VPX3224D-B2 [TDK]

Color Signal Decoder, PQCC44, PLASTIC, LCC-44;
VPX3224D-B2
型号: VPX3224D-B2
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Color Signal Decoder, PQCC44, PLASTIC, LCC-44

商用集成电路
文件: 总93页 (文件大小:2570K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
VPX 3225D,  
VPX 3224D  
Video Pixel Decoders  
MICRONAS  
Edition March 5, 1997  
6251-432-1PD  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Contents  
Page  
Section  
Title  
5
1.  
Introduction  
5
1.1.  
System Architecture  
7
2.  
Functional Description  
Analog Front-End  
7
2.1.  
7
2.1.1.  
2.1.2.  
2.1.3.  
2.1.4.  
2.1.5.  
2.1.6.  
2.2.  
Input Selector  
7
Clamping  
7
Automatic Gain Control  
Analog-to-Digital Converters  
ADC Range  
7
7
7
Digitally Controlled Clock Oscillator  
Color Decoder  
9
9
2.2.1.  
2.2.2.  
2.2.3.  
2.2.4.  
2.2.5.  
2.2.6.  
2.2.7.  
2.2.8.  
2.3.  
Demodulator  
9
IF-Compensation  
10  
10  
10  
11  
11  
12  
12  
13  
14  
15  
16  
16  
16  
17  
17  
17  
18  
20  
20  
20  
21  
21  
22  
24  
24  
24  
24  
24  
26  
27  
28  
28  
29  
29  
Chrominance Filter  
Frequency Demodulator  
Burst Detection  
Color Killer Operation  
PAL Compensation/1-H Comb Filter  
Luminance Notch Filter  
Video Sync Processing  
Component Processing  
Horizontal Resizer  
Skew Correction  
2.4.  
2.4.1.  
2.4.2.  
2.4.3.  
2.4.4.  
2.4.5.  
2.5.  
Peaking and Coring  
YCbCr Color Space  
Video Adjustments  
Video Output Interface  
Output Formats  
2.5.1.  
2.5.1.1.  
2.5.1.2.  
2.5.1.3.  
2.5.2.  
2.5.3.  
2.5.4.  
2.5.5.  
2.6.  
YUV 4:2:2 with Separate Syncs/ITU-R601  
Embedded Reference Headers/ITU-R656  
Embedded Timing Codes (BStream)  
Bus Shuffler  
Output Multiplexer  
Output Ports  
Half-Clock Mode  
Video Data Transfer  
Video Reference Signals  
HREF  
2.7.  
2.7.1.  
2.7.2.  
2.7.3.  
2.7.4.  
2.8.  
VREF  
Odd/Even Information (FIELD)  
VACT  
Windowing the Video Field  
Temporal Decimation  
Data Slicer  
2.9.  
2.10.  
2.10.1.  
2.10.2.  
2.10.2.1.  
Data Broadcast Systems  
Slicer Functions  
Features  
2
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Contents, continued  
Page  
Section  
Title  
29  
29  
29  
30  
31  
31  
32  
33  
33  
33  
33  
33  
36  
36  
36  
36  
36  
37  
38  
38  
38  
39  
39  
39  
39  
39  
39  
40  
40  
40  
40  
40  
40  
40  
41  
41  
41  
41  
41  
45  
46  
2.10.2.2.  
2.10.2.3.  
2.10.2.4.  
2.10.2.5.  
2.11.  
Input  
Automatic Adaptation  
Standard Selection  
Output  
VBI Data Acquisition  
Raw Teletext Data  
Sliced VBI Data  
Operational Modes  
Open Mode  
2.11.1.  
2.11.2.  
2.12.  
2.12.1.  
2.12.2.  
2.12.3.  
2.12.4.  
2.13.  
Forced Mode  
Scan Mode  
Transition Behavior  
Control Interface  
Overview  
2.13.1.  
2.13.2.  
2.13.3.  
2.13.4.  
2.13.5.  
2.14.  
2
I C-Bus Interface  
2
Reset and I C Device Address Selection  
Protocol Description  
FP Control and Status Registers  
Initialization of the VPX  
Power on Reset  
2.14.1.  
2.14.2.  
2.15.  
Software Reset  
JTAG Boundary-Scan, Test Access Port (TAP)  
General Description  
2.15.1.  
2.15.2.  
2.15.2.1.  
2.15.2.2.  
2.15.2.3.  
2.15.2.4.  
2.15.2.5.  
2.15.2.6.  
2.15.3.  
2.15.4.  
2.15.4.1.  
2.15.4.2.  
2.15.4.3.  
2.15.4.4.  
2.15.4.5.  
2.15.4.6.  
2.15.4.7.  
2.16.  
TAP Architecture  
TAP Controller  
Instruction Register  
Boundary Scan Register  
Bypass Register  
Device Identification Register  
Master Mode Data Register  
Exception to IEEE 1149.1  
IEEE 1149.1–1990 Spec Adherence  
Instruction Register  
Public Instructions  
Self-Test Operation  
Test Data Registers  
Boundary-Scan Register  
Device Identification Register  
Performance  
Enable/Disable of Output Signals  
Low Power Mode  
2.17.  
47  
47  
51  
48  
50  
51  
3.  
Specifications  
3.1.  
3.2.  
3.3.  
3.4.  
3.5.  
Outline Dimensions  
Pin Connections and Short Descriptions  
Pin Descriptions  
Pin Configuration  
Pin Circuits  
MICRONAS INTERMETALL  
3
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Contents, continued  
Page  
Section  
Title  
53  
53  
54  
54  
55  
55  
56  
57  
57  
57  
57  
58  
59  
59  
60  
60  
61  
61  
61  
4.  
Electrical Characteristics  
4.1.  
Absolute Maximum Ratings  
4.2.  
Recommended Operating Conditions  
4.2.1.  
4.2.2.  
4.2.3.  
4.2.4.  
4.3.  
Recommended Analog Video Input Conditions  
2
Recommended I C Conditions  
Recommended Digital Inputs Levels of RES, OE, TCK, TMS, TDI  
Recommended Crystal Characteristics  
Characteristics  
4.3.1.  
4.3.2.  
4.3.3.  
4.3.4.  
4.3.5.  
4.3.6.  
4.3.7.  
4.3.8.  
4.3.10.  
4.3.10.1.  
4.3.10.2.  
Current Consumption  
Characteristics, Reset  
XTAL Input Characteristics  
Characteristics, Analog Front-End and ADCs  
Characteristics, Control Bus Interface  
Characteristics, JTAG Interface (Test Access Port TAP)  
Characteristics, Digital Inputs/Outputs  
Digital Video Interface  
Characteristics, TTL Output Driver  
TTL Output Driver Type A  
TTL Output Driver Type B  
63  
63  
63  
64  
64  
65  
66  
66  
5.  
Timing Diagrams  
5.1.  
5.2.  
5.3.  
5.4.  
5.5.  
5.7.  
5.7.1.  
Power-up Sequence  
Default Wake-up Selection  
2
I C Bus Timing Diagram  
Output Enable by Pin OE  
Timing of the Test Access Port TAP  
Timing Diagram of the Digital Video Interface  
Characteristics, Clock Signals  
67  
68  
71  
75  
85  
6.  
Control and Status Registers  
6.1.  
Overview  
2
6.1.1.  
6.1.2.  
6.1.2.1.  
Description of I C Control and Status Registers  
Description of FP Control and Status Registers  
TV Standard Coding  
86  
86  
86  
86  
86  
86  
86  
86  
86  
87  
87  
88  
7.  
Application Notes  
7.1.  
Differences between VPX 3220A and VPX 322xD  
Impact to Signal to Noise Ratio  
Control Interface  
7.2.  
7.3.  
7.3.1.  
7.3.2.  
7.3.3.  
7.3.4.  
7.3.5.  
7.3.6.  
7.4.  
Symbols  
2
Write Data into I C Register  
2
Read Data from I C Register  
Write Data into FP Register  
Read Data from FP Register  
Sample Control Code  
Xtal Supplier  
7.5.  
Typical Application  
92  
8.  
Data Sheet History  
4
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Video Pixel Decoder  
Text Support (VPX 3225D only)  
– multistandard teletext, data slicer, intercast  
Note: This data sheet describes functions and char-  
acteristics of VPX 322xD–B2.  
WST, VPS, WSS  
CAPTION (1x,2x), NABTS  
Antiope  
VITC  
1. Introduction  
– high performance text decoding without CPU  
The Video Pixel Decoders VPX 3225D and VPX 3224D  
are the second generation of full feature video acquisi-  
tion ICs for consumer video and multimedia applica-  
tions. All of the processing necessary to convert an ana-  
log video signal into a digital component stream have  
been integrated onto a single 44-pin IC. Moreover, the  
VPX 3225D provides text slicing for intercast, teletext,  
and closed caption. Both chips are pin compatible to  
VPX 3220A, VPX 3216B, and VPX 3214C. Notable fea-  
tures include:  
2
– programmable to new standards via I C  
– automatic slice level adaptation  
– PAL and NTSC mode  
– VBI and full-field mode  
– text data insertion into video stream  
– simultaneous acquisition of teletext, VPS, WSS, and  
caption  
Video Decoding  
Miscellaneous  
– multistandard color decoding:  
NTSC-M, NTSC-443  
PAL-BGHI, PAL-M, PAL-N, PAL-60  
SECAM  
– 44-pin PLCC packages  
– total power consumption of below 1 W  
2
S-VHS  
– I C serial control, 2 different device addresses  
– NTSC with Y/C comb filter  
– singleon-chipclockgeneration, onlyonecrystalneed-  
ed for all standards  
– two8-bitvideoA/Dconverterswithclampingandauto-  
matic gain control (AGC)  
– user programmable output pins  
– power-down mode  
– four analog inputs with integrated selector for:  
3 composite video sources (CVBS), or  
2 Y/C sources (S-VHS), or  
– IEEE 1149.1 (JTAG) boundary scan interface  
2 composite video sources and one Y/C source.  
– horizontal and vertical sync detection for all standards  
1.1. System Architecture  
Video Processing  
The block diagram (Fig. 1–1) illustrates the signal flow  
through the VPX. A sampling stage performs 8-bit A/D  
conversion, clamping, andAGC. Thecolordecodersep-  
arates the luma and chroma signals, demodulates the  
chroma, and filters the luminance. A sync slicer detects  
the sync edge and computes the skew relative to the  
sample clock. The video processing stage resizes the  
YCbCr samples, adjusts the contrast and brightness,  
and interpolates the chroma. The text slicer extracts  
lines with text information and delivers decoded data  
bytes to the video interface.  
– hue, brightness, contrast, and saturation control  
– dual window cropping and scaling  
– horizontal resizing between 32 and 864 pixels/line  
– vertical resizing by line dropping  
– high quality anti-aliasing filter  
– scaling controlled peaking and coring  
Video Interfacing  
Note: The VPX 3225D and VPX 3224D are not register  
compatible with the VPX 3220A, VPX 3216B, and  
VPX 3214C family.  
– YC C 4:2:2 format  
b
r
– ITU-R 601 compliant output format  
– ITU-R 656 compliant output format  
– BStream compliant output format  
– square pixel format (640 or 768 pixel/line)  
– 8-bit or 16-bit synchronous output mode  
– 13.5 MHz/16-bit and 27 MHz/8-bit output rate  
– VBI bypass and raw ADC data output  
MICRONAS INTERMETALL  
5
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
HREF  
VREF  
FIELD  
Sync Processing  
Clock Gen.  
DCO  
Text Slicer  
(VPX3225D only)  
A[7:0]  
Y
Y
Luma  
Filter  
CVBS / Y  
ADC  
OEQ  
Video Decoder  
B[7:0]  
Chroma  
Demod.  
C C  
b
C C  
b r  
r
Chroma  
ADC  
PIXCLK  
LLC  
VACT  
Line Store  
SDA  
I2C  
JTAG  
SCL  
Fig. 1–1: Block diagram of the VPX 3224D, VPX 3225D  
6
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2. Functional Description  
pacitors and is generated by digitally controlled current  
sources. The clamping level is the back porch of the vid-  
eo signal. S-VHS chroma is AC coupled. The input pin  
is internally biased to the center of the ADC input range.  
The following sections give an overview of the different  
functional blocks within the VPX. Most of them are con-  
trolled by the Fast Processor (‘FP’) embedded in the de-  
coder. For controlling, there are two classes of registers:  
2
2
I C registers (directly addressable via I C bus) and FP-  
RAM registers (ram memory of the FP; indirectly ad-  
2.1.3. Automatic Gain Control  
2
dressable via I C bus). For further information, see sec-  
A digitally working automatic gain control adjusts the  
magnitude of the selected baseband by +6/–4.5 dB in 64  
logarithmic steps to the optimal range of the ADC. The  
gain of the video input stage including the ADC is 213  
steps/V with the AGC set to 0 dB.  
tion 2.13.1.  
2.1. Analog Front-End  
This block provides the analog interfaces to all video in-  
puts and mainly carries out analog-to-digital conversion  
for the following digital video processing. A block dia-  
gram is given in Fig. 2–1.  
2.1.4. Analog-to-Digital Converters  
Two ADCs are provided to digitize the input signals.  
Each converter runs with 20.25 MHz and has 8-bit reso-  
lution. An integrated bandgap circuit generates the re-  
quired reference voltages for the converters. The two  
ADCs are of a 2-stage subranging type.  
Clamping, AGC, and clock DCO are digitally controlled.  
The control loops are closed by the embedded proces-  
sor.  
2.1.1. Input Selector  
2.1.5. ADC Range  
Up to four analog inputs can be connected. Three inputs  
(VIN1–3)areforinputofcompositevideoorS-VHSluma  
signal. These inputs are clamped to the sync back porch  
and are amplified by a variable gain amplifier. Two in-  
puts, one dedicated (CIN) and one shared (VIN1), are  
for connection of S-VHS carrier-chrominance signal.  
The chrominance input is internally biased and has a  
fixed gain amplifier.  
The ADC input range for the various input signals and  
the digital representation is given in Table 2–1 and Fig.  
2–2. The corresponding output signal levels of the  
VPX 32xx are also shown.  
2.1.6. Digitally Controlled Clock Oscillator  
2.1.2. Clamping  
The clock generation is also a part of the analog front  
end. The crystal oscillator is controlled digitally by the  
FP; the clock frequency can be adjusted within  
±150 ppm.  
The composite video input signals are AC coupled to the  
IC. The clamping voltage is stored on the coupling ca-  
AGC  
+6/–4.5 dB  
VIN3  
CVBS/Y  
CVBS/Y  
VIN2  
VIN1  
clamp  
bias  
ADC  
ADC  
digital CVBS or Luma  
CVBS/Y/C  
gain  
CIN  
Chroma  
digital Chroma  
system clocks  
input mux  
DVCO  
±150  
ppm  
reference  
frequency  
generation  
20.25 MHz  
Fig. 2–1: Analog front-end  
MICRONAS INTERMETALL  
7
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Table 2–1: ADC input range for PAL input signal and corresponding output signal ranges  
Signal  
Input Level [mV  
]
pp  
ADC  
Range  
YC C  
r b  
Output  
Range  
–6 dB  
667  
0 dB  
1333  
1000  
700  
+4.5 dB  
2238  
1679  
1175  
504  
[steps]  
252  
213  
149  
64  
[steps]  
CVBS  
100% CVBS  
75% CVBS  
video (luma)  
sync height  
clamp level  
burst  
500  
350  
224  
150  
300  
68  
16  
Chroma  
300  
890  
670  
64  
100% Chroma  
75% Chroma  
bias level  
190  
143  
128  
128$112  
128$84  
128  
CVBS/Y  
Chroma  
upper headroom = 38 steps = 1.4 dB = 25 IRE  
headroom = 56 steps = 2.1 dB  
255  
217  
228  
192  
white  
192  
video = 100 IRE  
128  
68  
128  
80  
black  
= clamp  
level  
sync = 41 IRE  
32  
0
32  
lower headroom = 4 steps = 0.2 dB  
Fig. 2–2: ADC ranges for CVBS/Luma and Chroma, PAL input signal  
8
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.2. Color Decoder  
2.2.2. IF-Compensation  
In this block, the standard luma/chroma separation and  
multi-standard color demodulation is carried out. The  
color demodulation uses an asynchronous clock, thus  
allowing a unified architecture for all color standards.  
With off-air or mistuned reception, any attenuation at  
higher frequencies or asymmetry around the color sub-  
carrier is compensated. Four different settings of the IF-  
compensation are possible:  
– flat (no compensation)  
– 6 dB/octave  
A block diagram of the color decoder is shown in Fig.  
2–4. The luma, as well as the chroma processing, is  
shown here. The color decoder also provides several  
special modes; for example, wide band chroma format  
which is intended for S-VHS wide bandwidth chroma.  
Also, filter settings are available for processing a PAL+  
helper signal.  
– 12 dB/octave  
– 10 dB/MHz  
The last setting gives a very large boost to high frequen-  
cies. It is provided for SECAM signals that are decoded  
using a SAW filter specified originally for the PAL stan-  
dard.  
If the adaptive comb filter is used for luma chroma sepa-  
ration, the color decoder uses the S-VHS mode proces-  
sing. The output of the color decoder is YC C in a 4:2:2  
r
b
format.  
2.2.1. Demodulator  
The entire signal (which might still contain luma) is now  
quadrature-mixed to the baseband. The mixing frequen-  
cy is equal to the subcarrier for PAL and NTSC, thus  
achieving the chroma demodulation. For SECAM, the  
mixing frequency is 4.286 MHz giving the quadrature  
baseband components of the FM modulated chroma.  
After the mixer, a lowpass filter selects the chroma com-  
ponents; a downsampling stage converts the color dif-  
ference signals to a multiplexed half rate data stream.  
The subcarrier frequency in the demodulator is gener-  
ated by direct digital synthesis; therefore, substandards  
such as PAL 3.58 or NTSC 4.43 can also be demodu-  
lated.  
Fig. 2–3: Frequency response of chroma IF-com-  
pensation  
Notch  
Filter  
Luma / CVBS  
Luma  
Chroma  
1 H Delay  
Cross-Switch  
ACC  
IF Compensation  
DC-Reject  
Lowpass Filter  
Phase/Freq  
MIXER  
Demodulator  
Chroma  
Color-PLL/Color-ACC  
Fig. 2–4: Color decoder  
MICRONAS INTERMETALL  
9
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.2.3. Chrominance Filter  
2.2.4. Frequency Demodulator  
The demodulation is followed by a lowpass filter for the  
color difference signals for PAL/NTSC. SECAM requires  
amodifiedlowpassfunctionwithbell-filtercharacteristic.  
At the output of the lowpass filter, all luma information is  
eliminated.  
The frequency demodulator for demodulating the SE-  
CAM signal is implemented as a CORDIC-structure. It  
calculates the phase and magnitude of the quadrature  
components by coordinate rotation.  
The phase output of the CORDIC processor is differen-  
tiated to obtain the demodulated frequency. After a pro-  
grammable deemphasis filter, the Dr and Db signals are  
The lowpass filters are calculated in time multiplex for  
the two color signals. Four bandwidth settings (narrow,  
normal, broad, wide) are available for each standard.  
The filter passband can be shaped with an extra peaking  
term at 1.25 MHz. For PAL/NTSC, a wide band chroma  
filter can be selected. This filter is intended for high  
bandwidth chroma signals; for example, a nonstandard  
wide bandwidth S-VHS signal.  
scaled to standard C C amplitudes and fed to the cross-  
r
b
over-switch.  
dB  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
0.01  
0.1  
1.0  
MHz  
Fig. 2–6: Frequency response of SECAM-  
deemphasis  
PAL/NTSC  
2.2.5. Burst Detection  
In the PAL/NTSC-system, the burst is the reference for  
the color signal. The phase and magnitude outputs of  
the CORDIC are gated with the color key and used for  
controlling the phase-lock-loop (APC) of the demodula-  
tor and the automatic color control (ACC) in PAL/NTSC.  
The ACC has a control range of +30...6 dB.  
SECAM  
ForSECAMdecoding, thefrequencyoftheburstismea-  
sured. Thus, the current chroma carrier frequency can  
be identified and is used to control the SECAM proces-  
sing. The burst measurements also control the color kill-  
er operation; they can be used for automatic standard  
detection as well.  
Fig. 2–5: Frequency response of chroma filters  
10  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
CVBS  
Luma  
2.2.6. Color Killer Operation  
Y
Y
Notch  
filter  
8
8
chroma  
8
The color killer uses the burst-phase/burst-frequency  
measurement to identify a PAL/NTSC or SECAM color  
signal. For PAL/NTSC, the color is switched off (killed)  
as long as the color subcarrier PLL is not locked. For SE-  
CAM, the killer is controlled by the toggle of the burst fre-  
quency. The burst amplitude measurement is used to  
switch off the color if the burst amplitude is below a pro-  
grammable threshold. Thus, color will be killed for very  
noisy signals. The color amplitude killer has a program-  
mable hysteresis.  
Chroma  
Process.  
Chroma  
Process.  
C C  
r
C C  
b
r
b
a) conventional  
b) S-VHS  
CVBS  
Y
Notch  
filter  
8
1 H  
Chroma  
C C  
r
b
Delay  
Process.  
c) compensated  
2.2.7. PAL Compensation/1-H Comb Filter  
The color decoder uses one fully integrated delay line.  
Only active video is stored.  
Notch  
filter  
Y
CVBS  
1 H  
Delay  
8
The delay line application depends on the color stan-  
dard:  
– NTSC:  
– PAL:  
1-H comb filter or color compensation  
Chroma  
Process.  
C C  
r
b
color compensation  
d) comb filter  
– SECAM: crossover-switch  
In the NTSC compensated mode, Fig. 2–7 c), the color  
signal is averaged for two adjacent lines. Thus, cross-  
color distortion and chroma noise is reduced. In the  
NTSC combfilter mode, Fig. 2–7 d), the delay line is in  
the composite signal path, thus allowing reduction of  
cross-color components, as well as cross-luminance.  
The loss of vertical resolution in the luminance channel  
is compensated by adding the vertical detail signal with  
removed color information.  
Fig. 2–7: NTSCcolor decoding options  
CVBS  
Y
Notch  
filter  
8
1 H  
Delay  
Chroma  
Process.  
C C  
r
b
a) conventional  
Luma  
Y
8
Chroma  
1 H  
Delay  
Chroma  
Process.  
C C  
r
b
8
b) S-VHS  
Fig. 2–8: PAL color decoding options  
CVBS  
Y
Notch  
filter  
8
MUX  
1 H  
Delay  
Chroma  
Process.  
C C  
r
b
Fig. 2–9: SECAM color decoding  
MICRONAS INTERMETALL  
11  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.2.8. Luminance Notch Filter  
2.3. Video Sync Processing  
If a composite video signal is applied, the color informa-  
tion is suppressed by a programmable notch filter. The  
position of the filter center frequency depends on the  
subcarrier frequency for PAL/NTSC. For SECAM, the  
notch is directly controlled by the chroma carrier fre-  
quency. This considerably reduces the cross-lumi-  
nance. The frequency responses for all three systems  
are shown in Fig. 2–10. In S-VHS mode, this filter is by-  
passed.  
Fig. 2–11 shows a block diagram of the front-end sync  
processing. To extract the sync information from the  
video signal, a linear phase lowpass filter eliminates all  
noise and video contents above 1 MHz. The sync is sep-  
arated by a slicer; the sync phase is measured. The in-  
ternal controller can select variable windows to improve  
the noise immunity of the slicer. The phase comparator  
measures the falling edge of sync, as well as the inte-  
grated sync pulse.  
The sync phase error is filtered by a phase-locked loop  
that is computed by the FP. All timing in the front-end is  
derived from a counter that is part of this PLL, and it thus  
counts synchronously to the video signal.  
dB  
10  
0
–10  
A separate hardware block measures the signal back  
porch and also allows gathering the maximum/minimum  
of the video signal. This information is processed by the  
FP and used for gain control and clamping.  
–20  
–30  
–40  
For vertical sync separation, the sliced video signal is in-  
tegrated. The FP uses the integrator value to derive ver-  
tical sync and field information.  
0
2
4
6
8
10 MHz  
PAL/NTSC notch filter  
dB  
10  
Frequency and phase characteristics of the analog vid-  
eo signal are derived from PLL1. The results are fed to  
the rest of the video processing system in the backend.  
The resizer unit uses them for data interpolation and  
orthogonalization. A separate timing block derives the  
timing reference signals HREF and VREF from the hori-  
zontal sync.  
0
–10  
–20  
–30  
–40  
0
2
4
6
8
10 MHz  
SECAM notch filter  
Fig. 2–10: Frequency responses of the luma  
notch filter for PAL, NTSC, SECAM  
PLL1  
lowpass  
phase  
comparator  
&
front sync  
front  
horizontal  
1 MHz  
skew  
sync  
sync  
&
counter  
separation  
syncslicer  
generator  
vblank  
field  
lowpass  
video  
input  
clock  
synthesizer  
syncs  
front-end  
timing  
clock  
H/V syncs  
clamp &  
signal  
meas.  
clamping, color key, FIFO_write  
Fig. 2–11: Sync separation block diagram  
12  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.4. Component Processing  
Recovery of the YCbCr components by the decoder is  
