independent mono sound  
(only for NICAM on MSP 3410G and MSP 3450G)  
bit [8]  
0/1  
“1” indicates bilingual sound mode or SAP present  
undefined  
bit [15:10]  
If STATUS change indication is activated by means of MODUS[1]: Each  
change in the STATUS register sets the digital I/O pin D_CTR_I/O_1 to high  
level. Reading the STATUS register resets D_CTR_I/O_1.  
26  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
3.3.2.6. Write Registers on I2C Subaddress 12hex  
Table 3–11: Write Registers on I2C Subaddress 12hex  
Register  
Address  
Function  
Name  
PREPROCESSING  
00 0Ehex FM/AM Prescale  
PRE_FM  
bit [15:8] 00hex  
Defines the input prescale gain for the demodulated  
FM or AM signal  
...  
7Fhex  
00hex  
off (RESET condition)  
For all FM modes except satellite FM and AM-mode, the combinations of pres-  
cale value and FM deviation listed below lead to internal full scale.  
FM mode  
bit [15:8] 7Fhex  
48hex  
28 kHz FM deviation  
50 kHz FM deviation  
75 kHz FM deviation  
100 kHz FM deviation  
150 kHz FM deviation  
180 kHz FM deviation (limit)  
30hex  
24hex  
18hex  
13hex  
FM high deviation mode (HDEV2, MSP Standard Code = Chex  
)
bit [15:8] 30hex  
14hex  
150 kHz FM deviation  
360 kHz FM deviation (limit)  
FM very high deviation mode (HDEV3, MSP Standard Code = 6 and Dhex  
)
bit [15:8] 20hex  
1Ahex  
450 kHz FM deviation  
540 kHz FM deviation (limit)  
Satellite FM with adaptive deemphasis  
bit [15:8] 10hex recommendation  
AM mode (MSP Standard Code = 9)  
bit [15:8] 7Chex recommendation for SIF input levels from  
0.1 Vpp to 0.8 Vpp  
(Due to the AGC being switched on, the AM-output level  
remains stable and independent of the actual SIF-level in  
the mentioned input range)  
MICRONAS INTERMETALL  
27  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
(continued)  
FM Matrix Modes  
FM_MATRIX  
00 0Ehex  
Defines the dematrix function for the demodulated FM signal  
bit [7:0]  
00hex  
01hex  
02hex  
03hex  
no matrix (used for bilingual and unmatrixed stereo sound)  
German stereo (Standard B/G)  
Korean stereo (also used for BTSC, EIA-J and FM Radio)  
sound A mono (left and right channel contain the mono  
sound of the FM/AM mono carrier)  
04hex  
sound B mono  
In case of Automatic Sound Select, the FM Matrix Mode is set automatically,  
i.e. the low-part of any I2C transmission to the register 00 0Ehex is ignored.  
To enable a Forced Mono Mode for all analog stereo systems by overriding the  
internal pilot or identification evaluation, the following steps must be transmitted:  
1. MODUS with bit[0] = 0 (Automatic Sound Select off)  
2. FM Presc./Matrix with FM Matrix = Sound A Mono (SAP: Sound B Mono)  
3. Select FM/AM source channel, with channel matrix set to “Stereo” (transparent)  
00 10hex  
NICAM Prescale  
PRE_NICAM  
Defines the input prescale value for the digital NICAM signal  
bit [15:8] 00hex ... 7Fhex prescale gain  
examples:  
00hex  
20hex  
5Ahex  
7Fhex  
off  
0 dB gain  
9 dB gain (recommendation)  
+12 dB gain (maximum gain)  
00 16hex  
00 12hex  
I2S1 Prescale  
I2S2 Prescale  
PRE_I2S1  
PRE_I2S2  
Defines the input prescale value for digital I2S input signals  
bit [15:8] 00hex ... 7Fhex prescale gain  
examples:  
00hex  
10hex  
7Fhex  
off  
0 dB gain (recommendation)  
+18 dB gain (maximum gain)  
00 0Dhex  
SCART Input Prescale  
PRE_SCART  
Defines the input prescale value for the analog SCART input signal  
bit [15:8] 00hex ... 7Fhex prescale gain  
examples:  
00hex  
19hex  
7Fhex  
off  
0 dB gain (2 VRMS input leads to digital full scale)  
+14 dB gain (400 mVRMS input leads to digital full scale)  
28  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
SOURCE SELECT AND OUTPUT CHANNEL MATRIX  
Source for:  
00 08hex  
00 09hex  
00 0Ahex  
00 41hex  
00 0Bhex  
00 0Chex  
Loudspeaker Output  
Headphone Output  
SCART1 DA Output  
SCART2 DA Output  
I2S Output  
SRC_MAIN  
SRC_AUX  
SRC_SCART1  
SRC_SCART2  
SRC_I2S  
Quasi-Peak Detector  
SRC_QPEAK  
bit [15:8]  
0
“FM/AM”: demodulated FM or AM mono signal  
1
“Stereo or A/B”: demodulator Stereo or A/B signal  
(in manual mode, this source is identical to the NICAM  
source in the MSP 3410D)  
3
4
“Stereo or A”: demodulator Stereo Sound or  
Language A (only defined for Automatic Sound Select)  
“Stereo or B”: demodulator Stereo Sound or  
Language B (only defined for Automatic Sound Select)  
2
5
6
SCART input  
I2S1 input  
I2S2 input  
For demodulator sources, see Table 2–2.  
Matrix Mode for:  
Loudspeaker Output  
Headphone Output  
SCART1 DA Output  
SCART2 DA Output  
I2S Output  
00 08hex  
00 09hex  
00 0Ahex  
00 41hex  
00 0Bhex  
00 0Chex  
MAT_MAIN  
MAT_AUX  
MAT_SCART1  
MAT_SCART2  
MAT_I2S  
Quasi-Peak Detector  
MAT_QPEAK  
bit [7:0]  
00hex  
10hex  
20hex  
30hex  
Sound A Mono (or Left Mono)  
Sound B Mono (or Right Mono)  
Stereo (transparent mode)  
Mono (sum of left and right inputs divided by 2)  
special modes are available (see Section 6.5.1. on page 90)  
In Automatic Sound Select mode, the demodulator source channels are set  
according to Table 2–2. Therefore, the matrix modes of the corresponding out-  
put channels should be set to “Stereo” (transparent).  
MICRONAS INTERMETALL  
29  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
LOUDSPEAKER AND HEADPHONE PROCESSING  
00 00hex  
00 06hex  
Volume Loudspeaker  
Volume Headphone  
VOL_MAIN  
VOL_AUX  
bit [15:8] volume table with 1 dB step size  
7Fhex  
7Ehex  
...  
+12 dB (maximum volume)  
+11 dB  
74hex  
73hex  
72hex  
...  
+1 dB  
0 dB  
1 dB  
02hex  
01hex  
00hex  
FFhex  
113 dB  
114 dB  
Mute (reset condition)  
Fast Mute (needs about 75 ms until the signal is com-  
pletely ramped down)  
bit [7:5]  
higher resolution volume table  
0
+0 dB  
1
+0.125 dB increase in addition to the volume table  
...  
7
+0.875 dB increase in addition to the volume table  
bit [4]  
0
must be set to 0  
bit [3:0]  
clipping mode  
0
1
2
reduce volume  
reduce tone control  
compromise mode  
With large scale input signals, positive volume settings may lead to signal clipping.  
The MSP 34x0G loudspeaker and headphone volume function is divided into a  
digital and an analog section. With Fast Mute, volume is reduced to mute posi-  
tion by digital volume only. Analog volume is not changed. This reduces any  
audible DC plops. To turn volume on again, the volume step that has been used  
before Fast Mute was activated must be transmitted.  
If the clipping mode is set to “Reduce Volume”, the following rule is used: To  
prevent severe clipping effects with bass, treble, or equalizer boosts, the inter-  
nal volume is automatically limited to a level where, in combination with either  
bass, treble, or equalizer setting, the amplification does not exceed 12 dB.  
If the clipping mode is “Reduce Tone Control”, the bass or treble value is  
reduced if amplification exceeds 12 dB. If the equalizer is switched on, the gain  
of those bands is reduced, where amplification together with volume exceeds  
12 dB.  
If the clipping mode is “Compromise Mode”, the bass or treble value and volume  
are reduced half and half if amplification exceeds 12 dB. If the equalizer is  
switched on, the gain of those bands is reduced half and half, where amplifica-  
tion together with volume exceeds 12 dB.  
Example:  
Vol.: +6 dB  
Bass: +9 dB Treble: +5 dB  
Red. Volume  
Red. Tone Con.  
Compromise  
3
6
4.5  
9
6
7.5  
5
5
5
30  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
00 29hex  
Automatic Volume Correction (AVC) Loudspeaker Channel  
AVC  
bit [15:12] 00hex  
08hex  
AVC off (and reset internal variables)  
AVC on  
bit [11:8] 08hex  
04hex  
8 sec decay time  
4 sec decay time  
02hex  
2 sec decay time  
01hex  
20 ms decay time (intended for quick adaptation to the  
average volume level after channel change)  
Note: To reset the internal variables, the AVC should be switched off and then  
on again during any channel or source change. For standard applications, the  
recommended decay time is 4 sec.  
Note: AVC should not be used in any Dolby Prologic mode (with DPL 35xx),  
except in PANORAMA or 3D-PANORAMA mode, when only the loudspeaker  
output is active.  
00 01hex  
00 30hex  
Balance Loudspeaker Channel  
Balance Headphone Channel  
BAL_MAIN  
BAL_AUX  
bit [3:0]  
Balance Mode  
0hex  
1hex  
linear  
logarithmic  
bit [15:8] Linear Mode  
7Fhex  
7Ehex  
...  
Left muted, Right 100%  
Left 0.8%, Right 100%  
01hex  
00hex  
FFhex  
...  
Left 99.2%, Right 100%  
Left 100%, Right 100%  
Left 100%, Right 99.2%  
82hex  
81hex  
Left 100%, Right 0.8%  
Left 100%, Right muted  
bit [15:8] Logarithmic Mode  
7Fhex  
7Ehex  
...  
Left 127 dB, Right 0 dB  
Left 126 dB, Right 0 dB  
01hex  
00hex  
FFhex  
...  
Left 1 dB, Right 0 dB  
Left 0 dB, Right 0 dB  
Left 0 dB, Right 1 dB  
81hex  
80hex  
Left 0 dB, Right 127 dB  
Left 0 dB, Right 128 dB  
Positive balance settings reduce the left channel without affecting the right  
channel; negative settings reduce the right channel leaving the left channel  
unaffected.  
MICRONAS INTERMETALL  
31  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
00 20hex  
Tone Control Mode Loudspeaker Channel  
TONE_MODE  
bit [15:8] 00hex  
FFhex  
bass and treble is active  
equalizer is active  
Defines whether Bass/Treble or Equalizer is activated for the loudspeaker chan-  
nel. Bass and Equalizer cannot work simultaneously. If Equalizer is used, Bass,  
and Treble coefficients must be set to zero and vice versa.  
00 02hex  
00 31hex  
Bass Loudspeaker Channel  
Bass Headphone Channel  
BASS_MAIN  
BASS_AUX  
bit [15:8] normal range  
60hex  
58hex  
...  
+12 dB  
+11 dB  
08hex  
00hex  
F8hex  
...  
+1 dB  
0 dB  
1 dB  
A8hex  
A0hex  
11 dB  
12 dB  
bit [15:8] extended range  
7Fhex  
78hex  
70hex  
68hex  
+20 dB  
+18 dB  
+16 dB  
+14 dB  
Higher resolution is possible: an LSB step in the normal range results in a gain  
step of about 1/8 dB, in the extended range about 1/4 dB.  
With positive bass settings, internal clipping may occur even with overall volume  
less than 0 dB. This will lead to a clipped output signal. Therefore, it is not rec-  
ommended to set bass to a value that, in conjunction with volume, would result  
in an overall positive gain.  
32  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
00 03hex  
00 32hex  
Treble Loudspeaker Channel  
Treble Headphone Channel  
TREB_MAIN  
TREB_AUX  
bit [15:8] 78hex  
+15 dB  
+14 dB  
70hex  
...  
08hex  
00hex  
F8hex  
...  
+1 dB  
0 dB  
1 dB  
A8hex  
A0hex  
11 dB  
12 dB  
Higher resolution is possible: an LSB step results in a gain step of about 1/8 dB.  
With positive treble settings, internal clipping may occur even with overall vol-  
ume less than 0 dB. This will lead to a clipped output signal. Therefore, it is not  
recommended to set treble to a value that, in conjunction with volume, would  
result in an overall positive gain.  
00 21hex  
00 22hex  
00 23hex  
00 24hex  
00 25hex  
Equalizer Loudspeaker Channel Band 1 (below 120 Hz)  
Equalizer Loudspeaker Channel Band 2 (center: 500 Hz)  
Equalizer Loudspeaker Channel Band 3 (center: 1.5 kHz)  
Equalizer Loudspeaker Channel Band 4 (center: 5 kHz)  
Equalizer Loudspeaker Channel Band 5 (above: 10 kHz)  
EQUAL_BAND1  
EQUAL_BAND2  
EQUAL_BAND3  
EQUAL_BAND4  
EQUAL_BAND5  
bit [15:8] 60hex  
+12 dB  
+11 dB  
58hex  
...  
08hex  
00hex  
F8hex  
...  
+1 dB  
0 dB  
1 dB  
A8hex  
A0hex  
11 dB  
12 dB  
Higher resolution is possible: an LSB step results in a gain step of about 1/8 dB.  
With positive equalizer settings, internal clipping may occur even with overall  
volume less than 0 dB. This will lead to a clipped output signal. Therefore, it is  
not recommended to set equalizer bands to a value that, in conjunction with vol-  
ume, would result in an overall positive gain.  
MICRONAS INTERMETALL  
33  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
00 04hex  
00 33hex  
Loudness Loudspeaker Channel  
Loudness Headphone Channel  
LOUD_MAIN  
LOUD_AUX  
bit [15:8] Loudness Gain  
44hex  
40hex  
...  
+17 dB  
+16 dB  
04hex  
00hex  
+1 dB  
0 dB  
bit [7:0]  
Loudness Mode  
00hex  
04hex  
normal (constant volume at 1 kHz)  
Super Bass (constant volume at 2 kHz)  
Higher resolution of Loudness Gain is possible: An LSB step results in a gain  
step of about 1/4 dB.  
Loudness increases the volume of low- and high-frequency signals, while keep-  
ing the amplitude of the 1-kHz reference frequency constant. The intended loud-  
ness has to be set according to the actual volume setting. Because loudness  
introduces gain, it is not recommended to set loudness to a value that, in con-  
junction with volume, would result in an overall positive gain.  
The corner frequency for bass amplification can be set to two different values. In  
Super Bass mode, the corner frequency is shifted up. The point of constant vol-  
ume is shifted from 1 kHz to 2 kHz.  
34  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
00 05hex  
Spatial Effects Loudspeaker Channel  
SPAT_MAIN  
bit [15:8] Effect Strength  
7Fhex  
3Fhex  
...  
Enlargement 100%  
Enlargement 50%  
01hex  
00hex  
FFhex  
...  
Enlargement 1.5%  
Effect off  
reduction 1.5%  
C0hex  
80hex  
reduction 50%  
reduction 100%  
bit [7:4]  
bit [3:0]  
Spatial Effect Mode  
0hex Stereo Basewidth Enlargement (SBE) and  
Pseudo Stereo Effect (PSE). (Mode A)  
2hex  
Stereo Basewidth Enlargement (SBE) only. (Mode B)  
Spatial Effect High-Pass Gain  
0hex  
2hex  
4hex  
6hex  
8hex  
max. high-pass gain  
2/3 high-pass gain  
1/3 high-pass gain  
min. high-pass gain  
automatic  
There are several spatial effect modes available:  
In mode A (low byte = 00hex), the spatial effect depends on the source mode. If  
the incoming signal is mono, Pseudo Stereo Effect is active; for stereo signals,  
Pseudo Stereo Effect and Stereo Basewidth Enlargement is effective. The  
strength of the effect is controllable by the upper byte. A negative value reduces  
the stereo image. A strong spatial effect is recommended for small TV sets  
where loudspeaker spacing is rather close. For large screen TV sets, a more  
moderate spatial effect is recommended.  
In mode B, only Stereo Basewidth Enlargement is effective. For mono input sig-  
nals, the Pseudo Stereo Effect has to be switched on.  
It is worth mentioning, that all spatial effects affect amplitude and phase  
response. With the lower 4 bits, the frequency response can be customized. A  
value of 0hex yields a flat response for center signals (L = R), but a high-pass  
function for L or R only signals. A value of 6hex has a flat response for L or R  
only signals, but a low-pass function for center signals. By using 8hex, the fre-  
quency response is automatically adapted to the sound material by choosing an  
optimal high-pass gain.  
MICRONAS INTERMETALL  
35  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
SUBWOOFER OUTPUT CHANNEL  
00 2Chex Subwoofer Level Adjustment  
SUBW_LEVEL  
bit [15:8] 00hex  
0 dB  
FFhex  
...  
1 dB  
E3hex  
E2hex  
...  
29 dB  
30 dB  
80hex  
Mute  
00 2Dhex  
Subwoofer Corner Frequency  
SUBW_FREQ  
SUBW_HP  
bit [15:8] 5...40  
corner frequency in 10-Hz steps  
(range: 50...400 Hz)  
Subwoofer Complementary High-Pass Filter  
bit [7:0]  
00hex  
01hex  
loudspeaker channel unfiltered  
a complementary high-pass is processed in the loud-  
speaker output channel  
SCART OUTPUT CHANNEL  
00 07hex  
00 40hex  
Volume SCART1 Output Channel  
Volume SCART2 Output Channel  
VOL_SCART1  
VOL_SCART2  
bit [15:8] volume table with 1 dB step size  
7Fhex  
7Ehex  
...  
+12 dB (maximum volume)  
+11 dB  
74hex  
73hex  
72hex  
...  
+1 dB  
0 dB  
1 dB  
02hex  
01hex  
00hex  
113 dB  
114 dB  
Mute (reset condition)  
bit [7:5]  
bit [4:0]  
higher resolution volume table  
0
+0 dB  
1
+0.125 dB increase in addition to the volume table  
...  
7
+0.875 dB increase in addition to the volume table  
01hex  
this must be 01hex  
36  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Table 3–11: Write Registers on I2C Subaddress 12hex, continued  
Register  
Address  
Function  
Name  
SCART SWITCHES AND DIGITAL I/O PINS  
00 13hex  
ACB Register  
ACB_REG  
Defines the level of the digital output pins and the position of the SCART switches  
bit [15]  
0/1  
low/high of digital output pin D_CTR_I/O_0  
(MODUS[3]=0)  
bit [14]  
0/1  
low/high of digital output pin D_CTR_I/O_1  
(MODUS[3]=0)  
bit [13:5] SCART DSP Input Select  
xxxx00xx0 SCART1 to DSP input (RESET position)  
xxxx01xx0 MONO to DSP input (Sound A Mono must be selected in  
the channel matrix mode for the corresponding output  
channels)  
xxxx10xx0 SCART2 to DSP input  
xxxx11xx0 SCART3 to DSP input  
xxxx00xx1 SCART4 to DSP input  
xxxx11xx1 mute DSP input  
bit [13:5] SCART1 Output Select  
xx00xxx0x SCART3 input to SCART1 output (RESET position)  
xx01xxx0x SCART2 input to SCART1 output  
xx10xxx0x MONO input to SCART1 output  
xx11xxx0x SCART1 DA to SCART1 output  
xx00xxx1x SCART2 DA to SCART1 output  
xx01xxx1x SCART1 input to SCART1 output  
xx10xxx1x SCART4 input to SCART1 output  
xx11xxx1x mute SCART1 output  
bit [13:5] SCART2 Output Select  
00xxxx0xx SCART1 DA to SCART2 output (RESET position)  
01xxxx0xx SCART1 input to SCART2 output  
10xxxx0xx MONO input to SCART2 output  
00xxxx1xx SCART2 DA to SCART2 output  
01xxxx1xx SCART2 input to SCART2 output  
10xxxx1xx SCART3 input to SCART2 output  
11xxxx1xx SCART4 input to SCART2 output  
11xxxx0xx mute SCART2 output  
The RESET position becomes active at the time of the first write transmission  
on the control bus to the audio processing part. By writing to the ACB register  
first, the RESET state can be redefined.  
BEEPER  
00 14hex  
Beeper Volume and Frequency  
BEEPER  
bit [15:8] Beeper Volume  
00hex  
7Fhex  
off  
maximum volume  
bit [7:0]  
Beeper Frequency  
01hex  
40hex  
FFhex  
16 Hz (lowest)  
1 kHz  
4 kHz  