followed by horizontal resizing and skew compensation.  
Contrast enhancement with noise shaping can also be  
applied to the luminance signal.  
Fig. 2–12 illustrates the signal flow through the compo-  
nent processing stage. The YCbCr 4:2:2 samples are  
separated into a luminance path and a chrominance  
path. The Luma Filtering block applies anti-aliasing low-  
pass filters with cutoff frequencies adapted to the num-  
ber of samples after scaling, as well as peaking and cor-  
ing. The Resize and Skew blocks alter the effective  
sampling rate and compensate for horizontal line skew.  
The YCbCr samples are buffered in a FIFO for continu-  
ous burst at a fixed clock rate. For luminance samples,  
the contrast and brightness can be adjusted and noise  
shaping applied. In the chrominance path, Cb and Cr  
samples can be swapped. Without swapping, the first  
valid video sample is a Cb sample. Chrominance gain  
can be adjusted in the color decoder.  
Contrast,  
Brightness &  
Noise shaping  
Resize  
Y
in  
Y
out  
Luma Filter  
with peaking  
& coring  
Skew  
Luma  
Phase Shift  
F
I
F
O
Active Video  
Reference  
Sequence  
Control  
Latch  
Chroma  
Phase Shift  
16 bit  
Cb/Cr-  
swapping  
Resize  
Cr  
CbCr  
out  
in  
Skew  
Fig. 2–12: Component processing stage  
MICRONAS INTERMETALL  
13  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
dB  
2.4.1. Horizontal Resizer  
The horizontal resizer alters the sampling raster of the  
videosignal, therebyvaryingthenumberofpixels(NPix)  
in the active portion of the video line. The number of pix-  
els per line is selectable within a range from 32 to 864  
in increments of 2 pixels (see section 2.8.: Windowing  
the video field). Table 2–2 gives an overview of several  
supported video rasters. The visual quality of a sampling  
rate conversion operation depends on two factors:  
– the frequency response of the individual filters, and  
– the number of available filters from which to choose.  
The VPX is equipped with a battery of FIR filters to cover  
the five octave operating range of the resizer. Fig. 2–13  
shows the magnitude response of five example filters  
corresponding to 1054, 526, 262, 130, and 32 pixels.  
MHz  
Fig. 2–14: Magnitude response of 50 neighbored  
filters  
The density of the filter array can be seen in Fig. 2–14.  
The magnitude response of 50 filters lying next to each  
other are shown. Nevertheless, these are only 10% of all  
filters shown. As a whole, the VPX comes with a battery  
of 512 FIR filters. Showing these 512 Filters in Fig. 2–13  
would result in a large black area. This dense array of fil-  
ters is necessary in order to maintain constant visual  
quality over the range of allowable picture sizes. The al-  
ternative would be to use a small number of filters whose  
cutoff frequencies are regularly spaced over the spec-  
trum. However, it has been found that using few filters  
leads to visually annoying threshold behavior. These ef-  
fects occur when the filters are changed in response to  
variations in the picture size.  
dB  
Filterselectionisperformedautomaticallybytheinternal  
processor based on the selected resizing factor (NPix).  
This automated selection is optimized for best visual  
performance.  
dB  
MHz  
Fig. 2–15: Magnitude response of one peaking filter  
MHz  
Fig. 2–13: Magnitude response of five widely spaced  
filters  
14  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.4.2. Skew Correction  
The VPX delivers orthogonal pixels with a fixed clock  
even in the case of non-broadcast signals with substan-  
tial horizontal jitter (VCRs, laser disks, certain portions  
of the 6 o’clock news...).  
This is achieved by highly accurate sync slicing com-  
bined with post correction. Immediately after the analog  
input is sampled, a horizontal sync slicer tracks the posi-  
tion of sync. This slicer evaluates, to within 1.6 ns, the  
skew between the sync edge and the edge of the pixel-  
clock. This value is passed as a skew on to the phase  
shift filter in the resizer. The skew is then treated as a  
fixed initial offset during the resizing operation.  
The Skew block in the resizer performs programmable  
phase shifting with subpixel accuracy. In the luminance  
path, a linear interpolation filter provides a phase shift  
between 0 and 31/32 in steps of 1/32. This corresponds  
to an accuracy of 1.6 ns. The chrominance signal can be  
shifted between 0 and 7/8 in steps of 1/8. Figs. 2–16  
through 2–19 show the transfer function of the two skew  
filters.  
dB  
2
clocks  
2.5  
2.3  
parameter: α, 32 steps  
parameter: α, 32 steps  
1
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0
0, 1.0  
1.0  
–1  
0.9  
0.8  
0.1, 0.9  
0.7  
0.3  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
0.6  
0.4  
0.5  
0.2, 0.8  
0.3, 0.7  
0.5  
0.2  
0.1  
0.4, 0.6  
0
MHz  
MHz  
0
2
4
6
8
10  
0
2
4
6
8
10  
Fig. 2–16: Luminance skew filter magnitude  
Fig. 2–17: Luminance skew filter group delay  
frequency response  
characteristics  
clocks  
dB  
2
5.0  
parameter: α, 4 steps  
parameter: α, 4 steps  
4.6  
1
4.2  
4.0  
3.8  
0
0, 1.0  
1.0  
–1  
0.8  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
3.4  
3.0  
2.6  
0.5  
0.2  
2.2  
2.0  
1.8  
0
0.25  
0.5  
1.4  
1
MHz  
MHz  
0
1
2
3
4
5
0
1
2
3
4
5
Fig. 2–18: Chrominance skew filter magnitude  
Fig. 2–19: Chrominance skew filter group delay  
frequency response  
characteristics  
MICRONAS INTERMETALL  
15  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Table 2–2: Several rasters supported by the resizer  
NTSC  
PAL/SECAM  
768 x 576  
704 x 576  
384 x 288  
352 x 288  
192 x 144  
176 x 144  
32 x 24  
Format Name  
640 x 480  
704 x 480  
320 x 240  
352 x 240  
160 x 120  
176 x 120  
32 x 24  
Square pixels for broadcast TV (4:3)  
Input Raster for MPEG-2  
Square pixels for TV (quarter resolution)  
CIF – Input raster for MPEG-1, H.261  
Square pixels for TV (1/16 resolution), H.324,H.323  
QCIF – Input raster for H.261  
Video icons for graphical interfaces (square)  
2.4.3. Peaking and Coring  
2.4.5. Video Adjustments  
The horizontal resizer comes with an extra peaking filter  
for sharpness control. The center frequency of the peak-  
ing filter is automatically adjusted to the image size in  
512 steps. The peaking value to each center frequency  
can be controlled by the user with up to eight steps via  
FP-RAM 0x126/130. Fig. 2–15 shows the magnitude re-  
sponse of the eight steps of the peaking filter corre-  
sponding to an image size of 320 pixels.  
The VPX provides a selectable gain (contrast) and offset  
(brightness) for the luminance samples, as well as addi-  
tional noise shaping. Both the contrast and brightness  
2
factors can be set externally via I C serial control of FP-  
RAM 0x127,128,131, and 132. Fig. 2–20 gives a func-  
tional description of this circuit. First, a gain is applied,  
yielding a 10-bit luminance value. The conversion back  
to 8-bit is done using one of four selectable techniques:  
simple rounding, truncation,1-bit error diffusion, or 2-bit  
error diffusion. Bit[8] in the ‘contrast’-register selects be-  
tween the clamping levels 16 and 32.  
After the peaking filter, an additional coring filter is imple-  
mented to the horizontal resizer. The coring filter sub-  
tracts 0, 1/2, 1, or 2 LSBs of the higher frequency part of  
the signal. Note, that coring can be performed indepen-  
dently of the peaking value adjustment.  
I
= c * I + b  
c = 0...63/32 in 64 steps  
out  
in  
b = –127...128 in 256 steps  
The operating range of the horizontal resizer was cho-  
sen to serve the widest possible range of applications  
andsourceformats(numberoflines, aspectratio, etc...).  
Table 2–2 lists several examples for video sourced from  
525/625 line TV systems. Vertical resizing is supported  
via line dropping.  
In the chrominance path, Cb and Cr samples can be  
swapped with bit[8] in FP-RAM 0x126 or 130. Adjust-  
ment of color saturation and gain is provided via FP-  
RAM 0x30–33 (see section 2.2.5.).  
2.4.4. YCbCr Color Space  
Rounding  
Truncation  
The color decoder outputs luminance and one multi-  
plexed chrominance signal at a sample clock of  
20.25 MHz. Activevideosamplesareflaggedbyasepa-  
rate reference signal. Internally, the number of active  
samples is 1080 for all standards (525 lines and 625  
lines). The representation of the chroma signals is the  
ITU-R 601 digital studio standard.  
1 bit  
Err. Diff.  
2 bit  
Err. Diff.  
In the color decoder, the weighting for both color differ-  
ence signals is adjusted individually. The default format  
has the following specification:  
– Y = 224*Y + 16 (pure binary),  
Contrast  
Select  
Brightness  
FP-RAM Registers  
– C = 224*(0.713*(R–Y)) + 128 (offset binary),  
r
Fig. 2–20: Contrast and brightness adjustment  
– C = 224*(0.564*(B–Y)) + 128 (offset binary).  
b
16  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.5. Video Output Interface  
2.5.1. Output Formats  
The VPX supports the YUV 4:2:2 video format only. Dur-  
ing normal operation, all reference signals are output  
separately. To provide a reduced video interface, the  
VPX offers two possibilities for encoding timing refer-  
ences into the video data stream: an ITU-R656 com-  
pliant output format with embedded timing reference  
headers and a second format with single timing control  
codes in the video stream. The active output format can  
be selected via FP-RAM 0x150 [format].  
Contrary to the component processing stage running at  
a clock rate of 20.25 MHz, the output formatting stage  
(Fig. 2–21) receives the video samples at a pixel trans-  
port rate of 13.5 MHz. It supports 8 or 16-bit video for-  
mats with separate or embedded reference signals, pro-  
vides bus shuffling, and channels the output via one or  
both 8-bit ports. Data transfer is synchronous to the in-  
ternally generated 13.5 MHz pixel clock.  
The format of the output data depends on three parame-  
ters:  
2.5.1.1. YUV 4:2:2 with Separate Syncs/ITU-R601  
– the selected output format  
The default output format of the VPX is a synchronous  
16-bit YUV 4:2:2 data stream with separate reference  
signals. Port A is used for luminance and Port B for chro-  
minance-information. Video data is compliant to ITU-  
R601. Bit[1:0] of FP-RAM 0x150 has to be set to 00. Fig-  
ure 2–22 shows the timing of the data ports and the  
reference signals in this mode.  
S
S
S
YUV 4:2:2, separate syncs  
YUV 4:2:2, ITU-R656  
YUV 4:2:2, embedded reference codes (BStream)  
– the number of active ports (A only, or both A and B)  
– clock speed (single or double).  
In 8-bit modes using only Port A for video data, Port B  
can be used as programmable output.  
8
8
8
8
8
8
8
8
Port A  
OE  
16  
Video  
Samples  
Port B  
PIXCLK,  
LLC  
LLC2  
Clock  
Generation  
Reference  
signals  
HREF,  
VREF,  
VACT  
Fig. 2–21: Output format stage  
Luminance  
(Port A)  
Y
Y
n
Y
C
n–1  
1
1
Chrominance  
(Port B)  
C
C
n
n–1  
VACT  
64 cycles  
2m cycles  
HREF  
PIXCLK  
LLC  
Fig. 2–22: Detailed video output; single clock mode  
MICRONAS INTERMETALL  
17  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.5.1.2. Embedded Reference Headers/ITU-R656  
Table 2–3: Coding of the SAV/EAV-header  
The VPX supports an output format which is designed to  
be compliant with the ITU-R656 recommendation. It is  
activated by setting Bit[1:0] of FP-RAM 0x150 to 01. The  
16-bit video data must be multiplexed to 8 bit at the  
double clock frequency (27 MHz) via FP-RAM 0x154, bit  
9 set to 1 (see also section 2.5.3.: Output Multiplexer).  
Bit No.  
Word  
MSB  
7
LSB  
0
6
1
0
0
F
5
1
0
0
V
4
3
1
2
1
1
1
First  
1
0
0
1
1
0
0
H
1
Second  
Third  
0
0
0
0
In this mode, video samples are in the following order:  
Cb, Y, Cr, Y, ... The data words 0 and 255 are protected  
since they are used for identification of reference head-  
ers. This is assured by limitation of the video data. Tim-  
ing reference codes are inserted into the data stream at  
the beginning and the end of each video line in the fol-  
lowing way: A ‘Start of active video’-Header (SAV) is in-  
serted before the first active video sample. The ‘end of  
active video’-code (EAV) is inserted after the last active  
video sample. They both contain information about the  
field type and field blanking. The data words occuring  
during the horizontal blanking interval between EAV and  
SAV are filled with 0x10 for luminance and 0x80 for chro-  
minance information. Table 2–3 shows the format of the  
SAV and EAV header.  
0
0
0
0
Fourth  
P3  
P2  
P1  
P0  
F = 0 during field 1,  
V = 0 elsewhere,  
H = 0 in SAV,  
F = 1 during field 2  
V = 1 during vertical field blanking  
H = 1 in EAV  
The bits P0, P1, P2, and P3 are protection bits. Their  
states are dependent on the states of F, V, and H as  
shown in table 2–4.  
Table 2–4: Coding of the protection bits  
F
0
0
0
0
1
1
1
1
V
0
0
1
1
0
0
1
1
H
0
1
0
1
0
1
0
1
P3  
0
P2  
0
P1  
0
P0  
0
Note that the following changes and extensions to the  
ITU-R656 standard have been included to support hori-  
zontal and vertical scaling, transmission of VBI-data,  
etc.:  
1
1
0
1
1
0
1
1
– Both the length and the number of active video lines  
varies with the selected window parameters. For com-  
pliance with the ITU-R656 recommendation, a size of  
720 samples per line must be selected for each win-  
dow. To enable a constant line length even in the case  
of different scaling values for the video windows, the  
VPX provides a programmable ‘active video’ signal  
(see section 2.7.4.).  
0
1
1
0
0
1
1
1
1
0
1
0
1
1
0
0
– During blanked lines, the VACT signal will be sup-  
pressed. VBI-linescanbemarkedasblankedoractive  
lines, thus allowing the choice of enabled or sup-  
pressed VACT during the VBI-window. Note that the  
vertical field blanking flag (V) in the SAV/EAV header  
is set to zero in any line with enabled VACT signal (val-  
id VBI or video lines).  
0
0
0
1
The VPX also supports the transmission of VBI-data as  
vertical ancillary data during blanked lines in the interval  
starting with the end of the SAV and terminating with the  
beginning of EAV. In this case, an additional header is in-  
serted directly before the valid active data. In this mode,  
the position of SAV and EAV depends on the settings for  
the programmable VACT signal. These parameters will  
be checked and corrected if necessary to assure an ap-  
propriate size of VACT for both data and ancillary head-  
er.  
– For data within the VBI-window (e.g. sliced or raw tele-  
text data), the user can select between limitation or re-  
duction to 7-bit resolution with an additional least sig-  
nificant bit assuring odd parity (0 and 255 never  
occur). ThisoptioncanbeselectedviaFP-RAM0x150  
[range].  
18  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Table 2–5: Coding of the ancillary header information  
Table 2–5 shows the coding of the ancillary header in-  
formation. The word T[6:1] contains a value for data type  
identification (1 for sliced data, 2 for raw data). M[6:1]  
contains the MSBs and L[6:1] the LSBs of the number of  
following words (128 for sliced data, 1140 for raw data).  
Note that the following video data is either limited or has  
odd parity to assure that 0 and 255 will not occur. Bit 3  
in RAM 0x150 selects between these two options.  
Bit No.  
Word  
MSB  
7
LSB  
0
6
5
4
3
2
1
First  
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
Second  
Third  
Fourth  
Fifth  
1
1
1
1
1
1
1
1
1
1
1
1
T6  
M6  
L6  
T5  
M5  
L5  
T4  
M4  
L4  
T3  
M3  
L3  
T2  
M2  
L2  
T1  
M1  
L1  
odd  
par-  
ity  
Sixth  
dependent on window size  
current linelength  
Digital  
Video  
Output  
C
Y C Y ...  
R
C
Y C Y ...  
R
B
B
constant during  
horizontal blanking  
SAV: ”start of active video” header  
EAV: ”end of active video” header  
Y=10  
; C =C =80  
hex  
R B hex  
VACT  
Fig. 2–23: Output of video or VBI data with embedded reference headers (according to ITU-R656)  
DATA  
10h  
EAV  
80h  
C
Y
C
Y
n
EAV  
EAV  
3
80h  
10h  
SAV  
SAV  
SAV  
SAV  
C
Y
EAV  
1
4
C
Bn–1  
n–1  
Rn–1  
2
Y
1
2
3
4
R1  
2
B1  
1
PORT A  
VACT  
PIXCLK  
LLC  
Fig. 2–24: Detailed video output; double clock on  
size of programmable VACT  
dependent on VBI-window size  
current linelength  
Digital  
Video  
Output  
C
Y C Y ...  
R
D
D
2
D
D
4
...  
B
1
3
constant during  
horizontal blanking  
SAV: ”start of active video” header  
EAV: ”end of active video” header  
Y=10  
; C =C =80  
hex  
R B hex  
VACT  
Fig. 2–25: Output of VBI-data as ancillary data  
MICRONAS INTERMETALL  
19  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.5.1.3. Embedded Timing Codes (BStream)  
(active or blanked), the corresponding horizontal refer-  
ence code is inserted. For big window sizes, the leading  
edge of HREF can arrive before the end of the active  
data. In this case, hardware assures that the control  
code for HREF is delayed and inserted after EAV only.  
The VREF control code is inserted at the falling edge of  
VREF. The state of HREF at this moment indicates the  
current field type (HREF = 0: odd field; HREF = 1: even  
field).  
In this mode, several event words are inserted into the  
pixel stream for timing information. It is activated by set-  
ting Bit[1:0] of FP-RAM 0x150 to 10. Each event word  
consists of a chrominance code value containing the  
phase of the color-multiplex followed by a luminance  
code value signalling a specific event. The allowed con-  
trol codes are listed in table 2–6 and 2–7.  
In this mode, the words 0,1,254, and 255 are reserved  
for data identifications. This is assured by limitation of  
the video data.  
At the beginning and the end of each active video line,  
timing reference codes (start of active video: SAV; end  
of active video: EAV) are inserted with the beginning and  
the end of VACT. Since VACT is suppressed during  
blanked lines, video data and SAV/EAV codes are pres-  
ent during active lines only. If raw/sliced data should be  
output, VACT has to be enabled during the VBI window  
with bit 2 of FP-RAM 0x138! In the case of several win-  
dows per field, the length of the active data stream per  
line can vary. Since the qualifiers for active video (SAV/  
EAV) are independent of the other reference codes,  
there is no influence on horizontal or vertical syncs, and  
sync generation can be performed even with several dif-  
ferent windows. For full compliance with applications re-  
quiring data streams of a constant size, the VPX pro-  
vides a mode with programmable ‘video active’ signal  
VACT which can be selected via bit 2 of FP-RAM 0x140.  
The start and end positions of VACT relative to HREF is  
determined by FP-RAM 0x151 and 0x152. The delay of  
valid data relative to the leading edge of HREF is calcu-  
lated with the formulas given in table 2–8 and 2–9. The  
result can be read in FP-RAM 0x10f (for window 1) and  
0x11f (for window 2). Be aware that the largest window  
defines the size of the needed memory. In the case of  
1140 raw VBI-samples and only 32 scaled video sam-  
ples, the graphics controller needs 570 words for each  
line (the VBI-samples are multiplexed to luminance and  
chrominance paths).  
Table 2–6: Chrominance control codes  
Chroma Value  
Phase Information  
Cr pixel  
FE  
FF  
Cb pixel  
2.5.2. Bus Shuffler  
In the YUV 4:2:2 mode, the output of luminance data is  
on port A and chrominance data on Port B. With the bus  
shuffler, luminance can be switched to Port B and chro-  
minance to port A. In 8-bit double clock mode, shuffling  
can be used to swap the Y and C components. It is se-  
lected with FP-RAM 0x150.  
2.5.3. Output Multiplexer  
Duringnormaloperation, a16-bitYUV4:2:2datastream  
is transferred synchronous to an internally generated  
PIXCLK at a rate of 13.5 MHz. Data can be latched onto  
the falling edge of PIXCLK or onto the rising edge of LLC  
The leading edge of HREF indicates the beginning of a  
new video line. Depending on the type of the current line  
Table 2–7: Luminance control codes  
Luma  
Value  
Video Event  
Video Event  
Phase Information  
01  
02  
03  
04  
05  
06  
VACT end  
last pixel was the last active pixel  
next pixel is the first active pixel  
begin of an active video line  
begin of a blank line  
refers to the last pixel  
VACT begin  
HREF active line  
HREF blank line  
VREF even  
refers to the next pixel  
refers to the current pixel  
refers to the current pixel  
refers to the current pixel  
refers to the current pixel  
begin of an even field  
VREF odd  
begin of an odd field  
20  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
during high PIXCLK. In the double clock mode, lumi-  
nanceandchrominancedataaremultiplexedto8bitand  
transferred at the double clock frequency of 27 MHz in  
the order Cb, Y, Cr, Y...; the first valid chrominance value  
being a Cb sample. With shuffling switched on, Y and C  
components are swapped. Data can be latched with the  
rising edge of LLC or alternating edges of PIXCLK. This  
mode is selected with bit 9 of FP-RAM 0x154. All 8-bit  
modes use Port A only. In this case, Port B can be acti-  
vated as programmable output with bit 8 of FP-RAM  
0x154. Bit 0–7 determine the state of Port B.  
2.5.4. Output Ports  
The two 8-bit ports produce TTL level signals coded in  
binary offset. The Ports can be tristated either via the  
outputenablepin(OE)orviaI C register 0xF2. For more  
information, seesection2.16. “Enable/DisableofOutput  
Signals”.  
2
2.5.5. Half-Clock Mode  
For applications demanding a low bandwidth for the  
transmission between video decoder and graphics con-  
troller, the clock signal qualifying the output pixels  
(PIXCLK) can be divided by 2. This mode is enabled by  
setting Bit 5 of the FP-RAM 0x150 [halfclk]. Note that the  
output format ITU-R601 must be selected. The timing of  
thedataandclocksignalsinthiscaseisdescribedinFig-  
ure 2–28.  
video data  
8
=0  
8
B[7:0]  
video port  
=1  
8
If the PIXCLK/2 mode is enabled, each second pulse of  
PIXCLK is gated. PIXCLK can be used as a qualifier for  
valid data. To ensure that the video data stream can be  
spread, the selected number of valid output samples  
should not exceed 400.  
7:0  
8
FP-RAM 0x154 [outmux]  
Fig. 2–26: Programmable output port  
DATA  
C
Y
C
Y
n
01h  
FFh  
03h  
FFh  
02h  
C
Y
FEh  
C
Bn–1  
n–1  
Rn–1  
Y
R1  
2
B1  
1
PORT A  
VACT  
HREF  
PIXCLK  
LLC  
Fig. 2–27: Output of video or VBI-data with timing event codes (BStream); double clock on  
LLC  
PIXCLK  
Video Out  
Standard Video Mode  
LLC  
PIXCLK  
Video Out  
Video Mode with PIXCLK/2  
Fig. 2–28: Timing in the half-clock mode  
MICRONAS INTERMETALL  
21  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.6. Video Data Transfer  
with the half-clock mode, the available transfer band-  
widths at the ports are therefore 6.75 MHz, 13.5 MHz,  
and 27.0 MHz.  
The VPX supports a synchronous video interface. Video  
data arrives to each line at the output in an uninterrupted  
burst with a fixed transport rate of 13.5 MHz. The dura-  
tionoftheburstismeasuredinclockperiodsofthetrans-  
port clock and is equal to the number of pixels per output  
line.  
The VACT signal flags the presence of valid output data.  
Fig. 2–29 and 2–30 illustrate the relationship between  
the video port data, VACT, PIXCLK, and LLC. Whenever  
a line of video data should be suppressed (line dropping,  
switching between analog inputs), it is done by suppres-  
sion of VACT.  
The data transfer is controlled via three signals:  
PIXCLK, VACT, and LLC.  
Fig. 2–31 illustrates the temporal relationship between  
the VACT and the HREF signals as a function of the  
number of pixels per output line and the horizontal di-  
mensions of the window. The duration of the inactive pe-  
riod of the HREF (Fig. 2–31) is fixed. Tables 2–8 and 2–9  
show the formulas for the position of valid data samples  
relative to the trailing edge of HREF, while table 2–10  
gives an overview of the relation for different cases. The  
calculateddelaycanbereadviaFP-RAM0x10f(window  
1) or 0x11f (window2).  
Data is transferred synchronous to the internally gener-  
ated PIXCLK. The frequency of PIXCLK is 13.5 MHz.  
The LLC signal is provided as an additional support for  
both the 13.5 MHz and the 27 MHz double clock mode.  
The LLC consists of a doubled PIXCLK signal (27 MHz)  
for interface to external components which rely on the  
Philips transfer protocols. In the single clock mode, data  
can be latched onto the falling edge of PIXCLK or at the  
rising edge of LLC during high PIXCLK. In double clock  
mode, output data can be latched onto both clock edges  
of PIXCLK or onto every rising edge of LLC. Combined  
Luminance  
Y
Y
n
Y
1
n–1  
(Port A)  
Chrominance  
C
C
C
n
1
n–1  
(Port B)  
VACT  
PIXCLK  
LLC  
Fig. 2–29: Timing in single clock mode (bus shuffler off)  
Port  
C
Y
C
Y
C
Y
n
1
1
n–1  
n–1  
n
Data  
VACT  
PIXCLK  
LLC  
Fig. 2–30: Timing in double clock mode (bus shuffler off)  
22  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Table 2–8: Delay of video data relative to the trailing edge of HREF (mode with full PIXCLK)  
Mode  
Data Delay  
Data End  
Video data  
(HBeg+HLen)*(720/NPix)–Hlen for NPix<720  
HBeg*(720/NPix) for NPix >= 720  
DataDelay + HLen  
Raw VBI data  
150  
726  
720  
790  
Sliced VBI data  
Table 2–9: Delay of video data relative to the trailing edge of HREF in PIXCLK/2 mode  
Mode  
Data Delay  
Data End  
Video data  
(HBeg+HLen)*(720/NPix)–2*Hlen for NPix<360  
HBeg*(720/NPix) for NPix >= 360  
DataDelay + 2*HLen  
Raw VBI data  
not possible!  
662  
not possible!  
790  
Sliced VBI data  
Table 2–10: Relationship between HREF and VACT  
Resizing  
Windowing  
Timing of rising edges  
Timing of falling edges  
NPix = 720  
720 < NPix  
A = 0  
C = 720  
none  
A = 0  
C > 720  
NPix < 720  
NPix v 720  
NPix w 720  
A > 0  
C = 720  
windowbegin/-end  
windowbegin/-end  
A = windowbegin > 0  
A= windowbegin > 0  
C = 720  
C = windowend  
Port  
D
D
D
D
D
D
n
1
2
n–3  
n–2  
n–1  
Data  
PIXCLK  
VACT  
HREF  
A
C
64 cycles  
B
Fig. 2–31: Relation between HREF and VACT signals  
MICRONAS INTERMETALL  
23  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.7. Video Reference Signals  
2.7.2. VREF  
Figs. 2–33 and 2–34 illustrate the timing of the VREF  
signal relative to field boundaries of the two TV stan-  
dards. The start of the VREF pulse is fixed, while the  
length is programmable in the range between 2 and 9  
video lines via FP-RAM 0x153 [vlen].  
The complete video interface of the VPX runs at a clock  
rate of 13.5 MHz. It mainly generates two reference sig-  
nals for the video timing: a horizontal reference (HREF)  
and a vertical reference (VREF). These two signals are  
generated by programmable hardware and can be ei-  
ther free running or synchronous to the analog input vid-  
eo. The video line standard (625/50 or 525/60) depends  
on the TV-standard selected with FP-RAM 0x20 [sdt].  
The polarity of both signals is individually selectable via  
FP-RAM 0x153.  
2.7.3. Odd/Even Information (FIELD)  
Information on whether the current field is odd or even  
is supplied through the relationship between the edge  
(either leading or trailing) of VREF and level of HREF.  
This relationship is fixed and shown in Figs. 2–33 and  
2–34. The same information can be supplied to the  
FIELD pin, which can be enabled/disabled as output in  
FP-RAM 0x153 [enfieldq]. FP-RAM 0x153 [oepol] pro-  
grams the polarity of this signal.  
The circuitry which produces the VREF and HREF sig-  
nals has been designed to provide a stable, robust set  
of timing signals, even in the case of erratic behavior at  
the analog video input. Depending on the selected oper-  
ating mode given in FP-RAM 0x140 [settm], the period  
of the HREF and VREF signals are guaranteed to re-  
main within a fixed range. These video reference signals  
can therefore be used to synchronize the external com-  
ponents of a video subsystem (for example the ICs of a  
PC add-in card).  
During normal operation the FIELD flag is filtered since  
most applications need interlaced signals. After filtering,  
the field type is synchronized to the input signal only if  
the last 8 fields have been alternating; otherwise, it al-  
ways toggles. This filtering can be disabled with FP-  
RAM 0x140 [disoef]. In this case, the field information  
follows the odd/even property of the input video signal.  
In addition to the timing references, valid video samples  
are marked with the ‘video active’ qualifier (VACT). In or-  
der to reduce the signal number of the video interface,  
several 8-bit modes have been implemented, where the  
reference signals are multiplexed into the data stream  
(see section 2.5.1.).  
2.7.4. VACT  
The ‘video active’ signal is a qualifier for valid video sam-  
ples. Since scaled video data is stored internally, there  
are no invalid pixel within the VACT interval. VACT has  
a defined position relative to HREF depending on the  
windowsettings (see section 2.8.). The maximal window  
length depends on the minimal line length of the input  
signal. It is recommended to choose window sizes of  
less than 800 pixels. Sizes up to 864 are possible, but for  
non-standard input lines, VACT is forced inactive 4  
PIXCLK cycles before the next trailing edge of HREF.  
2.7.1. HREF  
Fig. 2–32 illustrates the timing of the HREF signal rela-  
tive to the analog input. The inactive period of HREF has  
a fixed length of 64 periods of the 13.5 MHz output clock  
rate. The total period of the HREF signal is expressed as  
Φ
and depends on the video line standard.  
nominal  
During the VBI-window, VACT can be enabled or sup-  
pressed with FP-RAM 0x138. Within this window, the  
VPX can deliver either sliced text data with a constant  
length of 64 samples or 1140 raw input samples. For ap-  
plications that request a uniform window size over the  
whole field, a mode with a free programmable VACT is  
supported [FP-RAM 0x140, vactmode]. The start and  
end position for the VACT signal relative to the trailing  
edge of HREF can be programmed within a range of 0  
to 864 [FP-RAM 0x151, 0x152]. In this case, VACT no  
longer marks valid samples only. The position of the val-  
id data depends on the window definitions. It is calcu-  
lated from the internal processor. The calculated delay  
ofVACTrelativetothetrailingedgeofHREFcanberead  
bythereceivingendviaRAM0x10fforwindow1or0x11f  
for window 2 (see section 2.6.).  
Analog  
Video  
Input  
VPX  
Delay  
HREF  
4,7 µs (64 cycles)  
Φ
nominal  
Fig. 2–32: HREF relative to Input Video  
24  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
625  
1
2
3
4
5
8
6
7
Input CVBS  
(50 Hz), PAL  
3
4
5
6
7
9
10  
Input CVBS  
(60 Hz), NTSC  
HREF  
VREF  
361 t  
CLK13.5  
361 t  
CLK13.5  
2 .. 9 H  
> 1 t  
CLK13.5  
FIELD  
Fig. 2–33: VREF timing for ODD fields  
312  
265  
313  
266  
314  
315  
268  
316  
269  
317  
270  
318  
319  
272  
320  
Input CVBS  
(50 Hz), PAL  
267  
271  
273  
Input CVBS  
(60 Hz), NTSC  
HREF  
VREF  
46 t  
CLK13.5  
46 t  
CLK13.5  
2 .. 9 H  
> 1 t  
CLK13.5  
FIELD  
Fig. 2–34: VREF timing for EVEN fields  
MICRONAS INTERMETALL  
25  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.8. Windowing the Video Field  
The option, to separately specify the number of input  
lines and the number of output lines, enables vertical  
compression. In the VPX, vertical compression is per-  
formed via simple line dropping. A nearest neighbor al-  
gorithm selects the subset of the lines for output. The  
presence of a valid line is signalled by the ‘video active’  
qualifier (or the corresponding SAV/EAV code in em-  
bedded sync modes).  
For each input video field, two non-overlapping video  
windows can be defined. The dimensions of these win-  
2
dows are supplied via I C commands. The presence of  
two windows allows separate processing parameters  
suchasfilterresponsesandthenumberofpixelsperline  
to be selected.  
The numbering of the lines in a field of interlace video is  
dependent on the line standard. Figs. 2–37 and 2–38 il-  
lustrate the mapping of the window dimensions to the  
actual video lines. The indices on the left are the line  
numbers relative to the beginning of the frame. The in-  
dices on the right show the numbering used by the VPX.  
Asseenhere, theverticalboundariesofwindowsarede-  
fined relative to the field boundary. Spatially, the lines  
from field #1 are displayed above identically numbered  
from field #2. For example: On an interlace monitor, line  
#23 from field #1 is displayed directly above line #23  
from field #2. There are a few restrictions to the vertical  
definition of the windows. Windows must not overlap  
vertically but can be adjacent. The first allowed line with-  
in a field is line #10 for 525/60 standards and line #7 for  
625/50 standards. The number of output lines cannot be  
greater than the number of input lines (no vertical zoom-  
ing). The combined height of the two windows cannot  
exceed the number of lines in the input field.  
External control over the dimensions of the windows is  
performed by I C writes to a window-load-table (Win-  
2
LoadTab). For each window, a corresponding WinLoad-  
Tab is defined in a table of registers in the FP-RAM [win-  
dow1: 0x120–128; window2: 0x12a–132]. Data written  
to these tables does not become active until the cor-  
responding latch bit is set in the control register FP-  
RAM 0x140. A 2-bit flag specifies the field polarity over  
which the window is active [vlinei1,2].  
Vertically, as can be seen in Fig. 2–35, each window is  
definedbyabeginninglinegiveninFP-RAM0x120/12A,  
a number of lines to be read-in (FP-RAM 0x121/12B),  
and a number of lines to be output (FP-RAM  
0x122/12C). Each of these values is specified in units of  
video lines.  
Line 1  
Horizontally, the windows are defined by a starting point  
defined in FP-RAM 0x123/12D and the length in FP-  
RAM 0x124/12E. They are both given relative to the  
number of pixels (NPix) in the active portion of the line  
(Fig. 2–36) selected in FP-RAM 0x125/12F. The scaling  
factor is calculated internally from NPix.  
begin  
# lines in,  
# lines out  
Window 1  
begin  
53,33 µsec  
64 µsec  
# lines in,  
# lines out  
Window 2  
Window  
Fig. 2–35: Vertical dimensions of windows  
H Begin  
H Length  
N Pix  
Fig. 2–36: Horizontal dimensions of the sampling win-  
dow  
26  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
1
2
1
4
4
5
4
5
1
2
314  
315  
267  
268  
5
2
D
D
D
D
D
D
D
D
D
D
D
D
8
9
8
9
8
9
5
6
271  
272  
5
6
5
6
318  
319  
10  
11  
10  
11  
10  
11  
7
8
273  
274  
7
8
7
8
320  
321  
D
D
D
D
D
D
D
D
D
D
D
D
18  
19  
20  
18  
19  
20  
18  
19  
20  
281  
282  
283  
22  
23  
24  
25  
22  
23  
24  
25  
22  
23  
24  
25  
335  
336  
337  
21  
21  
21  
284  
338  
D
D
D
D
D
D
D
D
D
D
D
D
260  
260  
260  
523  
524  
525  
308  
309  
308  
308  
309  
310  
311  
621  
622  
623  
624  
625  
261  
262  
263  
261  
262  
263  
261  
262  
263  
309  
310  
311  
310  
311  
312  
1
2
3
264  
265  
264  
265  
264  
265  
312  
313  
312  
313  
266  
266  
Field 1  
Field 2  
Field 1  
Field 2  
Fig. 2–38: Mapping for 625/50 line systems  
Fig. 2–37: Mapping for 525/60 line systems  
2.9. Temporal Decimation  
There are some restrictions in the horizontal window  
definition. The total number of active pixels (NPix) must  
beanevennumber. ThemaximumvalueforNPixshould  
be 800. Values up to 864 are possible, but for short input  
lines, video data is not guaranteed at the end of the line  
since VACT will be interrupted at the beginning of the  
next line. HLength should also be an even number. Ob-  
viously, the sum of HBegin and HLength may not be  
greater than NPix.  
To cope with bandwidth restrictions in a system, theVPX  
supports temporal dropping of video frames via sup-  
pression of the VACT signal. Dropping will be applied for  
video windows only. There is no influence on the state  
of the VBI-window. This mode can be activated for each  
video window by setting the enable flag in the corre-  
sponding WinLoadTab (FP-RAM 0x121/12B). The  
selection in FP-RAM 0x157 determines how many  
frames will be output within an interval of 3000 frames.  
Note that this selection is applied for both video win-  
dows, but decimation can be enabled for each window  
separately. The number of valid frames is updated only  
ifthecorrespondinglatchflaginFP-RAM0x140[lattdec]  
is set. Frame dropping with temporal decimation can be  
combined with the field disable flags (FP-RAM  
0x121/12B). Within valid video frames, each field type  
can be disabled separately.  
Window boundaries are defined by writing the dimen-  
sions into the associated WinLoadTab and then setting  
the corresponding latch bit in the control word FP-RAM  
0x140 [latwin]. Window definition data is latched at the  
beginning of the next video frame. Once the WinLoad-  
Tab data has been latched, the latch bit in the Control  
word is reset. By polling the Infoword (FP-RAM 0x141),  
the external controller can know when the window  
boundary data has been read. Window definition data  
can be changed only once per frame. Multiple window  
definitions within a single frame time are ignored and  
can lead to error.  
MICRONAS INTERMETALL  
27  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.10. Data Slicer  
The slicer is only available on VPX 3225D. Software  
2
drivers accessing the slicer I C registers should there-  
fore check the VPX part number.  
2.10.1. Data Broadcast Systems  
The existing data broadcast systems are specified by a  
limited set of parameters:  
– line multiplex  
– bit rate  
– modulation  
– start timing  
– clock run-in (CRI)  
– framing code (FRC)  
– number of data bytes  
Table 2–11: Data Broadcast Systems  
Text  
System  
TV  
TV  
Bitrate  
Modulation  
Timing  
CRI  
FRC  
No.  
Bytes  
Standard Lines  
WST  
PAL  
6–22  
16  
6.937500Mbit/s  
2.500000Mbit/s  
0.833333Mbit/s  
1.006993Mbit/s  
1.812500Mbit/s  
6.203125Mbit/s  
5.727272Mbit/s  
5.727272Mbit/s  
0.503496Mbit/s  
1.006993Mbit/s  
1.812500Mbit/s  
0.450450Mbit/s  
NRZ  
10.3 µs  
12.5 µs  
11.0 µs  
10.5 µs  
11.2 µs  
10.5 µs  
9.6 µs  
’5555’x  
’5555’x  
’3c78’x  
’aaa0’x  
?
’27’x  
’51’x  
’f8’x  
’c2’x  
?
42  
13  
11  
4
VPS  
PAL  
Bi-Phase  
Bi-Phase  
NRZ  
WSS  
PAL  
23  
Caption  
VITC  
PAL  
21  
PAL  
6–22  
6–22  
10–21  
10–21  
21  
NRZ  
9
Antiope  
WST  
SECAM  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NRZ  
’5555’x  
’5555’x  
’5555’x  
’aaa0’x  
’2aa0’x  
?
’e7’x  
’27’x  
’e7’x  
’c2’x  
’b7’x  
?
37  
34  
33  
2
NRZ  
NABTS  
Caption  
2xCaption  
VITC  
NRZ  
10.5 µs  
10.5 µs  
10.5 µs  
11.2 µs  
11 µs  
NRZ  
10–21  
10–21  
20  
NRZ  
4
NRZ  
9
CGMS  
NRZ  
’10’b  
3
28  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.10.2. Slicer Functions  
2.10.2.2. Input  
The slicer receives an 8-bit digitized FBAS signal which  
is clamped to the back porch level. The teletext signal  
amplitude can vary to a certain degree (±3 dB), as the  
slicer will adapt its internal slice level.  
DIN  
8
20.25MHz  
2.10.2.3. Automatic Adaptation  
Filter  
Sync  
TheslicermeasurescertainsignalcharacteristicsasDC  
offset, level, bandwith, and phase error. A digital filter at  
the input stage is used to compensate bandwith effects  
of the transmission channel. A DC shifter generates a  
DC free text signal even in case of co-channel interfer-  
ence. The internal slice level is adapted to the teletext  
signal level. The teletext sampling rate is generated by  
a phase accumulator running at 20.25 MHz, which is  
synchronized during framing code and clock run-in. The  
increment of the phase accumulator is programmable  
and can be used to set up any bit rate with the formula:  
Digital  
Text  
Slicer  
Bit Slicer  
Formatter  
2
I C Register  
8
2
increment = 2048 * bit rate/20.25 MHz  
Dout  
Dval  
I C Bus  
Fig. 2–39: Slicer block diagram  
2.10.2.4. Standard Selection  
The main teletext service can be received in VBI lines  
only or in every line of each field (full-field mode). All  
parameters needed to identify a teletext service are  
programmable. The slicer uses a reference of 24 bits to  
identify a teletext service. This reference is compared  
withthefirstreceivedteletextbitswhichareoftennamed  
clock run-in (CRI) and framing code (FRC). If there is a  
match, the slicer will start signal adaptation and write the  
following data to the output stage. The reference can be  
reduced in length by setting a mask for services which  
do not have a 16-bit clock run-in. Bit errors can be  
allowed by setting a tolerance level for every byte of the  
reference. Additionally, the slicer can switch to other  
teletext services during dedicated lines of the VBI.  
These can be line 16 for VPS, line 21 for CAPTION, or  
line 23 for WSS. In this case, the parameters will be hard  
wired.  
2.10.2.1. Features  
– 8-bit digital FBAS input  
– 8-bit unbuffered ascii data output  
– internal sync separation  
– PAL and NTSC operation  
– VBI and full-field mode  
– automatic slicer adaptation  
– text reception down to 30% eyeheight  
– soft error correction  
– simultaneous decoding of 4 different text services  
main service:  
additional:  
additional:  
additional:  
programmable  
VPS in line 16  
CAPTION in line 21  
WSS in line 23  
– programmable text parameters for main service  
bit rate  
clock run-in  
framing code  
error tolerance  
number of data bytes  
2
– operation controlled by I C registers  
MICRONAS INTERMETALL  
29  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.10.2.5. Output  
Table 2–12: Slicer Programming  
The slicer delivers a synchronous burst of decoded  
teletext data bytes together with a data valid signal. This  
data stream is fed into the video FIFO of the VPX back-  
end. The data rate depends on the teletext bit rate  
(divided by 8), the length of the burst is programmable.  
The burst can optionally be extended to 64 bytes inde-  
pendently of the selected teletext service (fill64 mode).  
The dummy bytes needed to fill the burst to 64 bytes are  
delivered at a rate of 20.25 MHz. Normally, there is no  
output during lines without text transmission or unknown  
text signals. For some applications, it is necessary to  
have constant memory mapping. Therefore, the slicer  
can be forced to output 64 bytes per line even if no text  
is detected (dump mode).  
Programmable  
Parameter  
WST  
Setup  
CAPTION  
Setup  
TV standard  
full field  
pal  
ntsc  
off  
off  
increment  
702  
153  
reference  
27 55 55  
00 00 03  
01 01 01  
43  
c2 aa a0  
00 00 0f  
01 01 00  
4
mask  
error tolerance  
data length  
dummy mode  
dump every line  
The first 3 bytes of the data burst carry information to  
identify the received teletext service. The 2 byte line  
numbercontainsafreerunningframecounterwhichcan  
be used to identify data loss in the framebuffer of a cap-  
ture application. The field bit can be used to identify field  
dependent services such as CAPTION. The 10-bit line  
number corresponds to the standard line counting  
scheme of a PAL composite video signal; in case of  
NTSC, the value “3” is subtracted.  
on  
on  
off  
on  
Table 2–13: Slicer Output Format  
Byte  
Number  
Byte  
Format  
Bit  
Format  
The number of useful data bytes at the output is pro-  
grammable and should be set accordingly to the se-  
lected teletext standard. To get “n” data bytes, the value  
“n+1” has to be programmed, because of the additional  
framing code byte.  
1
line number  
high  
b[7:3] frame counter  
b[2] odd field  
b[1:0] line number[9:8]  
2
line number  
low  
b[7:0] line number[7:0]  
In case of dump mode, byte numbers “1” and “2” are also  
valid for lines without detected text data. They are then  
followed by 62 dummy bytes.  
3
4
.
framing code  
1st data byte  
...  
b[7:0] as transmitted  
b[7:0] as transmitted  
...  
program-  
mable  
last data byte  
b[7:0] as transmitted  
.
dummy byte  
...  
b[7:0] 00000000  
...  
.
64  
dummy byte  
b[7:0] 00000000  
30  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.11. VBI Data Acquisition  
TDO pin. Bit[10] of FP-RAM 0x154 selects between  
these two cases. In the default mode, VACT is used. The  
output of both signals can be suppressed optionally with  
bit[2]ofFP-RAM0x138. Inthiscase, thegraphiccontrol-  
ler has to use only the HREF signal to mask the active  
video data.  
The VPX supports two different data acquisition modes  
for the vertical blanking interval: a bypass mode for raw  
data of the vertical blanking interval and a data slicer  
mode in which dedicated hardware provides constant  
packets of sliced VBI-data. The data packets have a de-  
fault size of 64 bytes. Dependent on the bit slicer fre-  
quency, smaller packet sizes can be selected via FP-  
RAM 0x139.  
In the ITU-R656 mode, VBI-data can be transmitted as  
vertical ancillary data (with 7 bit resolution + odd parity).  
The selections for the VBI-window will be updated by  
setting bit[11] in FP-RAM 0x138.  
For both services, the start and end line of a vertical  
blanking interval (VBI) window can be defined for each  
field with FP-RAM 0x134–137. Teletext data can occur  
between lines 6 and 21 of each field. However, the VBI-  