MICRONAS INTERMETALL  
37  
MSP 34x0G  
PRELIMINARY DATA SHEET  
3.3.2.7. Read Registers on I2C Subaddress 13hex  
Table 3–12: Read Registers on I2C Subaddress 13hex  
Register  
Address  
Function  
Name  
QUASI-PEAK DETECTOR READOUT  
00 19hex  
00 1ahex  
Quasi-Peak Detector Readout Left  
Quasi-Peak Detector Readout Right  
QPEAK_L  
QPEAK_R  
bit [15..0] 0hex... 7FFFhex values are 16 bit two’s complement (only positive)  
MSP 34X0G VERSION READOUT REGISTERS  
00 1Ehex MSP Hardware Version Code  
MSP_HARD  
bit [15..8] 02hex  
MSP 34x0G - B6  
A change in the hardware version code defines hardware optimizations that  
may have influence on the chip’s behavior. The readout of this register is iden-  
tical to the hardware version code in the chip’s imprint.  
MSP Major Revision Code  
MSP_REVISION  
MSP_PRODUCT  
bit [7..0] 07hex  
MSP 34x0G - B6  
The major revision code of the MSP 34x0G is 7.  
00 1Fhex  
MSP Product Code  
bit [15..8] 00hex  
0Ahex  
MSP 3400G - B6  
MSP 3410G - B6  
MSP 3430G - B6  
MSP 3440G - B6  
MSP 3450G - B6  
1Ehex  
28hex  
32hex  
By means of the MSP-Product Code, the control processor is able to decide  
which TV sound standards have to be considered.  
MSP ROM Version Code  
MSP_ROM  
bit [7..0] 45hex  
46hex  
MSP 34x0G - B5  
MSP 34x0G - B6  
A change in the ROM version code defines internal software optimizations,  
that may have influence on the chip’s behavior, e.g. new features may have  
been included. While a software change is intended to create no compatibility  
problems, customers that want to use the new functions can identify new  
MSP 34x0G versions according to this number.  
To avoid compatibility problems with MSP 3410B and MSP 34x0D, an offset of  
40hex is added to the ROM version code of the chip’s imprint.  
38  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
3.4. Programming Tips  
3.5. Examples of Minimum Initialization Codes  
This section describes the preferred method for initial-  
izing the MSP 34x0G. The initialization is grouped into  
four sections: analog signal path, demodulator input,  
input processing for SCART and I2S, and output pro-  
cessing. See Fig. 2–1 on page 8 for a complete signal  
flow.  
Initialization of the MSP 34x0G according to these list-  
ings reproduces sound of the selected standard on the  
loudspeaker output. All numbers are hexadecimal. The  
examples have the following structure:  
1. Perform an I2C controlled reset of the IC.  
2. Write MODUS register  
(with Automatic Sound Select).  
SCART Signal Path  
3. Set Source Selection for loudspeaker channel  
(with matrix set to STEREO).  
1. Select analog input for the SCART baseband pro-  
cessing (SCART DSP Input Select) by means of the  
ACB register.  
4. Set Prescale  
(FM and/or NICAM and dummy FM matrix).  
2. Select the source for each analog SCART output  
(SCART Output Select) by means of the ACB regis-  
ter.  
5. Write STANDARD SELECT register.  
6. Set Volume loudspeaker channel to 0 dB.  
Demodulator Input  
3.5.1. B/G-FM (A2 or NICAM)  
<80 00 80 00>  
<80 00 00 00>  
// Softreset  
For a complete setup of the TV sound processing from  
analog IF input to the source selection, the following  
steps must be performed:  
<80 10 00 30 20 03> // MODUS-Register: Automatic = on  
<80 12 00 08 03 20> // Source Sel. = (St or A) & Ch. Matr. = St  
1. Set MODUS register to the preferred mode and  
Sound IF input.  
<80 12 00 0E 24 03> // FM/AM-Prescale = 24hex,  
FM-Matrix = MONO/SOUNDA  
<80 12 00 10 00 5A> // NICAM-Prescale = 5A  
hex  
<80 10 00 20 00 03> // Standard Select: A2 B/G or NICAM B/G  
2. Choose preferred prescale (FM and NICAM) values.  
3. Write STANDARD SELECT register.  
or  
<80 10 00 20 00 08>  
If Automatic Sound Select is not active, the following  
step has to be done repeatedly:  
<80 12 00 00 73 00> // Loudspeaker Volume 0 dB  
4. Choose FM matrix according to the sound mode  
indicated in the STATUS register.  
3.5.2. BTSC-Stereo  
<80 00 80 00>  
<80 00 00 00>  
// Softreset  
SCART and I2S Inputs  
<80 10 00 30 20 03> // MODUS-Register: Automatic = on  
<80 12 00 08 03 20> // Source Sel. = (St or A) & Ch. Matr. = St  
1. Select preferred prescale for SCART.  
2. Select preferred prescale for I2S inputs  
(set to 0 dB after RESET).  
<80 12 00 0E 24 03> // FM/AM-Prescale = 24  
,
hex  
FM-Matrix = Sound A Mono  
<80 10 00 20 00 20> // Standard Select: BTSC-STEREO  
<80 12 00 00 73 00> // Loudspeaker Volume 0 dB  
Output Channels  
3.5.3. BTSC-SAP with SAP at Loudspeaker Channel  
1. Select the source channel and matrix for each out-  
put channel.  
<80 00 80 00>  
<80 00 00 00>  
// Softreset  
2. Set audio baseband processing.  
<80 10 00 30 20 03> // MODUS-Register: Automatic = on  
<80 12 00 08 04 20> // Source Sel. = (St or B) & Ch. Matr. = St  
3. Select volume for each output channel.  
<80 12 00 0E 24 03> // FM/AM-Prescale = 24  
,
hex  
FM-Matrix = Sound A Mono  
<80 10 00 20 00 21> // Standard Select: BTSC-SAP  
<80 12 00 00 73 00> // Loudspeaker Volume 0 dB  
MICRONAS INTERMETALL  
39  
MSP 34x0G  
PRELIMINARY DATA SHEET  
3.5.4. FM-Stereo Radio  
<80 00 80 00>  
// Softreset  
<80 00 00 00>  
<80 10 00 30 20 03> // MODUS-Register: Automatic = on  
<80 12 00 08 03 20> // Source Sel. = (St or A) & Ch. Matr. = St  
<80 12 00 0E 24 03> // FM/AM-Prescale = 24  
,
hex  
FM-Matrix = Sound A Mono  
<80 10 00 20 00 40> // Standard Select: FM-STEREO-RADIO  
<80 12 00 00 73 00> // Loudspeaker Volume 0 dB  
3.5.5. Automatic Standard Detection  
A detailed software flow diagram is shown in Fig. 3–2  
on page 41.  
<80 00 80 00>  
<80 00 00 00>  
// Softreset  
<80 10 00 30 20 03> // MODUS-Register: Automatic = on  
<80 12 00 08 03 20> // Source Sel. = (St or A) & Ch. Matr. = St  
<80 12 00 0E 24 03> // FM/AM-Prescale = 24  
,
hex  
FM-Matrix = Sound A Mono  
<80 12 00 10 00 5A> // NICAM-Prescale = 5A  
hex  
<80 10 00 20 00 01> // Standard Select:  
Automatic Standard Detection  
// Wait till STANDARD RESULT contains a value 07FF  
// IF STANDARD RESULT contains 0000  
// do some error handling  
// ELSE  
<80 12 00 00 73 00> // Loudspeaker Volume 0 dB  
3.5.6. Software Flow for Interrupt driven STATUS  
Check  
A detailed software flow diagram is shown in Fig. 3–2  
on page 41.  
If the D_CTR_I/O_1 pin of the MSP 34x0G is con-  
nected to an interrupt input pin of the controller, the fol-  
lowing interrupt handler can be applied to be automati-  
cally called with each status change of the  
MSP 34x0G. The interrupt handler may adjust the TV  
display according to the new status information.  
Interrupt Handler:  
<80 11 02 00 <81 dd dd> // Read STATUS  
// adjust TV display with given status information  
// Return from Interrupt  
40  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Write MODUS Register  
:
Example for the essential bits:  
[0] = 1  
[1] = 1  
[8] = 0  
Automatic Sound Select = on  
Enable interrupt if STATUS changes  
ANA_IN1+ is selected  
Define Preference for Automatic Standard  
Detection:  
[12] = 0  
If 6.5 MHz, set SECAM-L  
[14:13] = 3 Ignore 4.5 MHz carrier  
Write SOURCE SELECT Settings  
Example:  
set loudspeaker Source Select to "Stereo or A"  
set headphone Source Select to "Stereo or B"  
set SCART_Out Source Select to "Stereo or A/B"  
set Channel Matrix mode for all outputs to "Stereo"  
Write FM/AM-Prescale  
Write NICAM-Prescale  
Write 01 into  
STANDARD SELECT Register  
(Start Automatic Standard Detection)  
set previous standard or  
set standard manually according  
picture information  
Result = 0  
yes  
?
no  
expecting MSPG-interrupt  
In case of MSPG-  
Interrupt to Controller:  
Read STATUS  
Adjust TV-Display  
If Bilingual, adjust Source Select setting if required  
Fig. 3–2: Software flow diagram for a Minimum demodulator setup for a European Multistandard TV set applying the  
Automatic Sound Select feature  
MICRONAS INTERMETALL  
41  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4. Specifications  
4.1. Outline Dimensions  
± 0.1  
16 x 1.27 = 20.32  
1.27  
1.2 x 45°  
1.1 x 45 °  
9
1
61  
10  
60  
2
2
9
7.5  
7.5  
9
26  
44  
±0.05  
1.9  
27  
43  
±0.1  
4.05  
± 0.1  
24.2  
± 0.12  
25.14  
0.1  
±0.15  
4.75  
SPGS0027-2(P68)/1E  
Fig. 4–1:  
68-Pin Plastic Leaded Chip Carrier Package  
(PLCC68)  
Weight approximately 4.8 g  
Dimensions in mm  
SPGS0016-5(P52)/1E  
SPGS0016-5(P64)/1E  
52  
27  
26  
64  
33  
1
1
32  
±0.1  
15.6  
±0.1  
47.0  
±0.1  
14  
±0.1  
19.3  
±0.1  
57.7  
±0.05  
18  
±0.06  
0.28  
±1  
±0.05  
16.3  
1
±0.06  
0.28  
±0.06  
0.48  
1.778  
25 x 1.778 = 44.4  
±0.5  
±0.05  
20.3  
1
±0.1  
±0.06  
0.48  
1.778  
31 x 1.778 = 55.1  
±0.1  
Fig. 4–3:  
52-Pin Plastic Shrink Dual-Inline Package  
(PSDIP52)  
Weight approximately 5.5 g  
Dimensions in mm  
Fig. 4–2:  
64-Pin Plastic Shrink Dual-Inline Package  
(PSDIP64)  
Weight approximately 9.0 g  
Dimensions in mm  
42  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
± 0.1  
23 x 0.8 = 18.4  
± 0.04  
0.17  
0.8  
64  
41  
40  
65  
8
8
5
1.8  
1.8  
10.3  
9.8  
16  
25  
80  
± 0.05  
1.3  
1
24  
± 0.1  
2.7  
± 0.1  
20  
± 0.15  
23.2  
0.1  
±0.2  
3
SPGS705000-1(P80)/1E  
Fig. 4–4:  
80-Pin Plastic Quad Flat Pack  
(PQFP80)  
Weight approximately 1.61 g  
Dimensions in mm  
± 0.1  
15 x 0.5 = 7.5  
0.5  
± 0.055  
0.145  
48  
33  
49  
64  
32  
17  
1
16  
± 0.05  
1.4  
1.75  
± 0.1  
± 0.2  
10  
12  
0.1  
± 0.1  
1.5  
D0025/3E  
Fig. 4–5:  
64-Pin Plastic Low-Profile Quad Flat Pack  
(PLQFP64)  
Weight approximately 0.35 g  
Dimensions in mm  
MICRONAS INTERMETALL  
43  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4.2. Pin Connections and Short Descriptions  
NC = not connected; leave vacant  
LV = if not used, leave vacant  
OBL = obligatory; connect as described in circuit diagram  
DVSS: if not used, connect to DVSS  
AHVSS: connect to AHVSS  
Pin No.  
Pin Name  
Type  
Connection  
(if not used)  
Short Description  
PLCC  
68-pin  
PSDIP  
64-pin  
PSDIP  
52-pin  
PQFP  
80-pin  
PLQFP  
64-pin  
1
16  
14  
9
8
ADR_WS  
NC  
OUT  
LV  
LV  
LV  
LV  
LV  
ADR word strobe  
Not connected  
ADR data output  
I2S1 data input  
I2S data output  
I2S word strobe  
I2S clock  
2
3
15  
14  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
8
7
ADR_DA  
I2S_DA_IN1  
I2S_DA_OUT  
I2S_WS  
I2S_CL  
OUT  
IN  
4
7
6
5
6
5
OUT  
6
5
4
IN/OUT LV  
IN/OUT LV  
IN/OUT OBL  
IN/OUT OBL  
LV  
7
4
3
8
8
3
2
I2C_DA  
I2C data  
9
7
2
1
I2C_CL  
I2C clock  
10  
11  
12  
13  
14  
15  
16  
17  
18  
8
1
64  
63  
62  
61  
60  
59  
58  
NC  
Not connected  
Stand-by (low-active)  
I2C Bus address select  
D_CTR_I/O_0  
D_CTR_I/O_1  
Not connected  
Not connected  
Not connected  
7
6
80  
79  
78  
77  
76  
75  
STANDBYQ  
ADR_SEL  
D_CTR_I/O_0  
D_CTR_I/O_1  
NC  
IN  
IN  
OBL  
OBL  
6
5
5
4
IN/OUT LV  
4
3
IN/OUT LV  
3
LV  
LV  
LV  
2
NC  
NC  
1
2
74  
57  
AUD_CL_OUT  
OUT  
LV  
Audio clock output  
(18.432 MHz)  
19  
20  
21  
22  
23  
64  
63  
62  
61  
60  
1
73  
72  
71  
70  
69  
56  
55  
54  
53  
52  
TP  
LV  
Test pin  
52  
51  
50  
49  
XTAL_OUT  
XTAL_IN  
TESTEN  
ANA_IN2+  
OUT  
IN  
OBL  
OBL  
OBL  
Crystal oscillator  
Crystal oscillator  
Test pin  
IN  
IN  
AVSS via  
56 pF / LV  
IF input 2 (can be left  
vacant, only if IF input 1 is  
also not in use)  
24  
59  
48  
68  
51  
ANA_IN−  
IN  
AVSS via  
56 pF / LV  
IF common (can be left  
vacant, only if IF input 1 is  
also not in use)  
44  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Pin No.  
Pin Name  
Type  
Connection  
(if not used)  
Short Description  
PLCC  
68-pin  
PSDIP  
64-pin  
PSDIP  
52-pin  
PQFP  
80-pin  
PLQFP  
64-pin  
25  
26  
58  
57  
47  
46  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
50  
49  
ANA_IN1+  
AVSUP  
AVSUP  
NC  
IN  
LV  
IF input 1  
OBL  
OBL  
LV  
Analog power supply 5 V  
Analog power supply 5 V  
Not connected  
Not connected  
Analog ground  
Analog ground  
Mono input  
NC  
LV  
27  
56  
45  
48  
AVSS  
OBL  
OBL  
LV  
AVSS  
28  
55  
44  
47  
MONO_IN  
NC  
IN  
LV  
Not connected  
29  
54  
43  
46  
VREFTOP  
OBL  
Reference voltage IF  
A/D converter  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
SC1_IN_R  
SC1_IN_L  
ASG1  
IN  
IN  
LV  
SCART 1 input, right  
SCART 1 input, left  
Analog Shield Ground 1  
SCART 2 input, right  
SCART 2 input, left  
Analog Shield Ground 2  
SCART 3 input, right  
SCART 3 input, left  
Analog Shield Ground 4  
SCART 4 input, right  
SCART 4 input, left  
LV  
AHVSS  
LV  
40  
39  
SC2_IN_R  
SC2_IN_L  
ASG2  
IN  
IN  
LV  
AHVSS  
LV  
38  
37  
SC3_IN_R  
SC3_IN_L  
ASG4  
IN  
IN  
LV  
AHVSS  
LV  
SC4_IN_R  
SC4_IN_L  
NC  
IN  
IN  
LV  
LV or AHVSS Not connected  
42  
36  
34  
AGNDC  
OBL  
Analog reference  
voltage  
43  
41  
35  
44  
43  
42  
41  
40  
39  
38  
33  
AHVSS  
AHVSS  
NC  
OBL  
OBL  
LV  
Analog ground  
Analog ground  
Not connected  
NC  
LV  
Not connected  
44  
45  
46  
40  
39  
38  
34  
33  
32  
32  
31  
30  
CAPL_M  
AHVSUP  
CAPL_A  
OBL  
OBL  
OBL  
Volume capacitor MAIN  
Analog power supply 8 V  
Volume capacitor AUX  
MICRONAS INTERMETALL  
45  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Pin No.  
Pin Name  
Type  
Connection  
(if not used)  
Short Description  
PLCC  
68-pin  
PSDIP  
64-pin  
PSDIP  
52-pin  
PQFP  
80-pin  
PLQFP  
64-pin  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
37  
36  
35  
34  
33  
31  
30  
29  
28  
27  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
29  
28  
27  
26  
25  
SC1_OUT_L  
SC1_OUT_R  
VREF1  
SC2_OUT_L  
SC2_OUT_R  
NC  
OUT  
OUT  
LV  
SCART output 1, left  
SCART output 1, right  
Reference ground 1  
SCART output 2, left  
SCART output 2, right  
Not connected  
LV  
OBL  
LV  
OUT  
OUT  
LV  
LV  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
NC  
LV  
Not connected  
26  
DACM_SUB  
NC  
OUT  
LV  
Subwoofer output  
Not connected  
LV  
25  
24  
23  
22  
21  
DACM_L  
DACM_R  
VREF2  
DACA_L  
DACA_R  
NC  
OUT  
OUT  
LV  
Loudspeaker out, left  
Loudspeaker out, right  
Reference ground 2  
Headphone out, left  
Headphone out, right  
Not connected  
LV  
OBL  
LV  
OUT  
OUT  
LV  
LV  
NC  
LV  
Not connected  
61  
62  
63  
64  
65  
66  
24  
23  
22  
21  
20  
19  
20  
16  
15  
14  
13  
12  
11  
RESETQ  
NC  
IN  
IN  
OBL  
LV  
Power-on-reset  
Not connected  
NC  
LV  
Not connected  
19  
18  
17  
NC  
LV  
Not connected  
I2S_DA_IN2  
DVSS  
LV  
I2S2-data input  
OBL  
OBL  
OBL  
OBL  
OBL  
OBL  
LV  
Digital ground  
DVSS  
Digital ground  
DVSS  
Digital ground  
67  
18  
16  
10  
DVSUP  
DVSUP  
DVSUP  
ADR_CL  
Digital power supply 5 V  
Digital power supply 5 V  
Digital power supply 5 V  
ADR clock  
68  
17  
15  
9
OUT  
1) Due to the compatibility with MSP 3410B, it is possible to connect with DVSS as well.  
46  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
4.3. Pin Descriptions  
Pin numbers refer to the 80-pin PQFP package.  
Pin 1, NC – Pin not connected.  
Pins 22, 23, NC – Pins not connected.  
Pins 24, 25, DACA_R/L – Headphone Outputs  
(Fig. 4–21)  
Output of the headphone signal. A 1-nF capacitor to  
AHVSS must be connected to these pins. The DC off-  
set on these pins depends on the selected headphone  
volume.  
Pin 2, I2C_CL – I2C Clock Input/Output (Fig. 4–12)  
Via this pin, the I2C-bus clock signal has to be sup-  
plied. The signal can be pulled down by the MSP in  
case of wait conditions.  
Pin 3, I2C_DA – I2C Data Input/Output (Fig. 4–12)  
Via this pin, the I2C-bus data is written to or read from  
the MSP.  
Pin 26, VREF2 – Reference Ground 2  
Reference analog ground. This pin must be connected  
separately to the single ground point (AHVSS). VREF2  
serves as a clean ground and should be used as the  
reference for analog connections to the loudspeaker  
and headphone outputs.  
Pin 4, I2S_CL – I2S Clock Input/Output (Fig. 4–15)  
Clock line for the I2S bus. In master mode, this line is  
driven by the MSP; in slave mode, an external I2S  
clock has to be supplied.  
Pins 27, 28, DACM_R/L – Loudspeaker Outputs  
(Fig. 4–21)  
Output of the loudspeaker signal. A 1-nF capacitor to  
AHVSS must be connected to these pins. The DC off-  
set on these pins depends on the selected loud-  
speaker volume.  
Pin 5, I2S_WS – I2S Word Strobe Input/Output  
(Fig. 4–15)  
Word strobe line for the I2S bus. In master mode, this  
line is driven by the MSP; in slave mode, an external  
I2S word strobe has to be supplied.  
Pin 29, NC – Pin not connected.  
Pin 6, I2S_DA_OUT – I2S Data Output (Fig. 4–11)  
Output of digital serial sound data of the MSP on the  
I2S bus.  
Pin 30, DACM_SUB – Subwoofer Output (Fig. 4–21)  
Output of the subwoofer signal. A 1-nF capacitor to  
AHVSS must be connected to this pin. Due to the low  
frequency content of the subwoofer output, the value  
of the capacitor may be increased for better suppres-  
sion of high-frequency noise. The DC offset on this pin  
depends on the selected loudspeaker volume.  
Pin 7, I2S_DA_IN1 – I2S Data Input 1 (Fig. 4–13)  
First input of digital serial sound data to the MSP via  
the I2S bus.  
Pin 8, ADR_DA – ADR Bus Data Output (Fig. 4–11)  
Output of digital serial data to the DRP 3510A via the  
ADR bus.  
Pins 31, 32 NC – Pin not connected.  
Pins 33, 34, SC2_OUT_R/L – SCART2 Outputs  
(Fig. 4–23)  
Output of the SCART2 signal. Connections to these  
pins must use a 100-series resistor and are intended  
to be AC-coupled.  
Pin 9, ADR_WS – ADR Bus Word Strobe Output  
(Fig. 4–11)  
Word strobe output for the ADR bus.  
Pin 10, ADR_CL – ADR Bus Clock Output (Fig. 4–11)  
Clock line for the ADR bus.  
Pin 35, VREF1 – Reference Ground 1  
Reference analog ground. This pin must be connected  
separately to the single ground point (AHVSS). VREF1  
serves as a clean ground and should be used as the  
reference for analog connections to the SCART out-  
puts.  