window is freely programmable. It is possible to select  
the whole field (beginning with line #3). If video windows  
are enabled, the VBI-window should end two lines be-  
fore the first valid line of the next video window. The VBI-  
window can be activated via bit[0] in FP-RAM 0x138.  
The selection of the acquisition mode is done with bit[1].  
2.11.1. Raw Teletext Data  
During lines within the VBI-window, specified by the  
user settings in the corresponding Load-Table, the VPX  
internally acquires 1140 raw data bytes of the luminance  
input at a rate of 20.25 MHz corresponding to 56.296 µs  
of the analog video. Chrominance data is not valid. The  
rawdatasamplesaredemultiplexedinternallyto570x16  
bitontheluminanceandchrominanceport. Theexternal  
timing corresponds to the video mode with 570 output  
samples for an uncropped window. Figure 2–41 shows  
the timing of both data ports and the necessary refer-  
ence signals in this mode.  
The identification of valid VBI-lines is possible with the  
VACT-signal (or the ‘active line’-flags in the modes with  
embedded syncs) or a special ‘data active’ signal on the  
1140 samples (56.296 µs)  
64 µs  
53.33 µs  
active video  
Fig. 2–40: Horizontal dimensions of the window for raw VBI-data  
Luminance  
(Port A)  
D
D
D
D
D
D
2
1138  
1140  
Chrominance  
(Port B)  
1
1137  
1139  
VACT  
PIXCLK  
LLC  
Fig. 2–41: Timing during lines with raw VBI-data (single clock)  
MICRONAS INTERMETALL  
31  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.11.2. Sliced VBI Data  
Table 2–14: Splitting of sliced data to luminance and  
chrominance output  
The data acquisition of the hardware slicer is completely  
independent from the video front-end. The slicer pro-  
vides data packets of a constant size (filled with dummy  
bytes). The data packets have a default size of 64 bytes.  
Depending on the bit slicer frequency, smaller packet  
sizes can be selected via FP-RAM 0x139.  
Bit No.  
Word  
MSB  
7
LSB  
0
6
5
4
3
2
1
Slicer  
Data  
S7  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
The FP switches into the slicer mode within the vertical  
blanking interval defined by the user settings in the  
‘Load-Table’ for the VBI-window. The 8-bit slicer data  
supplies sliced data bits of the luminance input. Chromi-  
nance data is not valid. Since in the 8-bit output modes  
(ITU-R656, BStream), thevalues0.254and255arepro-  
tected, each slicer sample is separated into two nibbles  
for transmission. Table 2–14 shows the implemented  
data formats.  
Chromi-  
nance  
Output  
S6  
S2  
S5  
S1  
S4  
S0  
S7  
S3  
S6  
S2  
S5  
S1  
not  
S4  
Lumi-  
nance  
Output  
S3  
not  
S0  
The splitting described above can be disabled by setting  
bit6intheformat_selectregister. Inthiscase, thesliced  
samples will be transmitted in the luminance path only.  
To avoid modification of valid data, the limitation of lumi-  
nance data in the 8-bit output modes should be sup-  
pressed with bit 8 in the same register (note that lumi-  
nance codes will not be protected).  
In each path, one nibble is transmitted twice. The LSB  
is inverted for odd parity. This assures that the values 0  
and 255 will not occur (for the detection of embedded  
syncs). In the mode with embedded timing event codes,  
chrominance data will be limited additionally. No signifi-  
cant information will be lost since only Bit 0 and 1 will be  
modified. Figure 2–42 shows the timing of data and ref-  
erence signals in this mode.  
Luminance  
(Port A)  
D
D
1 (LSBs)  
63 (LSBs)  
D
D
64 (LSBs)  
64 (MSBs)  
Chrominance  
(Port B)  
D
D
1 (MSBs)  
63 (MSBs)  
VACT  
PIXCLK  
LLC  
Fig. 2–42: Timing during lines with sliced VBI-data (single clock)  
32  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.12. Operational Modes  
2.12.3. Scan Mode  
The relationship between the video timing signals  
(HREF and VREF) and the analog input video is deter-  
mined by the selected operational mode. Three such  
modes are available: the Open Mode, the Forced  
Mode, and the Scan Mode. These modes are selected  
In the Scan Mode, the HREF and VREF signals are al-  
ways generated by free running hardware. They are  
therefore completely decoupled from the analog input.  
The output video data is always suppressed.  
2
via I C commands [FP-RAM 0x140, settm, lattm].  
The purpose of the Scan Mode is to allow the external  
controller to freely switch between the analog inputs  
while searching for the presence of a video signal. In-  
formation regarding the video (standard, source, etc...)  
2.12.1. Open Mode  
2
can be queried via I C read.  
In the Open Mode, both the HREF and the VREF signal  
track the analog video input. In the case of a change in  
the line standard (i.e. switching between the video input  
ports), HREF and VREF automatically synchronize to  
thenewinput. Whennovideoispresent, bothHREFand  
VREF float to the idling frequency of their respective  
PLLs. During changes in the video input (drop-out,  
switching between inputs), the performance of the  
HREF and VREF signals is not guaranteed.  
In the Scan Mode, the video line standard of the VREF  
2
and HREF signals can be changed via I C command.  
The transition always occurs at the first frame boundary  
2
after the I C command is received. Fig. 2–43, below,  
demonstrates the behavior of the VREF signal during  
the transition from the 525/60 system to the 625/50 sys-  
tem (the width of the vertical reference pulse is exagger-  
ated for illustration).  
2.12.2. Forced Mode  
2.12.4. Transition Behavior  
In the Forced Mode, VREF and HREF follow the input  
video signal within certain tolerances. Dedicated hard-  
ware is used to monitor the frequency of the analog tim-  
ing. At the moment when the video signal exceeds the  
allowed timing tolerances, generation of the timing sig-  
nals is taken over by free running hardware. If the input  
video is still present, the VPX continually attempts to re-  
synchronize to it.  
During normal operation, the timing characteristics of  
the input video can change in response to a number of  
phenomena: power up/reset, unplugging of the video  
jack, switching between selected video inputs, etc... The  
effect of these changes on the video timing signals is de-  
pendent on the current operational mode. Table 2–15  
summarizes this dependency.  
For each of the two video line standards (625/50 and  
525/60), there exist normative values for the period of  
both the HREF and VREF signals. Many analog input  
signalsdeviatesignificantlyfromthesenorms(example:  
consumer VCRs in their shuttle modes). In the Forced  
Mode, monitoring hardware is used to impose an upper  
boundary on the deviation. The maximum allowed hori-  
zontal deviation is ±24 µs. The upper boundary for verti-  
cal deviation is ±11% of the number of lines in the se-  
lected line standard (625/50: ±35 lines, 525/60: ±30  
lines)  
In the Forced Mode, it can often occur that the VPX must  
resynchronize to an analog input signal after a period in  
free running sync generation. In such a case, it is likely  
that the internal sync generators are out of phase with  
the time base of the analog input. Maintaining a stable  
sync signal requires that the transition between time  
bases occur over several field periods.  
2
I C Command to  
Selected timing standard  
becomes active  
time  
switch video timing standard  
VREF  
f
f
f
f
f
odd  
odd  
even  
odd  
even  
20.0 ms  
16.683 ms  
40.0 ms  
33.367 ms  
(525/60)  
(625/50)  
Fig. 2–43: Transition between timing standards  
MICRONAS INTERMETALL  
33  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Fig. 2–44 illustrates the transition between an internal  
free running vertical sync and a vertical sync of the ana-  
log input. The top two lines in this figure show the vertical  
time base of the analog input signal relative to that of the  
VREF generated from the free running clock. Both the  
analog input and free running syncs conform to the  
same line standard, but the field polarities are out of  
phase and the offset between field syncs (given by  
the analog input. In the first field after the appearance of  
this analog video, the period between VREF pulse is  
shortened by 20 lines (Φ  
and the field polarity of the  
rec–)  
VREF is repeated. For each subsequent field, the phase  
error is reduced by Φ  
until the two signals are again  
rec–  
in phase.  
Because the resynchronization occurs on field bound-  
aries and because the internally generated sync can be  
either lengthened or shortened, the maximum value of  
Φ
) is greater than the allowed 20 lines.  
error  
In the Forced Mode, vertical resynchronization takes  
place on field boundaries (as opposed to frame bound-  
aries) and begins immediately after the appearance of  
Φ
is 313/2[157 lines. With a maximum correction  
error  
of 20 lines per field, field locking requires a maximum of  
8 fields.  
Feven  
Fodd  
Input Signal :  
Vertical Timing  
Φfield  
Fodd  
Φerror  
Feven  
Fodd  
Free running  
vertical sync  
Φfield  
Fodd  
Fodd 1  
Feven 1 ...  
Φrec–  
First frame after  
2Φrec–  
switch to tracking mode  
Φfield − Φrec–  
Φerror Φrec–  
Feven 1  
Fodd 2  
Feven 2  
Φerror (3Φrec–  
)
2Φrec–  
Second frame after  
switch to tracking mode  
Φfield − Φrec–  
Fig. 2–44: Synchronization to analog input  
34  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Table 2–15: Transition Behavior as a Function of Operating Mode  
Transition Behavior as a Function of Operating Mode  
Mode Behavior  
Transition  
Power up/Reset  
(no video)  
Open  
VREF, HREF: floats to steady state frequency of internal PLL  
no video video  
Open  
VREF, HREF: track the input signal  
Forced  
No change in timing standard:  
VREF, HREF: slowly resynchronize. When resynchronization is complete,  
the timing control switches back from free running to  
monitored tracking  
Change in the timing standard:  
– no visible effect on any data or control signals  
Scan  
no visible effect on any data or control signals  
– timing signals continue unchanged in free running mode  
– VACT signal is suppressed  
video no video  
Open  
Forced  
Scan  
VREF, HREF: floats to steady state frequency of internal PLL  
VREF, HREF: switches immediately to free running  
no visible effect on any data or control signals  
– timing signals continue unchanged in free running mode  
– VACT signal is suppressed  
video video  
Open  
VREF, HREF: track the input video immediately  
Data: available immediately after color decoder locks to input.  
Forced  
VREF, HREF: brief period in free running mode while the timing is  
resynchronized  
Data: undefined during synchronization  
Scan  
no outwardly visible effect on any data or control signals.  
– timing signals continue unchanged in free running mode  
– VACT signal is suppressed  
MICRONAS INTERMETALL  
35  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2
2
2.13. Control Interface  
The I C interface of the VPX conforms to the I C bus  
specification for the fast-mode. It incorporates slope  
control for the falling edges of the SDA and SCL signals.  
If the power supply of the VPX is switched off, both pins  
SCL and SDA float. External pull-up devices must be  
adapted to fulfill the required rise time for the fast-mode.  
For bus loads up to 200 pF, the pull-up device could be  
a resistor; for bus loads between 200 pF and 400 pF, the  
pull-up device can be a current source (3 mA max.) or  
a switched resistor circuit.  
2.13.1. Overview  
Communication between the VPX and the external con-  
troller is performed serially via the I C bus (pins SCL and  
SDA).  
2
There are basically two classes of registers in the VPX.  
The first class of registers are the directly addressable  
2
I C registers. These are registers embedded directly in  
2
the hardware. Data written to these registers is inter-  
preted combinatorially directly by the hardware. These  
registers are all a maximum of 8-bits wide.  
2.13.3. Reset and I C Device Address Selection  
The VPX can respond to one of two possible chip ad-  
dresses. The address selection is made at reset by an  
externally supplied level on the OE pin. This level is  
latched on the inactive going edge of RES.  
The second class of registers are the ‘FP-RAM regis-  
ters’, the memory of the onboard microcontroller  
(INTERMETALL’s Fast Processor). Data written into this  
class of registers is read and interpreted by the FP’s mi-  
cro-code. Internally, these registers are 12 bits wide.  
2
2
Table 2–16: I C bus device addresses  
Communications with these registers require I C pack-  
ets with 16-bit data payloads.  
OE  
0
A6  
1
A5  
0
A4  
0
A3  
0
A2  
0
A1  
1
A0 R/W  
hex  
1/0 86/87  
1/0 8e/8f  
2
Communication with both classes of registers (I C and  
1
1
2
2
FP-RAM) is performed via I C. The format of the I C  
telegram depends on which type of register is being ad-  
dressed.  
1
1
0
0
0
1
1
2
2.13.2. I C Bus Interface  
2.13.4. Protocol Description  
2
2
The VPX has an I C bus slave interface and uses I C  
clock synchronization to slow down the interface if re-  
Once the reset is complete, the IC is selected by assert-  
2
2
ing the device address in the address part of a I C trans-  
quired. The I C bus interface uses one level of subad-  
mission. A device address pair is defined as a write ad-  
dress (86 hex or 8e hex) and a read address (87 hex or  
8f hex). Writing is done by sending the device write ad-  
dress first, followed by the subaddress byte and one or  
two data bytes. For reading, the read subaddress has to  
be transmitted, first, by sending the device write address  
(86 hex or 8e hex) followed by the subaddress, a second  
start condition with the device read address (87 hex or  
8f hex), and reading one or two bytes of data. It is not al-  
lowed to send a stop condition in between. This will re-  
sult in reading erratic data.  
dressing. First, the bus address selects the IC, then a  
subaddress selects one of the internal registers.  
2
I C  
subaddress  
space  
FP-RAM  
0
0
Read Address  
Write Address  
The registers of the VPX have 8 or 16 bit data size; 16-bit  
registers are accessed by reading/writing two 8-bit data  
bytes with the high byte first. The order of the bits in a  
data/address/subaddress byte is always MSB first.  
FP  
µcontroller  
Data  
Status  
2
Figure 2–46 shows I C bus protocols for read and write  
operations of the interface; the read operation requires  
an extra start condition after the subaddress and repeti-  
tion of the read chip address, followed by the read data  
bytes. The following protocol examples use device ad-  
dress hex 86/87.  
17f  
ff  
Fig. 2–45: FP register addressing  
36  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Write to Hardware Control Registers  
S
1 0 0 0 0 1 1 0  
ACK  
sub-addr  
ACK  
send data-byte  
ACK  
P
Read from Hardware Control Registers  
S
1 0 0 0 0 1 1 0  
ACK  
sub-addr  
ACK  
S
1 0 0 0 0 1 1 1  
ACK  
receive data-byte  
NAK  
P
2
Note:  
S =  
P =  
I C-Bus Start Condition  
2
I C-Bus Stop Condition  
ACK = Acknowledge-Bit (active low on SDA from receiving device)  
NAK = No Acknowledge-Bit (inactive high on SDA from receiving device)  
1
0
SDA  
SCL  
S
P
2
Fig. 2–46: I C bus protocol  
(MSB first)  
2.13.5. FP Control and Status Registers  
rent transmission into a wait state called clock synchro-  
nization. After a certain period of time, the VPX releases  
the clock and the interrupted transmission is carried on.  
DuetotheinternalarchitectureoftheVPX, theICcannot  
2
react immediately to all I C requests which interact with  
Before accessing the address or data registers for the  
FP interface (FPRD, FPWR, FPDAT), make sure that  
the busy bit of FP is cleared (FPSTA).  
the embedded processor (FP). The maximum response  
timing is appr. 20 ms (one TV field) for the FP processor  
if TV standard switching is active. If the addressed pro-  
2
cessor is not ready for further transmissions on the I C  
bus, the clock line SCL is pulled low. This puts the cur-  
Write to FP  
S
S
1 0 0 0 0 1 1 0  
1 0 0 0 0 1 1 0  
ACK  
ACK  
FPWR  
FPDAT  
ACK send FP-address- ACK send FP-address- ACK  
P
P
byte high  
byte low  
ACK  
send data-byte  
high  
ACK  
send data-byte  
low  
ACK  
Read from FP  
S
S
1 0 0 0 0 1 1 0  
ACK  
ACK  
FPRD  
ACK send FP-address- ACK send FP-address- ACK  
byte high byte low  
P
1 0 0 0 0 1 1 0  
FPDAT  
ACK  
S
1 0 0 0 0 1 1 1  
ACK receive data-byte ACK receive data-byte NAK  
high low  
P
MICRONAS INTERMETALL  
37  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.14. Initialization of the VPX  
2.14.2. Software Reset  
TheVPXprovidesthepossibilityofasoftwareresetgen-  
erated via I C command (I C register 0xAA, bit 2). Be  
aware that this software reset does not activate the con-  
figuration read-in during power-on reset.  
2.14.1. Power on Reset  
2
2
In order to completely specify the operational mode of  
the VPX, appropriate values must be loaded into the I C  
2
and FP registers. After powering the VPX, an internal  
2
power-on-reset clears all the FP/I C-Registers. An ini-  
Table 2–17: State of the pins during and after reset  
tialization routine loads the default values for both the  
2
I C and FP registers from internal program ROM. The  
externalRES pin forces all outputs to be tri-stated. At the  
inactive going edge of the RES pin, OE and FIELD are  
read in for configuration. Both pins are internally pulled  
down, an external pull-up resistor could be used to de-  
fine a different power-on configuration. The power-on  
configuration is read on every rising edge of the external  
RES pin.  
Pin  
Reset  
Active  
Inactive  
Setup  
(FIELD=0)  
Active  
Setup  
(FIELD=1)  
Port  
A0..A7  
Tri-State  
Tri-State  
Tri-State  
active  
Port  
Tri-State  
active  
B0..B7  
Either inactive (tri-state) or active output pins could be  
chosen with the FIELD pin at the inactive going edge of  
RES. In the inactive state, all relevant output pins are tri-  
stated, this includes Port A, Port B, HREF, VREF, FIELD,  
VACT, PIXCLK, LLC, and LLC2. In the active setup, all  
of these pins are driven.  
HREF  
VREF  
FIELD  
VACT  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
active  
active  
active  
active  
pull down Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
The VPX goes into low power mode, if the inactive mode  
has been chosen. This is equal to the manual chosen  
low-power mode. Note, that every manual selection of  
the power mode (full or low-power) overwrites (resets!)  
the power-up configuration. However, the current con-  
PIXCLK  
active  
13.5MHz  
LLC  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
active  
27MHz  
2
figuration cannot be read via the corresponding I C reg-  
ister. Other restrictions are that the selection of the low-  
power mode limits the rate of the I C-interface to  
100 kHz, and that the IC comes up with full power con-  
sumption until the low-power circuit becomes active.  
Table 2–17 gives an overview of the two differentsetups.  
2
TDO/  
LLC2  
active  
program-  
mable  
output  
For various applications, three different setup modes  
are available. The first mode is low-power; the chip is in  
an inactive tri-state mode. The second mode delivers all  
signals in active mode. The third mode is similar to the  
second one but with the data ports A and B tri-stated.  
This could be achieved with the output enable pin inac-  
tive (the data could be reactivated either by the OE pin  
or via an internal override register “disoeq”).  
The VPX always comes up in NTSC square pixel mode  
(640x240, both fields). In the case of inactive low power  
mode, the internal H-Sync scheduler is switched off, as  
in normal low power mode. After enabling the chip via  
2
I C Interface, the H-Sync scheduler is enabled and the  
chips goes into a normal active NTSC operation condi-  
tion.  
38  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.15. JTAG Boundary-Scan, Test Access Port (TAP)  
2.15.2.2. Instruction Register  
The instruction register chooses which one of the data  
registers is placed between the TDI and TDO pins when  
the select data register state is entered in the TAP con-  
troller. When the select instruction register state is ac-  
tive, the instruction register is placed between the TDI  
and TDO.  
The design of the Test Access Port, which is used for  
Boundary-Scan Test, conforms to standard IEEE  
1149.1-1990, with one exception. Also included is a list  
of the mandatory instructions supported, as well as the  
optional instructions. The following comprises a brief  
overview of some of the basics, as well as any optional  
features which are incorporated. The IEEE 1149.1 docu-  
ment may be necessary for a more concise description.  
Finally, an adherence section goes through a checklist  
of topics and describes how the design conforms to the  
standard.  
Instructions  
The following instructions are incorporated:  
– bypass  
– sample/preload  
– extest  
The implementation of the instructions HIGHZ and  
CLAMP conforms to the supplement P1149.1/D11 (Oc-  
tober 1992) to the standard 1149.1-1990.  
– master mode  
– ID code  
2.15.1. General Description  
– HIGHZ  
– CLAMP  
The TAP in the VPX is incorporated using the four signal  
interface. The interface includes TCK, TMS, TDI, and  
TDO. The optional TRESET signal is not used. This is  
not needed because the chip has an internal power-on-  
reset which will automatically steer the chip into the  
TEST-LOGIC-RESET state. The goal of the interface is  
to provide a means to test the boundary of the chip.  
There is no support for internal or BIST(built-in self test).  
The one exception to IEEE 1149.1 is that the TDO output  
is shared with the LLC2 signal. This was necessitated  
due to I/O restrictions on the chip (see section 2.15.3.  
“Exceptions to IEEE 1149.1” for more information).  
2.15.2.3. Boundary Scan Register  
The boundary scan register (BSR) consists of boundary  
scan cells (BSCs) which are distributed throughout the  
chip. These cells are located at or near the I/O pad. It al-  
lows sampling of inputs, controlling of outputs, and shift-  
ingbetweeneachcellinaserialfashiontoformtheBSR.  
This register is used to verify board interconnect.  
Input Cell  
The input cell is constructed to achieve capture only.  
This is the minimal cell necessary since Internal Test  
(INTEST) is not supported. The cell captures either the  
system input in the CAPTURE-DR state or the previous  
cells output in the SHIFT-DR state. The captured data is  
then available to the next cell. No action is taken in the  
UPDATE-DR state. See Figure 10–11 of IEEE 1149.1 for  
reference.  
2.15.2. TAP Architecture  
The TAP function consists of the following blocks: TAP-  
controller, instruction register, boundary-scan register,  
bypass register, optional device identification register,  
and master mode register.  
2.15.2.1. TAP Controller  
Output Cell  
The TAP controller is responsible for responding to the  
TCK and TMS signals. It controls the transition between  
states of this device. These states control selection of  
the data or instruction registers, and the actions which  
occur in these registers. These include capture, shifting,  
and update. See Fig. 5–1 of IEEE 1149.1 for TAP state  
diagram.  
The output cell will allow both capture and update. The  
capture flop will obtain system information in the CAP-  
TURE-DR state or previous cells information in the  
SHIFT-DR state. The captured data is available to the  
next cell. The captured or shifted data is downloaded to  
the update flop during the UPDATE-DR state. The data  
from the update flop is then multiplexed to the system  
outputpinwhentheEXTESTinstructionisactive. Other-  
wise, the normal system path exists where the signal  
fromthesystemlogicflowstothesystemoutputpin. See  
Fig. 10–12 of IEEE 1149.1 for reference.  
MICRONAS INTERMETALL  
39  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Tristate Cell  
of the PCB must make careful note of this fact, since he  
will not be able to scan into chips receiving the LLC2 sig-  
nal via the VPX. The PCB designer may want to put this  
chip at the end of the chain or bring the VPX TDO out  
separately and not have it feed another chip in a chain.  
Each group of output signals, which are tristatable, is  
controlled by a boundary scan cell (output cell type).  
This allows either the normal system signal or the  
scanned signal to control the tristate control. In the VPX,  
there are four such tristate control cells which control  
groupsofoutputsignals(seesectionOutputDriverTris-  
tate Control” for further information).  
2.15.4. IEEE 1149.1-1990 Spec Adherence  
This section defines the details of the IEEE1149.1 de-  
sign for the VPX. It describes the function as outlined by  
IEEE1149.1, section 12.3.1. The section of that docu-  
ment is referenced in the description of each function.  
Bidirect Cell  
The bidirect cell is comprised of an input cell and a tris-  
tate cell as described in the IEEE standard. The signal  
PIXCLK is a bidirectional signal.  
2.15.4.1. Instruction Register  
(Section 12.3.1.b.i of IEEE 1149.1-1990)  
2.15.2.4. Bypass Register  
The instruction register is three bits long. No parity bit is  
included. The pattern loaded in the instruction register  
during CAPTURE-IR is binary “101” (MSB to LSB). The  
two LSBs are defined by the spec to be “01” (bit 1 and  
bit 0) while the MSB (bit 2) is set to “1”.  
This register provides a minimal path between TDI and  
TDO. This is required for complicated boards where  
many chips may be connected in serial.  
2.15.2.5. Device Identification Register  
2.15.4.2. Public Instructions  
This is an optional 32-bit register which contains the  
INTERMETALL identification code (JEDEC controlled),  
part and revision number. This is useful in providing the  
tester with assurance that the correct part and revision  
are inserted into a PCB.  
(Section 12.3.1.b.ii of IEEE 1149.1-1990)  
A list of the public instructions is as follows:  
Instruction  
EXTEST  
Code (MSB to LSB)  
2.15.2.6. Master Mode Data Register  
000  
This is an optional register used to control an 8-bit test  
register in the chip. This register supports shift and up-  
date. No capture is supported. This was done so the last  
word can be shifted out for verification.  
SAMPLE/PRELOAD  
ID CODE  
001  
010  
MASTER MODE  
HIGHZ  
011  
2.15.3. Exception to IEEE 1149.1  
100  
There is one exception to IEEE 1149.1. The exception  
is to paragraphs 3.1.1.c., 3.5.1.b, and 5.2.1.d (TEST-  
LOGIC-RESET state). Because of pin limitations on the  
chip, a pin is shared for two functions. When the circuit  
is in the TEST-LOGIC-RESET state, the LLC2 signal is  
driven out the TDO/LLC2 pin. When the circuit leaves  
theTEST-LOGIC-RESETstate, theTDOsignalisdriven  
onthisline. AslongasthecircuitisnotintheTEST-LOG-  
IC-RESET state, all the rules for application of the TDO  
signal adhere to the IEEE1149.1 spec.  
CLAMP  
110  
BYPASS  
100 – 111  
The EXTEST and SAMPLE/PRELOAD instructions  
both apply the boundary scan chain to the serial path.  
The ID CODE instruction applies the ID register to the  
serial chain. The BYPASS, the HIGHZ, and the CLAMP  
instructions apply the bypass register to the serial chain.  
Since the VPX uses the JTAG function as a boundary-  
scan tool, the VPX does not sacrifice test of this pin since  
it is verified by exercising JTAG function. The designer  
TheMASTERMODEinstructionisatestdatainstruction  
for public use. It provides the ability to control an 8-bit  
test register in the chip.  
40  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.15.4.3. Self-Test Operation  
2.15.4.5. Boundary Scan Register  
(Section 12.3.1.b.iii of IEEE 1149.1-1990).  
(Section 12.3.1.b.v of IEEE 1149.1-1990)  
There is no self-test operation included in the VPX de-  
sign which is accessible via the TAP.  
The boundary scan chain has a length of 38 shift regis-  
ters. The scan chain order is specified in the section “Pin  
Connections”.  
2.15.4.4. Test Data Registers  
2.15.4.6. Device Identification Register  
(Section 12.3.1.b.iv of IEEE 1149.1-1990).  
(Section 12.3.1.b.vi of IEEE 1149.1-1990)  
The VPX includes the use of four test data registers.  
They are the required bypass and boundary scan regis-  
ters, the optional ID code register, and the master mode  
register.  
The manufacturer’s identification code for INTER-  
METALL is “6C” . The general implementation  
(hex)  
scheme uses only the 7 LSBs and excludes the MSB,  
which is the parity bit. The part number is “7230” . in  
(hex)  
The bypass register is, as defined, a 1-bit register ac-  
cessed by codes 100 through 111, inclusive. Since the  
design includes the ID code register, the bypass register  
is not placed in the serial path upon power-up or Test-  
Logic-Reset.  
case of VPX 3225D and “7231” . in case of  
(hex)  
VPX 3224D. The version code starts from “1”  
changes with every revision. The version number re-  
lates to changes of the chip interface only.  
and  
(hex)  
The master mode is an 8-bit test register which is used  
to force the VPX into special test modes. This is reset  
upon power-on-reset. This register supports shift and  
update only. It is not recommended to access this regis-  
ter. The loading of that register can drive the IC into an  
undefined state.  
2.15.4.7. Performance  
(Section 12.3.1.b.vii of IEEE 1149.1-1990)  
See section “Specification” for further information.  
Version  
Part Number  
7F  
Manufacturer ID  
0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1  
31  
28 27  
12 11  
8
7
1
0
2
7
2
3
0
0
d
9
Fig. 2–47: Device identification register  
MICRONAS INTERMETALL  
41  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
TAP State Transitions  
TDO could be used as programmable output pin or LLC2  
clock signal (see Pin Description).  
$F  
Test-Logic-Reset  
1
0
0
$C  
$7  
$4  
1
1
1
Run / Idle  
Select Data Reg  
Select Instr. Reg  
0
0
$6  
$2  
$E  
$A  
1
1
Capture DR  
Capture IR  
0
0
0
1
0
1
Shift DR  
Shift IR  
1
1
$1  
$3  
$9  
$B  
Exit1 DR  
Exit1 IR  
0
0
0
0
0
Pause DR  
Pause IR  
1
1
$0  
$5  
$8  
Exit2 DR  
Exit2 IR  
1
1
$D  
State Code  
Update DR  
Update IR  
TDO inactive  
TMS=1  
TMS=0  
TMS=1  
TMS=0  
TDO active  
State transitions are dependend on the value of TMS, synchronized by TCK.  
Fig. 2–48: TAP state transitions  
42  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
––*************************************************************  
––  
–– This is the BSDL for the 44-Pin Version of the VPXD design.  
––  
––*************************************************************  
Library IEEE;  
Use work.STD_1149_1_1990.ALL;  
Entity VPXD_44 is  
Generic (Physical_Pin_Map:string := ”UNDEFINED”);  
Port(  
––define ports  
TDI,TCK,TMS:  
TDO,HREF,VREF,FIELD:  
A:  
in bit;  
out bit;  
out bit_vector(7 downto 0);  
PVDD,PVSS:  
PIXCLK:  
linkage bit;  
out bit;  
OEQ:  
in bit;  
LLC, VACT:  
out bit;  
B:  
out bit_vector(7 downto 0);  
inout bit;  
SDA,SCL:  
VSS,XTAL2,XTAL1,VDD:  
RESQ:  
linkage bit;  
in bit;  
AVDD,AVSS,VRT,ISGND:  
CIN,VIN1,VIN2,VIN3:  
linkage bit;  
in bit  
);  
Attribute Pin_Map of VPXD_44 : Entity is Physical_Pin_Map;  
constant Package_44 : Pin_Map_String :=  
––map pins to signals  
”TDI  
: 1 ” &  
: 2 ” &  
: 3 ” &  
: 4 ” &  
: 5 ” &  
”TCK  
”TDO  
”HREF  
”VREF  
”FIELD : 6 ” &  
”A  
: (7,8,9,10,14,15,16,17)” &  
”PVDD : 11 ” &  
”PIXCLK : 12 ” &  
”PVSS  
”OEQ  
”LLC  
VACT  
”B  
: 13 ” &  
: 18 ” &  
: 19 ” &  
: 20 ” &  
: (21,22,23,24,25,26,27,28),” &  
”SDA  
”SCL  
”RESQ  
”VSS  
”VDD  
: 29 ” &  
: 30 ” &  
: 31 ” &  
: 32 ” &  
: 33 ” &  
”XTAL2 : 34 ” &  
”XTAL1 : 35 ” &  
AVDD : 36 ” &  
”CIN  
: 37 ” &  
: 38 ” &  
: 39 ” &  
: 40 ” &  
: 41 ” &  
: 42 ” &  
AVSS  
”VIN1  
”VIN2  
”VRT  
”VIN3  
”ISGND : 43 ” &  
”TMS : 44 ” ;  
Attribute Tap_Scan_In  
of TDI  
: signal is true;  
––define JTAG Controls  
Attribute Tap_Scan_Mode of TMS : signal is true;  
Attribute Tap_Scan_Out of TDO : signal is true;  
Attribute Tap_Scan_Clock of TCK  
: signal is (10.0e6,Both);  
––max frequency and levels TCK can be stopped at.  
––define instr. length  
Attribute Instruction_Length  
of VPXD_44: entity is 3;  
Attribute Instruction_Opcode  
”EXTEST  
of VPXD_44: entity is  
(000),” &  
––External Test  
MICRONAS INTERMETALL  
43  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
”SAMPLE  
”IDCODE  
(001),” &  
(010),” &  
––Sample/Preload  
––ID Code  
”MASTERMODE  
”HIGHZ  
(011),” &  
(100),” &  
––Master Mode (internal Test)  
–– Highz  
”CLAMP”  
”BYPASS  
(110),” &  
(100,101,110,111),”;  
–– Clamp  
––Bypass  
Attribute Register_Access  
”BOUNDARY  
of VPXD_44: entity is  
(EXTEST,SAMPLE),” &  
(BYPASS, HIGHZ, CLAMP),” &  
(IDCODE),” &  
––instr. vs register  
––control  
”BYPASS  
”IDCODE[32]  
”MASTERMODE[8]  
(MASTERMODE) ”;  
Attribute INSTRUCTION_Capture of VPXD_44: entity is ”101”;  
––captured instr.  
Attribute IDCODE_Register  
Attribute Boundary_Cells  
of VPXD_44: entity is  
”0001” &  
”0100011010000000” &  
”0000” &  
”1101100” &  
”1”;  
––initial rev  
––part numb. 7230  
––7F Count  
–– INTERMETALL Code–Parity  
––Mandatory LSB  
of VPXD_44: entity is ”BC_1,BC_4”;  
–-BC_1 for output cell  
––BC_4 for input cell  
Attribute Boundary_Length  
Attribute Boundary_Register  
of VPXD_44: entity is 38;  
of VPXD_44: entity is  
––Boundary scan length  
––Boundary scan defin.  
––  
num  
” 37  
” 36  
” 35  
” 34  
” 33  
” 32  
” 31  
” 30  
” 29  
” 28  
” 27  
” 26  
” 25  
” 24  
” 23  
” 22  
” 21  
” 20  
” 19  
” 18  
” 17  
” 16  
” 15  
” 14  
” 13  
” 12  
” 11  
” 10  
cell port  
function safe  
ccel  
disval rslt  
(BC_4, VIN3, input,  
(BC_4, VIN2, input,  
(BC_4, VIN1, input,  
(BC_4, CIN,  
(BC_1, *,  
X
X
X
X
),” &  
),” &  
),” &  
),” &  
input,  
internal, X  
),” & ––low power mode  
),” &  
),” &  
),” & ––open collector  
),” &  
),” & ––open collector  
),” &  
),” &  
),” &  
),” &  
),” &  
),” &  
),” &  
),” &  
),” & ––control  
),” &  
),” &  
),” & ––control  
),” &  
),” &  
),” &  
),” &  
),” &  
(BC_4, RESQ, input,  
X
X
(BC_4, SCL,  
(BC_1, SCL,  
(BC_4, SDA,  
(BC_1, SDA,  
(BC_1, B(0),  
(BC_1, B(1),  
(BC_1, B(2),  
(BC_1, B(3),  
(BC_1, B(4),  
(BC_1, B(5),  
(BC_1, B(6),  
(BC_1, B(7),  
(BC_1, *,  
(BC_1, VACT, output3, X,  
(BC_1, LLC,  
(BC_1, *,  
(BC_4, OEQ,  
(BC_1, A(0),  
(BC_1, A(1),  
(BC_1, A(2),  
(BC_1, A(3),  
(BC_1, *,  
input,  
output3, X,  
input,  
30,  
1,  
Z
X
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
control, X  
28,  
19,  
19,  
19,  
19,  
19,  
19,  
19,  
19,  
1,  
1,  
1,  
1,  
1,  
1,  
1,  
1,  
1,  
Z
Z
Z
Z
Z
Z
Z
Z
Z
16,  
16,  
1,  
1,  
Z
Z
output3, X,  
control, X  
input,  
X
output3, X,  
output3, X,  
output3, X,  
output3, X,  
control, X  
8,  
8,  
8,  
8,  
1,  
1,  
1,  
1,  
Z
Z
Z
Z
),” & ––control  
9
8
7
6
5
4
3
2
1
0
(BC_1, PIXCLK,output3, X,  
10,  
1,  
Z
),” &  
),” & ––control  
),” &  
),” &  
),” &  
),” &  
),” & ––control  
),” &  
),” &  
),”;  
(BC_1, *,  
control, X  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
control, X,  
(BC_1, A(4),  
(BC_1, A(5),  
(BC_1, A(6),  
(BC_1, A(7),  
(BC_1, *,  
8,  
8,  
8,  
8,  
,
3,  
16,  
16,  
1,  
1,  
1,  
1,  
1,  
1,  
1,  
1,  
Z
Z
Z
Z
Z
Z
Z
Z
(BC_1, FIELD, output3, X,  
(BC_1, VREF, output3, X,  
(BC_1, HREF, output3, X,  
End VPXD_44;  
44  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.16. Enable/Disable of Output Signals  
RESET State:  
IftheTAP-controllerisnotintheEXTESTmode, thenthe  
RESET-state defines the state of all digital outputs. The  
only exception is made for the data output of the bound-  
ary scan interface TDO. If the circuit is in reset condition  
(RES = 0), then all output interfaces are in tristate mode.  
In order to enable the output pins of the VPX to achieve  
thehighimpedance/tristatemode, variouscontrolshave  
been implemented. The following paragraphs give an  
overview of the different tristate modes of the output sig-  
nals. It is valid for all output pins, except the XTAL2  
(which is the oscillator output) and the VRT pin (which is  
an analog reference voltage).  
2
I C Control:  
The tristate condition of groups of signals can also be  
controlled by setting the I C-Register 0xF2. If the circuit  
BS (Boundary Scan) Mode:  
2
is neither in EXTEST mode nor RESET state, then the  
The tristate control by the test access port TAP for  
boundary scan has the highest priority. Even if the TAP-  
controller is in the EXTEST or CLAMP mode, the tristate  
behavior is only defined by the state of the different  
boundary scan registers for enable control. If the TAP  
controller is in HIGHZ mode, then all output pins are in  
tristate mode independently of the state of the different  
boundary scan registers for enable control.  
2
I C-Register 0xF2 defines whether the output is in tris-  
2
tate condition or not (see “I C-Registers VPX Back-  
end”).  
Output Enable Input OE:  
The output enable signal OE only effects the video out-  
put ports. If the previous three conditions do not cause  
the output drivers to go into high impedance mode, then  
the OE signal defines the driving conditions of the video  
2
data ports. The OE pin function could be disabled via I C  
control of 0xF2 [7].  
Table 2–18: Output driver configuration  
2
EXTEST  
RESET  
I C  
OE#  
Driver Stages  
active  
Output driver stages are defined by the state of the different  
boundary scan enable registers.  
inactive  
inactive  
inactive  
active  
Output drivers are in high impedance mode.  
inactive  
inactive  
= 0  
= 1  
Output drivers are in high impedance mode. PIXCLK is working.  
= 0  
Output drivers HREF, VREF, FIELD, VACT, LLC, are working.  
Outputs A[7:0] and B[7:0] are working  
inactive  
inactive  
= 1  
= 1  
Output drivers HREF, VREF, FIELD, VACT, LLC, are working.  
Output drivers of A[7:0] and B[7:0] are in high impedance mode.  
Remark: EXTEST mode is an instruction conforming to the standard for Boundary Scan Test IEEE 1149.1 – 1990  
MICRONAS INTERMETALL  
45  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2.17. Low Power Mode  
With the PIXCLK pin pulled up at the inactive going edge  
of RES, the VPX comes up in the low power mode. This  
mode is introduced for power consumption critical ap-  
2
plications. It can be turned on and off through the I C  
register 0xAA. There are three levels of low power.  
When any of them is turned on, the VPX waits for at least  
one complete video scan line in order to complete all in-  
ternal tasks and then goes into tristate mode. The exact  
moment is not precisely defined, so care should be tak-  
en to deactivate the system using VPX data before the  
end of the video scan line in which the VPX is switched  
into low power mode. During the low power mode, all the  
2
I C and FP registers are preserved, so that the VPX re-  
stores its normal operation as soon as low power mode  
is turned off, without need for any re-initialization. On the  
2
other hand, all the I C and FP registers can be read/writ-  
ten as usual. The only exception is the third level (value  
2
2
of 3 in I C register 0xAA) of low power. In that mode, I C  
speeds above 100 kbit/sec are not allowed. In modes 1  
2
and 2, I C can be used up to the full speed of 400 kbit/s.  
The table below gives an overview of the possible set-  
tings.  
Table 2–19: Selection of the low power modes  
2
I C Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
AA  
8
w
Low power  
bit [1:0] : Low power  
lowpow  
00 active mode, outputs enabled  
01 outputs tristated; clock divided by 2; I2C full speed  
10 outputs tristated; clock divided by 4; I2C full speed  
11 outputs tristated; clock divided by 8; I2C only up to 100 kbit/  
sec  
bit [7:2] reserved (must be set to zero)  
The control register modes are  
– w: write/read register  
– d: register is double latched  
– r: read-only register  
– v: register is latched with vsync  
46  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
3. Specification  
3.1. Outline Dimensions  
2.35  
± 0.1  
10 x 1.27 = 12.7  
+0.2  
±0.1  
1.27  
1.2 x 45°  
1
x 45 °  
6
1
40  
7
39  
1.6  
6
2
2
8.6  
5
17  
29  
1.9 1.5  
4.05  
18  
28  
+0.25  
± 0.1  
16.5  
17.4  
0.1  
±0.15  
4.75  
Fig. 3–1: 44-Pin Plastic Leaded Chip Carrier Package  
(PLCC44)  
Weight approximately 2.5 g  
Dimensions in mm  
MICRONAS INTERMETALL  
47  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
3.2. Pin Connections and Short Descriptions  
NC = not connected; leave vacant  
LV = if not used, leave vacant  
X = obligatory  
Pin No.  
PLCC44  
Pin Name  
Type  
Connection  
(if not used)  
Short Description  
1
2
3
TDI  
IN  
NC  
NC  
NC  
Boundary-Scan-Test Data Input  
Boundary-Scan-Test Clock Input  
TCK  
TDO  
IN  
OUT  
Boundary-Scan-Test Data Output if TAP is active  
(see remarks on Boundary-Scan Test)  
LLC2  
OUT  
If Test Access Port (TAP) is in Test-Logic-Reset State:  
LLC/2 = 13.5 MHz clock signal  
(I C Reg. 0xF2 bit[4] = 1)  
2
DACT  
OUT  
active VBI-Data (if FP-RAM 0x154 bit[10] = 1;  
see section 2.11.)  
4
5
6
HREF  
VREF  
OUT  
OUT  
NC  
NC  
NC  
Horizontal Reference  
Vertical Reference  
FIELD  
OUT  
IN  
ODD/EVEN Field Identifier  
LOWPWR  
Default wake-up Selection  
(control by positive edge of RES):  
Field = 0 : output ports active after reset  
Field = 1 : output ports tri-stated and VPX in low power  
mode after reset  
7
A7  
OUT  
NC  
NC  
NC  
NC  
X
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Supply Voltage Pad Circuits  
Pixel Clock Output  
8
A6  
OUT  
9
A5  
OUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
A4  
OUT  
PVDD  
PIXCLK  
PVSS  
A3  
SUPPLY  
OUT  
NC  
X
SUPPLY  
OUT  
Supply Voltage Pad Circuits  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Output Ports Enable  
NC  
NC  
NC  
NC  
VSS  
A2  
OUT  
A1  
OUT  
A0  
OUT  
OE  
IN  
IN  
2
2
I C-ADDR  
I C device address selection at positive edge of RES:  
2
OE = 0 : I C device address 0  
2
OE = 1 : I C device address 1  
2
(for more information see I C description)  
19  
LLC  
OUT  
NC  
2 x PIXCLK = 27 MHz  
48  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Pin Connections and Short Descriptions, continued  
Pin No.  
PLCC44  
Pin Name  
Type  
Connection  
(if not used)  
Short Description  
20  
21  
NC  
NC  
VACT  
B7  
OUT  
OUT  
active video  
Port 2 – Video Data Output  
programmable output (see section 2.5.3.)  
22  
23  
24  
25  
26  
27  
28  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Port 2 – Video Data Output  
programmable output (see section 2.5.3.)  
Port 2 – Video Data Output  
programmable output (see section 2.5.3.)  
Port 2 – Video Data Output  
programmable output (see section 2.5.3.)  
Port 2 – Video Data Output  
programmable output (see section 2.5.3.)  
Port 2 – Video Data Output  
programmable output (see section 2.5.3.)  
Port 2 – Video Data Output  
programmable output (see section 2.5.3.)  
Port 2 – Video Data Output  
programmable output (see section 2.5.3.)  
2
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
NC  
NC  
X
SDA  
IN/OUT  
IN/OUT  
IN  
I C Data  
2
SCL  
I C Clock  
RES  
Reset Input  
X
VSS  
SUPPLY  
SUPPLY  
OSC OUT  
OSC IN  
SUPPLY  
AIN  
Supply Voltage for digital circuitry  
Supply Voltage for digital circuitry  
Crystal  
X
VDD  
XTAL2  
XTAL1  
AVDD  
CIN  
X
X
Crystal  
X
Supply Voltage for analog circuitry  
Chroma Input (SVHS)  
NC  
X
AVSS  
VIN1  
VIN2  
VRT  
SUPPLY  
AIN  
Supply Voltage for analog circuitry  
Video 1 or Luminance (SVHS) Input  
Video 2 Input  
NC  
NC  
X
AIN  
Reference  
AIN  
Reference Voltage Top (ADC)  
Video 3 Input  
NC  
X
VIN3  
ISGND  
TMS  
SUPPLY  
IN  
Signal Ground for analog video inputs  
Boundary-Scan-Test Mode Select  
NC  
MICRONAS INTERMETALL  
49  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2
3.3. Pin Descriptions  
Pin 29 – I C Data SDA (Fig. 3–5)  
2
This pin connects to the I C bus data line.  
Pins 44, 1 – JTAG Input Pins TMS, TDI (Fig. 3–4)  
Test Mode Select and Test Data Input signals of the  
JTAG Test Access Port (TAP). Both signals are inputs  
with a TTL compatible input specification. To comply  
with JTAG specification they use pull-ups at their input  
stage. The input stage of the TMS and TDI uses a TTL  
Schmitt Trigger.  
2
Pin 30 – I C Clock SCL (Fig. 3–5)  
2
This pin connects to the I C bus clock line.  
Pin 31 – Reset Input RES (Fig. 3–3)  
A low level on this pin resets the circuit.  
Pin 32 – Ground, Digital Circuitry VSS  
Pin 2 – JTAG Input Pin TCK (Fig. 3–3)  
Clock signal of the Test-Access Port. It is used to syn-  
chronize all JTAG functions. When JTAG operations are  
not being performed, this pin should be driven to VSS.  
The input stage of the TCK uses a TTL Schmitt Trigger.  
Pin 33 – Supply Voltage, Digital Circuitry VDD  
Pins 34, 35 – XTAL1 Crystal Input and XTAL2 Crystal  
Output (Fig. 3–8)  
Thesepinsareconnectedtoa20.25MHzcrystaloscilla-  
tor which is digitally tuned by integrated shunt capaci-  
tances. An external clock can be fed into XTAL1. In this  
case, clock frequency adjustment must be switched off.  
Pin 3 – JTAG Output Pin TDO (Fig. 3–6)  
Data output for JTAG Test Access Port (TAP). Moreover,  
this pin can be used as programmable output pin PREF  