Pins 11, 12, 13, DVSUP* – Digital Supply Voltage  
Power supply for the digital circuitry of the MSP. Must  
be connected to a +5 V power supply.  
Pins 14, 15, 16, DVSS* – Digital Ground  
Ground connection for the digital circuitry of the MSP.  
Pins 36, 37, SC1_OUT_R/L – SCART1 Outputs  
(Fig. 4–23)  
Output of the SCART1 signal. Connections to these  
pins must use a 100-series resistor and are intended  
to be AC-coupled.  
Pin 17, I2S_DA_IN2 – I2S Data Input 2 (Fig. 4–13)  
Second input of digital serial sound data to the MSP  
via the I2S bus.  
Pins 18, 19, 20, NC – Pins not connected.  
Pin 21, RESETQ – Reset Input (Fig. 4–13)  
In the steady state, high level is required. A low level  
resets the MSP 34x0G.  
MICRONAS INTERMETALL  
47  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Pin 38, CAPL_A – Volume Capacitor Headphone  
(Fig. 4–18)  
Pins 53, 54 SC2_IN_L/R – SCART2 Inputs (Fig. 4–20)  
The analog input signal for SCART2 is fed to this pin.  
Analog input connection must be AC-coupled.  
A 10-µF capacitor to AHVSUP must be connected to  
this pin. It serves as a smoothing filter for headphone  
volume changes in order to suppress audible plops.  
The value of the capacitor can be lowered to 1-µF if  
faster response is required. The area encircled by the  
trace lines should be minimized; keep traces as short  
as possible. This input is sensitive for magnetic induc-  
tion.  
Pin 55, ASG1 – Analog Shield Ground 1  
Analog ground (AHVSS) should be connected to this  
pin to reduce cross-coupling between SCART inputs.  
Pins 56, 57 SC1_IN_L/R – SCART1 Inputs (Fig. 4–20)  
The analog input signal for SCART1 is fed to this pin.  
Analog input connection must be AC-coupled.  
Pin 39, AHVSUP* – Analog Power Supply High Volt-  
age  
Power is supplied via this pin for the analog circuitry of  
the MSP (except IF input). This pin must be connected  
to the +8 V supply.  
Pin 58, VREFTOP – Reference Voltage IF A/D Con-  
verter (Fig. 4–17)  
Via this pin, the reference voltage for the IF A/D con-  
verter is decoupled. It must be connected to AVSS  
pins with a 10-µF and a 100-nF capacitor in parallel.  
Traces must be kept short.  
Pin 40, CAPL_M – Volume Capacitor Loudspeaker  
(Fig. 4–18)  
A 10-µF capacitor to AHVSUP must be connected to  
this pin. It serves as a smoothing filter for loudspeaker  
volume changes in order to suppress audible plops.  
The value of the capacitor can be lowered to 1 µF if  
faster response is required. The area encircled by the  
trace lines should be minimized; keep traces as short  
as possible. This input is sensitive for magnetic induc-  
tion.  
Pin 59, NC – Pin not connected.  
Pin 60 MONO_IN – Mono Input (Fig. 4–20)  
The analog mono input signal is fed to this pin. Analog  
input connection must be AC-coupled.  
Pins 61, 62, AVSS* – Analog Power Supply Voltage  
Ground connection for the analog IF input circuitry of  
the MSP.  
Pins 41, 42, NC – Pins not connected.  
Pins 63, 64, NC – Pins not connected.  
Pins 43, 44, AHVSS* – Analog Power Supply High  
Voltage  
Ground connection for the analog circuitry of the MSP  
(except IF input).  
Pins 65, 66, AVSUP* – Analog Power Supply Voltage  
Power is supplied via this pin for the analog IF input  
circuitry of the MSP. This pin must be connected to the  
+5 V supply.  
Pin 45, AGNDC – Internal Analog Reference Voltage  
This pin serves as the internal ground connection for  
the analog circuitry (except IF input). It must be con-  
nected to the VREF pins with a 3.3-µF and a 100-nF  
capacitor in parallel. This pins shows a DC level of typ-  
ically 3.73 V.  
Pin 67, ANA_IN1+ – IF Input 1 (Fig. 4–17)  
The analog sound IF signal is supplied to this pin.  
Inputs must be AC-coupled. This pin is designed as  
symmetrical input: ANA_IN1+ is internally connected  
to one input of a symmetrical op amp, ANA_IN- to the  
other.  
Pin 46, NC – Pin not connected.  
Pin 68, ANA_IN– IF Common (Fig. 4–17)  
This pins serves as a common reference for ANA_IN1/  
2+ inputs.  
Pins 47, 48, SC4_IN_L/R – SCART4 Inputs  
(Fig. 4–20)  
The analog input signal for SCART4 is fed to this pin.  
Analog input connection must be AC-coupled.  
Pin 69, ANA_IN2+ – IF Input 2 (Fig. 4–17)  
The analog sound if signal is supplied to this pin.  
Inputs must be AC-coupled. This pin is designed as  
symmetrical input: ANA_IN2+ is internally connected  
to one input of a symmetrical op amp, ANA_INto the  
other.  
Pin 49, ASG4 – Analog Shield Ground 4  
Analog ground (AHVSS) should be connected to this  
pin to reduce cross-coupling between SCART inputs.  
Pins 50, 51, SC3_IN_L/R – SCART3 Inputs  
(Fig. 4–20)  
The analog input signal for SCART3 is fed to this pin.  
Analog input connection must be AC-coupled.  
Pin 70, TESTEN Test Enable Pin (Fig. 4–13)  
This pin enables factory test modes. For normal opera-  
tion, it must be connected to ground.  
Pin 52, ASG2 – Analog Shield Ground 2  
Analog ground (AHVSS) should be connected to this  
pin to reduce cross-coupling between SCART inputs.  
48  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Pins 71, 72 XTAL_IN, XTAL_OUT – Crystal Input and  
Output Pins (Fig. 4–16)  
These pins are connected to an 18.432 MHz crystal  
oscillator which is digitally tuned by integrated shunt  
capacitances. An external clock can be fed into  
XTAL_IN.  
The  
audio  
clock  
output  
signal  
AUD_CL_OUT is derived from the oscillator. External  
capacitors at each crystal pin to ground (AVSS) are  
required. It should be verified by layout, that no supply  
current for the digital circuitry is flowing through the  
ground connection point.  
Pin 73, TP – This pin enables factory test modes. For  
normal operation, it must be left vacant.  
Pin 74, AUD_CL_OUT – Audio Clock Output  
(Fig. 4–16)  
This is the 18.432 MHz main clock output.  
Pins 75, 76, NC – Pins not connected.  
Pins 77, 78, D_CTR_I/O_1/0 – Digital Control Input/  
Output Pins (Fig. 4–15)  
These pins serve as general purpose input/output  
pins. Pin D_CTR_I/O_1 can be used as an interrupt  
request pin to the controller.  
Pin 79, ADR_SEL – I2C Bus Address Select  
(Fig. 4–14)  
By means of this pin, one of three device addresses  
for the MSP can be selected. The pin can be con-  
nected to ground (I2C device addresses 80/81hex), to  
+5 V supply (84/85hex), or left open (88/89hex).  
Pin 80, STANDBYQ – Stand-by  
In normal operation, this pin must be High. If the  
MSP 34x0G is switched off by first pulling STANDBYQ  
low and then (after >1 µs delay) switching off the 5 V,  
but keeping the 8-V power supply (‘Stand-by’-mode),  
the SCART switches maintain their position and func-  
tion.  
* Application Note:  
All ground pins should be connected to one low-resis-  
tive ground plane. All supply pins should be connected  
separately with short and low-resistive lines to the  
power supply. Decoupling capacitors from DVSUP to  
DVSS, AVSUP to AVSS, and AHVSUP to AHVSS are  
recommended as closely as possible to these pins.  
Decoupling of DVSUP and DVSS is most important.  
We recommend using more than one capacitor. By  
choosing different values, the frequency range of  
active decoupling can be extended. In our application  
boards we use: 220 pF, 470 pF, 1.5 nF, and 10 µF. The  
capacitor with the lowest value should be placed near-  
est to the DVSUP and DVSS pins.  
MICRONAS INTERMETALL  
49  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4.4. Pin Configurations  
ADR_WS  
NC  
ADR_CL  
DVSUP  
DVSS  
I2S_DA_IN2  
NC  
ADR_DA  
I2S_DA_IN1  
I2S_DA_OUT  
I2S_WS  
I2S_CL  
I2C_DA  
NC  
NC  
I2C_CL  
RESETQ  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
NC 10  
STANDBYQ 11  
ADR_SEL 12  
D_CTR_I/O_0 13  
D_CTR_I/O_1 14  
NC 15  
60 DACA_R  
59 DACA_L  
58 VREF2  
57 DACM_R  
56 DACM_L  
55 NC  
NC 16  
54 DACM_SUB  
53 NC  
NC 17  
AUD_CL_OUT 18  
TP 19  
52 NC  
MSP 34x0G  
51 SC2_OUT_R  
50 SC2_OUT_L  
49 VREF1  
XTAL_OUT 20  
XTAL_IN 21  
TESTEN 22  
ANA_IN2+ 23  
ANA_IN24  
ANA_IN1+ 25  
AVSUP 26  
48 SC1_OUT_R  
47 SC1_OUT_L  
46 CAPL_A  
45 AHVSUP  
44 CAPL_M  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
AVSS  
AHVSS  
MONO_IN  
VREFTOP  
SC1_IN_R  
SC1_IN_L  
ASG1  
SC2_IN_R  
SC2_IN_L  
AGNDC  
NC  
SC4_IN_L  
SC4_IN_R  
ASG4  
SC3_IN_L  
SC3_IN_R  
ASG2  
Fig. 4–6: 68-pin PLCC package  
50  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
AUD_CL_OUT  
NC  
1
2
3
4
5
6
7
8
9
64 TP  
TP  
AUD_CL_OUT  
D_CTR_I/O_1  
D_CTR_I/O_0  
ADR_SEL  
1
2
3
4
5
6
7
8
9
52 XTAL_OUT  
51 XTAL_IN  
50 TESTEN  
49 ANA_IN2+  
48 ANA_IN−  
47 ANA_IN1+  
46 AVSUP  
63 XTAL_OUT  
62 XTAL_IN  
61 TESTEN  
60 ANA_IN2+  
59 ANA_IN−  
58 ANA_IN+  
57 AVSUP  
NC  
D_CTR_I/O_1  
D_CTR_I/O_0  
ADR_SEL  
STANDBYQ  
NC  
STANDBYQ  
I2C_CL  
I2C_DA  
45 AVSS  
I2C_CL  
56 AVSS  
I2S_CL  
44 MONO_IN  
43 VREFTOP  
42 SC1_IN_R  
41 SC1_IN_L  
40 SC2_IN_R  
39 SC2_IN_L  
38 SC3_IN_R  
37 SC3_IN_L  
36 AGNDC  
I2C_DA 10  
I2S_CL 11  
I2S_WS 12  
I2S_DA_OUT 13  
I2S_DA_IN1 14  
ADR_DA 15  
ADR_WS 16  
ADR_CL 17  
DVSUP 18  
DVSS 19  
55 MONO_IN  
54 VREFTOP  
53 SC1_IN_R  
52 SC1_IN_L  
51 ASG1  
I2S_WS 10  
I2S_DA_OUT 11  
I2S_DA_IN1 12  
ADR_DA 13  
ADR_WS 14  
ADR_CL 15  
DVSUP 16  
50 SC2_IN_R  
49 SC2_IN_L  
48 ASG2  
DVSS 17  
47 SC3_IN_R  
46 SC3_IN_L  
45 ASG4  
I2S_DA_IN2 18  
NC 19  
35 AHVSS  
34 CAPL_M  
33 AHVSUP  
32 CAPL_A  
31 SC1_OUT_L  
30 SC1_OUT_R  
29 VREF1  
I2S_DA_IN2 20  
NC 21  
RESETQ 20  
DACA_R 21  
DACA_L 22  
VREF2 23  
44 SC4_IN_R  
43 SC4_IN_L  
42 AGNDC  
41 AHVSS  
NC 22  
NC 23  
RESETQ 24  
DACA_R 25  
DACA_L 26  
VREF2 27  
DACM_R 28  
DACM_L 29  
NC 30  
DACM_R 24  
DACM_L 25  
DACM_SUB 26  
40 CAPL_M  
39 AHVSUP  
38 CAPL_A  
37 SC1_OUT_L  
36 SC1_OUT_R  
35 VREF1  
28 SC2_OUT_L  
27 SC2_OUT_R  
Fig. 4–8: 52-pin PSDIP package  
DACM_SUB 31  
NC 32  
34 SC2_OUT_L  
33 SC2_OUT_R  
Fig. 4–7: 64-pin PSDIP package  
MICRONAS INTERMETALL  
51  
MSP 34x0G  
PRELIMINARY DATA SHEET  
SC2_IN_L  
SC2_IN_R  
ASG1  
SC1_IN_L  
SC1_IN_R  
VREFTOP  
NC  
ASG2  
SC3_IN_R  
SC3_IN_L  
ASG4  
SC4_IN_R  
SC4_IN_L  
NC  
MONO_IN  
AVSS  
AGNDC  
AHVSS  
AHVSS  
NC  
AVSS  
NC  
NC  
NC  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41  
AVSUP 65  
40 CAPL_M  
39 AHVSUP  
38 CAPL_A  
37 SC1_OUT_L  
36 SC1_OUT_R  
35 VREF1  
AVSUP 66  
ANA_IN1+ 67  
ANA_IN68  
ANA_IN2+ 69  
TESTEN 70  
XTAL_IN 71  
XTAL_OUT 72  
TP 73  
34 SC2_OUT_L  
33 SC2_OUT_R  
32 NC  
MSP 34x0G  
AUD_CL_OUT 74  
NC 75  
31 NC  
30 DACM_SUB  
29 NC  
NC 76  
D_CTR_I/O_1 77  
D_CTR_I/O_0 78  
ADR_SEL 79  
STANDBYQ 80  
28 DACM_L  
27 DACM_R  
26 VREF2  
25 DACA_L  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
NC  
DACA_R  
I2C_CL  
I2C_DA  
I2S_CL  
I2S_WS  
I2S_DA_OUT  
I2S_DA_IN1  
ADR_DA  
ADR_WS  
ADR_CL  
DVSUP  
DVSUP  
NC  
NC  
RESETQ  
NC  
NC  
NC  
I2S_DA_IN2  
DVSS  
DVSS  
DVSS  
DVSUP  
Fig. 4–9: 80-pin PQFP package  
52  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
SC2_IN_L  
ASG2  
SC3_IN_R  
SC3_IN_L  
ASG4  
SC4_IN_R  
SC4_IN_L  
AGNDC  
SC2_IN_R  
ASG1  
SC1_IN_L  
SC1_IN_R  
VREFTOP  
MONO_IN  
AVSS  
AHVSS  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
AVSUP 49  
ANA_IN1+ 50  
ANA_IN51  
ANA_IN2+ 52  
TESTEN 53  
XTAL_IN 54  
XTAL_OUT 55  
TP 56  
32 CAPL_M  
31 AHVSUP  
30 CAPL_A  
29 SC1_OUT_L  
28 SC1_OUT_R  
27 VREF1  
26 SC2_OUT_L  
25 SC2_OUT_R  
24 NC  
MSP 34x0G  
AUD_CL_OUT 57  
NC 58  
23 DACM_SUB  
22 NC  
NC 59  
D_CTR_I/OUT1 60  
D_CTR_I/OUT0 61  
ADR_SEL 62  
STANDBYQ 63  
NC 64  
21 DACM_L  
20 DACM_R  
19 VREF2  
18 DACA_L  
17 DACA_R  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
I2C_CL  
RESETQ  
I2C_DA  
I2S_CL  
I2S_WS  
I2S_DA_OUT  
I2S_DA_IN1  
ADR_DA  
ADR_WS  
NC  
NC  
NC  
I2S_DA_IN2  
DVSS  
DVSUP  
ADR_CL  
Fig. 4–10: 64-pin PLQFP package  
MICRONAS INTERMETALL  
53  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4.5. Pin Circuits  
Pin numbers refer to the PQFP80 package.  
DVSUP  
P
DVSUP  
GND  
P
N
N
GND  
Fig. 4–11: Output Pins 6, 8, 9, and 10  
Fig. 4–15: Input/Output Pins 4, 5, 77, and 78  
(I2S_DA_OUT, ADR_DA, ADR_WS, ADR_CL)  
(I2S_CL, I2S_WS, D_CTR_I/O_1, D_CTR_I/O_0)  
P
N
GND  
500 kΩ  
Fig. 4–12: Input/Output Pins 2 and 3  
330 pF  
N
(I2C_CL, I2C_DA)  
2.5 V  
330 pF  
Fig. 4–16: Output/Input Pins 71, 72, and 74  
(XTAL_IN, XTAL_OUT, AUD_CL_OUT)  
Fig. 4–13: Input Pins 7, 17, 21, 70, and 80  
(I2S_DA_IN1, I2S_DA_IN2, RESETQ, TESTEN,  
STANDBYQ)  
ANA_IN1+  
ANA_IN2+  
A
D
DVSUP  
23 kΩ  
ANA_IN−  
VREFTOP  
23 kΩ  
GND  
ADR_SEL  
Fig. 4–17: Input Pins 58, 67, 68, and 69  
(VREFTOP, ANA_IN1+, ANA_IN-, ANA_IN2+)  
Fig. 4–14: Input Pin 79 (ADR_SEL)  
54  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
125 kΩ  
0...2 V  
3.75 V  
Fig. 4–18: Capacitor Pins 38 and 40  
Fig. 4–22: Pin 45 (AGNDC)  
(CAPL_A, CAPL_M)  
26 pF  
24 kΩ  
3.75 V  
120 kΩ  
300 Ω  
Fig. 4–19: Input Pin 60 (MONO_IN)  
3.75 V  
Fig. 4–23: Output Pins 33, 34, 36, and 37  
(SC_2_OUT_R/L, SC_1_OUT_R/L)  
40 kΩ  
3.75 V  
Fig. 4–20: Input Pins 47, 48, 50, 51, 53, 54, 56, and 57  
(SC4-1_IN_L/R)  
AHVSUP  
0...1.2 mA  
3.3 kΩ  
Fig. 4–21: Output Pins 24, 25, 27, 28 and 30  
(DACA_R/L, DACM_R/L, DACM_SUB)  
MICRONAS INTERMETALL  
55  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4.6. Electrical Characteristics  
4.6.1. Absolute Maximum Ratings  
Symbol  
TA  
Parameter  
Pin Name  
Min.  
0
Max.  
701)  
125  
9.0  
Unit  
°C  
°C  
V
Ambient Operating Temperature  
Storage Temperature  
First Supply Voltage  
Second Supply Voltage  
Third Supply Voltage  
TS  
40  
0.3  
0.3  
0.3  
0.5  
VSUP1  
VSUP2  
VSUP3  
dVSUP23  
AHVSUP  
DVSUP  
AVSUP  
6.0  
V
6.0  
V
Voltage between AVSUP  
and DVSUP  
AVSUP,  
DVSUP  
0.5  
V
PTOT  
Power Dissipation  
PLCC68  
PSDIP64  
AHVSUP,  
DVSUP,  
AVSUP  
1200  
1300  
1200  
1000  
mW  
mW  
mW  
mW  
mW  
PSDIP52  
PQFP80  
PLQFP64  
9601)  
VIdig  
IIdig  
Input Voltage, all Digital Inputs  
Input Current, all Digital Pins  
Input Voltage, all Analog Inputs  
0.3  
20  
V
SUP2+0.3  
V
+20  
mA2)  
V
VIana  
SCn_IN_s,3)  
MONO_IN  
0.3  
V
SUP1+0.3  
IIana  
Input Current, all Analog Inputs  
SCn_IN_s,3)  
MONO_IN  
5  
+5  
mA2)  
4) 5)  
4) 5)  
IOana  
IOana  
Output Current, all SCART Outputs SCn_OUT_s3)  
,
,
4)  
4)  
4)  
4)  
Output Current, all Analog Outputs  
except SCART Outputs  
DACp_s3)  
ICana  
Output Current, other pins  
connected to capacitors  
CAPL_p,3)  
AGNDC  
1)  
PLQFP64: 65 °C  
2)  
3)  
4)  
5)  
positive value means current flowing into the circuit  
“n” means “1”, “2”, “3”, or “4”, “s” means “L” or “R”, “p” means “M” or “A”  
The analog outputs are short-circuit proof with respect to First Supply Voltage and ground.  
Total chip power dissipation must not exceed absolute maximum rating.  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in  
the “Recommended Operating Conditions/Characteristics” of this specification is not implied. Exposure to absolute  
maximum ratings conditions for extended periods may affect device reliability.  
56  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
4.6.2. Recommended Operating Conditions (TA = 0 to 70 °C)  
4.6.2.1. General Recommended Operating Conditions  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
VSUP1  
First Supply Voltage  
(8-V Operation)  
AHVSUP  
7.6  
8.0  
8.7  
V
First Supply Voltage  
(5-V Operation)  
4.75  
5.0  
5.25  
V
VSUP2  
VSUP3  
tSTBYQ1  
Second Supply Voltage  
Third Supply Voltage  
DVSUP  
AVSUP  
4.75  
4.75  
1
5.0  
5.0  
5.25  
5.25  
V
V
STANDBYQ Setup Time before  
Turn-off of Second Supply Voltage  
STANDBYQ,  
DVSUP  
µs  
4.6.2.2. Analog Input and Output Recommendations  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
3.3  
Max.  
Unit  
µF  
CAGNDC  
AGNDC-Filter-Capacitor  
Ceramic Capacitor in Parallel  
AGNDC  
20%  
20%  
20%  
100  
330  
nF  
CinSC  
DC-Decoupling Capacitor in front of SCn_IN_s1)  
SCART Inputs  
nF  
VinSC  
SCART Input Level  
2.0  
2.0  
VRMS  
VRMS  
kΩ  
VinMONO  
RLSC  
Input Level, Mono Input  
SCART Load Resistance  
SCART Load Capacitance  
Main/AUX Volume Capacitor  
MONO_IN  
SCn_OUT_s1)  
10  
CLSC  
6.0  
nF  
CVMA  
CAPL_M,  
CAPL_A  
10  
1
µF  
CFMA  
Main/AUX Filter Capacitor  
DACM_s,  
DACA_s1)  
10%  
+10%  
nF  
1)  
“n” means “1”, “2”, or “3”, “s” means “L” or “R”, “p” means “M” or “A”  
MICRONAS INTERMETALL  
57  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4.6.2.3. Recommendations for Analog Sound IF Input Signal  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
µF  
CVREFTOP  
VREFTOP-Filter-Capacitor  
Ceramic Capacitor in Parallel  
VREFTOP  
20 % 10  
20 % 100  
0
nF  
FIF_FMTV  
Analog Input Frequency Range  
for TV Applications  
ANA_IN1+,  
ANA_IN2+,  
ANA_IN−  
9
MHz  
FIF_FMRADIO  
Analog Input Frequency for  
FM-Radio Applications  
10.7  
MHz  
VIF_FM  
VIF_AM  
RFMNI  
Analog Input Range FM/NICAM  
Analog Input Range AM/NICAM  
0.1  
0.1  
0.8  
3
Vpp  
Vpp  
0.45  
0.8  
Ratio: NICAM Carrier/FM Carrier  
(unmodulated carriers)  
BG:  
I:  
20  
23  
7  
10  
0
0
dB  
dB  
RAMNI  
Ratio: NICAM Carrier/AM Carrier  
(unmodulated carriers)  
25  
11  
0
dB  
RFM  
Ratio: FM-Main/FM-Sub Satellite  
7
7
dB  
dB  
RFM1/FM2  
Ratio: FM1/FM2  
German FM-System  
RFC  
RFV  
Ratio: Main FM Carrier/  
Color Carrier  
15  
15  
dB  
dB  
Ratio: Main FM Carrier/  
Luma Components  
PRIF  
Passband Ripple  
±2  
dB  
dB  
SUPHF  
Suppression of Spectrum  
15  
above 9.0 MHz (not for FM Radio)  
FMMAX  
Maximum FM-Deviation (approx.)  
normal mode  
±180  
±360  
±540  
kHz  
kHz  
kHz  
HDEV2: high deviation mode  
HDEV3: very high deviation mode  
58  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
4.6.2.4. Crystal Recommendations  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
General Crystal Recommendations  
fP  
Crystal Parallel Resonance Fre-  
18.432  
MHz  
quency at 12 pF Load Capacitance  
RR  
C0  
CL  
Crystal Series Resistance  
8
25  
Crystal Shunt (Parallel) Capacitance  
External Load Capacitance1)  
6.2  
7.0  
pF  
XTAL_IN,  
XTAL_OUT  
PSDIP approx. 1.5  
PLCC approx. 3.3  
P(L)QFP approx. 3.3  
pF  
pF  
pF  
Crystal Recommendations for Master-Slave Applications (MSP-clock must perform synchronization to I2S clock)  
fTOL  
Accuracy of Adjustment  
20  
20  
+20  
+20  
ppm  
ppm  
DTEM  
Frequency Variation  
versus Temperature  
C1  
Motional (Dynamic) Capacitance  
19  
24  
fF  
AUD_CL_OUT  
fCL  
Required Open Loop Clock  
18.431  
18.433 MHz  
Frequency (Tamb = 25 °C)  
Crystal Recommendations for FM / NICAM Applications (No MSP-clock synchronization to I2S clock possible)  
fTOL  
Accuracy of Adjustment  
30  
30  
+30  
+30  
ppm  
ppm  
DTEM  
Frequency Variation  
versus Temperature  
C1  
Motional (Dynamic) Capacitance  
15  
fF  
18.4305  
18.4335  
fCL  
Required Open Loop Clock  
AUD_CL_OUT  
MHz  
Frequency (Tamb = 25 °C)  
Crystal Recommendations for all analog FM/AM Applications (No MSP-clock synchronization to I2S clock possible)  
fTOL  
Accuracy of Adjustment  
100  
50  
+100  
+50  
ppm  
ppm  
DTEM  
Frequency Variation  
versus Temperature  
fCL  
Required Open Loop Clock  
AUD_CL_OUT  
18.429  
18.435 MHz  
Frequency (Tamb = 25 °C)  
Amplitude Recommendation for Operation with External Clock Input (Cload after reset typ. 22 pF)  
VXCA External Clock Amplitude XTAL_IN 0.7  
Vpp  
1)External capacitors at each crystal pin to ground are required. They are necessary to tune the open-loop fre-  
quency of the internal PLL and to stabilize the frequency in closed-loop operation.  
Due to different layouts, the accurate capacitor size should be determined with the customer PCB. The sug-  
gested values (1.5...3.3 pF) are figures based on experience and should serve as “start value”.  
To define the capacitor size, reset the MSP without transmitting any further I2C telegrams. Measure the fre-  
quency at AUD_CL_OUT-pin. Change the capacitor size until the free running frequency matches 18.432 MHz  
as closely as possible. The higher the capacity, the lower the resulting clock frequency.  
MICRONAS INTERMETALL  
59  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4.6.3. Characteristics  
at TA = 0 to 70 °C, fCLOCK = 18.432 MHz, VSUP1 = 7.6 to 8.7 V, VSUP2 = 4.75 to 5.25 V for min./max. values  
at TA = 60 °C, fCLOCK = 18.432 MHz, VSUP1 = 8 V, VSUP2 = 5 V for typical values,  
TJ = Junction Temperature  
MAIN (M) = Loudspeaker Channel, AUX (A) = Headphone Channel  
4.6.3.1. General Characteristics  
Symbol  
Supply  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
I
First Supply Current (active)  
(8-V Operation)  
AHVSUP  
SUP1A  
Analog Volume for Main and Aux at 0 dB  
9.6  
6.3  
17.1  
11.2  
24.6  
16.1  
mA  
mA  
Analog Volume for Main and Aux at 30 dB  
First Supply Current (active)  
(5-V Operation)  
Analog Volume for Main and Aux at 0 dB  
6.4  
4.2  
11.4  
7.5  
16.4  
10.7  
mA  
mA  
Analog Volume for Main and Aux at 30 dB  
I
I
I
Second Supply Current (active)  
MSP 34x0G version A1 to A4  
MSP 34x0G version B5 and later  
DVSUP  
AVSUP  
AHVSUP  
SUP2A  
SUP3A  
SUP1S  
86  
50  
95  
65  
102  
85  
mA  
mA  
Third Supply Current (active)  
MSP 34x0G version A1 to A4  
MSP 34x0G version B5 and later  
15  
20  
25  
35  
35  
45  
mA  
mA  
First Supply Current  
(8-V Operation)  
3.5  
5.6  
7.7  
mA  
STANDBYQ = low  
STANDBYQ = low  
(standby mode) at T = 27 °C  
j
First Supply Current  
(5-V Operation)  
2.3  
3.7  
5.1  
mA  
(standby mode) at T = 27 °C  
j
Clock  
f
Clock Input Frequency  
Clock High to Low Ratio  
XTAL_IN  
18.432  
MHz  
%
CLOCK  
D
45  
55  
50  
CLOCK  
JITTER  
t
Clock Jitter (Verification not  
provided in Production Test)  
ps  
V
DC-Voltage Oscillator  
2.5  
0.4  
V
xtalDC  
t
Oscillator Startup Time at  
XTAL_IN,  
2
ms  
Startup  
VDD Slew-rate of 1 V/1 µs  
XTAL_OUT  
V
Audio Clock Output AC Voltage  
Audio Clock Output DC Voltage  
HF Output Resistance  
AUD_CL_OUT  
1.2  
0.4  
1.8  
V
V
load = 40 pF  
ACLKAC  
pp  
V
0.6  
I
= 0.2 mA  
ACLKDC  
SUP3  
max  
r
140  
outHF_ACL  
60  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
4.6.3.2. Digital Inputs, Digital Outputs  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Digital Input Levels  
V
V
Digital Input Low Voltage  
STANDBYQ  
D_CTR_I/O_0/1  
0.2  
V
DIGIL  
SUP2  
Digital Input High Voltage  
DIGIH  
MSP34x0G version A1 to A4  
MSP34x0G version B5 and later  
0.8  
0.5  
V
V
SUP2  
SUP2  
Z
Input Impedance  
5
1
pF  
DIGI  
I
Digital Input Leakage Current  
1  
µA  
0 V < U  
< DVSUP  
INPUT  
DLEAK  
D_CTR_I/O_0/1: tri-state  
V
V
Digital Input Low Voltage  
ADR_SEL  
0.2  
V
V
DIGIL  
SUP2  
Digital Input High Voltage  
Input Current Address Select Pin  
0.8  
DIGIH  
SUP2  
I
500  
220  
µA  
µA  
U
U
= DVSS  
ADRSEL  
ADR_SEL  
220  
500  
0.4  
= DVSUP  
ADR_SEL  
Digital Output Levels  
V
V
Digital Output Low Voltage  
Digital Output High Voltage  
D_CTR_I/O_0  
D_CTR_I/O_1  
V
V
IDDCTR = 1 mA  
DCTROL  
DCTROH  
4.0  
IDDCTR = 1 mA  
MICRONAS INTERMETALL  
61  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4.6.3.3. Reset Input and Power-Up  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
RESETQ Input Levels  
V
V
Reset High-Low Transition Voltage RESETQ  
Reset Low-High Transition Voltage  
Input Impedance  
0.45  
0.7  
0.55  
0.8  
5
V
V
RHL  
RLH  
RES  
RES  
SUP2  
SUP2  
Z
pF  
I
Input Pin Leakage Current  
-1  
1
µA  
0 V < U  
< DVSUP  
INPUT  
DVSUP  
AVSUP  
4.5V  
t/ms  
Low-to-High  
Threshold  
RESETQ  
Note: The reset should  
not reach high level  
before the oscillator has  
started. This requires a  
reset delay of >2 ms  
0.7×DVSUP  
0.45...0.55×DVSUP  
High-to-Low  
Threshold  
0.7 x DVSUP means  
3.5 Volt with  
DVSUP = 5.0 V  
t/ms  
Reset Delay  
>2 ms  
Internal  
Reset  
High  
Low  
t/ms  
Fig. 4–24: Power-up sequence  
62  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
4.6.3.4. I2C-Bus Characteristics  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
2
V
V
I C-Bus Input Low Voltage  
I2C_CL,  
I2C_DA  
0.3  
V
I2CIL  
I2CIH  
I2C1  
SUP2  
SUP2  
2
I C-Bus Input High Voltage  
0.6  
120  
120  
55  
V
2
t
t
t
I C Start Condition Setup Time  
ns  
ns  
ns  
2
I C Stop Condition Setup Time  
I2C2  
2
I C-Data Setup Time  
I2C5  
before Rising Edge of Clock  
2
t
I C-Data Hold Time  
55  
ns  
I2C6  
after Falling Edge of Clock  
2
t
t
f
I C-Clock Low Pulse Time  
I2C_CL  
500  
500  
ns  
I2C3  
I2C4  
I2C  
2
I C-Clock High Pulse Time  
ns  
2
I C-BUS Frequency  
1.0  
0.4  
1.0  
MHz  
V
2
V
I C-Data Output Low Voltage  
I2C_CL,  
I2C_DA  
I
= 3 mA  
I2COL  
I2COL  
2
I
t
t
I C-Data Output  
µA  
V
= 5 V  
I2COH  
I2COH  
High Leakage Current  
2
I C-Data Output Hold Time  
15  
ns  
ns  
I2COL1  
I2COL2  
after Falling Edge of Clock  
2
I C-Data Output Setup Time  
100  
f
= 1 MHz  
I2C  
before Rising Edge of Clock  
1/FI2C  
TI2C4  
TI2C3  
I2C_CL  
TI2C1  
TI2C5  
TI2C6  
TI2C2  
I2C_DA as input  
I2C_DA as output  
TI2COL2  
TI2COL1  
Fig. 4–25: I2C bus timing diagram  
MICRONAS INTERMETALL  
63  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4.6.3.5. I2S-Bus Characteristics  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
V
Input Low Voltage  
MSP34x0G version A1 to A4  
MSP34x0G version B5 and later  
I2S_DA_IN1/2  
I2S_CL  
I2S_WS  
I2SIL  
I2SIH  
0.25  
0.2  
V
V
SUP2  
SUP2  
V
Input High Voltage  
MSP34x0G version A1 to A4  
MSP34x0G version B5 and later  
0.75  
0.5  
V
V
SUP2  
SUP2  
Z
Input Impedance  
5
1
pF  
I2SI  
I
t
t
f
f
Input Leakage Current  
1  
20  
0
µA  
0 V < U  
I S slave mode  
< DVSUP  
INPUT  
DLEAKI2SI  
2
2
I S-Data Input Setup Time  
I2S_DA_IN1/2,  
I2S_CL  
ns  
I2S1  
before Rising Edge of Clock  
2
I S-Data Input Hold Time  
ns  
I2S2  
after Falling Edge of Clock  
2
I S-Word Strobe Input Frequency  
I2S_WS  
I2S_CL  
32.0  
kHz  
MHz  
I2SWS  
I2SCL  
2
when MSP in I S-Slave Mode  
2
I S-Clock Input Frequency when  
1.024  
2
MSP in I S-Slave-Mode  
2
R
I S-Clock Input Ratio when  
0.9  
60  
1.1  
I2SCL  
2
MSP in I S-Slave-Mode  
2
t
I S-Word Strobe Input Setup Time  
I2S_WS,  
I2S_CL  
ns  
ns  
I2SWS1  
before Rising Edge of Clock when  
MSP in I S-Slave-Mode  
2
2
t
I S-Word Strobe Input Hold Time  
0
I2SWS2  
after Falling Edge of Clock when  
2
MSP in I S-Slave-Mode  
2
V
V
I S Output Low Voltage  
I2S_WS,  
I2S_CL,  
I2S_DA_OUT  
0.4  
V
I
I
= 1 mA  
I2SOL  
I2SOH  
I2SWS  
I2SCL  
I2SOL  
2
I S Output High Voltage  
4.0  
V
= 1 mA  
I2SOH  
2
f
f
t
t
I S-Word Strobe Output Frequency I2S_WS  
32.0  
1024  
1.0  
kHz  
kHz  
NICAM-PLL closed  
2
I S-Clock Output Frequency  
I2S_CL  
2
I S-Clock High/Low-Ratio  
0.9  
1.1  
I2S1/I2S2  
I2S3  
2
I S-Data Setup Time  
I2S_CL,  
I2S_DA_OUT  
200  
ns  
ns  
ns  
ns  
C = 30 pF  
L
before Rising Edge of Clock  
2
t
t
t
I S-Data Hold Time  
180  
I2S4  
I2S5  
I2S6  
after Falling Edge of Clock  
2
I S-Word Strobe Setup Time  
I2S_CL,  
I2S_WS  
200  
before Rising Edge of Clock  
2
I S-Word Strobe Hold Time  
180  
after Falling Edge of Clock  
64  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
(Data: MSB first)  
F
I2SWS  
I2S_WS  
SONY Mode  
SONY Mode  
PHILIPS Mode  
PHILIPS Mode  
PHILIPS/SONY Mode programmable by MODUS[6]  
Detail C  
I2S_CL  
Detail A  
Detail B  
I2S_DAIN  
R LSB L MSB  
L LSB R MSB  
R LSB L LSB  
16 bit left channel  
16 bit left channel  
16 bit right channel  
I2S_DAOUT  
R LSB L MSB  
L LSB R MSB  
R LSB L LSB  
16 bit right channel  
Detail C  
Detail A,B  
F
I2SCL  
I2S_CL  
I2S_CL  
T
T
T
I2S2  
I2S1  
T
T
T
I2SWS1  
I2SWS2  
I2S_WS as INPUT  
I2S_DA_IN  
T
T
I2S3  
I2S4  
I2S5  
I2S6  
I2S_WS as OUTPUT  
I2S_DA_OUT  
Fig. 4–26: I2S bus timing diagram  
4.6.3.6. Analog Baseband Inputs and Outputs, AGNDC  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Analog Ground  
V
AGNDC Open Circuit Voltage  
(8-V Operation)  
AGNDC  
R
10 MΩ  
load  
AGNDC0  
MSP34x0G version A1 to A4  
MSP34x0G version B5 and later  
3.63  
3.67  
3.73  
3.77  
3.83  
3.87  
V
V
AGNDC Open Circuit Voltage  
(5-V Operation)  
MSP34x0G version A1 to A4  
MSP34x0G version B5 and later  
2.39  
2.41  
2.49  
2.51  
2.59  
2.61  
V
V
R
AGNDC Output Resistance  
(8-V Operation)  
70  
47  
125  
83  
180  
120  
kΩ  
kΩ  
3 V V  
4 V  
outAGN  
AGNDC  
AGNDC Output Resistance  
(5-V Operation)  
Analog Input Resistance  
1)  
R
SCART Input Resistance  
SCn_IN_s  
25  
15  
40  
24  
58  
35  
kΩ  
kΩ  
f
f
= 1 kHz, I = 0.05 mA  
= 1 kHz, I = 0.1 mA  
inSC  
signal  
signal  
from T = 0 to 70 °C  
A
R
MONO Input Resistance  
MONO_IN  
inMONO  
from T = 0 to 70 °C  
A
1)  
“n” means “1”, “2”, “3”, or “4”;  
“s” means “L” or “R”  
MICRONAS INTERMETALL  
65  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Audio Analog-to-Digital-Converter  
1)  
V
Effective Analog Input Clipping  
Level for Analog-to-Digital-  
Conversion  
SCn_IN_s,  
MONO_IN  
2.00  
2.25  
V
V
f
= 1 kHz  
AICL  
RMS  
RMS  
signal  
(8-V Operation)  
Effective Analog Input Clipping  
Level for Analog-to-Digital-  
Conversion  
1.13  
1.51  
(5-V Operation)  
SCART Outputs  
1)  
R
SCART Output Resistance  
at T = 27 °C  
SCn_OUT_s  
f = 1 kHz, I = 0.1 mA  
signal  
outSC  
200  
200  
330  
460  
500  
j
from T = 0 to 70 °C  
A
dV  
Deviation of DC-Level at SCART  
Output from AGNDC Voltage  
70  
+70  
mV  
dB  
dB  
OUTSC  
1)  
A
Gain from Analog Input  
to SCART Output  
SCn_IN_s,  
MONO_IN  
1.0  
0.5  
+0.5  
+0.5  
f
= 1 kHz  
signal  
SCtoSC  
1)  
1)  
SCn_OUT_s  
f
Frequency Response from Analog  
Input to SCART Output  
Bandwidth: 0 to 20000 Hz  
with resp. to 1 kHz  
rSCtoSC  
V
Effective Signal Level at  
SCn_OUT_s  
1.8  
1.9  
2.0  
V
f = 1 kHz  
signal  
outSC  
RMS  
RMS  
SCART-Output during full-scale  
2
Digital Input Signal from I S  
(8-V Operation)  
Effective Signal Level at  
1.17  
1.27  
1.37  
V
SCART-Output during full-scale  
2
Digital Input Signal from I S  
(5-V Operation)  
Main and AUX Outputs  
1)  
R
Main/AUX Output Resistance  
at T = 27 °C  
DACp_s  
f
= 1 kHz, I = 0.1 mA  
outMA  
signal  
2.1  
2.1  
3.3  
4.6  
5.0  
kΩ  
kΩ  
j
from T = 0 to 70 °C  
A
V
DC-Level at Main/AUX-Output  
for Analog Volume at 0 dB  
for Analog Volume at 30 dB  
(8-V Operation)  
outDCMA  
1.80  
2.04  
61  
2.28  
V
mV  
DC-Level at Main/AUX-Output  
for Analog Volume at 0 dB  
for Analog Volume at 30 dB  
(5-V Operation)  
1.12  
1.23  
1.36  
40  
1.60  
1.51  
V
mV  
V
Effective Signal Level at Main/  
AUX-Output during full-scale  
1.37  
V
f
= 1 kHz  
outMA  
RMS  
signal  
2
Digital Input Signal from I S  
for Analog Volume at 0 dB  
(8-V Operation)  
Effective Signal Level at Main/  
AUX-Output during full-scale  
Digital Input Signal from I S  
0.76  
0.90  
1.04  
V
RMS  
2
for Analog Volume at 0 dB  
(5-V Operation)  
1)  
“n” means “1”, “2”, “3”, or “4”;  
“s” means “L” or “R”; “p” means “M” or “A”  
66  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
4.6.3.7. Sound IF Inputs  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
R
Input Impedance  
ANA_IN1+,  
ANA_IN2+,  
ANA_IN−  
1.5  
6.8  
2
9.1  
2.5  
11.4  
kΩ  
kΩ  
Gain AGC = 20 dB  
Gain AGC = 3 dB  
IFIN  
DC  
DC  
DC Voltage at VREFTOP  
MSP 34x0G Version A1 to A4  
MSP 34x0G Version B5 and later  
VREFTOP  
VREFTOP  
ANA_IN  
2.4  
2.45  
2.6  
2.65  
2.7  
2.75  
V
V
DC Voltage on IF Inputs  
ANA_IN1+,  
ANA_IN2+,  
ANA_IN−  
1.3  
1.5  
1.7  
V
XTALK  
Crosstalk Attenuation  
3 dB Bandwidth  
ANA_IN1+,  
ANA_IN2+,  
ANA_IN−  
40  
10  
dB  
f
= 1 MHz  
signal  
IF  
Input Level = 2 dBr  
BW  
MHz  
dB  
IF  
AGC  
AGC Step Width  
0.85  
4.6.3.8. Power Supply Rejection  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
PSRR: Rejection of Noise on AHVSUP at 1 kHz  
PSRR  
AGNDC  
AGNDC  
80  
70  
dB  
dB  
2
From Analog Input to I S Output  
MONO_IN,  
SCn_IN_s  
1)  
From Analog Input to  
SCART Output  
MONO_IN,  
SCn_IN_s  
SCn_OUT_s  
70  
dB  
1)  
1)  
1)  
2
From I S Input to SCART Output  
SCn_OUT_s  
60  
80  
dB  
dB  
2
1)  
From I S Input to MAIN or AUX  
DACp_s  
Output  
1)  
“n” means “1”, “2”, “3”, or “4”;  
“s” means “L” or “R”; “p” means “M” or “A”  
MICRONAS INTERMETALL  
67  
MSP 34x0G  
PRELIMINARY DATA SHEET  
4.6.3.9. Analog Performance  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Specifications for 8-V Operation  
SNR  
Signal-to-Noise Ratio  
2
from Analog Input to I S Output  
MONO_IN,  
SCn_IN_s  
85  
93  
85  
88  
96  
88  
dB  
dB  
dB  
Input Level = 20 dB with  
1)  
resp. to V  
, f = 1 kHz,  
AICL sig  
unweighted  
20 Hz...16 kHz  
from Analog Input to  
SCART Output  
MONO_IN,  
Input Level = 20 dB,  
1)  
SCn_IN_s  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...20 kHz  
1)  
1)  
SCn_OUT_s  
2
from I S Input to SCART Output  
SCn_OUT_s  
Input Level = 20 dB,  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...15 kHz  
2
1)  
from I S Input to Main/AUX-Output DACp_s  
for Analog Volume at 0 dB  
Input Level = 20 dB,  
85  
78  
88  
83  
dB  
dB  
f
= 1 kHz,  
sig  
for Analog Volume at 30 dB  
unweighted  
20 Hz...15 kHz  
THD  
Total Harmonic Distortion  
2
from Analog Input to I S Output  
MONO_IN,  
SCn_IN_s  
0.01  
0.01  
0.01  
0.01  
0.03  
0.03  
0.03  
0.03  
%
%
%
%
Input Level = 3 dBr with  
1)  
resp. to V  
, f = 1 kHz,  
AICL sig  
unweighted  
20 Hz...16 kHz  
from Analog Input to  
SCART Output  
MONO_IN,  
SCn_IN_s  
Input Level = 3 dBr,  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...20 kHz  
1)  
1)  
SCn_OUT_s  
2
from I S Input to SCART Output  
SCn_OUT_s  
Input Level = 3 dBr,  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...16 kHz  
2
from I S Input to Main or AUX Out- DACA_s,  
Input Level = 3 dBr,  
1)  
put  
DACM_s  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...16 kHz  
1)  
“n” means “1”, “2”, “3”, or “4”;  
“s” means “L” or “R”; “p” means “M” or “A”  
68  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Specifications for 5-V Operation  
SNR  
Signal-to-Noise Ratio  
2
from Analog Input to I S Output  
MONO_IN,  
SCn_IN_s  
82  
90  
82  
85  
93  
85  
dB  
dB  
dB  
Input Level = 20 dB with  
1)  
resp. to V  
, f = 1 kHz,  
AICL sig  
unweighted  
20 Hz...16 kHz  
from Analog Input to  
SCART Output  
MONO_IN,  
Input Level = 20 dB,  
1)  
SCn_IN_s  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...20 kHz  
1)  
1)  
SCn_OUT_s  
2
from I S Input to SCART Output  
SCn_OUT_s  
Input Level = 20 dB,  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...15 kHz  
2
1)  
from I S Input to Main/AUX-Output DACp_s  
for Analog Volume at 0 dB  
Input Level = 20 dB,  
82  
75  
85  
80  
dB  
dB  
f
= 1 kHz,  
sig  
for Analog Volume at 30 dB  
unweighted  
20 Hz...15 kHz  
THD  
Total Harmonic Distortion  
2
from Analog Input to I S Output  
MONO_IN,  
SCn_IN_s  
0.03  
0.1  
0.1  
0.1  
0.1  
%
%
%
%
Input Level = 3 dBr with  
1)  
resp. to V  
, f = 1 kHz,  
AICL sig  
unweighted  
20 Hz...16 kHz  
from Analog Input to  
SCART Output  
MONO_IN,  
SCn_IN_s  
Input Level = 3 dBr,  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...20 kHz  
1)  
1)  
SCn_OUT_s  
2
from I S Input to SCART Output  
SCn_OUT_s  
Input Level = 3 dBr,  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...16 kHz  
2
from I S Input to Main or AUX Out- DACA_s,  
Input Level = 3 dBr,  
1)  
put  
DACM_s  
f
= 1 kHz,  
sig  
unweighted  
20 Hz...16 kHz  
1)  
“n” means “1”, “2”, “3”, or “4”;  
“s” means “L” or “R”; “p” means “M” or “A”  
MICRONAS INTERMETALL  
69  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
XTALK Specifications for 8-V and 5-V Operation  
XTALK  
Crosstalk Attenuation  
PLCC68  
Input Level = 3 dB,  
f
= 1 kHz, unused ana-  
sig  
PSDIP64  
log inputs connected to  
ground by Z < 1 kΩ  
between left and right channel within  
unweighted  
SCART Input/Output pair (LR, RL)  
20 Hz...20 kHz  
1)  
SCn_IN SCn_OUT  
PLCC68  
PSDIP64  
80  
80  
dB  
dB  
2
SC1_IN or SC2_IN I S Output  
PLCC68  
PSDIP64  
80  
80  
dB  
dB  
2
SC3_IN I S Output  
PLCC68  
PSDIP64  
80  
80  
dB  
dB  
2
1)  