or used as output pin of the LLC2 clock signal, or both,  
if the TAP is in Test-Logic-Reset state.  
Pin 36 – Supply Voltage, Analog Circuitry AVDD  
Pins4to6–ReferenceSignalsHREF, VREF, andFIELD  
(Fig. 3–6)  
Thesesignalsareinternallygeneratedsyncsignals. The  
state of FIELD during the positive edge of RES selects  
the power up mode (active/low power).  
Pin 37 – Chroma Input CIN (Fig. 3–12, Fig. 3–11)  
This pin is connected to the S-VHS chroma signal. A re-  
sistive divider is used to bias the input signal to the  
middle of the converter input range. CIN can only be  
connected to the chroma (Video 2) A/D converter. The  
signal must be AC-coupled.  
Pins 7 to 10, 14 to 17 – Video Port A[7:0] (Fig. 3–6)  
Pin 11 – Supply Voltage, Pad Circuitry PVDD  
Pin 38 – Ground, Analog Front-end AVSS  
Pins 39, 40, 42 – Video Input 1–3 VIN1, VIN2, VIN3  
(Fig. 3–10)  
Pins 12, 20 – Pixel Clock PIXCLK and LLC (Fig. 3–6)  
PIXCLK and LLC are the reference clock signals for the  
video data transmission ports A[7:0] and B[7:0].  
These are the analog video inputs. A CVBS, S-VHS  
luma signal is converted using the luma (Video 1) A/D  
converter. The VIN1 input can also be switched to the  
chroma (Video 2) ADC. The input signal must be AC-  
coupled.  
Pin 13 – Ground, Pad Circuitry PVSS  
Pin 18 – Output Enable Input Signal OE (Fig. 3–3)  
The output enable input signal has TTL Schmitt Trigger  
input characteristic. It controls the tri-state condition of  
both video ports. The state during the positive edge of  
Pin 41 – Reference Voltage Top VRT (Fig. 3–9)  
Via this pin, the reference voltage for the A/D converters  
is decoupled. The pin is connected with 10 µF/47 nF to  
the Signal Ground Pin.  
2
RES selects the I C device address.  
Pins 20 – VACT (Fig. 3–6)  
Pin 43 – Signal Ground for Analog Input ISGND  
This is the high-quality ground reference for the video  
input signals.  
VACT is a qualifier for active video data.  
Pins 21 to 28 – Video Port B[7:0] (Fig. 3–6)  
50  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
3.4. Pin Configuration  
TDI  
TCK  
TDO (LLC2, DACT)  
HREF  
VREF  
FIELD  
TMS  
ISGND  
VIN3  
VRT  
VIN2  
6
5
4
3
2
1 44 43 42 41 40  
A7  
A6  
A5  
7
VIN1  
AVSS  
CIN  
AVDD  
XTAL1  
XTAL2  
VDD  
VSS  
RES  
SCL  
SDA  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
8
9
VPX 3225D  
VPX 3224D  
10  
11  
12  
13  
14  
15  
16  
17  
A4  
PVDD  
PIXCLK  
PVSS  
A3  
Top View  
A2  
A1  
A0  
18 19 20 21 22 23 24 25 26 27 28  
OE  
LLC  
VACT  
B7  
B0  
B1  
B2  
B3  
B6  
B4  
B5  
Fig. 3–2: 44-pin PLCC package.  
VDD  
3.5. Pin Circuits  
Pin  
VDD  
VSS  
Pin  
2
VSS  
Fig. 3–5: I C Interface SDA, SCL  
Fig. 3–3: TCK, OE, RES  
The characteristics of the Schmitt Triggers are depend  
on the supply of VDD/VSS.  
PVDD  
P
PVDD  
VDD  
OUT  
Pin  
N
Pin  
PVSS  
VSS  
Fig. 3–6: A[7:0], B[7:0], HREF, VREF, LLC,  
PIXCLK, VACT, TDO  
Fig. 3–4: TMS, TDI  
MICRONAS INTERMETALL  
51  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
VDD  
AVDD  
VIN1  
VIN2  
VIN3  
N
N
N
To ADC1  
VSS  
RES  
AVSS  
clamping  
PVDD  
P
Fig. 3–10: Video Inputs ADC1  
FIELD  
Pin  
N
PVSS  
Fig. 3–7: Reference Signal FIELD and wake-up  
selection LOWPOW on positve edge of RES  
AVDD  
VIN1  
CIN  
N
N
AVDD  
To ADC2  
XTAL2  
XTAL1  
P
N
f
ECLK  
0.5M  
AVSS  
bias  
AVSS  
Fig. 3–11: Video Inputs ADC2  
Fig. 3–8: Crystal Oscillator  
AVDD  
VRT  
P
BIAS  
+
VRT  
VIN1,  
VIN2,  
VIN3,  
ADC Reference  
AVSS  
off  
CIN  
Fig. 3–12: Unselected Video Inputs  
Fig. 3–9: Reference Voltage VRT  
52  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
4. Electrical Characteristics  
4.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Pin  
Min.  
Max.  
Unit  
Name  
T
Ambient Temperature  
0
65  
°C  
°C  
°C  
V
A
T
T
Storage Temperature  
–40  
0
125  
125  
6
S
J
Junction Temperature  
V
Supply Voltage, all Supply Inputs  
–0.3  
SUB  
P
Power Dissipation due to package  
characterstics  
VDD,  
PVDD,  
AVDD  
1170  
mW  
TOT MAX  
1)  
1)  
Input Voltage of FIELD, TMS, TDI  
Input Voltage  
PVSS – 0.5  
PVSS – 0.5  
VSS – 0.5  
PVDD + 0.5  
V
V
V
TCK  
6
6
Input Voltage  
SDA,  
SCL  
Signal Swing  
A[7:0],  
B[7:0],  
PIXCLK,  
HREF,  
VREF,  
FIELD,  
VACT,  
LLC,  
PVSS – 0.5  
PVDD + 0.5  
V
TDO  
Maximum | VDD – AVDD |  
0.5  
0.1  
V
V
Maximum | VSS – PVSS |  
Maximum | VSS – AVSS |  
Maximum | PVSS – AVSS |  
1)  
External voltage exceeding PVDD+0.5 V should not be applied to these pins even when they are tri-stated.  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the  
“Recommended Operating Conditions/Characteristics” of this specification is not implied. Exposure to absolute maxi-  
mum ratings conditions for extended periods may affect device reliability.  
MICRONAS INTERMETALL  
53  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
4.2. Recommended Operating Conditions  
Symbol  
Parameter  
Pin  
Min.  
Typ.  
Max.  
Unit  
Name  
T
Ambient Operating Temperature  
Analog Supply Voltage  
Digital Supply Voltage  
Pad Supply Voltage  
0
65  
°C  
V
A
V
V
V
AVDD  
VDD  
4.75  
4.75  
3.15  
5.0  
5.0  
5.25  
5.25  
SUPA  
SUPD  
SUPP  
XTAL  
V
1)  
PVDD  
XTAL1/2  
3.6  
V
f
Clock Frequency  
20.250  
MHz  
1)  
could also be connected to the 5 V supply net; but for best performance, it is recommended to connect it to 3.3 V  
supply (see figure 7–1).  
4.2.1. Recommended Analog Video Input Conditions  
Symbol  
Parameter  
Pin  
Min.  
Typ.  
Max.  
Unit  
Name  
V
VIN  
Analog Input Voltage  
VIN1,  
VIN2,  
VIN3,  
CIN  
0
3.5  
V
C
CP  
Input Coupling Capacitor  
Video Inputs  
VIN1,  
VIN2,  
VIN3  
680  
nF  
C
R
Input Coupling Capacitor  
Chroma Input  
CIN  
1
nF  
CP  
Recommended Drive Impedance  
VIN1,  
VIN2,  
VIN3,  
CIN  
75  
100  
PD  
54  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2
4.2.2. Recommended I C Conditions  
(Timing diagram see Fig. 5–3 on page 64)  
Symbol  
Parameter  
Pin  
Min.  
Typ.  
Max.  
Unit  
Name  
2
V
V
I C-BUS Input Low Voltage  
SCL,  
SDA  
0.3  
VDD  
VDD  
kHz  
ns  
IMIL  
IMIH  
SCL  
I2C1  
I2C2  
I2C3  
I2C4  
I2C5  
2
I C-BUS Input High Voltage  
0.6  
2
f
t
t
t
t
t
I C-BUS Frequency  
SCL  
100  
2
I C START Condition Setup Time  
SCL,  
SDA  
1200  
1200  
5000  
5000  
55  
2
I C STOP Condition Setup Time  
ns  
2
I C-Clock Low Pulse Time  
SCL  
ns  
2
I C-Clock High Pulse Time  
ns  
2
I C-Data Setup Time Before  
SCL,  
SDA  
ns  
Rising Edge of Clock  
2
t
I C-Data Hold Time after Falling  
55  
ns  
I2C6  
Edge of Clock  
4.2.3. Recommended Digital Inputs Levels of RES, OE, TCK, TMS, TDI  
Symbol  
Parameter  
Pin  
Min.  
Typ.  
Max.  
Unit  
Name  
V
IL  
Input Voltage LOW  
RES,  
OE,  
–0.5  
0
0.8  
V
TCK,  
TMS,  
TDI  
V
V
Input Voltage HIGH  
Input Voltage HIGH  
RES,  
OE,  
TCK  
2.0  
2.0  
5
6
V
V
IH  
TDI,  
TMS  
PVDD  
PVDD +  
0.3  
IH  
MICRONAS INTERMETALL  
55  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
4.2.4. Recommended Crystal Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
65  
Unit  
°C  
T
A
Operating Ambient Temperature  
Parallel Resonance Frequency  
0
f
P
20.250000  
MHz  
with Load Capacitance C = 13 pF  
fundamental  
L
f /f  
Accuracy of Adjustment  
Frequency Temperature Drift  
Series Resistance  
±20  
±30  
25  
7
ppm  
ppm  
P P  
f /f  
P P  
R
R
C
0
C
1
Shunt Capacitance  
3
pF  
Motional Capacitance  
20  
30  
fF  
Load Capacitance Recommendation  
1)  
C
Lext  
External Load Capacitance from  
pins to Ground (PLCC44)  
4.7  
pF  
(pin names: Xtal1 Xtal2)  
2)  
DCO Characteristics  
C
Effective Load Capacitance @ min.  
DCO-Position, Code 0,  
package: PLCC44  
4.3  
pF  
pF  
ICLoadmin  
C
Effective Load Capacitance Range,  
DCO Codes from 0..255  
8.7  
12.7  
16.7  
ICLoadrng  
1)  
Remarks on defining the External Load Capacitance:  
External capacitors at each crystal pin to ground are required. They are necessary to tune the effective load  
capacitance of the PCBs to the required load capacitance C of the crystal. The higher the capacitors, the lower  
L
the clock frequency results. The nominal free running frequency should match f = 20.25 MHz. Due to different  
p
layouts of customer PCBs, the matching capacitor size should be determined in the application. The suggested  
value is a figure based on experience with various PCB layouts.  
Tuning condition: Code DVCO Register = –720  
2)  
Remarks on Pulling Range of DCO:  
The pulling range of the DCO is a function of the used crystal and effective load capacitance of the IC (C  
ICLoad  
+ C  
). The resulting frequency f with an effective load capacitance of C  
= C  
+ C  
is  
LoadBoard  
L
Leff  
ICLoad  
LoadBoard  
1 + 0.5 * [ C / (C + C ) ]  
Leff  
1
0
f = f * –––––––––––––––––––––––  
L
P
1 + 0.5 * [ C / (C + C ) ]  
1
0
L
56  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
4.3. Characteristics  
at T = 0 to 65 °C, V  
= 4.75 to 5.25 V, V  
= 3.15 to 3.5 V, f = 20.25 MHz for min./max. values  
A
SUPD/A  
SUPP  
at T = 60 °C, V  
= 5 V, V  
= 3.3 V, f = 20.25 MHz for typical values  
SUPP  
C
SUPD/A  
4.3.1. Current Consumption  
Symbol Parameter  
Pin Name  
AVDD  
Min.  
35  
Typ.  
44  
Max.  
53  
Unit  
mA  
mA  
mA  
I
I
I
Current Consumption  
Current Consumption  
Current Consumption  
VSUPA  
VSUPD  
VSUPP  
VDD  
95  
115  
135  
PVDD  
application dependent  
45@3.3V  
75@5V  
P
P
Total Power Dissipation,  
normal operation condition  
AVDD,  
VDD, PVDD  
0.95  
0.1  
W
W
TOT  
Total Power Dissipation  
low power mode  
AVDD,  
VDD, PVDD  
TOT  
4.3.2. Characteristics, Reset  
Symbol  
Parameter  
Min.  
50  
Typ.  
Max.  
Unit  
ns  
Test Conditions  
xtal osc. is working  
xtal osc. is working  
t
t
RES Low Pulse to initiate an internal reset  
Internal Reset Hold Time  
RES MIN  
RES INT  
3.2  
µs  
Default Wake-up Selection (see timing diagram in section 5.1. on page 63)  
t
RES Low Pulse due to the time needed to  
discharge pin FIELD by the internal pull-  
down transistor for default selection  
(see schematic of fig. 3–7)  
1
ms  
xtal osc. is working  
RES MIN  
C
(FIELD) < 50 pF  
< 10 µA  
LOAD  
I
leak  
t
t
I
Setup Time of pin FIELD and OE  
to posedge of RES  
20  
20  
ns  
ns  
µA  
k
s-WU  
h-WU  
PD  
Hold Time of pin FIELD and OE  
to posedge of RES  
Pull-down current during RES = 0 at pin  
FIELD  
75  
10  
V
FIELD  
= 5V  
R
Recommended Pull-up resistor to enforce a  
logical 1 to pin FIELD  
PU  
4.3.3. XTAL Input Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
V
I
Clock Input Voltage, XTAL1  
1.3  
V
PP  
capacitive coupling of  
XTAL1,  
XTAL 2 remains open  
t
t
Oscillator Startup Time at VDD  
Slew-rate of 1 V / 1 µs  
(see section 5.1. on page 63)  
0.4  
1.0  
5.0  
tbd  
ms  
µs  
%
Startup1  
Reset Hold Time after  
the Oscillator is active  
(see section 5.1. on page 63)  
Startup2  
k
Duty Cycle  
tbd  
50  
XTAL  
MICRONAS INTERMETALL  
57  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
4.3.4. Characteristics, Analog Front-End and ADCs  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
V
VRT  
Reference Voltage Top  
VRT  
2.5  
2.61  
2.72  
V
10 µF/10 nF, 1 GProbe  
Luma – Path  
R
Input Resistance  
VIN1,  
VIN2,  
VIN3  
1
MΩ  
Code clamp – DAC=0  
VIN  
VIN  
VIN  
VIN  
C
Input Capacitance  
5
pF  
V
V
Full Scale Input Voltage  
Full Scale Input Voltage  
AGC step width  
1.86  
0.5  
1.93  
0.6  
2.0  
V
PP  
V
PP  
min. AGC Gain  
0.7  
max. AGC Gain  
AGC  
DNL  
0.145  
0.163  
0.181  
±0.5  
dB  
LSB  
V
6-bit resolution= 63 Steps  
f
sig  
=1MHz,  
– 2 dBr of max. AGC Gain  
AGC Differential Non-Linearity  
Input Clamping Level, CVBS  
AGC  
VINCL  
V
1.0  
1
Binary Level = 68 LSB  
min. AGC Gain  
Q
Clamping DAC Resolution  
–16  
0.7  
15  
steps  
µA  
6 Bit – I–DAC, bipolar  
CL  
V
VIN  
=1.5 V  
I
Input Clamping Current per step  
1.3  
±0.5  
CL–LSB  
DNL  
Clamping DAC Differential  
Non-Linearity  
LSB  
ICL  
C
Clamping-Capacitance  
tbd  
pF  
kΩ  
pF  
Coupling-Cap. @ Inputs  
ICL  
Chroma – Path  
R
C
Input Resistance  
SVHS Chroma  
CIN  
VIN1  
1.4  
2.0  
5
2.6  
CIN  
VIN  
Input Capacitance  
CIN,  
VIN1  
V
V
Full Scale Input Voltage, Chroma  
CIN  
VIN1  
1.08  
1.14  
1.5  
1.2  
V
V
CIN  
PP  
Input Bias Level,  
SVHS Chroma  
CINDC  
Binary Code for Open  
Chroma Input  
128  
Dynamic Characteristics for all Video-Paths (Luma + Chroma)  
BW  
Bandwidth  
VIN1  
VIN2  
VIN3  
CIN  
10  
42  
14  
MHz  
dB  
–2 dBr input signal level  
1 MHz, –2 dBr signal level  
XTALK  
THD  
Crosstalk, any two video inputs  
Total Harmonic Distortion  
–56  
–48  
–48  
–45  
dB  
1 MHz, 5 harmonics,  
–2 dBr signal level  
SINAD  
Signal to Noise and  
Distortion Ratio  
46  
dB  
1 MHz, all outputs,  
–2 dBr signal level  
INL  
DNL  
DG  
DP  
Integral Non-Linearity,  
Differential Non-Linearity  
Differential Gain  
±1.3  
±0.5  
±2.4  
±0.85  
±3  
LSB  
LSB  
%
Code Density,  
DC-ramp  
–12 dBr, 4.4 MHz signal on  
DC-Ramp  
Differential Phase  
1.5  
deg  
58  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
4.3.5. Characteristics, Control Bus Interface  
(Timing diagram see Fig. 5–3 on page 64)  
Symbol  
Parameter  
Pin  
Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
V
Output Low Voltage  
SDA,  
SCL  
0.4  
0.6  
V
V
I = 3 mA  
l
I = 6 mA  
l
IMOL  
IMOL1  
IMOL2  
F
2
t
t
t
f
I C-Data Output Hold Time after  
SDA  
SDA  
15  
100  
ns  
ns  
ns  
Falling Edge of Clock SCL  
2
I C-Data Output Setup Time be-  
f
= 1 MHz, VDD = 5 V  
SCL  
fore Rising Edge of Clock SCL  
Signal Fall Time  
SDA,  
SCL  
300  
C = 400 pF,  
L
R
= 4,7 k  
PU  
1)  
Clock Frequency  
SCL  
0
100  
1000  
kHz  
kHz  
low power mode  
normal operating condition  
SCL  
1)  
The maximum clock frequency of the I2C interface is limited to 100 kHz while the IC is working in the low power mode.  
4.3.6. Characteristics, JTAG Interface (Test Access Port TAP)  
(Timing diagram see Fig. 5–5 on page 65)  
Symbol  
Parameter  
Min.  
100  
50  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
V
Test Conditions  
Φ
Φ
Φ
JTAG Cycle Time  
TCK High Time  
TCK Low Time  
CYCL-TAP  
H-TAP  
50  
L-TAP  
V
Minimum supply voltage to initiate an  
internal reset of the JTAG-TAP generated  
by a voltage supply supervision circuit  
3.5  
VDD pin  
RES-TAP  
Test Access Port (TAP), see timing diagram (Fig. 5–5 on page 65)  
t
t
t
TMS, TDI Setup Time  
TMS, TDI Hold Time  
10  
10  
ns  
ns  
ns  
S-TAP  
H-TAP  
D-TAP  
TCK to TDO Propagation Delay  
for Valid Data  
50  
t
t
TDO Turn-on Delay  
TDO Turn-off Delay  
45  
45  
ns  
ns  
ON-TAP  
OFF-TAP  
Boundary-Scan Test, Characteristics of all IO pins which are connected to the boundary scan register chain  
t
t
t
Input Signals Setup Time at CAPTURE-DR  
Input Signals Hold Time at CAPTURE-DR  
10  
10  
ns  
ns  
ns  
S-PINS  
H-PINS  
D-PINS  
TCK to Output Signals,  
Delay for Valid Data  
50  
t
t
Turn-on Delay  
Turn-off Delay  
20  
20  
ns  
ns  
ON-PINS  
OFF-PINS  
MICRONAS INTERMETALL  
59  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
4.3.7. Characteristics, Digital Inputs/Outputs  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Digital Input Pins TMS, TDI, TCK, RES, OE, SCL, SDA  
C
Input Capacitance  
5
8
pF  
IN  
I
Input Leakage Current  
Input Pins TCK, RES, OE, SCL, SDA  
–1  
+1  
µA  
V = V  
V V  
I
I
I
I
SS  
DD  
I
Input Leakage Current  
Input Pins with Pull-ups: TDI and TMS  
–25  
20  
–55  
+1  
µA  
µA  
V = V  
I
SS  
DD  
V V  
I
I
IL  
Pull-down Current at Pin FIELD  
10  
FIELD: V = V  
;
I
DD  
SS  
during RES = 0 for Default Selection  
RES: V = V  
I
Digital Output pins A[7:0], B[7:0], HREF, VREF, FIELD, VACT, LLC, PIXCLK, TDO  
C
High-Impedance Output Capacitance  
5
8
pF  
V
O
V
V
V
Output Voltage LOW  
(all digital output pins except SDA, SCL)  
0.6  
OL  
Output Voltage LOW  
(only SDA, SCL)  
0.4  
0.6  
V
V
I = 3 mA  
l
I = 6 mA  
l
OL  
Output Voltage HIGH  
2.4  
PVDD  
V
OH  
(all digital output pins except SDA, SCL)  
I
O
Output Leakage Current  
while IC remains in low  
power mode  
–1  
+1  
µA  
µA  
V = V  
V V  
I
I
SS  
DD  
A special VDD, VSS supply is used only to support the digital output pins. This means, inherently, that in case of tri-state conditions,  
external sources should not drive these signals above the voltage PVDD which supplies the output pins.  
4.3.8. Clock Signals PIXCLK, LLC, and LLC2  
The following timing specifications refer to the timing diagrams of section 5.7.1. on page 66.  
Symbol  
LLC:  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
t
Cycle Time  
37  
50  
ns  
%
LLC  
Φ
Duty Cycle Φ / (Φ  
Φ
Φ
Φ
)
)
)
H
H
L +  
L +  
L +  
H
H
H
LLC2:  
t
Cycle Time  
74  
50  
ns  
%
LLC2  
k
Duty Cycle Φ / (Φ  
LLC2  
H
PIXCLK:  
t
Cycle Time  
74  
50  
ns  
%
CLK13  
k
Duty Cycle Φ / (Φ  
H
PIXCLK  
t
t
t
t
Output Signal Hold Time for LLC2  
Propagation Delay for LLC2  
0
ns  
ns  
ns  
ns  
HCLK1  
DCLK1  
HCLK2  
DCLK2  
10  
18  
Output Signal Hold Time for PIXCLK  
Propagation Delay for PIXCLK  
10  
60  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
4.3.9. Digital Video Interface  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Data and Control Pins (LLC to A[7:0], B[7:0], HREF, VREF, FIELD, VACT:  
The following timing specifications refer to the timing diagrams of section 5.7. on page 66.  
t
Output Hold Time  
Propagation Delay  
20  
ns  
ns  
OH  
PD  
t
35  
Output Enable by OE (For more information, see section 5.4. on page 64)  
t
Output Enable OE of A[7:0], B[7:0]  
Output Disable OE of A[7:0], B[7:0]  
15  
15  
ns  
ns  
ON  
t
OFF  
4.3.10. Characteristics, TTL Output Driver  
4.3.10.1. TTL Output Driver Type A  
Output Pins A[7:0], PIXCLK, LLC, VACT  
Symbol  
Parameter  
Min.  
65  
Typ.  
RT  
Max.  
0
Unit  
°C  
Test Conditions  
Ambient Temperature  
Supply  
T
A
VDD,  
4.75  
5.0  
5.25  
V
AVDD  
PVDD  
3.0  
2
3.3  
5
3.6  
10  
V
Pad Supply  
t
t
I
I
I
I
Rise Time  
ns  
C = 30 pF, strength = 4  
l
RA  
FA  
Fall Time  
2
5
10  
ns  
C = 30 pF, strength = 4  
l
(0)  
Output High Current (strength = 0)  
Output Low Current (strength = 0)  
Output High Current (strength = 7)  
Output Low Current (strength = 7)  
–1.37  
1.75  
–11  
14  
–2.25  
3.5  
–18  
28  
–2.87  
4.5  
–25  
36  
mA  
mA  
mA  
mA  
V
OH  
V
OH  
V
OH  
V
OH  
= 0.6 V  
= 2.4 V  
= 0.6 V  
= 2.4 V  
OH  
(0)  
OL  
(7)  
OH  
(7)  
OL  
4.3.10.2. TTL Output Driver Type B  
Output Pins: B[7:0], HREF, VREF, FIELD, TDO/LLC2  
Symbol  
Parameter  
Min.  
65  
Typ.  
RT  
Max.  
0
Unit  
°C  
Test Conditions  
Ambient Temperature  
Supply  
T
A
VDD,  
4.75  
5.0  
5.25  
V
AVDD  
PVDD  
3.0  
6
3.3  
3.6  
V
Pad Supply  
t
t
I
I
I
I
Rise Time  
12  
25  
ns  
C = 50 pF, strength = 4  
l
RB  
FB  
OH  
Fall Time  
6
12  
25  
ns  
C = 50 pF, strength = 4  
l
(0)  
(0)  
Output High Current (strength = 0)  
Output Low Current (strength = 0)  
Output High Current (strength = 7)  
Output Low Current (strength = 7)  
–0.63  
0.81  
–5  
–1.13  
1.81  
–9  
–1.38  
2.38  
–12  
19  
mA  
mA  
mA  
mA  
V
OH  
V
OH  
V
OH  
V
OH  
= 2.4 V  
= 0.6 V  
= 2.4 V  
= 0.6 V  
OL  
(7)  
OH  
(7)  
6.5  
14.5  
OL  
MICRONAS INTERMETALL  
61  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
strength = 7  
strength w 6  
strength w 5  
strength w 4  
strength w 3  
strength w 2  
strength w 1  
strength w 0  
The driving capability/strength is controlled by the state  
2
of the two I C registers F8  
and F9  
.
hex  
hex  
A special PVDD, PVSS supply is used only to support  
the digital output pins. This means, inherently, that in  
case of tri-state conditions, external sources should not  
drive these signals above the voltage PVDD which sup-  
plies the output pins.  
All timing specifications are based on the following as-  
sumptions:  
– the load capacitance of the fast pins (output driver ty-  
pe A) is C = 30 pF,  
A
– the load capacitance of the remaining pins (output  
driver type B) is C = 50 pF,  
B
– no static currents are assumed,  
– the driving capability of the pads is STR = 4, which  
means that 5 of 8 output drivers are enabled.  
The typical case specification relates to:  
– the ambient temperature is T = 25 °C, which relates  
A
to a junction temperature of T = 70 °C;  
J
– the power supply of the pad circuits is PVDD = 3.3 V,  
and the power supply of the digital parts is VDD =  
5.0 V.  
The best case specification relates to:  
Fig. 4–1: Block diagram of the output stages  
– a junction temperature of T = 0 °C,  
J
Note: The drivers of the output pads are implemented  
as a parallel connection of 8 tri-state buffers of the  
same size. The buffers are enabled depending on the  
desired driver strength. This opportunity offers the ad-  
vantage of adapting the driver strength to on-chip and  
off-chip constraints, e.g. to minimize the noise result-  
ing from steep signal transitions.  
– the power supply of the pad circuits is PVDD = 3.6 V,  
and the power supply of the digital parts is VDD =  
5.25 V.  
The worst case specification relates to:  
– a junction temperature of T = 125 °C,  
J
– the power supply of the pad circuits is PVDD = 3.0 V,  
and the power supply of the digital parts is VDD =  
4.75 V.  
Rise times are specified as a transition between 0.6 V to  
2.4 V. Fall times are defined as a transition between  
2.4 V to 0.6 V.  
62  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
5. Timing Diagrams  
5.1. Power-Up Sequence  
Theresetshouldnotreachhighlevelbeforetheoscillatorhasstarted. Thisrequiresaresetdelayof>1ms(seeFig.5–1).  
95%  
Supplies  
Crystal  
Oscillator  
V
IOH  
RES  
t
t
STARTUP2  
STARTUP1  
Fig. 5–1: Power-up sequence  
5.2. Default Wake-up Selection  
t
RES MIN  
V
IOH  
V
IOL  
V
IOH  
V
IOL  
The state of FIELD and OE pins are sampled at the high  
(inactive) going edge of RES in order to select between  
two power-on parameters. OE determines the I C ad-  
RES  
2
dress.  
TheFIELDpinisinternallypulleddown. Anexternalpull-  
up resistor defines a different power on configuration.  
FIELD defines the global wake-up mode of the VPX.  
With FIELD pulled down, the VPX goes into low power  
mode.  
FIELD  
OE  
t
t
s-WU h-WU  
Fig. 5–2: Default wake-up selection  
MICRONAS INTERMETALL  
63  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
5.3. Control Bus Timing Diagram  
(Data: MSB first)  
F
IM  
T
I2C4  
T
I2C3  
SCL  
T
I2C1  
T
I2C5  
T
I2C6  
T
I2C2  
SDA as input  
T
IMOL2  
T
IMOL1  
SDA as output  
2
Fig. 5–3: I C bus timing diagram  
5.4. Output Enable by Pin OE  
OE  
t
t
ON  
OFF  
Signals  
A[7:0], B[7:0]  
Fig. 5–4: Drive Control by OE input  
64  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
5.5. Timing of the Test Access Port TAP  
Φ
CYCL  
Φ
Φ
H-TAP  
L–TAP  
TCK  
t
t
H-TAP  
S-TAP  
TDI, TMS  
t
D-TAP  
t
t
OFF-TAP  
ON-TAP  
TDO  
Fig. 5–5: Timing of Test Access Port TAP  