I S Input SCn_OUT  
PLCC68  
PSDIP64  
80  
80  
dB  
dB  
between left and right channel within  
Main or AUX Output pair  
unweighted  
20 Hz...16 kHz  
2
1)  
I S Input DACp  
PLCC68  
PSDIP64  
80  
75  
dB  
dB  
between SCART Input/Output pairs  
(unweighted  
20 Hz...20 kHz  
D = disturbing program  
O = observed program  
same signal source on left  
and right disturbing chan-  
nel, effect on each  
D: MONO/SCn_IN SCn_OUT  
O: MONO/SCn_IN SCn_OUT  
PLCC68  
PSDIP64  
100  
100  
dB  
dB  
1)  
observed output channel  
D: MONO/SCn_IN SCn_OUT or unsel.  
O: MONO/SCn_IN I S Output  
PLCC68  
PSDIP64  
100  
95  
dB  
dB  
2
D: MONO/SCn_IN SCn_OUT  
O: I S Input SCn_OUT  
PLCC68  
PSDIP64  
100  
100  
dB  
dB  
2
1)  
D: MONO/SCn_IN unselected  
O: I S Input SC1_OUT  
PLCC68  
PSDIP64  
100  
100  
dB  
dB  
2
1)  
Crosstalk between Main and AUX Output pairs  
(unweighted  
20 Hz...16 kHz)  
same signal source on left  
and right disturbing chan-  
nel, effect on each  
2
1)  
I S Input DACp  
PLCC68  
PSDIP64  
95  
90  
dB  
dB  
observed output channel  
XTALK  
Crosstalk from Main or AUX Output to SCART Output  
and vice versa  
(unweighted  
20 Hz...20 kHz)  
same signal source on left  
and right disturbing chan-  
nel, effect on each  
D = disturbing program  
O = observed program  
observed output channel  
D: MONO/SCn_IN/DSP SCn_OUT  
O: I S Input DACp  
PLCC68  
PSDIP64  
85  
80  
dB  
dB  
SCART output load resis-  
tance 10 kΩ  
2
1)  
D: MONO/SCn_IN/DSP SCn_OUT  
O: I S Input DACp  
PLCC68  
PSDIP64  
90  
85  
dB  
dB  
SCART output load resis-  
tance 30 kΩ  
2
1)  
2
D: I S Input DACp  
PLCC68  
PSDIP64  
100  
95  
dB  
dB  
1)  
O: MONO/SCn_IN SCn_OUT  
2
D: I S Input DACM  
PLCC68  
PSDIP64  
100  
95  
dB  
dB  
2
1)  
O: I S Input SCn_OUT  
1)  
“n” means “1”, “2”, “3”, or “4”;  
“s” means “L” or “R”; “p” means “M” or “A”  
70  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
4.6.3.10. Sound Standard Dependent Characteristics  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
NICAM Characteristics (MSP Standard Code = 8)  
dV  
Tolerance of Output Voltage  
of NICAM Baseband Signal  
DACp_s,  
SCn_OUT_s  
1.5  
+1.5  
dB  
dB  
2.12 kHz, Modulator input  
level = 0 dBref  
NICAMOUT  
1)  
S/N  
S/N of NICAM Baseband Signal  
72  
NICAM: 6 dB, 1 kHz, RMS  
unweighted  
NICAM  
0 to 15 kHz, Vol = 9 dB  
NIC_Presc = 7F  
Output level 1 V  
DACp_s  
hex  
at  
RMS  
THD  
BER  
Total Harmonic Distortion + Noise  
of NICAM Baseband Signal  
0.1  
%
2.12 kHz, Modulator input  
level = 0 dBref  
NICAM  
NICAM  
7  
NICAM: Bit Error Rate  
1
10  
FM+NICAM, norm conditions  
fR  
NICAM Frequency Response ,  
20...15000 Hz  
1.0  
80  
+1.0  
dB  
dB  
dB  
Modulator input  
level = 12 dB dBref; RMS  
NICAM  
XTALK  
NICAM Crosstalk Attenuation  
(Dual)  
NICAM  
SEP  
NICAM Channel Separation  
(Stereo)  
80  
NICAM  
FM Characteristics (MSP Standard Code = 3)  
dV  
Tolerance of Output Voltage  
of FM Demodulated Signal  
DACp_s,  
SCn_OUT_s  
1.5  
+1.5  
dB  
1 FM-carrier, 50 µs, 1 kHz,  
40 kHz deviation; RMS  
FMOUT  
1)  
S/N  
S/N of FM Demodulated Signal  
73  
dB  
%
1 FM-carrier 5.5 MHz, 50 µs,  
1 kHz, 40 kHz deviation;  
RMS, unweighted  
0 to 15 kHz (for S/N);  
full input range, FM-Pres-  
FM  
THD  
Total Harmonic Distortion + Noise  
of FM Demodulated Signal  
0.1  
FM  
cale = 46 , Vol = 0 dB  
hex  
Output Level 1 V  
at  
RMS  
DACp_s  
fR  
FM Frequency Responses,  
20...15000 Hz  
1.0  
80  
+1.0  
dB  
dB  
dB  
1 FM-carrier 5.5 MHz,  
50 µs, Modulator input  
level = 14.6 dBref; RMS  
FM  
XTALK  
FM Crosstalk Attenuation (Dual)  
FM Channel Separation (Stereo)  
2 FM-carriers 5.5/5.74 MHz,  
50 µs, 1 kHz, 40 kHz devia-  
tion; Bandpass 1 kHz  
FM  
SEP  
DACp_s,  
SCn_OUT_s  
50  
2 FM-carriers 5.5/5.74 MHz,  
50 µs, 1 kHz, 40 kHz devia-  
tion; RMS  
FM  
1)  
1)  
AM Characteristics (MSP Standard Code = 9)  
S/N  
S/N of AM Demodulated Signal  
measurement condition: RMS/Flat  
MSP 34x0G Version A1 to B5  
MSP 34x0G Version B6 and later  
DACp_s,  
SCn_OUT_s  
SIF level: 0.10.8 V  
pp  
AM(1)  
AM-carrier 54% at 6.5 MHz  
Vol = 0 dB, FM/AM  
prescaler set for  
44  
55  
dB  
dB  
output = 0.5 V  
at  
RMS  
Loudspeaker out;  
S/N  
S/N of AM Demodulated Signal  
measurement condition: QP/CCIR  
MSP 34x0G Version A1 to B5  
MSP 34x0G Version B6 and later  
AM(2)  
Standard Code = 09  
no video/chroma  
components  
hex  
35  
45  
dB  
dB  
THD  
Total Harmonic Distortion + Noise  
of AM Demodulated Signal  
AM  
MSP 34x0G Version A1 to B5  
MSP 34x0G Version B6 and later  
0.8  
0.6  
%
%
1) “n” means “1”, “2”, “3”, or “4”;  
“s” means “L” or “R”; “p” means “Loudspeaker (Main)’’ or ‘‘Headphone (AUX)’’  
MICRONAS INTERMETALL  
71  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
BTSC Characteristics (MSP Standard Code = 20 , 21  
)
hex  
hex  
S/N  
S/N of BTSC Stereo Signal  
S/N of BTSC-SAP Signal  
DACp_s,  
SCn_OUT_s  
68  
57  
dB  
dB  
1 kHz L or R or SAP, 100%  
modulation, 75 µs deempha-  
sis, RMS unweighted 0 to 15  
kHz  
BTSC  
1)  
THD  
THD+N of BTSC Stereo Signal  
THD+N of BTSC SAP Signal  
0.1  
0.5  
%
%
1 kHz L or R or SAP, 100%  
75 µs EIM , DBX NR, RMS  
unweighted  
0 to 15 kHz  
BTSC  
2)  
fR  
Frequency Response of BTSC  
Stereo, 50 Hz...12 kHz  
0.5  
1.0  
0.5  
0.6  
dB  
dB  
L or R or SAP,  
1%...66% EIM , DBX NR  
BTSC  
2)  
Frequency Response of BTSC-  
SAP, 50 Hz...9 kHz  
XTALK  
Stereo SAP  
SAP Stereo  
76  
80  
dB  
dB  
1 kHz L or R or SAP, 100%  
modulation, 75 µs deempha-  
sis, Bandpass 1 kHz  
BTSC  
2)  
SEP  
Stereo Separation  
50 Hz...10 kHz  
50 Hz...12 kHz  
L or R 1%...66% EIM , DBX  
NR  
BTSC  
35  
30  
dB  
dB  
FM  
Pilot deviation threshold  
Stereo off on  
ANA_IN1+,  
ANA_IN2+  
4.5 MHz carrier modulated  
pil  
with f = 15.743 kHz  
h
3.2  
1.2  
3.5  
1.5  
kHz  
kHz  
SIF level = 100 mV  
pp  
indication: STATUS Bit[6]  
Stereo on off  
f
Pilot Frequency Range  
ANA_IN1+  
ANA_IN2+  
15.563  
15.843 kHz  
standard BTSC stereo signal,  
sound carrier only  
Pilot  
BTSC Characteristics (MSP Standard Code = 20 , 21  
)
hex  
hex  
with a minimum IF input signal level of 70 mVpp (measured without any video/chroma signal components)  
S/N  
S/N of BTSC Stereo Signal  
S/N of BTSC-SAP Signal  
DACp_s,  
SCn_OUT_s  
64  
55  
dB  
dB  
1 kHz L or R or SAP, 100%  
modulation, 75 µs deempha-  
sis, RMS unweighted 0 to 15  
kHz  
BTSC  
1)  
THD  
THD+N of BTSC Stereo Signal  
THD+N of BTSC SAP Signal  
0.15  
0.8  
%
%
1 kHz L or R or SAP, 100%  
75 µs EIM , DBX NR, RMS  
unweighted  
0 to 15 kHz  
BTSC  
2)  
fR  
Frequency Response of BTSC  
Stereo, 50 Hz...12 kHz  
0.5  
1.0  
0.5  
0.6  
dB  
dB  
L or R or SAP,  
1%...66% EIM , DBX NR  
BTSC  
2)  
Frequency Response of BTSC-  
SAP, 50 Hz...9 kHz  
XTALK  
Stereo SAP  
SAP Stereo  
75  
75  
dB  
dB  
1 kHz L or R or SAP, 100%  
modulation, 75 µs deempha-  
sis, Bandpass 1 kHz  
BTSC  
2)  
SEP  
Stereo Separation  
50 Hz...10 kHz  
50 Hz...12 kHz  
L or R 1%...66% EIM , DBX  
NR  
BTSC  
35  
30  
dB  
dB  
1)  
“n” means “1”, “2”, “3”, or “4”;  
“s” means “L” or “R”; “p” means “M” or “A”  
2)  
EIM refers to 75-µs Equivalent Input Modulation. It is defined as the audio-signal level which results in a stated percentage modulation,  
when the DBX encoding process is replaced by a 75-µs preemphasis network.  
72  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
EIA-J Characteristics (MSP Standard Code = 30  
)
hex  
S/N  
S/N of EIA-J Stereo Signal  
S/N of EIA-J Sub-Channel  
DACp_s,  
SCn_OUT_s  
60  
60  
dB  
dB  
1 kHz L or R,  
EIAJ  
1)  
100% modulation,  
75 µs deemphasis,  
RMS unweighted  
0 to 15 kHz  
THD  
THD+N of EIA-J Stereo Signal  
THD+N of EIA-J Sub-Channel  
0.2  
0.3  
%
%
EIAJ  
fR  
Frequency Response of EIA-J  
Stereo, 50 Hz...12 kHz  
0.5  
1.0  
0.5  
0.5  
dB  
dB  
100% modulation,  
75 µs deemphasis  
EIAJ  
Frequency Response of EIA-J  
Sub-Channel, 50 Hz...12 kHz  
XTALK  
Main SUB  
Sub MAIN  
66  
80  
dB  
dB  
1 kHz L or R, 100% modula-  
tion, 75 µs deemphasis,  
Bandpass 1 kHz  
EIAJ  
SEP  
Stereo Separation  
50 Hz...5 kHz  
50 Hz...10 kHz  
EIA-J Stereo Signal, L or R  
100% modulation  
EIAJ  
35  
28  
dB  
dB  
FM-Radio Characteristics (MSP Standard Code = 40  
)
hex  
S/N  
S/N of FM-Radio Stereo Signal  
DACp_s,  
SCn_OUT_s  
68  
dB  
%
1 kHz L or R, 100% modula-  
tion, 75 µs deemphasis, RMS  
unweighted  
UKW  
1)  
THD  
THD+N of FM-Radio Stereo Signal  
0.1  
UKW  
0 to 15 kHz  
fR  
Frequency Response of  
FM-Radio Stereo  
50 Hz...15 kHz  
L or R, 1%...100% modula-  
tion, 75 µs deemphasis  
UKW  
1.0  
45  
+0.5  
dB  
dB  
SEP  
Stereo Separation 50 Hz...15 kHz  
Pilot Frequency Range  
UKW  
f
ANA_IN1+  
ANA_IN2+  
18.844  
19.125 kHz  
standard FM radio  
stereo signal  
Pilot  
1)  
“n” means “1”, “2”, “3”, or “4”;  
“s” means “L” or “R”; “p” means “M” or “A”  
MICRONAS INTERMETALL  
73  
MSP 34x0G  
PRELIMINARY DATA SHEET  
5. Appendix A: Overview of TV-Sound Standards  
5.1. NICAM 728  
Table 5–1: Summary of NICAM 728 sound modulation parameters  
Specification  
I
B/G  
L
D/K  
Carrier frequency of  
digital sound  
6.552 MHz  
5.85 MHz  
5.85 MHz  
5.85 MHz  
Transmission rate  
Type of modulation  
728 kbit/s  
Differentially encoded quadrature phase shift keying (DQPSK)  
by means of Roll-off filters  
Spectrum shaping  
Roll-off factor  
1.0  
0.4  
0.4  
6.5 MHz AM mono  
0.4  
Carrier frequency of  
analog sound component  
6.0 MHz  
5.5 MHz  
6.5 MHz  
FM mono  
FM mono  
FM mono  
terrestrial  
10 dB  
cable  
16 dB  
Power ratio between  
vision carrier and  
analog sound carrier  
10 dB  
10 dB  
13 dB  
7 dB  
13 dB  
Power ratio between  
analog and modulated  
digital sound carrier  
17 dB  
11 dB  
China/Hu  
ngary  
Poland  
7 dB  
12 dB  
Table 5–2: Summary of NICAM 728 sound coding characteristics  
Characteristics  
Values  
32 kHz  
2
Audio sampling frequency  
Number of channels  
Initial resolution  
14 bit/sample  
Companding characteristics  
Coding for compressed samples  
Preemphasis  
near instantaneous, with compression to 10 bits/sample in 32-samples (1 ms) blocks  
2’s complement  
CCITT Recommendation J.17 (6.5 dB attenuation at 800 Hz)  
+12 dBm measured at the unity gain frequency of the preemphasis network (2 kHz)  
Audio overload level  
74  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
5.2. A2-Systems  
Table 5–3: Key parameters for A2 Systems of Standards B/G, D/K, and M  
Characteristics  
Sound Carrier FM1  
Sound Carrier FM2  
D/K  
TV-Sound Standard  
Carrier frequency in MHz  
B/G  
D/K  
M
B/G  
M
5.5  
6.5  
4.5  
5.7421875 6.2578125 4.724212  
6.7421875  
5.7421875  
Vision/sound power difference  
Sound bandwidth  
13 dB  
20 dB  
40 Hz to 15 kHz  
Preemphasis  
50 µs  
±2750 kHz  
75 µs  
50 µs  
75 µs  
Frequency deviation (nom/max)  
Transmission Modes  
±1725 kHz  
±2750 kHz  
±1525 kHz  
Mono transmission  
mono  
mono  
Stereo transmission  
(L+R)/2  
language A  
(L+R)/2  
R
(LR)/2  
Dual sound transmission  
Identification of Transmission Mode  
Pilot carrier frequency  
language B  
54.6875 kHz  
±2.5 kHz  
55.0699 kHz  
Max. deviation portion  
Type of modulation / modulation depth  
Modulation frequency  
AM / 50%  
mono: unmodulated  
stereo: 117.5 Hz  
dual: 274.1 Hz  
149.9 Hz  
276.0 Hz  
MICRONAS INTERMETALL  
75  
MSP 34x0G  
PRELIMINARY DATA SHEET  
5.3. BTSC-Sound System  
Table 5–4: Key parameters for BTSC-Sound Systems  
Aural  
BTSC-MPX-Components  
Carrier  
(L+R)  
Pilot  
(LR)  
SAP  
Prof. Ch.  
Carrier frequency  
4.5 MHz  
Baseband  
fh  
2 fh  
5 fh  
6.5 fh  
(fhNTSC = 15.734 kHz)  
(fhPAL = 15.625 kHz)  
Sound bandwidth in kHz  
Preemphasis  
0.05 - 15  
75 µs  
0.05 - 15  
DBX  
0.05 - 12  
DBX  
0.05 - 3.4  
150 µs  
3 kHz  
Max. deviation to Aural Carrier  
73 kHz  
(total)  
25 kHz1)  
5 kHz  
50 kHz1)  
15 kHz  
Max. Freq. Deviation of Subcarrier  
Modulation Type  
10 kHz  
FM  
3 kHz  
FM  
AM  
1) Sum does not exceed 50 kHz due to interleaving effects  
5.4. Japanese FM Stereo System (EIA-J)  
Table 5–5: Key parameters for Japanese FM-Stereo Sound System EIA-J  
Aural  
Carrier  
FM  
EIA-J-MPX-Components  
(L+R)  
(LR)  
Identification  
Carrier frequency (fh = 15.734 kHz)  
Sound bandwidth  
4.5 MHz  
Baseband  
0.05 - 15 kHz  
75 µs  
2 fh  
3.5 fh  
0.05 - 15 kHz  
75 µs  
Preemphasis  
none  
2 kHz  
Max. deviation portion to Aural Carrier  
47 kHz  
25 kHz  
20 kHz  
Max. Freq. Deviation of Subcarrier  
Modulation Type  
10 kHz  
FM  
60%  
AM  
Transmitter-sided delay  
Mono transmission  
20 µs  
0 µs  
0 µs  
L+R  
unmodulated  
982.5 Hz  
922.5 Hz  
Stereo transmission  
Bilingual transmission  
L+R  
LR  
Language A  
Language B  
76  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
5.5. FM Satellite Sound  
Table 5–6: Key parameters for FM Satellite Sound  
Carrier Frequency  
Maximum  
FM Deviation  
Sound Mode  
Bandwidth  
Deemphasis  
6.5 MHz  
85 kHz  
50 kHz  
50 kHz  
50 kHz  
Mono  
15 kHz  
15 kHz  
15 kHz  
15 kHz  
50 µs  
7.02/7.20 MHz  
7.38/7.56 MHz  
7.74/7.92 MHz  
Mono/Stereo/Bilingual  
Mono/Stereo/Bilingual  
Mono/Stereo/Bilingual  
adaptive  
adaptive  
adaptive  
5.6. FM-Stereo Radio  
Table 5–7: Key parameters for FM-Stereo Radio Systems  
Aural  
Carrier  
(L+R)  
FM-Radio-MPX-Components  
Pilot  
(LR)  
2 fp  
RDS/ARI  
Carrier frequency (fp = 19 kHz)  
Sound bandwidth in kHz  
10.7 MHz  
Baseband  
0.05 - 15  
fp  
3 fh  
0.05 - 15  
Preemphasis:  
USA  
Europe  
75 µs  
50 µs  
75 µs  
50 µs  
Max. deviation to Aural Carrier  
75 kHz  
(100%)  
90%  
10%  
90%  
5%  
MICRONAS INTERMETALL  
77  
MSP 34x0G  
PRELIMINARY DATA SHEET  
6. Appendix B: Manual/Compatibility Mode  
To adapt the modes of the STANDARD SELECT regis-  
ter to individual requirements and for reasons of com-  
patibility to the MSP 34x0D, the MSP 34x0G offers  
an Manual/Compatibility Mode, which provides sophis-  
ticated programming of the MSP 34x0G.  
Using the STANDARD SELECT register generally pro-  
vides  
a more economic way to program the  
MSP 34x0G and will result in optimal behavior. There-  
fore, it is not recommended to use the Man-  
ual/Compatibility mode. Only in those cases, where  
compatibility with MSP 34x0D is strictly required,  
should the Manual/Compatibility mode be used.  
Note: In case of Automatic Sound Select  
(MODUS[0]=1), any modifications of the demodulator  
write registers listed below, except AUTO_FM/AM, are  
ignored.  
78  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
6.1. Demodulator Write and Read Registers for Manual/Compatibility Mode  
Table 6–1: Demodulator Write Registers; Subaddress: 10hex; these registers are not readable!  
Demodulator  
Write Registers  
Address MSP-  
Description  
Reset  
Mode  
Page  
(hex)  
Version  
AUTO_FM/AM  
00 21  
3410,  
3450  
1. MODUS[0]=1 (Automatic Sound Select): Switching Level threshold of 00 00  
Automatic Switching between NICAM and FM/AM in case of bad NICAM  
reception  
81  
1)  
2. MODUS[0]=0 (Manual Mode): Activation and configuration of Automatic  
Switching between NICAM and FM/AM in case of bad NICAM reception  
A2_Threshold  
CM_Threshold  
AD_CV  
00 22  
00 24  
00 BB  
00 83  
all  
A2 Stereo Identification Threshold  
00 19  
82  
82  
83  
84  
hex  
all  
Carrier-Mute Threshold  
00 2A  
00 00  
hex  
all  
SIF-input selection, configuration of AGC, and Carrier-Mute Function  
MODE_REG  
3410,  
3450  
Controlling of MSP-Demodulator and Interface options. As soon as this 00 00  
register is applied, the MSP 34x0G works in the MSP 34x0D compatibility  
mode.  
1)  
Warning: In this mode, BTSC, EIA-J, and FM-Radio are disabled. Only  
MSP 34x0D features are available; the use of MODUS and STATUS register  
is not allowed.  
The MSP 34x0G is reset to the normal mode by first programming the  
MODUS register followed by transmitting a valid standard code to the  
STANDARD SELECTION register.  
FIR1  
FIR2  
00 01  
00 05  
FIR1-filter coefficients channel 1 (6 8 bit)  
FIR2-filter coefficients channel 2 (6 8 bit), + 3 8 bit offset (total 72 bit)  
00 00  
00 00  
86  
86  
DCO1_LO  
DCO1_HI  
00 93  
00 9B  
Increment channel 1 Low Part  
Increment channel 1 High Part  
DCO2_LO  
DCO2_HI  
00 A3  
00 AB  
Increment channel 2 Low Part  
Increment channel 2 High Part  
PLL_CAPS  
00 1F  
Not of interest for the customer  
00 56  
89  
Switchable PLL capacitors to tune open-loop frequency  
1)  
not in BTSC, EIA-J, and FM-Radio mode  
Table 6–2: Demodulator Read Registers; Subaddress: 11hex; these registers are not writable!  
Demodulator  
Address MSP-  
Description  
Page  
Read Registers  
(hex)  
00 23  
00 38  
00 3E  
00 57  
02 1F  
02 1E  
Version  
C_AD_BITS  
ADD_BITS  
CIB_BITS  
3410,  
3450  
NICAM-Sync bit, NICAM-C-Bits, and three LSBs of additional data bits  
NICAM: bit [10:3] of additional data bits  
NICAM: CIB1 and CIB2 control bits  
NICAM error rate, updated with 182 ms  
Not for customer use  
88  
88  
88  
89  
89  
89  
ERROR_RATE  
PLL_CAPS  
AGC_GAIN  
Not for customer use  
MICRONAS INTERMETALL  
79  
MSP 34x0G  
PRELIMINARY DATA SHEET  
6.2. DSP Write and Read Registers for Manual/Compatibility Mode  
Table 6–3: DSP-Write Registers; Subaddress: 12hex, all registers are readable as well  
Write Register  
Address Bits  
(hex)  
Operational Modes and Adjustable Range  
Reset  
Mode  
Page  
Volume SCART1 channel: Ctrl. mode  
FM Fixed Deemphasis  
00 07  
00 0F  
[7..0]  
[15..8]  
[7..0]  
[7..0]  
[7..0]  
[7..0]  
[Linear mode / logarithmic mode]  
[50 µs, 75 µs, OFF]  
[OFF, WP1]  
00  
90  
90  
90  
91  
91  
90  
hex  
50 µs  
OFF  
B/G  
FM Adaptive Deemphasis  
Identification Mode  
00 15  
00 17  
00 40  
[B/G, M]  
FM DC Notch  
[ON, OFF]  
ON  
Volume SCART2 channel: Ctrl. mode  
[Linear mode / logarithmic mode]  
00  
hex  
Table 6–4: DSP Read Registers; Subaddress: 13hex, all registers are not writable  
Additional Read Registers  