5.6. IO-Timing of all Pins connected to the Boundary-Scan-Register-Chain  
TCK  
t
t
H-PINS  
S-PINS  
Inputs  
t
D-PINS  
t
t
OFF–PINS  
ON-PINS  
Outputs  
Fig. 5–6: Timing with respect to input and output signals  
MICRONAS INTERMETALL  
65  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
5.7. Timing Diagram of the Digital Video Interface  
t
LLC  
2.4 V  
1.5 V  
0.6 V  
Clock Output LLC  
t
PD  
t
OH  
2.4 V  
1.5 V  
0.6 V  
A[7:0], B[7:0]  
HREF, VREF, FIELD, VACT  
Fig. 5–7: Video Output Interface: Detailed Timing  
5.7.1. Characteristics, Clock Signals  
t
LLC  
2.4 V  
1.5 V  
0.6 V  
LLC  
t
RA  
t
FA  
t
t
DCLK1  
DCLK1  
t
t
HCLK1  
HCLK1  
2.4 V  
1.5 V  
0.6 V  
LLC2  
t
t
DCLK2  
DCLK2  
t
t
HCLK2  
HCLK2  
2.4 V  
1.5 V  
0.6 V  
PIXCLK  
Fig. 5–8: Clocks: LLC, LLC2, PIXCLK – Detailed Timing  
66  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
6. Control and Status Registers  
The following tables give definitions for the VPX control  
and status registers. The number of bits indicated for  
each register in the table is the number of bits imple-  
mented in the hardware, i.e. a 9-bit register must always  
be accessed using two data bytes, but the 7 MSB will be  
“0” on write operations and don’t care on read opera-  
tions. Write registers that can be read back are indicated  
in the mode column.  
The control register modes are  
– w  
– r  
write-only register  
read-only register  
– w/r write/read register  
– d  
– v  
register is double latched  
register is latched with vsync  
The mnemonics used in the Intermetall VPX demo soft-  
ware is given in the last column.  
MICRONAS INTERMETALL  
67  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
6.1. Overview  
2
I C-Registers  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Group  
Name  
h’00  
8
r
r
Manufacture ID  
Chip Ident.  
Chip Ident.  
JEDEC  
h’01  
h’02  
2*8  
16-bit part number  
PARTNUM  
h’03  
h’35  
h’36  
h’37  
h’38  
h’AA  
h’B3  
h’B4  
h’B5  
h’B6  
h’B7  
8
r
JEDEC2  
Chip Ident.  
FP Interface  
FP Interface  
FP Interface  
FP Interface  
Output  
JEDEC2  
FPSTA  
FPRD  
8
r
FP status  
16  
16  
16  
8
w
w
w/r  
w
r
FP read  
FP write  
FPWR  
FPDAT  
llc  
FP data  
Low power mode, LLC mode  
soft error counter  
sync status  
8
Byte Slicer  
Sync Slicer  
Sync Slicer  
Bit Slicer  
softerrcnt  
sync_stat  
sync_cnt  
coeff_rd  
level_rd  
mask  
8
r
8
r
hsync counter  
read filter coefficient  
read data slicer level  
8
r
8
r
Bit Slicer  
h’B8  
h’B9  
h’BA  
8
8
8
w
w
w
clock run-in and framing code don’t care mask high  
clock run-in and framing code don’t care mask mid  
clock run-in and framing code don’t care mask low  
Byte Slicer  
h’BB  
h’BC  
h’BD  
8
8
8
w
w
w
clock run-in and framing code reference high  
clock run-in and framing code reference mid  
clock run-in and framing code reference low  
Byte Slicer  
reference  
h’C0  
8
w
soft slicer level  
Bit Slicer  
Bit Slicer  
soft_slicer  
ttx_freq  
h’C1  
h’C2  
8
8
w
w
ttx bitslicer frequency LSB  
ttx bitslicer frequency MSB  
h’C5  
h’C6  
h’C7  
h’C8  
h’C9  
h’CE  
h’CF  
h’F2  
h’F8  
h’F9  
8
8
8
8
8
8
8
8
8
8
w
w
w
w
w
w
w
w
w
w
filter coefficient  
Bit Slicer  
Bit Slicer  
Bit Slicer  
Sync Slicer  
Byte Slicer  
Byte Slicer  
Byte Slicer  
Output  
coeff  
data slicer level  
data_slicer  
accu  
accumulator mode  
sync slicer level  
sync_slicer  
standard  
tolerance  
byte_cnt  
oena  
standard  
bit error tolerance  
byte count  
Output Enable  
Pad Driver Strength – TTL Output Pads Type A  
Pad Driver Strength – TTL Output Pads Type B  
Output  
driver_a  
driver_b  
Output  
68  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Group  
Name  
h’12  
h’15  
h’20  
h’21  
12  
12  
12  
12  
r/w  
r
vertical standard force  
vertical field counter  
Standard select  
Status  
vfrc  
vcnt  
sdt  
Status  
w
w
Stand. Sel.  
Stand. Sel.  
Input select (writing to this register will also initialize the stan-  
dard)  
insel  
h’22  
h’23  
h’30  
h’31  
h’32  
12  
12  
12  
12  
12  
r
start point of active video  
luma/chroma delay adjust  
Stand. Sel.  
Stand. Sel.  
Color Proc.  
Status  
sfif  
r
sfif  
w
r
ACC reference level to adjust C , C levels on picture bus  
accref  
bampl  
accb  
r
b
measured burst amplitude  
ACC multiplier value for SECAM Db chroma comp. to adjust  
w
Color Proc.  
C on pict. bus  
b
h’33  
12  
w
ACC multiplier value for SECAM Dr chroma comp. to adjust  
C on pict. bus  
r
Color Proc.  
accr  
h’34  
h’36  
h’39  
h’3A  
h’74  
h’82  
h’83  
h’8D  
h’8E  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
w
w
w
w
r
ACC multiplier value for PAL+ Helper Signal  
ACC PAL+ Helper gain  
Color Proc.  
Color Proc.  
Color Proc.  
Color Proc.  
Status  
acch  
hlpgain  
kilvl  
amplitude killer level (0:killer disabled)  
amplitude killer hysteresis  
kilhy  
measured sync amplitude value, nominal: 768  
sync amplitude reference (0: AGC disabled)  
AGC gain value (read only if AGC is enabled)  
agc threshold (video level x3)  
sampl  
agcref  
gain  
w
r
AGC–DVCO  
AGC–DVCO  
AGC–DVCO  
AGC–DVCO  
Hor. PLL  
w
w
w
max_thr  
sgain  
hpllgain  
start value for AGC gain while vertical lock or AGC is inactive  
h-pll loop gains (selection with input select register)  
h’AA  
h’AB  
h’AC  
h’CB  
h’DC  
h’F0  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
r
number of lines per field, P/S: 312, N: 262  
NTSC tint angle, $512 = $π/4  
Status  
nlpf  
w
r
Color Proc.  
Status  
tint  
software version number  
version  
xlck  
h’F7  
w/r  
w
r
crystal oscillator line-locked mode, lock command/status  
crystal oscillator center frequency adjust, –2048 ... 2047  
Delay of VACT relative to HREF during window 1  
Delay of VACT relative to HREF during window 2  
Vertical Begin  
AGC–DVCO  
AGC–DVCO  
ReadTab1  
h’F8  
dvco  
h’10F  
h’11F  
h’120  
h’121  
h’122  
h’123  
h’124  
vact_dly1  
vact_dly2  
vbegin1  
vlinesin1  
vlinesout1  
hbeg1  
hlen1  
r
ReadTab2  
w
w
w
w
w
WinLoadTab1  
WinLoadTab1  
WinLoadTab1  
WinLoadTab1  
WinLoadTab1  
Vertical Lines In / Temporal Decimation / Field Select  
Vertical Lines Out  
Horizontal Begin  
Horizontal Length  
MICRONAS INTERMETALL  
69  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Group  
Name  
h’125  
h’126  
h’127  
h’128  
h’12A  
h’12B  
h’12C  
h’12D  
h’12E  
h’12F  
h’130  
h’131  
h’132  
h’134  
h’135  
h’136  
h’137  
h’138  
h’139  
h’140  
h’141  
h’150  
h’151  
h’152  
h’153  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w r  
r
Number of Pixels  
WinLoadTab1  
WinLoadTab1  
WinLoadTab1  
WinLoadTab1  
WinLoadTab2  
WinLoadTab2  
WinLoadTab2  
WinLoadTab2  
WinLoadTab2  
WinLoadTab2  
WinLoadTab2  
WinLoadTab2  
WinLoadTab2  
VBI-window  
VBI-window  
VBI-window  
VBI-window  
VBI-window  
VBI-window  
npix1  
Selection for peaking / coring  
Brightness  
peaking1  
brightness1  
contrast1  
vbegin2  
Contrast / Noise shaping / Clamping  
Vertical Begin  
Vertical Lines In  
vlinesin2  
vlinesout2  
hbeg2  
Vertical Lines Out  
Horizontal Begin  
Horizontal Length  
hlen2  
Number of Pixels  
npix2  
Selection for peaking / coring  
Brightness  
peaking2  
brightness2  
contrast2  
start_even  
end_even  
start_odd  
end_odd  
vbicontrol  
slsize  
Contrast  
Start line even field  
End line even field  
Start line odd field  
End line odd field  
Control VBI-Window  
Slicer Data Size  
Register for control and latching  
Internal status register, do not overwrite  
Format Selection / Shuffler / PIXCLK-mode  
Start position of the programmable ‘video active’  
End position of the programmable ‘video active’  
ControlWord  
InfoWord  
format_sel  
pval_start  
pval_stop  
refsig  
w
w
w
w
Formatter  
HVREF  
HVREF  
HVREF  
Length and polarity of the reference signals:  
HREF, VREF, FIELD  
h’154  
h’157  
12  
12  
w
w
Output Multiplexer / Multi-purpose output  
Output Mux.  
Temp. Decim.  
outmux  
Number of frames to output within 3000 frames  
tdecframes  
70  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2
6.1.1. Description of I C Control and Status Registers  
2
Table 6–1: I C-Registers VPX Front-End  
2
I C-Registers VPX Front-End  
Address  
Hex  
Number  
of bits  
Mode  
Function  
Default  
Name  
FP Interface  
h’35  
8
r
FP status  
bit [0]  
FPSTA  
write request  
bit [1]  
bit [2]  
read request  
busy  
h’36  
h’37  
h’38  
16  
16  
16  
w
FP read  
bit [8:0]  
bit [11:9]  
FPRD  
FPWR  
FPDAT  
9-bit FP read address  
reserved, set to zero  
w
FP write  
bit [8:0]  
bit [11:9]  
9-bit FP write address  
reserved, set to zero  
w/r  
FP data  
bit [11:0]  
FP data register, reading/writing to this  
register will autoincrement the FP read/  
write address. Only 16 bit of data are  
2
transferred per I C telegram.  
2
Table 6–2: I C-Registers VPX Back-End  
2
I C-Registers VPX Back-End  
Address  
Hex  
Number  
of bits  
Mode  
Function  
Default  
Name  
Chip Identification  
h’00  
8
r
Manufacture ID in accordance with  
JEDEC Solid State Products Engineering Council, Washington DC  
JEDEC  
INTERMETALL Code EC  
hex  
16 bit part number (01: LSBs, 02: MSBs)  
PARTNUM  
partlow  
parthigh  
h’01  
h’02  
8
8
r
r
VPX 3225D 7230  
;
VPX 3224D 7231  
hex  
hex  
h’03  
8
r
JEDEC2  
JEDEC2  
ifield  
bit [0] :  
IFIELD  
reserved (must be treated don’t care)  
bit [7:1] :  
MICRONAS INTERMETALL  
71  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2
I C-Registers VPX Back-End  
Address  
Hex  
Number  
of bits  
Mode  
Function  
Default  
Name  
Output  
h’F2  
8
w
Output Enable  
OENA  
aen  
direct  
bit [0] :  
bit [1] :  
bit [2] :  
bit [3] :  
1
0
Enable Video Port A  
Disable / High Impedance Mode  
direct  
direct  
direct  
1
0
Enable Video Port B  
Disable / High Impedance Mode  
ben  
1
0
Enable Pixclk Output  
Disable / High Impedance Mode  
clken  
zen  
1
0
Enable Controls (HREF, VREF, ODD/EVEN, VACT,  
LLC, LLC2)  
Disable / High Impedance Mode  
direct  
bit[4]  
1
0
Enable LLC2 to TDO pin  
(if JTAG interface is in Test-Logic-Reset State)  
Disable LLC2  
llc2en  
direct  
direct  
w
bit [6:4] :  
bit [7] :  
reserved (must be set to zero)  
disable OEQ pin function  
1
oeq_dis  
DRIVER_A  
stra1  
h’F8  
8
Pad Driver Strength – TTL Output Pads Typ A  
bit [2:0] :  
bit [5:3] :  
bit [7:6] :  
Driver strength of Port A[7:0]  
Driver strength of PIXCLK, LLC, and VACT  
stra2  
additional PIXCLK driver strength  
strength = bit [5:3] | {bit [7:6], 0}  
stra3  
h’F9  
h’AA  
8
8
w
w
Pad Driver Strength – TTL Output Pads Typ B  
DRIVER_B  
strb1  
bit [2:0] :  
bit [5:3] :  
bit [7:6] :  
Driver strength of Port B[7:0]  
Driver strength of HREF, VREF, FIELD, and LLC2  
reserved (must be set to zero)  
strb2  
Low power mode, LLC mode  
LLC  
bit [1:0] :  
Low power mode  
lowpow  
00  
01  
10  
11  
active mode  
outputs tri-stated; clock divided by 2  
outputs tri-stated; clock divided by 4  
outputs tri-stated; clock divided by 8;  
2
I C only up to 100 kbit/sec  
2
bit [2] :  
bit [3] :  
I C reset  
iresen  
llc2  
1 : connect LLC2 to TDO pin  
0 : connect bit[4] to TDO pin  
bit [4] :  
bit [5] :  
bit [7:6] :  
if bit[3] then bit[4] defines LLC2 polarity  
else bit[4] is connected to TDO pin  
llc2_pol  
switch-off slicer  
(if slowpow = 1 then all slicer registers are reset).  
slowpow  
not used  
72  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2
Table 6–3: I C-Registers VPX Slicer  
2
I C-Registers VPX Slicer  
Address  
Hex  
Number  
of bits  
Mode  
Function  
Default  
Name  
Sync Slicer  
h’C8  
h’B4  
8
8
w
sync slicer  
sync_slicer  
sync_level  
bit [6:0] : binary sync slicer level is compared with binary data  
64  
0
(0 data 127)  
bit [7] :  
0
1
vertical sync window enable  
vertical sync window disable  
vsw  
r
r
sync status  
bit [5:0] : reserved (must be read don’t care)  
bit [6] :  
sync_stat  
vwin  
0
1
0
1
vert. window reset at line 624/524 (PAL/NTSC)  
vert. retrace set at line 628/528 (PAL/NTSC)  
field 2  
bit [7] :  
reset at line 313/263 (PAL/NTSC)  
set at line 624/524 (PAL/NTSC)  
field  
field 1  
h’B5  
h’C0  
8
8
hsync counter  
sync_cnt  
bit [7:0] : number of detected horizontal sync pulses per frame / 4  
sync is detected within horizontal window of HPLL  
counter is latched with vertical sync  
the register can be read at any time  
Bit Slicer  
w
soft slicer  
soft_slicer  
soft_level  
bit [6:0] : binary soft slicer level is compared with ABS[data]  
16  
(–128 data +127)  
reserved (must be set to zero)  
bit [7] :  
h’C1  
h’C2  
8
8
w
w
ttx bitslicer frequency LSB  
ttx bitslicer frequency MSB  
bit [10:0] : Freq = 2 * bitfreq / 20.25MHz  
ttx_freql  
ttx_freqh  
ttx_freq  
11  
702  
= 702 for WST PAL  
= 579 for WST NTSC or NABTS  
= 506 for VPS or WSS  
= 102 for CAPTION  
= 627 for Antiope  
= 183 for Time Code  
phase inc = Freq  
phase inc = Freq*(1+1/8) before framing code  
phase inc = Freq*(1+1/16) after framing code  
bit [11] :  
0
1
1
0
ttx_phinc  
bit [15:12] :reserved (must be set to zero)  
h’C5  
h’C6  
8
8
w
w
filter coefficient  
bit [5:0] : high pass filter coefficient in 2’s complement  
100000 = not allowed  
filter  
coeff  
7
100001 = –31  
000000 =  
011111 = +31  
0
bit [7:6] : reserved (must be set to zero)  
data slicer  
data_slicer  
data_level  
bit [7:0] : binary data slicer level is compared with ABS[data]  
64  
(–128 data +127)  
MICRONAS INTERMETALL  
73  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
2
I C-Registers VPX Slicer  
Address  
Hex  
Number  
of bits  
Mode  
Function  
Default  
Name  
h’C7  
8
w
accumulator mode  
accu  
reset  
bit [0] :  
bit [1] :  
bit [2] :  
0
1
0
1
0
1
no action  
reset DC and AC and FLT accu  
DC accu enable  
DC accu disable  
AC and FLT accu enable  
AC and FLT accu disable  
0
0
1
(one shot)  
dcen  
acen  
(only for VPS and CAPTION and WSS line)  
soft error correction enable  
soft error correction disable  
ac adaption disable  
ac adaption enable  
flt adaption disable  
bit [3] :  
bit [4] :  
bit [5] :  
0
1
0
1
0
1
0
1
1
soften  
acaden  
fltaden  
flt adaption enable  
bit [7:6] : reserved (must be set to zero)  
h’B6  
h’B7  
8
8
r
r
read filter coefficient  
coeff_rd  
level_rd  
read data slicer level  
Byte Slicer  
h’B3  
h’C9  
8
8
r
soft error counter  
bit [7:0] : counts number of soft error corrected bytes  
counter stops at 255  
soft_cnt  
reset after read  
w
standard  
standard  
ttx  
bit [0] :  
bit [1] :  
bit [2] :  
bit [3] :  
bit [4] :  
bit [5] :  
bit [6] :  
bit [7] :  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
TTX disable  
TTX enable  
PAL mode  
NTSC mode  
full field disable  
full field enable  
VPS line 16 disable  
VPS line 16 enable  
WSS line 23 disable  
WSS line 23 enable  
CAPTION line 21 field 1 disable  
CAPTION line 21 field 1 enable  
CAPTION line 21 field 2 disable  
CAPTION line 21 field 2 enable  
horizontal quit signal enable  
horizontal quit signal disable  
1
0
0
1
1
0
0
0
ntsc  
full  
vps  
wss  
caption1  
caption2  
disquit  
h’BD  
h’BC  
h’BB  
8
8
8
w
w
w
clock run-in and framing code reference low  
clock run-in and framing code reference mid  
clock run-in and framing code reference high  
bit [23:0] : clock run-in and framing code reference  
(LSB corresponds to first transmitted bit)  
h’55  
h’55  
h’27  
reference  
h’BA  
h’B9  
h’B8  
8
8
8
w
w
w
clock run-in and framing code don’t care mask low  
clock run-in and framing code don’t care mask mid  
clock run-in and framing code don’t care mask high  
bit [23:0] : clock run-in and framing code don’t care mask  
(LSB corresponds to first transmitted bit)  
h’00  
h’00  
h’00  
mask  
h’CE  
h’CF  
8
8
w
w
bit error tolerance  
tolerance  
bit [1:0] : maximum number of bit errors in low mask  
bit [3:2] : maximum number of bit errors in mid mask  
bit [5:4] : maximum number of bit errors in high mask  
bit [7:6] : reserved (must be set to zero)  
1
1
1
output mode  
out_mode  
byte_cnt  
fill64  
bit [5:0] : number of data bytes per text line including framing code  
43  
1
bit [6] :  
0
1
0
1
64 byte mode disable  
64 byte mode enable  
data output only for text lines  
data output for every video line  
bit [7] :  
0
dump  
74  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
6.1.2. Description of FP Control and Status Registers  
Table 6–4: FP-RAM VPX Front-End  
– default values are initialized at reset  
– * indicates that register is initialized according to the current standard when SDT register is changed.  
FP-RAM VPX Front-End  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
Standard Selection  
h’20  
12  
w
Standard select:  
0
bit [2:0]  
standard, see table 6–6  
sdt  
bit [3]  
0/1 MOD standard modifier  
sdtmod  
PAL modified to simple PAL  
NTSC modified to compensated NTSC  
SECAM modified to monochrome 625  
NTSCC modified to monochrome 525  
bit [5:4]  
bit [6]  
reserved; must be set to zero  
0/1 S-VHS mode off/on  
svhs  
Option bits allow to suppress parts of the initialization:  
bit [7]  
bit [8]  
bit [9]  
bit [10]  
no hpll setup (only for internal use)  
no vertical setup (only for internal use)  
no acc setup (only for internal use)  
reserved, set to zero  
bit [11]  
status bit, write 0. After the FP has switched to a new  
standard, this bit is set to 1 to indicate operation  
complete.  
h’21  
12  
w
Input select: Writing to this register will also initialize the standard.  
insel  
vis  
bit [1:0]  
luma selector  
00  
00  
01  
10  
11  
VIN3  
VIN2  
VIN1  
reserved  
bit [2]  
chroma selector  
0/1  
IF compensation  
1
cis  
ifc  
VIN1/CIN  
bit [4:3]  
00  
00  
01  
10  
11  
off  
6 dB/Okt  
12 dB/Okt  
10 dB/MHz only for SECAM  
bit [6:5]  
chroma bandwidth selector  
01  
cbw  
00  
01  
10  
11  
0/1  
0/1  
narrow  
normal  
broad  
wide  
bit [7]  
bit [8]  
adaptive/fixed SECAM notch filter  
enable luma lowpass filter  
fntch  
lowp  
bit [10:9]  
hpll speed  
hpllmd  
00  
01  
10  
11  
no change  
terrestrial  
vcr  
mixed  
bit [11]  
status bit, write 0; This bit is set to 1 to indicate  
operation complete.  
h’22  
h’23  
12  
12  
r
picture start position, This register sets the start point of active video.  
This can be used e.g. for panning. The setting is updated when ’sdt’  
register is updated  
sfif  
w
luma/chroma delay adjust, The setting is updated when ’sdt’ register  
is updated  
ldly  
bit [5:0]  
bit [11:6]  
reserved, set to zero  
luma delay in clocks, allowed range is +1 ... –7  
MICRONAS INTERMETALL  
75  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM VPX Front-End  
Color Processing  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
h’30  
h’32  
h’33  
12  
12  
12  
w
w
w
ACC reference level to adjust C , C levels on picture bus.  
a value of 0 disables the ACC, chroma gain can be adjusted  
via ACCb / ACCr register  
P/N: 2070*  
S: 0*  
accref  
accb  
accr  
r
b
ACC multiplier value for SECAM Db chroma component to adjust  
S: 1155*  
S: 1496*  
C level on picture bus.  
b [10:0] eeemmmmmmmm  
b
–e  
m * 2  
ACC multiplier value for SECAM Dr chroma component to adjust  
C level on picture bus.  
b [10:0] eeemmmmmmmm  
r
–e  
m * 2  
h’34  
h’36  
12  
12  
w
w
ACC multiplier value for PAL+ Helper Signal  
b [10:0] eeemmmmmmmm m * 2  
acch  
–e  
ACC PAL+ Helper gain adjust, gain is referenced to PAL burst,  
allowed values from 256..1023,  
834  
hlpgain  
a value of zero allows manual adjust of Helper amplitude via ACCh  
h’39  
h’3A  
h’DC  
12  
12  
12  
w
w
w
amplitude killer level (0: killer disabled)  
amplitude killer hysteresis  
30  
10  
0
kilvl  
kilhy  
tint  
NTSC tint angle, $512 = $π/4  
Horizontal PLL  
h’AA  
h’AB  
h’AC  
12  
w
h-pll gain setting, these registers are used to set the h-pll speed, pll  
speed selection is done via the input selection register  
AGC – DVCO  
h’82  
12  
w
sync amplitude reference (0: AGC disabled).  
Write 0 to register h’b5 after writing 0 to AGCREF to disable the AGC  
50Hz: 768*  
60Hz: 732*  
agcref  
h’8E  
h’83  
h’8D  
12  
12  
12  
w
r
start value for AGC gain while vertical lock or AGC is inactive  
AGC gain value (read only if AGC is enabled)  
27  
sgain  
gain  
r
AGC threshold (video level x3), AGC gain adjust will restart if video  
signal is larger than this threshold  
740  
max_thr  
The nominal value is 651 + noise margin. Because certain programs  
use larger video amplitude during TV-Ads (which causes the AGC to  
decrease the video level) this has been set very high. This means that  
the picture shows some luma limiting (10%) before the AGC restarts.  
h’F8  
h’F9  
12  
12  
w
r
crystal oscillator center frequency adjust, –2048 ... 2047  
–720  
dvco  
crystal oscillator center frequency adjustment value for line-locked  
mode, true adjust value is DVCO – ADJUST.  
adjust  
For factory crystal alignment, using standard video signal:  
set DVCO = 0, set lock mode, read crystal offset from ADJUST regis-  
ter and use negative value for initial center frequency adjustment via  
DVCO.  
h’f7  
12  
12  
w/r  
w/r  
crystal oscillator line-locked mode, lock command/status  
0
xlck  
vfrc  
write:  
100  
0
enable lock  
disable lock  
read:  
4095/0  
locked/unlocked  
FP Status Register  
h’12  
general purpose control bits  
bit [2:0]  
bit [3]  
bit [11:4]  
reserved, do not change  
vertical standard force  
reserved, do not change  
76  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM VPX Front-End  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
h’13  
12  
r
automatic standard recognition status  
asr  
bit [0]  
bit [1]  
bit [2]  
bit [3]  
bit [4]  
bit [5]  
bit [6]  
bit [7]  
bit [8]  
bit [9]  
bit [11:10]  
1
1
vertical lock  
horizontally locked  
reserved  
1
1
1
1
1
1
1
color amplitude killer active  
disable amplitude killer  
color ident killer active  
disable ident killer  
interlace detected  
no vertical sync detection  
spurious vertical sync detection  
reserved  
h’CB  
h’15  
h’74  
h’31  
h’F0  
12  
12  
12  
12  
12  
r
r
r
r
r
number of lines per field, P/S: 312, N: 262  
vertical field counter, incremented per field  
measured sync amplitude value, nominal: 768  
measured burst amplitude  
nlpf  
vcnt  
sampl  
bampl  
software version number  
bit [7:0]  
bit [11:8]  
internal software revision number  
software release  
x
MICRONAS INTERMETALL  
77  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
Table 6–5: FP-RAM VPX Back-End  
FP-RAM VPX Back-End  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
Read Table for Window #1  
h’10f  
12  
12  
r
Position of VACT  
bit [11:1]: Delay of VACT relative to the trailing edge of HREF  
vact_delay1  
Load Table for Window #1 (WinLoadTab1)  
h’120  
w
Vertical Begin  
12  
bit [8:0]: Vertical Begin (first active video line within a field)  
min. line number for 625/50 standards: 7  