Address Bits  
(hex)  
Output Range  
Page  
Stereo detection register for  
A2 Stereo Systems  
00 18  
[15..8]  
[80  
... 7F  
]
8 bit two’s complement  
91  
hex  
hex  
DC level readout FM1/Ch2-L  
DC level readout FM2/Ch1-R  
00 1B  
00 1C  
[15..0]  
[15..0]  
[8000 ... 7FFF  
]
16 bit two’s complement  
16 bit two’s complement  
91  
91  
hex  
hex  
[8000 ... 7FFF  
]
hex  
hex  
80  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
6.3. Manual/Compatibility Mode:  
Individual configuration of the threshold can be done  
using Table 6–5, whereby the bits 0 and 11 of  
AUTO_FM are ignored. It is recommended to use the  
internal setting used by the standard selection.  
Description of Demodulator Write Registers  
6.3.1. Automatic Switching between NICAM and  
Analog Sound  
The optimum NICAM sound can be assigned to the  
MSP output channels by selecting one of the “Stereo or  
A/B”, “Stereo or A”, or “Stereo or B” source channels.  
In case of bad NICAM reception or loss of the  
NICAM-carrier, the MSP 34x0G offers an Automatic  
Switching (fall back) to the analog sound (FM/AM-  
Mono), without the necessity of the controller reading  
and evaluating any parameters. If a proper NICAM sig-  
nal returns, switching back to this source is performed  
automatically as well. The feature evaluates the NICAM  
ERROR_RATE and switches, if necessary, all output  
channels which are assigned to the NICAM source, to  
the analog source, and vice versa.  
6.3.1.2. Function in Manual Mode  
If the manual mode (MODUS[0]=0) is required, the  
activation and configuration of the Automatic Switching  
feature has to be done as described in Table 6–5.  
Note, that the channel matrix of the corresponding out-  
put channels must be set according to the  
NICAM mode and need not to be changed in the  
FM/AM-fallback case.  
An appropriate hysteresis algorithm avoids oscillating  
effects (see Fig. 6–1). STATUS[9] and C_AD_BITS[11]  
(Addr: 0023 hex) provide information about the actual  
NICAM-FM/AM-status.  
Example:  
Required threshold = 500: bits [10:1]=00 1111 1010  
6.3.1.1. Function in Automatic Sound Select Mode  
Selected Sound  
NICAM  
The Automatic Sound Select feature (MODUS[0]=1)  
includes the procedure mentioned above. By default, the  
internal ERROR_RATE threshold is set to 700dec. i.e. :  
– NICAM analog Sound if ERROR_RATE > 700  
– analog Sound NICAM if ERROR_RATE < 700/2  
analog  
ERROR_RATE  
Sound  
threshold/2  
threshold  
The ERROR_RATE value of 700 corresponds to a  
BER of approximately 5.46*10-3/s.  
Fig. 6–1: Hysteresis for Automatic Switching  
Table 6–5: Coding of Automatic NICAM/Analog Sound Switching; Reset Status: Mode 0  
Mode  
Description  
AUTO_FM [11:0]  
ERROR_RATE- Source Select:  
Threshold/dec  
Addr. = 00 21  
Input at NICAM Path1)  
hex  
0
Compatible to MSP 3410B, i.e.  
automatic switching is disabled  
Bit  
[0]  
= 0  
none  
always NICAM; Mute in  
case of no NICAM available  
Bits [10:1] = 0  
Bit  
[11] = 0  
[0] = 1  
[10:1] = 0  
[11] = 0  
1
2
Automatic Switching with  
internal threshold  
(Default, if Automatic Sound  
Bit  
Bit  
Bit  
700  
NICAM or FM/AM,  
depending on  
ERROR_RATE  
Select is on)  
Automatic Switching with  
external threshold  
(Customizing of Automatic  
Bit  
Bit  
[0]  
= 1  
set by customer;  
recommended  
range: 50...2000  
[10:1] = 25..1000  
= threshold/2  
Sound Select)  
Bit  
Bit  
[11]  
= 0  
3
Forced analog mono mode, i.e.  
[0]  
= 1  
none  
always FM/AM  
Automatic Switching is disabled Bit  
[10:1] = 0  
[11] = 1  
(Customizing of Automatic  
Sound Select)  
Bit  
1)  
In case of Automatic Sound Select (MODUS[0] = 1), the NICAM path may be assigned to “Stereo or A/B”, “Stereo or A”, or  
“Stereo or B” source channels (see Table 2–2 on page 11).  
In case of Automatic Sound Select (MODUS[0] = 1), bit [0] of AUTO_FM is ignored  
MICRONAS INTERMETALL  
81  
MSP 34x0G  
PRELIMINARY DATA SHEET  
6.3.2. A2 Threshold  
The threshold between Stereo/Bilingual and Mono  
Identification for the A2 Standard has been made pro-  
grammable according to the user’s preferences. An  
internal hysteresis ensures robustness and stability.  
Table 6–6: Write Register on I2C Subaddress 10hex : A2 Threshold  
Register  
Address  
Function  
Name  
THRESHOLDS  
00 22hex (write)  
A2 THRESHOLD Register  
A2_THRESH  
Defines threshold of all A2 and EIA_J standards for Stereo and Bilingual  
detection  
bit [11..0] 7F0hex  
force Mono Identification  
default setting after reset  
minimum Threshold for stable detection  
must be set to 0  
...  
190hex  
...  
0A0hex  
bit [15..12]  
recommended range : 0A0hex...3C0hex  
6.3.3. Carrier-Mute Threshold  
The Carrier-Mute threshold has been made program-  
mable according to the user’s preferences. An internal  
hysteresis ensures stable behavior.  
Table 6–7: Write Register on I2C Subaddress 10hex : Carrier-Mute Threshold  
Register  
Address  
Function  
Name  
THRESHOLDS  
00 24hex (write)  
Carrier-Mute THRESHOLD Register  
CM_THRESH  
Defines threshold for the carrier mute feature  
bit [6..0] 00hex  
Carrier-Mute always ON (both channels muted)  
...  
2Ahex  
...  
default setting after reset  
7Fhex  
Carrier-Mute always OFF (both channels forced  
on)  
bit [15..7]  
must be set to 0  
recommended range : 14hex...50hex  
82  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
6.3.4. Register AD_CV  
The use of this register is no longer recommended.  
Use it only in cases where compatibility to the  
MSP 34x0D is required. Using the STANDARD  
SELECTION register together with the MODUS regis-  
ter provides a more economic way to program the  
MSP 34x0G.  
Table 6–8: AD_CV Register; reset status: all bits are “0”  
AD_CV  
(00 BBhex  
Automatic setting by  
STANDARD SELECT Register  
)
Bit  
Function  
Settings  
2-8, 0A-60hex  
9
[0]  
not used  
must be set to 0  
0
0
[16]  
Reference level in case of Automatic Gain  
Control = on (see Table 6–9). Constant gain  
factor when Automatic Gain Control = off  
(see Table 6–10).  
101000  
100011  
[7]  
[8]  
[9]  
Determination of Automatic Gain or  
Constant Gain  
0 = constant gain  
1 = automatic gain  
1
X
1
1
X
0
Selection of Sound IF source  
(identical to MODUS[8])  
0 = ANA_IN1+  
1 = ANA_IN2+  
MSP-Carrier-Mute Feature  
0 = off: no mute  
1 = on: mute as de-  
scribed in section 2.2.2.  
[1015]  
not used  
must be set to 0  
0
0
X : not affected while choosing the TV sound standard by means of the STANDARD SELECT Register  
Table 6–9: Reference Values for Active AGC (AD_CV[7] = 1)  
Application  
Input Signal Contains  
AD_CV [6:1]  
Ref. Value  
AD_CV [6:1]  
in integer  
Range of Input Signal  
at pin ANA_IN1+  
and ANA_IN2+  
Terrestrial TV  
FM Standards  
NICAM/FM  
NICAM/AM  
1)  
1 or 2 FM Carriers  
101000  
101000  
100011  
40  
40  
35  
0.10 3 Vpp  
1)  
1 FM and 1 NICAM Carrier  
1 AM and 1 NICAM Carrier  
0.10 3 Vpp  
0.10 1.4 Vpp  
(recommended: 0.10 0.8 Vpp  
)
NICAM only  
1 NICAM Carrier only  
010100  
100011  
20  
35  
0.05 1.0 Vpp  
1)  
SAT  
1 or more FM Carriers  
FM and ADR carriers  
0.10 3 Vpp  
ADR  
see DRP 3510A data sheet  
1)  
For signals above 1.4 Vpp, the minimum gain of 3 dB is switched, and overflow of the A/D converter may result. Due to the  
robustness of the internal processing, the IC works up to and even more than 3 Vpp, if norm conditions of FM/NICAM or  
FM1/FM2 ratio are supposed. In this overflow case, a loss of FM-S/N ratio of about 10 dB may appear.  
MICRONAS INTERMETALL  
83  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 6–10: AD_CV parameters for Constant Input Gain (AD_CV[7]=0)  
Step  
AD_CV [6:1]  
Constant Gain  
Gain  
Input Level at pin ANA_IN1+ and ANA_IN2+  
maximum input level: 3 Vpp (FM) or 1 Vpp (NICAM)1)  
0
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
3.00 dB  
1
2
3
4
5
6
7
8
3.85 dB  
4.70 dB  
5.55 dB  
6.40 dB  
7.25 dB  
8.10 dB  
8.95 dB  
9.80 dB  
10.65 dB  
11.50 dB  
12.35 dB  
13.20 dB  
14.05 dB  
14.90 dB  
15.75 dB  
16.60 dB  
17.45 dB  
18.30 dB  
19.15 dB  
20.00 dB  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
maximum input level: 0.14 Vpp  
1)  
For signals above 1.4 Vpp, the minimum gain of 3 dB is switched and overflow of the A/D converter may result. Due to the  
robustness of the internal processing, the IC works up to and even more than 3 Vpp, if norm conditions of FM/NICAM or  
FM1/FM2 ratio are supposed. In this overflow case, a loss of FM-S/N ratio of about 10 dB may appear.  
6.3.5. Register MODE_REG  
Note: The use of this register is no longer recom-  
mended. It should be used only in cases where soft-  
ware compatibility to the MSP 34x0D is required.  
Using the STANDARD SELECTION register together  
with the MODUS register provides a more economic  
way to program the MSP 34x0G.  
As soon as this register is applied, the MSP 34x0G  
works in the MSP 34x0D Manual/Compatibility  
Mode. In this mode: BTSC, EIA-J, and FM-Radio are  
disabled. Only MSP 34x0D features are available; the  
use of MODUS and STATUS register is not allowed.  
The MSP 34x0G is reset to the normal mode by first  
programming the MODUS register, followed by trans-  
mitting a valid standard code to the STANDARD  
SELECTION register.  
The register ‘MODE_REG’ contains the control bits  
determining the operation mode of the MSP 34x0G in  
the MSP 34x0D Manual/Compatibility Mode; Table 6–  
11 explains all bit positions.  
84  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Table 6–11: Control word ‘MODE_REG’; reset status: all bits are “0”  
MODE_REG 00 83hex  
Automatic setting by  
STANDARD SELECT Register  
Bit  
[0]  
[1]  
Function  
not used  
Comment  
Definition  
2 - 5  
0
8, A, B  
9
0
X
0 : must be used  
0
DCTR_TRI  
Digital control out  
0/1 tri-state  
0 : active  
1 : tri-state  
X
X
[2]  
I2S_TRI  
I2S outputs tri-state  
(I2S_CL, I2S_WS,  
I2S_DA_OUT)  
0 : active  
1 : tri-state  
X
X
X
[3]  
[4]  
[5]  
I2S Mode1)  
Master/Slave mode  
of the I2S bus  
0 : Master  
1 : Slave  
X
X
X
X
X
X
X
X
X
I2S_WS Mode  
Audio_CL_OUT  
WS due to the Sony or  
Philips-Format  
0 : Sony  
1 : Philips  
Switch  
Audio_Clock_Output  
to tri-state  
0 : on  
1 : tri-state  
[6]  
NICAM1)  
Mode of MSP-Ch1  
0 : FM  
1 : Nicam  
0
1
1
[7]  
[8]  
not used  
FM AM  
0 : must be used  
0
0
0
0
0
1
Mode of MSP-Ch2  
0 : FM  
1 : AM  
[9]  
HDEV  
High Deviation Mode  
(channel matrix must be  
sound A)  
0 : normal  
1 : high deviation mode  
0
0
0
[11:10]  
[12]  
not used  
0 : must be used  
0
0
0
MSP-Ch1 Gain  
see also Table 6–13  
see also Table 6–13  
0 : Gain = 6 dB  
1 : Gain = 0 dB  
0
0
0
[13]  
[14]  
[15]  
FIR1-Filter  
Coeff. Set  
0 : use FIR1  
1 : use FIR2  
1
0
1
0
0
1
0
0
1
ADR  
Mode of MSP-Ch1/  
ADR-Interface  
0 : normal mode/tri-state  
1 : ADR-mode/active  
AM-Gain  
Gain for AM  
Demodulation  
0 : 0 dB (default. of MSPB)  
1 :12 dB (recommended)  
X: not affected by  
short-programming  
MICRONAS INTERMETALL  
85  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 6–12: Loading sequence for FIR-coefficients  
The loading sequences must be obeyed. To change a  
coefficient set, the complete block FIR1 or FIR2 must  
be transmitted.  
FIR1 00 01hex (MSP-Ch1: NICAM/FM2)  
Note: For compatibility with MSP 3410B, IMREG1 and  
IMREG2 have to be transmitted. The value for  
IMREG1 and IMREG2 is 004. Due to the partitioning to  
8-bit units, the values 04hex, 40hex, and 00hex arise.  
No.  
1
Symbol Name  
Bits  
8
Value  
NICAM/FM2_Coeff. (5)  
NICAM/FM2_Coeff. (4)  
NICAM/FM2_Coeff. (3)  
NICAM/FM2_Coeff. (2)  
NICAM/FM2_Coeff. (1)  
NICAM/FM2_Coeff. (0)  
2
8
3
8
6.3.7. DCO-Registers  
see Table 6–13  
4
8
Note: The use of this register is no longer recom-  
mended. It should be used only in cases where soft-  
ware-compatibility to the MSP 34x0D is required.  
Using the STANDARD SELECTION register together  
with the MODUS register provides a more economic  
way to program the MSP 34x0G.  
5
8
6
8
FIR2 00 05hex (MSP-Ch2: FM1/AM)  
No.  
1
Symbol Name  
IMREG1  
Bits  
8
Value  
04hex  
40hex  
00hex  
When selecting a TV-sound standard by means of the  
STANDARD SELECT register, all frequency tuning is  
performed automatically.  
2
IMREG1/ IMREG2  
IMREG2  
8
If manual setting of the tuning frequency is required, a  
set of 24-bit registers determining the mixing frequen-  
cies of the quadrature mixers can be written manually  
into the IC. In Table 6–14, some examples of DCO reg-  
isters are listed. It is necessary to divide them up into  
low part and high part. The formula for the calculation  
of the registers for any chosen IF frequency is as fol-  
lows:  
3
8
4
FM/AM_Coef (5)  
FM/AM_Coef (4)  
FM/AM_Coef (3)  
FM/AM_Coef (2)  
FM/AM_Coef (1)  
FM/AM_Coef (0)  
8
5
8
6
8
see Table 6–13  
7
8
8
8
INCRdec = int(f/fs 224)  
9
8
with: int = integer function  
f
= IF frequency in MHz  
fS = sampling frequency (18.432 MHz)  
6.3.6. FIR-Parameter, Registers FIR1 and FIR2  
Conversion of INCR into hex-format and separation of  
the 12-bit low and high parts lead to the required regis-  
ter values (DCO1_HI or _LO for MSP-Ch1, DCO2_HI  
or LO for MSP-Ch2).  
Note: The use of this register is no longer recom-  
mended. It should be used only in cases where soft-  
ware compatibility to the MSP 34x0D is required.  
Using the STANDARD SELECTION register together  
with the MODUS register provides a more economic  
way to program the MSP 34x0G.  
Data-shaping and/or FM/AM bandwidth limitation is  
performed by a pair of linear phase Finite Impulse  
Response filters (FIR-filter). The filter coefficients are  
programmable and are either configured automatically  
by the STANDARD SELECT register or written manu-  
ally by the control processor via the control bus. Two  
not necessarily different sets of coefficients are  
required: one for MSP-Ch1 (NICAM or FM2) and one  
for MSP-Ch2 (FM1 = FM-mono). In Table 6–13 several  
coefficient sets are proposed.  
To load the FIR-filters, the following data values are to  
be transferred  
8
bits at  
a
time embedded  
LSB-bound in a 16-bit word.  
86  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
Table 6–13: 8-bit FIR-coefficients (decimal integer) for MSP 34x0D; reset status: all coefficients are “0”  
Coefficients for FIR1 00 01hex and FIR2 00 05hex  
Terrestrial TV Standards  
FM - Satellite  
FIR filter corresponds to a  
band-pass with a band-  
width of B = 130 to 500 kHz  
B
fc  
frequency  
B/G-, D/K-  
NICAM-FM  
I-  
L-  
B/G-, D/K-,  
M-Dual FM  
130  
kHz  
180  
kHz  
200  
kHz  
280  
kHz  
380  
kHz  
500  
kHz  
Auto-  
search  
NICAM-FM  
NICAM-AM  
FIR1  
2  
FIR2  
3
FIR1  
2
FIR2  
3
FIR1  
2  
FIR2  
4  
FIR2  
3
FIR2  
73  
FIR2  
9
FIR2  
3
FIR2  
8  
8  
4
FIR2  
1  
FIR2  
1  
1  
8  
2
FIR2  
1  
1  
8  
2
Coef(i)  
0
1
2
3
4
5
8  
18  
27  
48  
66  
72  
4
18  
27  
48  
66  
72  
8  
12  
9  
18  
27  
48  
66  
72  
0
53  
18  
28  
47  
55  
64  
1
18  
27  
48  
66  
72  
1
9  
10  
10  
6  
4  
40  
94  
10  
10  
64  
16  
5
23  
119  
101  
127  
1
36  
78  
107  
1
50  
50  
79  
65  
59  
126  
1
59  
126  
0
86  
86  
126  
123  
1
0
0
0
0
0
0
Mode-  
REG[12]  
1
1
1
1
1
1
1
0
Mode-  
REG[13]  
For compatibility, except for the FIR2-AM and the Autosearch-sets, the FIR-filter programming as used for the MSP 3410B is also possible.  
ADR coefficients are listed in the DRP data sheet.  
Table 6–14: DCO registers for the MSP 34x0G; reset status: DCO_HI/LO = “0000”  
DCO1_LO 00 93hex, DCO1_HI 00 9Bhex; DCO2_LO 00 A3hex, DCO2_HI 00 ABhex  
Freq. MHz  
DCO_HI/hex  
DCO_LO/hex  
Freq. MHz  
DCO_HI/hex  
DCO_LO/hex  
4.5  
03E8  
000  
5.04  
5.5  
5.58  
5.7421875  
0460  
04C6  
04D8  
04FC  
0000  
038E  
0000  
00AA  
5.76  
5.85  
5.94  
0500  
0514  
0528  
0000  
0000  
0000  
6.0  
6.2  
6.5  
6.552  
0535  
0561  
05A4  
05B0  
0555  
0C71  
071C  
0000  
6.6  
6.65  
6.8  
05BA  
05C5  
05E7  
0AAA  
0C71  
01C7  
7.02  
7.38  
0618  
0668  
0000  
0000  
7.2  
0640  
0690  
0000  
0000  
7.56  
MICRONAS INTERMETALL  
87  
MSP 34x0G  
PRELIMINARY DATA SHEET  
6.4. Manual/Compatibility Mode:  
Table 6–15: NICAM operation modes as defined by  
Description of Demodulator Read Registers  
the EBU NICAM 728 specification  
Note: The use of these register is no longer recom-  
mended. It should be used only in cases where soft-  
ware compatibility to the MSP 34x0D is required.  
Using the STANDARD SELECTION register together  
with the STATUS register provides a more economic  
way to program the MSP 34x0G and to retrieve infor-  
mation from the IC.  
C4 C3 C2 C1 Operation Mode  
0
0
0
0
0
0
0
0
1
0
1
0
Stereo sound (NICAMA/B),  
independent mono sound (FM1)  
Two independent mono signals  
(NICAMA, FM1)  
Three independent mono channels  
(NICAMA, NICAMB, FM1)  
All registers except C_AD_BITs are 8 bits wide. They  
can be read out of the RAM of the MSP 34x0G if the  
MSP 34x0D Manual/Compatibility Mode is required.  
0
1
0
0
1
0
1
0
Data transmission only; no audio  
Stereo sound (NICAMA/B), FM1  
carries same channel  
All transmissions take place in 16-bit words. The valid  
8-bit data are the 8 LSBs of the received data word.  
1
1
0
0
0
1
1
0
One mono signal (NICAMA). FM1  
carries same channel as NICAMA  
If the Automatic Sound Select feature is not used, the  
NICAM or FM-identification parameters must be read  
and evaluated by the controller in order to enable  
appropriate switching of the channel select matrix of  
the baseband processing part. The FM-identification  
registers are described in section 6.6.1. To handle the  
NICAM-sound and to observe the NICAM-quality, at  
least the registers C_AD_BITS and ERROR_RATE  
must be read and evaluated by the controller. Addi-  
tional data bits and CIB bits, if supplied by the NICAM  
transmitter, can be obtained by reading the registers  
ADD_BITS and CIB_BITS.  
Two independent mono channels  
(NICAMA, NICAMB). FM1 carries  
same channel as NICAMA  
1
x
0
1
1
x
1
x
Data transmission only; no audio  
Unimplemented sound coding  
option (not yet defined by EBU  
NICAM 728 specification)  
AUTO_FM: monitor bit for the AUTO_FM Status:  
0: NICAM source is NICAM  
1: NICAM source is FM  
Note: It is no longer necessary to read out and evalu-  
ate the C_AD_BITS. All evaluation is performed in the  
MSP and indicated in the STATUS register.  
6.4.1. NICAM Mode Control/Additional Data Bits  
Register  
NICAM operation mode control bits and A[2:0] of the  
additional data bits.  
6.4.2. Additional Data Bits Register  
Format:  
Contains the remaining 8 of the 11 additional data bits.  
The additional data bits are not yet defined by the  
NICAM 728 system.  
MSB  
C_AD_BITS 00 23hex  
LSB  
11  
...  
...  
7
6
5
4
3
2
1
0
Auto  
_FM  
A[2] A[1] A[0]  
C4  
C3  
C2  
C1  
S
Format:  
MSB  
7
ADD_BITS 00 38hex  
LSB  
0
6
5
4
3
2
1
Important: “S” = Bit[0] indicates correct NICAM-syn-  
chronization (S = 1). If S = 0, the MSP 3410/3450G  
has not yet synchronized correctly to frame and  
sequence, or has lost synchronization. The remaining  
read registers are therefore not valid. The MSP mutes  
the NICAM output automatically and tries to synchro-  
nize again as long as MODE_REG[6] is set.  
A[10]  
A[9]  
A[8]  
A[7]  
A[6]  
A[5]  
A[4]  
A[3]  
6.4.3. CIB Bits Register  
CIB bits 1 and 2 (see NICAM 728 specifications).  
Format:  
The operation mode is coded by C4-C1 as shown in  
Table 6–15.  
MSB  
CIB_BITS 00 3Ehex  
LSB  
0
7
x
6
x
5
x
4
x
3
x
2
x
1
CIB1  
CIB2  
88  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
6.4.4. NICAM Error Rate Register  
6.4.7. Automatic Search Function for FM-Carrier  
Detection in Satellite Mode  
ERROR_RATE  
Error free  
00 57hex  
0000hex  
07FFhex  
The AM demodulation ability of the MSP 3410G and  
MSP 3450G offers the possibility to calculate the “field  
strength” of the momentarily selected FM carrier,  
which can be read out by the controller. In SAT receiv-  
ers, this feature can be used to make automatic FM  
carrier search possible.  
maximum error rate  
Average error rate of the NICAM reception in a time  
interval of 182 ms, which should be close to 0. The ini-  
tial and maximum value of ERROR_RATE is 2047.  
This value is also active if the NICAM bit of  
MODE_REG is not set. Since the value is achieved by  
filtering, a certain transition time (approx. 0.5 sec) is  
unavoidable. Acceptable audio may have error rates  
up to a value of 700 int. Individual evaluation of this  
value by the controller and an appropriate threshold  
may define the fallback mode from NICAM to  
FM/AM-Mono in case of poor NICAM reception.  
For this, the MSP has to be switched to AM-mode  
(MODE_REG[8]), FM-Prescale must be set to  
7Fhex = +127dec, and the FM DC notch (see section  
6.5.7.) must be switched off. The sound-IF frequency  
range must now be “scanned” in the MSP-channel 2  
by means of the programmable quadrature mixer with  
an appropriate incremental frequency (i.e. 10 kHz).  
After each incrementation, a field strength value is  
available at the quasi-peak detector output (quasi-  
peak detector source must be set to FM), which must  
be examined for relative maxima by the controller. This  
results in either continuing search or switching the  
MSP back to FM demodulation mode.  
The bit error rate per second (BER) can be calculated  
by means of the following formula:  
BER = ERROR_RATE * 12.3*106 /s  
During the search process, the FIR2 must be loaded  
with the coefficient set “AUTOSEARCH”, which  
enables small bandwidth, resulting in appropriate field  
strength characteristics. The absolute field strength  
value (can be read out of “quasi-peak detector output  
FM1”) also gives information on whether a main FM  
carrier or a subcarrier was detected; and as a practical  
consequence, the FM bandwidth (FIR1/2) and the  
deemphasis (50 µs or adaptive) can be switched  
accordingly.  
6.4.5. PLL_CAPS Readback Register  
It is possible to read out the actual setting of the  
PLL_CAPS. In standard applications, this register is  
not of interest for the customer.  
PLL_CAPS  
02 1Fhex L  
minimum frequency  
nominal frequency  
1111 1111  
FFhex  
56hex  
Due to the fact that a constant demodulation frequency  
offset of a few kHz leads to a DC level in the demodu-  
lated signal, further fine tuning of the found carrier can  
be achieved by evaluating the “DC Level Readout  
FM1”. Therefore, the FM DC Notch must be switched  
on, and the demodulator part must be switched back to  
FM-demodulation mode.  
0101 0110  
RESET  
maximum frequency  
PLL_CAPS  
0000 0000  
00hex  
02 1Fhex  
H
PLL open  
xxxx xxx0  
xxxx xxx1  
For a detailed description of the automatic search  
function, please refer to the corresponding MSP Win-  
dows software.  
PLL closed  
6.4.6. AGC_GAIN Readback Register  
It is possible to read out the actual setting of  
AGC_GAIN in Automatic Gain Mode. In standard  
applications, this register is not of interest for the cus-  
tomer.  
AGC_GAIN  
02 1Ehex  
max. amplification  
(20 dB)  
0001 0100  
14hex  
00hex  
min. amplification  
(3 dB)  
0000 0000  
MICRONAS INTERMETALL  
89  
MSP 34x0G  
PRELIMINARY DATA SHEET  
6.5. Manual/Compatibility Mode:  
Description of DSP Write Registers  
6.5.2. Volume Modes of SCART1/2 Outputs  
Volume Mode SCART1  
Volume Mode SCART2  
linear  
00 07hex  
00 40hex  
[3:0]  
[3:0]  
0hex  
6.5.1. Additional Channel Matrix Modes  
Loudspeaker Matrix  
Headphone Matrix  
SCART1 Matrix  
SCART2 Matrix  
I2S Matrix  
00 08hex  
00 09hex  
00 0Ahex  
00 41hex  
00 0Bhex  
00 0Chex  
L
L
L
L
L
L
0000  
RESET  
logarithmic  
0001  
1hex  
Linear Mode  
Volume SCART1  
Volume SCART2  
OFF  
00 07hex  
00 40hex  
H
Quasi-Peak  
H
Detector Matrix  
0000 0000  
RESET  
00hex  
SUM/DIFF  
0100 0000  
0101 0000  
0110 0000  
0111 0000  
1000 0000  
1001 0000  
40hex  
50hex  
60hex  
70hex  
80hex  
90hex  
AB_XCHANGE  
PHASE_CHANGE_B  
PHASE_CHANGE_A  
A_ONLY  
0 dB gain  
(digital full scale (FS) to 2  
VRMS output)  
0100 0000  
40hex  
+6 dB gain (6 dBFS to 2  
VRMS output)  
0111 1111  
7Fhex  
B_ONLY  
Note: SCART Volume linear mode will not be sup-  
ported in the future (documented for compatibility rea-  
sons only).  
This table shows additional modes for the channel  
matrix registers.  
6.5.3. FM Fixed Deemphasis  
The sum/difference mode can be used together with  
the quasi-peak detector to determine the sound mate-  
rial mode. If the difference signal on channel B (right)  
is near to zero, and the sum signal on channel A (left)  
is high, the incoming audio signal is mono. If there is a  
significant level on the difference signal, the incoming  
audio is stereo.  
FM Deemphasis  
00 0Fhex  
H
50 µs  
0000 0000  
RESET  
00hex  
75 µs  
0000 0001  
0011 1111  
01hex  
3Fhex  
OFF  
6.5.4. FM Adaptive Deemphasis  
FM Adaptive  
00 0Fhex  
L
Deemphasis WP1  
OFF  
WP1  
0000 0000  
RESET  
00hex  
3Fhex  
0011 1111  
6.5.5. NICAM Deemphasis  
A J17 Deemphasis is always applied to the NICAM  
signal. It is not switchable.  
90  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
6.5.6. Identification Mode for A2 Stereo Systems  
6.6.1. Stereo Detection Register  
for A2 Stereo Systems  
Identification Mode  
00 15hex  
L
Stereo Detection  
Register  
00 18hex  
H
Standard B/G  
(German Stereo)  
0000 0000  
RESET  
00hex  
Stereo Mode  
Reading  
(two’s complement)  
Standard M  
(Korean Stereo)  
0000 0001  
0011 1111  
01hex  
3Fhex  
MONO  
near zero  
Reset of Ident-Filter  
STEREO  
positive value (ideal  
reception: 7Fhex  
)
To shorten the response time of the identification algo-  
rithm after a program change between two FM-Stereo  
capable programs, the reset of the ident-filter can be  
applied.  
BILINGUAL  
negative value (ideal  
reception: 80hex)  
Note: It is no longer necessary to read out and evalu-  
ate the A2 identification level. All evaluation is per-  
formed in the MSP and indicated in the STATUS regis-  
ter.  
Sequence:  
1. Program change  
2. Reset ident-filter  
3. Set identification mode back to standard B/G or M  
4. Read stereo detection register  
6.6.2. DC Level Register  
DC Level Readout  
FM1 (MSP-Ch2)  
00 1Bhex  
00 1Chex  
H+L  
H+L  
6.5.7. FM DC Notch  
DC Level Readout  
FM2 (MSP-Ch1)  
The DC compensation filter (FM DC Notch) for FM  
input can be switched off. This is used to speed up the  
automatic search function (see Section 6.4.7.). In nor-  
mal FM-mode, the FM DC Notch should be switched  
on.  
DC Level  
[8000hex ... 7FFFhex]  
values are 16 bit two’s  
complement  
The DC level register measures the DC component of  
the incoming FM signals (FM1 and FM2). This can be  
used for seek functions in satellite receivers and for IF  
FM frequencies fine tuning. A too low demodulation  
frequency (DCO) results in a positive DC-level and  
vice versa. For further processing, the DC content of  
the demodulated FM signals is suppressed. The time  
constant τ, defining the transition time of the DC Level  
Register, is approximately 28 ms.  
FM DC Notch  
00 17hex  
L
ON  
0000 0000  
Reset  
00hex  
OFF  
0011 1111  
3Fhex  
6.6. Manual/Compatibility Mode:  
Description of DSP Read Registers  
6.7. Demodulator Source Channels in Manual Mode  
6.7.1. Terrestric Sound Standards  
All readable registers are 16-bit wide. Transmissions  
via I2C bus have to take place in 16-bit words. Some of  
the defined 16-bit words are divided into low and high  
byte, thus holding two different control entities.  
Table 6–16 shows the source channel assignment of  
the demodulated signals in case of manual mode for  
all terrestric sound standards. See Table 2–2 for the  
assignment in the Automatic Sound Select mode. In  
manual mode for terrestric sound standards, only two  
demodulator sources are defined.  
These registers are not writable.  
6.7.2. SAT Sound Standards  
Table 6–17 shows the source channel assignment of  
the demodulated signals for SAT sound standards.  
MICRONAS INTERMETALL  
91  
MSP 34x0G  
PRELIMINARY DATA SHEET  
Table 6–16: Manual Sound Select Mode for Terrestric Sound Standards  
Source Channels of Sound Select Block  
Broadcasted  
Sound  
Standard  
Selected MSP Broadcasted  
FM Matrix  
FM/AM  
Stereo or A/B  
Standard  
Code  
Sound Mode  
(use 0 for channel select) (use 1 for channel select)  
B/G-FM  
D/K-FM  
M-Korea  
M-Japan  
03  
04, 05  
02  
MONO  
Sound A Mono  
Mono  
Mono  
STEREO  
German Stereo  
Korean Stereo  
Stereo  
Stereo  
30  
BILINGUAL,  
Languages A and B  
No Matrix  
Left = A  
Right = B  
Left = A  
Right = B  
B/G-NICAM  
L-NICAM  
I-NICAM  
D/K-NICAM  
D/K-NICAM  
(with high  
08  
09  
0A  
0B  
0C  
NICAM not available Sound A Mono  
or NICAM error rate  
too high  
analog Mono  
no sound  
with AUTO_FM:  
analog Mono  
MONO  
Sound A Mono  
Sound A Mono  
Sound A Mono  
analog Mono  
analog Mono  
analog Mono  
NICAM Mono  
NICAM Stereo  
deviation FM)  
STEREO  
BILINGUAL,  
Left = NICAM A  
Right = NICAM B  
Languages A and B  
MONO  
Sound A Mono  
Korean Stereo  
Sound A Mono  
Korean Stereo  
Mono  
Stereo  
Mono  
Stereo  
Mono  
Stereo  
Mono  
Stereo  
STEREO  
20  
MONO + SAP  
STEREO + SAP  
MONO  
BTSC  
Sound A Mono  
No Matrix  
Mono  
Mono  
STEREO  
21  
40  
MONO + SAP  
STEREO + SAP  
MONO  
Left = Mono  
Right = SAP  
Left = Mono  
Right = SAP  
Sound A Mono  
Korean Stereo  
Mono  
Mono  
FM-Radio  
STEREO  
Stereo  
Stereo  
Table 6–17: Manual Sound Select Modes for SAT-Modes (FM Matrix is set automatically)  
Source Channels of Sound Select Block for SAT-Modes  
Broadcasted Selected  
Broadcasted  
Sound Mode  
FM/AM  
(source select: 0)  
Stereo or A/B  
(source select: 1)  
Stereo or A  
(source select: 3)  
Stereo or B  
(source select: 4)  
Sound  
MSP Standard  
Code  
Standard  
6, 50  
MONO  
Mono  
Mono  
Mono  
Mono  
hex  
51  
STEREO  
BILINGUAL  
Stereo  
Stereo  
Stereo  
A (FM1)  
Stereo  
B (FM2)  
hex  
FM SAT  
Left = A (FM1)  
Left = A (FM1)  
Right = B (FM2)  
Right = B (FM2)  
92  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
6.8. Exclusions of Audio Baseband Features  
In general, all functions can be switched independently.  
Two exceptions exist:  
1. NICAM cannot be processed simultaneously with  
the FM2 channel.  
2. FM adaptive deemphasis cannot be processed  
simultaneously with FM-identification.  
6.9. Phase Relationship of Analog Outputs  
The analog output signals: Loudspeaker, headphone,  
and SCART2 all have the same phases. The user  
does not need to correct output phases when using  
these analog outputs directly. The SCART1 output has  
opposite phase.  
Using the I2S-outputs for other DSPs or D/A convert-  
ers, care must be taken to adjust for the correct phase.  
If the attached coprocessor is one of the MSP family,  
the following schematics help to determine the phase  
relationship.  
2
2
I S_IN1/2 I S_OUT1/2  
Loudspeaker  
Headphone  
SCART1-Ch.  
Audio  
Baseband  
Processing  
SCART1  
SCART2  
SCART1  
SCART2  
SCART3  
SCART4  
MONO  
SCART  
DSP  
Input  
SCART2-Ch.  
Select  
SCART  
Output Select  
MONO, SCART1...4  
Fig. 6–2: Phase diagram of the MSPG  
MICRONAS INTERMETALL  
93  
MSP 34x0G  
PRELIMINARY DATA SHEET  
7. Appendix D: MSP 34x0G Version History  
MSP 3430G-A1  
First release for BTSC-Stereo/SAP and FM-Radio.  
MSP 3440G-A2  
Extended Automatic Sound Select feature (incompati-  
ble to Version A1).  
Known restrictions:  
– SAP detection unstable  
MSP 34x0G-B5  
– additional package PLQFP64  
– digital input specification changed as of version B5  
and later (see Section 4.6. on page 56)  
– max. analog high supply voltage AHVSUP 8.7 V.  
– supply currents changed as of version B5 and later  
(see Section 4.6.3. on page 60)  
– programmable A2 and carrier mute thresholds  
– new D/K standard 0Dhex: HDEV3 and NICAM  
– additional preference in Automatic Standard Detec-  
tion  
MSP 34x0G-B6  
– improved AM-performance  
– new D/K standard for Poland  
– improved I2C hardware problem handling  
– faster system-D/K-loop for stereo detection  
– extended features in the CONTROL register  
94  
MICRONAS INTERMETALL  
PRELIMINARY DATA SHEET  
MSP 34x0G  
8. Appendix E: Application Circuit  
IF 2 IN  
Tuner 2  
if ANA_IN2+ not used  
Signal GND  
C s. section 4.6.2.  
10  
µF  
100  
nF  
8 V(5 V)  
-
100 pF  
56 pF  
IF 1 IN  
Tuner 1  
+
ANA_IN1+  
18.432  
MHz  
3.3 100  
µF nF  
Alternative circuit for  
ANA_IN1+for more  
attenuation of video  
components:  
+
+
1 KΩ  
+
56 pF  
56 pF  
56 pF  
10 µF  
10 µF  
1 µF  
DACM_L (29) 56  
DACM_R (28) 57  
28 (55) MONO_IN  
31 (52) SC1_IN_L  
330 nF  
1 µF  
1 µF  
1 nF  
1 nF  
1 nF  
LOUD  
SPEAKER  
330 nF  
330 nF  
30 (53) SC1_IN_R  
32 (51) ASG1  
DACM_SUB (31) 54  
AHVSS  
AHVSS  
34 (49) SC2_IN_L  
330 nF  
330 nF  
33 (50) SC2_IN_R  
35 (48) ASG2  
1 µF  
1 µF  
DACA_L (26) 59  
DACA_R (25) 60  
37 (46) SC3_IN_L  
36 (47) SC3_IN_R  
HEAD  
PHONE  
330 nF  
330 nF  
1 nF  
1 nF  
AHVSS  
38 (45) ASG4  
40 (43) SC4_IN_L  
39 (44) SC4_IN_R  
330 nF  
330 nF  
MSP 34x0G  
100 Ω  
22 µF  
22 µF  
22 µF  
22 µF  
5 V  
SC1_OUT_L (37) 47  
SC1_OUT_R (36) 48  
SC2_OUT_L (34) 50  
SC2_OUT_R (33) 51  
+
100 Ω  
+
11 (7) STANDBYQ  
12 (6) ADR_SEL  
5 V  
DVSS  
100 Ω  
DVSS  
+
8 (10) I2C_DA  
9 (9) I2C_CL  
100 Ω  
+
1 (16) ADR_WS  
68 (17) ADR_CL  
3 (15) ADR_DA  
D_CTR_I/O_0 (5) 13  
D_CTR_I/O_1 (4) 14  
6 (12) I2S_WS  
7 (11) I2S_CL  
4 (14) I2S_DA_IN1  
65 (20) I2S_DA_IN2  
AUD_CL_OUT (1) 18  
TESTEN (61) 22  
5 (13) I2S_DA_OUT  
AHVSS  
220  
pF  
470  
pF  
470  
pF  
RESETQ  
Note: Pin numbers refer to the  
PLCC68 package, numbers in  
brackets refer to the PSDIP64  
package.  
470  
pF  
1.5  
nF  
10  
µF  
1.5  
nF  
10  
1.5  
nF  
10  
(from Controller, see section 4.6.3.3.)  
µF  
µF  
5 V  
5 V  
8 V  
(5 V)  
MICRONAS INTERMETALL  
95  
MSP 34x0G  
PRELIMINARY DATA SHEET  
9. Data Sheet History  
1. Preliminary data sheet: “MSP 34x0G Multistandard  
Sound Processor Family”, Edition Sept. 30, 1998,  
6251-476-1PD. First release of the preliminary data  
sheet.  
2. Preliminary data sheet: “MSP 34x0G Multistandard  
Sound Processor Family”, Edition Oct. 9, 1998,  
6251-476-2PD. Second release of the preliminary data  
sheet.Major changes:  
Table 3–9 on page 25: MODUS Register bit [0] func-  
tion changed  
Table 3–11 on page 30: Treble Headphone Channel  
register address changed, bit [15:8] hex and dB val-  
ues changed  
Table 3–11 on page 33: Volume SCART1/2 Output  
Channel register address changed  
Table 6–16 on page 92: M-BTSC and RM-Radio  
description changed  
– pin ASG3 changed to “not connected”  
3. Preliminary data sheet: “MSP 34x0G Multistandard  
Sound Processor Family”, Edition Oct. 6, 1999,  
6251-476-3PD. Third release of the preliminary data  
sheet.Major changes:  
– specification for version B5 and B6 added  
(see Appendix D: Version History)  
– section 4.: specification for PLQFP64 package  
added  
– reset description modified  
MICRONAS INTERMETALL GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
All information and data contained in this data sheet is without  
any commitment, is not to be considered as an offer for conclu-  
sion of a contract nor shall it be construed as to create any lia-  
bility. Any new issue of this data sheet invalidates previous  
issues. Product availability and delivery dates are exclusively  
subject to our respective order confirmation form; the same ap-  
plies to orders based on development samples delivered. By  
this publication, MICRONAS INTERMETALL GmbH does not  
assume responsibility for patent infringements or other rights of  
third parties which may result from its use.  
E-mail: docservice@intermetall.de  
Internet: http://www.intermetall.de  
Printed in Germany  
Order No. 6251-476-3PD  
Reprinting is generally permitted, indicating the source.  
However, our prior consent must be obtained in all cases.  
96  
MICRONAS INTERMETALL  