vbeg1  
min. line number for 525/60 standards: 10  
max. line number: determined by current TV line standard  
bit [11:9]: reserved (must be set to zero)  
Vertical Lines In  
h’121  
12  
w
0
bit [8:0]: Number of input lines  
vlinei1  
tdec1  
determines the range between the first and the last active  
video line within a field; vbeg + vlinei should not exceed the  
max. number of lines determined by the current line  
standard (exceeding values will be corrected automatically)  
bit [9]:  
enable temporal decimation (0: off, 1: on)  
with temporal decimation enabled, only the number of frames  
selected in register h’157 (tdecframes) will be output within  
an interval of 3000 frames  
bit [11:10]: field disable flags  
11 Window disabled  
10 Window enabled in ODD fields only  
01 Window enabled in EVEN fields only  
00 Window enabled in both fields  
h’122  
12  
w
Vertical Lines Out  
0
bit [8:0]: Number of output lines  
vlineout cannot be greater than vlinein (no interpolation);  
vlineo1  
for vlineout < vlinein vertical compression via line dropping  
is applied  
bit [11:9]: reserved (must be set to zero)  
h’123  
h’124  
h’125  
12  
12  
12  
w
w
w
Horizontal Begin  
0
bit [10:0]: Horizontal start of window after scaling (relative to npix)  
hbeg > 0 enables cropping on the left side of the window  
hbeg1  
hlen1  
npix1  
bit [11]:  
reserved (must be set to zero)  
Horizontal Length  
704  
704  
bit [10:0]: Horizontal length of window after scaling (relative to npix)  
hbeg + hlen cannot exceed npix  
bit [11]:  
reserved (must be set to zero)  
Number of Pixels  
bit [10:0]: Number of active pixels for the full active line (after scaling)  
npix must be an even value within the range 32...864  
bit [11]:  
reserved (must be set to zero)  
78  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM VPX Back-End  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
h’126  
12  
w
Selection for peaking/coring  
bit [1:0]: coring  
0
peaking1  
subtracts LSBs of the higher frequency part of the video  
signal  
00: subtract 0 LSBs  
01: subtract 1/2 LSB  
10: subtract 1 LSB  
11: subtract 2 LSBs  
bit [4:2]: peaking  
an implemented peaking filter supports sharpness control  
with up to eight steps:  
000: no peaking  
001: low peaking  
111: high peaking  
bit [5]:  
bit [6]:  
bit [7]:  
bit [8]:  
Bypass Lowpass  
Bypass Skewfilter  
Bypass Skewfilter VACT  
Swapping of Chroma values  
0
1
Cb-Pixels first  
Cr-Pixels first  
bit [11:9]: reserved (must be set to zero)  
Brightness  
h’127  
12  
w
0
bit [7:0]: Brightness Level  
offset value added to the video samples  
brightness can be selected in 256 steps within the range  
–127...128 (binary offset format):  
0: –127  
brightness1  
255: 128  
bit [11:8]: reserved (must be set to zero)  
Contrast  
h’128  
12  
w
32  
contrast1  
contr1  
bit [5:0]: Contrast Level  
linear scale factor for luminance (default = 1.0)  
[5] integer part  
[4:0] fractional part  
bit [7:6]: Noise Shaping  
noise1  
clamp1  
Control for 10-bit to 8-bit conversion (default: rounding)  
00: 9-bit to 8-bit via 1-bit rounding  
01: 9-bit to 8-bit via truncation  
10: 9-bit to 8-bit via 1-bit accumulation  
11: 10-bit to 8-bit via 2-bit accumulation  
bit [8]:  
Contrast Brightness: Clamping Level  
0
1
clamping level = 32,  
clamping level = 16  
bit [9]:  
Bypass Brightness Adder  
Bypass Contrast Multiplier  
reserved (must be set to zero)  
bribyp1  
bit [10]:  
bit [11]:  
conbyp1  
MICRONAS INTERMETALL  
79  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM VPX Back-End  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
Read Table for Window #2  
h’11f  
12  
12  
r
Position of VACT  
bit [11:1]: Delay of VACT relative to the trailing edge of HREF  
vact_delay2  
Load Table for Window #2 (WinLoadTab2)  
h’12A  
w
Vertical Begin  
17  
bit [8:0]: Vertical Begin (first active video line within a field)  
min. line number for 625/50 standards: 7  
vbeg2  
min. line number for 525/60 standards: 10  
max. line number: determined by current TV line standard  
bit [11:9]: reserved (must be set to zero)  
Vertical Lines In  
h’12B  
12  
w
500  
bit [8:0]: Number of input lines  
vlinei2  
tdec2  
determines the range between the first and the last active  
video line within a field; vbeg + vlinei should not exceed the  
max. number of lines determined by the current line  
standard (exceeding values will be corrected automatically)  
bit [9]:  
enable temporal decimation (0: off, 1: on)  
with temporal decimation enabled, only the number of  
frames selected in register h’157 (tdecframes) will be output  
within an interval of 3000 frames  
bit [11:10]: field disable flags  
11: Window disabled  
10: Window enabled in ODD fields only  
01: Window enabled in EVEN fields only  
00: Window enabled in both fields  
h’12C  
12  
w
Vertical Lines Out  
240  
bit [8:0]: Number of output lines  
vlineout cannot be greater than vlinein (no interpolation);  
vlineo2  
for vlineout < vlinein vertical compression via line dropping  
is applied  
bit [11:9]: reserved (must be set to zero)  
h’12D  
h’12E  
h’12F  
12  
12  
12  
w
w
w
Horizontal Begin  
0
bit [10:0]: Horizontal start of window after scaling (relative to npix)  
hbeg > 0 enables cropping on the left side of the window  
hbeg2  
hlen2  
npix2  
bit [11]:  
reserved (must be set to zero)  
Horizontal Length  
640  
640  
bit [10:0]: Horizontal length of window after scaling (relative to npix)  
hbeg + hlen can not exceed npix  
bit [11]:  
reserved (must be set to zero)  
Number of Pixels  
bit [10:0]: Number of active pixels for the full active line (after scaling)  
npix must be an even value within the range 32...864  
bit [11]:  
reserved (must be set to zero)  
80  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM VPX Back-End  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
h’130  
12  
w
Selection for peaking/coring  
bit [1:0]: coring  
0
peaking2  
subtracts LSBs of the higher frequency part of the video  
signal  
00: subtract 0 LSBs  
01: subtract 1/2 LSB  
10: subtract 1 LSB  
11: subtract 2 LSBs  
bit [4:2]: peaking  
an implemented peaking filter supports sharpness control  
with up to eight steps:  
000: no peaking  
001: low peaking  
111: high peaking  
bit [5]:  
bit [6]:  
bit [7]:  
bit [8]:  
Bypass Lowpass  
Bypass Skewfilter  
Bypass Skewfilter VACT  
Swapping of Chroma values  
0
1
Cb-Pixels first  
Cr-Pixels first  
bit [11:9]: reserved (must be set to zero)  
Brightness  
h’131  
12  
w
0
bit [7:0]: Brightness Level  
offset value added to the video samples  
brightness can be selected in 256 steps within the range  
–127...128 (binary offset format):  
0: –127  
brightness2  
255: 128  
bit [11:8]: reserved (must be set to zero)  
Contrast  
h’132  
12  
w
32  
contrast2  
contr1  
bit [5:0]: Contrast Level  
linear scale factor for luminance (default = 1.0)  
[5] integer part  
[4:0] fractional part  
bit [7:6]: Noise Shaping  
noise1  
clamp1  
Control for 10-bit to 8-bit conversion (default: rounding)  
00: 9-bit to 8-bit via 1-bit rounding  
01: 9-bit to 8-bit via truncation  
10: 9-bit to 8-bit via 1-bit accumulation  
11: 10-bit to 8-bit via 2-bit accumulation  
bit [8]:  
Contrast Brightness: Clamping Level  
0
1
clamping level = 32,  
clamping level = 16  
bit [9]:  
Bypass Brightness Adder  
Bypass Contrast Multiplier  
reserved (must be set to zero)  
bribyp1  
bit [10]:  
bit [11]:  
conbyp1  
MICRONAS INTERMETALL  
81  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM VPX Back-End  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
Load Table for VBI-Window  
h’134  
h’135  
12  
12  
w
w
Start line even field  
determines the first line of the VBI-window within even fields  
(note that lines are counted relative to the whole frame!)  
272  
283  
start_even  
end_even  
End line even field  
determines the last line of the VBI-window within even fields  
(note that lines are counted relative to the whole frame!)  
h’136  
h’137  
12  
12  
w
w
Start line odd field  
determines the first line of the VBI-window within odd fields  
10  
21  
start_odd  
end_odd  
End line odd field  
determines the last line of the VBI-window within odd fields  
h’138  
h’139  
12  
12  
w
w
Control VBI-Window  
0
0
vbicontrol  
slsize  
Slicer Data Size (0 corresponds to default value 64)  
Control Word  
h’140  
12  
w r  
w
Register for control and latching  
Control-  
Word  
bit [1:0]: Sync timing mode  
00 Open mode  
0
settm  
horizontal and vertical sync are tracking the input  
signal  
01 Forced mode  
horizontal and vertical sync are tracking the input  
signal; if allowed timing tolerances are exceeded,  
the timing will be corrected  
10 Scan mode  
horizontal and vertical sync are free running  
w
bit [2]:  
Mode for VACT reference signal  
0
vactmode  
0
length of VACT corresponds to the size of the current  
window  
1
programmable length of VACT (for the whole field!)  
w
w
bit [4:3]: reserved (must be set to zero)  
0
1
bit [5]:  
bit [6]:  
Latch Window #1  
latwin1  
latwin2  
1
latch (reset automatically)  
w
Latch Window #2  
1
1
latch (reset automatically)  
bit [9]:  
reserved (must be set to zero)  
0
1
bit [10]:  
Latch value for temporal decimation  
The number of frames for the temporal decimation is  
updated only if this flag is set  
lattdec  
lattm  
1
latch (reset automatically)  
w
bit [11]:  
Latch Timing Modes  
Selection of the timing mode is updated only if this flag is set  
1
1
latch (reset automatically)  
82  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM VPX Back-End  
Info Word  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
h’141  
12  
r
Internal status register, do not overwrite  
This register can be used to query the current internal state due to the  
settings in the control word.  
InfoWord  
actvact  
bit [2]:  
Mode for VACT reference signal  
0
1
current window size  
programmable size  
bit [4:3]: reserved  
bit [11:8]: reserved  
Formatter  
h’150  
12  
w
Format Selection  
format_sel  
format  
bit [1:0]: Format Selector  
00: YUV 4:2:2, ITU-R601  
0
01: YUV 4:2:2, ITU-R656  
10: YUV 4:2:2, BStream  
bit [2]:  
bit [3]:  
Shuffler  
0
0
shuf  
0
1
Port A = Y, Port B = UV  
Port A = UV, Port B = Y  
Format of VBI-data (in ITU-R656 mode only!)  
Two possibilities are supported to disable the protected  
values 0 and 255:  
range  
0
1
limitation  
7-bit resolution + odd parity LSB  
Note that this selection is applied for lines within the VBI-  
window only!  
bit [4]:  
bit [5]:  
Transmission of VBI-data (in ITU-656 mode only)  
1
0
ancillary  
halfclk  
0
1
transmit as normal video data  
transmit as ancillary data (with ANC-header)  
PIXCLK selection  
Setting this bit activates the half-clock mode, in which  
PIXCLK is divided by 2 in order to spread the video data  
stream  
0
1
full PIXCLK (normal operation)  
PIXCLK divided by 2  
bit [6]:  
Disable splitting of text data bytes  
0
splitdis  
During normal operation, sliced teletext bytes are splitted  
into 2 nibbles and multiplexed to the luminance and  
chrominance part. Setting this bit will disable this splitting.  
Sliced teletext data will be output directly on the luminance  
path. Note that the limitation of luminance data has to be  
disabled with bit [8]. The values 0 and 255 will no longer be  
protected in the luminance path!  
bit [7]:  
bit [8]:  
reserved (must be set to zero)  
0
0
Disable limitation of luminance data (see bit [6])  
dislim  
0
1
enabled  
disabled  
bit [11:9]: reserved (must be set to zero)  
0
MICRONAS INTERMETALL  
83  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
FP-RAM VPX Back-End  
HVREF  
Address  
Hex  
Number  
of Bits  
Mode  
Function  
Default  
Name  
h’151  
12  
w
Start position of the programmable ‘video active’  
The start position has to be an even value and is given relative to the  
trailing edge of HREF. Programmable VACT is activated with bit [2] of  
the control word (h’140)!  
40  
pval_  
start  
bit [10:0]: start of VACT reference signal  
h’152  
h’153  
12  
12  
w
w
End position of the programmable ‘video active’  
The end position has to be an even value and is given relative to the  
trailing edge of HREF.  
720  
pval_stop  
bit [10:0]: end of VACT reference signal  
HREF and VREF control  
determines length and polarity of the timing reference signals  
refsig  
hpol  
bit [1]:  
bit [2]:  
HREF Polarity  
0
0
0
0
0
1
active high  
active low  
VREF Polarity  
vpol  
0
1
active high  
active low  
bit [5:3]: VREF pulse width, binary value + 2  
000: pulse width = 2  
vlen  
111: pulse width = 9  
bit [6]:  
1 disables field as output  
disfield  
setting this bit will force the ‘field’ pin to the high impedance  
state  
Output Multiplexer  
h’154  
12  
w
Output Multiplexer  
0
outmux  
bmp  
bit [7:0]: Multi-purpose bits on Port B  
determines the state of Port B when used as programmable  
output  
bit [8]:  
bit [9]:  
activate multi-purpose bits on Port B  
note that double clock mode has to be selected for this  
option!  
bmpon  
double  
Port Mode  
0
1
parallel_out, ‘single clock’, Port A & B = FO[15:0];  
‘double clock’  
Port A = FO[15:8] / FO[7:0],  
Port B = programmable output/not used;  
bit [10]:  
bit [11]:  
switch ‘VBI active’ qualifier  
vbiact  
0
1
connect ‘VBI active’ to VACT pin  
connect ‘VBI active’ to TDO pin  
reserved (must be set to zero)  
Temporal Decimation  
h’157  
12  
w
Number of frames to output within 3000 frames  
This value will be activated only if the corresponding latch flag is set  
(control word h’140, bit [10] ).  
3000  
tdecframes  
84  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
6.1.2.1. TV Standard Coding  
The FP RAM locations which manage the TV standard  
(selection/recognition) all use a 3-bit code for the 8 sup-  
ported standards. Table 6–6 shows the code definition.  
Table 6–6: TV Standard Coding  
Code  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Standard  
PAL B, G, H, I  
NTSC M  
SECAM  
Lines  
625  
525  
625  
525  
525  
625  
525  
525  
V-Frequency  
Carrier  
Name  
PAL  
50  
60  
50  
60  
60  
50  
60  
60  
4.433618  
3.579545  
4.286000  
4.433618  
3.575611  
3.582056  
4.433618  
3.579545  
NTSC  
SECAM  
NTSC44  
PALM  
NTSC 44  
PAL M  
PAL N  
PALN  
PAL 60  
PAL60  
NTSCC  
NTSC Comb  
MICRONAS INTERMETALL  
85  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
7. Application Notes  
7.2. Impact to Signal to Noise Ratio  
Fig. 7–1 shows the impact of the variation of the power  
supply with respect to the SNR of the ADCs. The noise  
due to the digital output interface leads to an impact of  
theanalogperformanceoftheanalogADCs. Application  
engineersshouldminimizeloadcapacitancesanddriver  
strength of the output signals.  
7.1. Differences between VPX 3220A and VPX 322xD  
The following items indicate the differences between the  
VPX 322xD and the VPX 3220A:  
Internal  
45  
44  
43  
42  
41  
40  
39  
2
– The control registers (I C and FP-RAM) contain signif-  
icant changes.  
– VPX 322xD incorporates a text slicer. Furthermore,  
raw ADC data is supported (sampling frequency of  
20.25 MHz/8 bit, output data rate 13.5 MHz/16 bit).  
– VPX 322xD does not support RGB and compressed  
video data output formats. The VPX 322xD supports  
ITU-R601 and ITU-R656.  
38  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
PVDD [V]  
– The VPX 322xD does not provide an asynchronous  
output mode, PIXCLK functions as an output only. The  
VPX 322xD supports half-clock data rate (6.75 MHz).  
Fig. 7–1: Dependency between SNR and  
Power Supply  
– The VPX 322xD does not provide a video data rate of  
20.25 MHz at the output interface.  
Note: Both ADCs are working and routed to A[7:0], and  
B[7:0]. All interfaces are working with maximum driver  
strength bandwidth measurement is performed up to 5  
MHz.  
– The VPX 322xD has an implemented low power  
mode.  
External  
7.3. Control Interface  
7.3.1. Symbols  
– Power-up Default Selection  
Selection  
VPX 3220A  
VPX 322xD  
<
>
aa  
dd  
Start Condition  
Stop Condition  
(Sub-)Address Byte  
Data Byte  
2
I C device  
PREF  
OE  
address  
wake-up default  
Pads tristate/  
active  
PIXCLK  
FIELD  
2
7.3.2. Write Data into I C Register  
<86 f2 dd>  
write to register OENA  
2
– The VPX 322xD does not use the internal I C bus for  
power-up initialization. Resultingly, the I C interface  
will not be locked during that period.  
2
2
7.3.3. Read Data from I C Register  
<86 00 <87 dd>  
read Manufacture ID  
– The VPX 322xD supports an 8-bit programmable out-  
put port if the device uses only A[7:0] for video data  
output.  
7.3.4. Write Data into FP Register  
<86 35 <87 dd>  
<86 37 aa aa>  
<86 35 <87 dd>  
<86 38 dd dd>  
poll busy bit[2] until it is cleared  
– The VPX 322xD provides a HREF signal with a fixed  
low period, whereas the width of the high period will  
vary while the video input signal varies.  
write FP register write address  
poll busy bit[2] until it is cleared  
write data into FP register  
7.3.5. Read Data from FP Register  
<86 35 <87 dd>  
<86 36 aa aa>  
<86 35 <87 dd>  
poll busy bit[2] until it is cleared  
write FP register read address  
poll busy bit[2] until it is cleared  
<86 38 <87 dd dd> read data from FP register  
86  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
7.3.6. Sample Control Code  
A Windows API function set is provided for controlling  
the VPX. This API is independent of the actual used ver-  
sion of the VPX. It is recommended to control the VPX  
via this API, which allows flexible switching between dif-  
ferent VPX family members. The API is available on re-  
quest. The following code demontrates the usage of the  
API to initialize the VPX.  
#include <vpx.h>  
VPXInit();  
// VPXAPI support header  
// initializes the VPX from an INI file  
VPXSetVideoSource(VPX_VIN1, VPX_COMPOSITE);  
VPXSetVideoWindow(VPX_VIDEO_WINDOW1, 23, 288, 0, 720, 720, 3000, 0);  
VPXSetVideoWindow(VPX_VIDEO_WINDOW2, 0,  
0, 0,  
0,  
0,  
0,  
0, 0);  
0, 0);  
VPXSetVideoWindow(VPX_VBI_WINDOW,  
VPXSetVideoStandard(VPX_PAL);  
320, 336, 7, 23,  
VPXSetVBIMode(VPX_VBI_SLICED_DATA, VPX_VBI_ACTIVE);  
VPXSetVideoAttribute(VPX_VIDEO_WINDOW1, VPX_CONTRAST,  
128);  
VPXSetVideoAttribute(VPX_VIDEO_WINDOW1, VPX_BRIGHTNESS, 128);  
VPXSetVideoAttribute(VPX_VIDEO_WINDOW1, VPX_SATURATION, 128);  
VPXSetVideoAttribute(VPX_VIDEO_WINDOW1, VPX_HUE,  
VPXSetVideoAttribute(VPX_VIDEO_WINDOW1, VPX_PEAKING,  
VPXSetVideoAttribute(VPX_VIDEO_WINDOW1, VPX_CORING,  
128);  
128);  
128);  
7.4. Xtal Supplier  
Name  
Part No.  
Country  
Phone  
Contact  
Notes  
Acal Auremia  
2351051  
Germany  
+49 (713) 15810  
(905) 623 4101  
(619) 433–4510  
(408) 257–3399  
Crystal Holder  
HC49U  
Lap Tech  
XT1750  
Canada  
USA  
Bob Parkins  
Specify 13 pF  
Load Cap  
Monitor Product  
Co.  
MM 49x–5297  
5009–359@20.25  
Mtron  
USA  
George Panos  
MICRONAS INTERMETALL  
87  
Mode  
PA0..7  
PB0..7  
front view to the female mini DIN connector  
ITU-601  
ITU-601 double  
ITU-656  
Luma  
Chroma  
SV1  
S-VHS  
Luma/Chroma  
GPO0..7  
C18  
3
1
4
Luma/Chr./Sync GPO0..7  
2
R3  
75  
680nF  
5
C17  
1nF  
R2  
75  
Y[0..7]  
Y[0..7]  
U1  
CIN  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
37  
17  
16  
15  
14  
10  
9
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
SV2  
CINCH  
C1  
39  
40  
42  
VIN1  
VIN2  
VIN3  
R4 680nF  
75  
UV[0..7]  
41  
43  
8
VRT  
ISGND  
UV[0..7]  
C2  
10uF  
C3  
47nF  
7
UV0  
UV1  
UV2  
UV3  
UV4  
UV5  
UV6  
UV7  
35  
34  
28  
27  
26  
25  
24  
23  
22  
21  
XTAL1  
XTAL2  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
29  
30  
SDA  
SCL  
Y1  
SV3  
CINCH  
C19  
TMS  
TDI  
TCK  
44  
1
2
TMS  
TDI  
TCK  
20.25MHz  
R5 680nF  
75  
C5  
4.7pF  
C4  
4.7pF  
3
DACT/LLC2/TDO  
DACT/LLC2/TDO  
18  
31  
OE  
4
5
6
HREF  
VREF  
FIELD  
HREF  
VREF  
FIELD  
RES  
33  
11  
36  
32  
13  
38  
VDD  
20  
19  
PVDD  
AVDD  
VSS  
VACT  
FSY/LLC  
VACT  
FSY/LLC  
12  
PVSS  
AVSS  
VPX3225D  
PIXCLK  
44PLCC  
PIXCLK  
VCC  
VCC  
VCC  
L1  
R6  
4.7K  
R7  
4.7K  
22uH  
C7  
22uF  
C8  
100nF  
Analog/Digital  
Junction directly  
under VPX3225D  
RESET  
SCL  
SDA  
Analog Plane  
Digital Plane  
Place bypass caps as close as possible  
to VPX3225D.  
Keep Analog and Digital components in  
seperate areas (analog/digital ground plane).  
L2  
22uH  
C10  
100nF  
ITT Intermetall GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg, Germany  
R1  
68  
Title  
D1  
ZTE3.3  
C6  
220nF  
VPX3225D Application  
SizeDocument Number  
B
REV  
A
1
For 5V outputs:  
Bypass R1  
remove D1  
Date:  
May 21, 1997Sheet  
1 of  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
MICRONAS INTERMETALL  
89  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
90  
MICRONAS INTERMETALL  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
MICRONAS INTERMETALL  
91  
VPX 3225D, VPX 3224D  
PRELIMINARY DATA SHEET  
8. Data Sheet History  
1. Preliminary data sheet: “VPX 3225D, VPX 3224D  
Video Pixel Decoders”, Edition March 5, 1997,  
6251-432-1PD. First release of the preliminary data  
sheet.  
MICRONAS INTERMETALL GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
All information and data contained in this data sheet are with-  
out any commitment, are not to be considered as an offer for  
conclusion of a contract nor shall they be construed as to  
create any liability. Any new issue of this data sheet invalidates  
previous issues. Product availability and delivery dates are ex-  
clusively subject to our respective order confirmation form; the  
same applies to orders based on development samples deliv-  
ered. By this publication, MICRONAS INTERMETALL GmbH  
does not assume responsibility for patent infringements or  
other rights of third parties which may result from its use.  
Reprinting is generally permitted, indicating the source. How-  
ever, our prior consent must be obtained in all cases.  
E-mail: docservice@intermetall.de  
Internet: http://www.intermetall.de  
Printed in Germany  
Order No. 6251-432-1PD  
92  
MICRONAS INTERMETALL  
End of Data Sheet  
Multimedia ICs  
Back to Summary  
MICRONAS  
Back to Data Sheets  

相关型号:

VPX3224D-C3

Microprocessor
ETC

VPX3224E

Video Pixel Decoders
MICRONAS

VPX3224E

Consumer IC,
TDK

VPX3224EPQ

Consumer Circuit, PQCC44, PLASTIC, LCC-44
TDK

VPX3225D

Video Pixel Decoders
ETC

VPX3225D-B2

Color Signal Decoder, PQCC44, PLASTIC, LCC-44
TDK

VPX3225D-C3

Microprocessor
ETC

VPX3225E

Video Pixel Decoders
MICRONAS

VPX3225E

Consumer IC,
TDK

VPX3225EQG

Consumer Circuit, PQFP44, METRIC, PLASTIC, QFP-44
TDK

VPX3226E

Video Pixel Decoders
MICRONAS

VPX3226EQG

Consumer Circuit, PQFP44, PLASTIC, QFP-44
TDK