相关型号:

MSP3430GQA

Consumer Circuit, PQFP80, PLASTIC, QFP-80
TDK

MSP3431G

Multistandard Sound Processor Family with Virtual Dolby Surround
MICRONAS

MSP3431GFH

Consumer Circuit, CMOS, PQFP64, PLASTIC, LQFP-64
TDK

MSP3431GPO

Consumer Circuit, CMOS, PDIP52, SHRINK, PLASTIC, DIP-52
TDK

MSP3431GPP

Consumer Circuit, PDIP64, SHRINK, PLASTIC, DIP-64
TDK

MSP3431GPS

Consumer Circuit, CMOS, PQCC68, PLASTIC, LCC-68
TDK

MSP3431GQA

Consumer Circuit, CMOS, PQFP80, PLASTIC, QFP-80
TDK

MSP3435G

MSP 34x5G Multistandard Sound Processor Family
ETC

MSP3438G

Multistandard Sound Processor Family
MICRONAS

MSP3438GFH

Consumer Circuit, CMOS, PQFP64, PLASTIC, LQFP-64
TDK

MSP3438GPP

Consumer Circuit, CMOS, PDIP64, SHRINK, PLASTIC, DIP-64
TDK

MSP3438GPS

Consumer Circuit, CMOS, PQCC68, PLASTIC, LCC-68
TDK