S2008R12V [TECCOR]

Thyristor Product Catalog; 晶闸管产品目录
S2008R12V
型号: S2008R12V
厂家: TECCOR ELECTRONICS    TECCOR ELECTRONICS
描述:

Thyristor Product Catalog
晶闸管产品目录

文件: 总224页 (文件大小:2673K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Thyristor  
Product  
Catalog  
Teccor Electronics  
1800 Hurd Drive  
Irving, Texas 75038  
United States of America  
Phone: +1 972-580-7777  
Fax: +1 972-550-1309  
Website: http://www.teccor.com  
E-mail: power.techsales@teccor.com  
©2002 Teccor Electronics  
Thyristor Product Catalog  
i
http://www.teccor.com  
+1 972-580-7777  
Teccor Electronics reserves the right to make changes at any time in order to improve designs and to supply the best products possible.  
The information in this catalog has been carefully checked and is believed to be accurate and reliable; however, no liability of any type  
shall be incurred by Teccor for the use of the circuits or devices described in this publication. Furthermore, no license of any patent  
rights is implied or given to any purchaser.  
Teccor Electronics is the proprietor of the QUADRAC® trademark.  
is a registered trademark of Underwriters Laborato-  
ries, Inc. All other brand names may be trademarks of their respective companies. To conserve space in this catalog, the  
trademark sign (®) is omitted.  
http://www.teccor.com  
+1 972-580-7777  
ii  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Contents  
Product Selection Guide  
Product Descriptions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vi  
Circuit Requirement Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vii  
Product Packages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - viii  
Description of Part Numbers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x  
Quality and Reliability Assurance - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -xii  
Standard Terms and Conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - xiv  
Data Sheets  
V-I Characteristics of Thyristor Devices - - - - - - - - - - - - - - - - - - - - - - - - E0-2  
Electrical Parameter Terminology - - - - - - - - - - - - - - - - - - - - - - - - - - - - E0-3  
Electrical Specifications  
Sensitive Triacs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E1  
Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E2  
QUADRACs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E3  
Alternistor Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E4  
Sensitive SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E5  
SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E6  
Rectifiers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E7  
Diacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E8  
SIDAC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E9  
Mechanical Specifications  
Package Dimensions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M1  
Lead Form Dimensions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M2  
Packing Options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M3  
Application Notes  
Fundamental Characteristics of Thyristors - - - - - - - - - - - - - - - - - - - AN1001  
Gating, Latching, and Holding of SCRs and Triacs - - - - - - - - - - - - - AN1002  
Phase Control Using Thyristors- - - - - - - - - - - - - - - - - - - - - - - - - - - AN1003  
Mounting and Handling of Semiconductor Devices - - - - - - - - - - - - - AN1004  
Surface Mount Soldering Recommendations - - - - - - - - - - - - - - - - - AN1005  
Testing Teccor Semiconductor Devices  
Using Curve Tracers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AN1006  
Thyristors Used As AC Static Switches and Relays - - - - - - - - - - - - AN1007  
Explanation of Maximum Ratings and Characteristics for Thyristors - AN1008  
Miscellaneous Design Tips and Facts - - - - - - - - - - - - - - - - - - - - - - AN1009  
Thyristors for Ignition of Fluorescent Lamps- - - - - - - - - - - - - - - - - - AN1010  
Appendix  
Cross Reference Guide - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A1  
Part Numbers Index- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A27  
©2002 Teccor Electronics  
Thyristor Product Catalog  
iii  
http://www.teccor.com  
+1 972-580-7777  
http://www.teccor.com  
+1 972-580-7777  
iv  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Product Selection Guide  
Product Descriptions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 2  
Circuit Requirement Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P3  
Product Packages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 4  
Description of Part Numbers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - P 6  
Quality and Reliability Assurance - - - - - - - - - - - - - - - - - - - - - - - - - P 8  
Standard Terms and Conditions - - - - - - - - - - - - - - - - - - - - - - - - - P 10  
©2002 Teccor Electronics  
Thyristor Product Catalog  
P - 1  
http://www.teccor.com  
+1 972-580-7777  
Product Descriptions  
Thyristors  
Sensitive SCRs  
Teccor's sensitive gate SCRs are silicon-controlled rectifiers repre-  
senting the best in design, performance, and packaging techniques  
for low- and medium-current applications.  
Anode currents of 0.8 A to 10 A rms can be controlled by sensitive  
gate SCRs with gate drive currents ranging from 12 µA to 500 µA.  
Sensitive gate SCRs are ideally suited for interfacing to integrated  
circuits or in applications where high current load requirements and  
limited gate drive current capabilities exist. Examples include igni-  
tion circuits, motor controls, and DC latching for alarms in smoke  
detectors. Sensitive gate SCRs are available in voltage ratings to  
600 V ac.  
A thyristor is any semiconductor switch with a bi-stable action  
depending on p-n-p-n regenerative feedback. Thyristors are nor-  
mally two- or three-terminal devices for either unidirectional or bi-  
directional circuit configurations. Thyristors can have many forms,  
but they have certain commonalities. All thyristors are solid state  
switches that are normally open circuits (very high impedance),  
capable of withstanding rated blocking/off-state voltage until trig-  
gered to on state. When triggered to on state, thyristors become a  
low-impedance current path until principle current either stops or  
drops below a minimum holding level. After a thyristor is triggered  
to on-state condition, the trigger current can be removed without  
turning off the device. Thyristors are used to control the flow of  
electrical currents in applications including:  
SCRs  
Home appliances (lighting, heating, temperature control, alarm  
activation, fan speed)  
Teccor's SCR products are half-wave, silicon-controlled rectifiers  
that represent the state of the art in design and performance.  
Electrical tools (for controlled actions such as motor speed, sta-  
pling event, battery charging)  
Outdoor equipment (water sprinklers, gas engine ignition, elec-  
tronic displays, area lighting, sports equipment, physical fitness)  
Load current capabilities range from 1 A to 70 A rms, and voltages  
from 200 V to 1000 V may be specified to meet a variety of appli-  
cation needs.  
Because of its unidirectional switching capability, the SCR is used  
in circuits where high surge currents or latching action is required.  
It may also be used for half-wave-type circuits where gate-con-  
trolled rectification action is required. Applications include crow-  
bars in power supplies, camera flash units, smoke alarms, motor  
controls, battery chargers, and engine ignition.  
Sensitive Triacs  
Teccor's sensitive gate triacs are AC bidirectional silicon  
switches that provide guaranteed gate trigger current levels in  
Quadrants I, II, III, and IV. Interfacing to microprocessors or other  
equipment with single polarity gate triggering is made possible with  
sensitive gate triacs. Gate triggering currents of 3 mA, 5 mA,  
10 mA, or 20 mA may be specified.  
Surge current ratings are available from 30 A in the TO-92 packag-  
ing to 950 A in the TO-218X package.  
Sensitive gate triacs are capable of controlling AC load currents  
from 0.8 A to 8 A rms and can withstand operating voltages from  
200 V to 600 V.  
Rectifiers  
Teccor manufactures 15 A to 25 A rms rectifiers with voltages  
rated from 200 V to 1000 V. Due to the electrically isolated TO-220  
package, these rectifiers may be used in common anode or com-  
mon cathode circuits using only one part type, thereby simplifying  
stock requirements.  
Triacs  
Teccor's triac products are bidirectional AC switches, capable of  
controlling loads from 0.8 A to 35 A rms with 10 mA, 25 mA, and  
50 mA IGT in operating Quadrants I, II and III.  
Triacs are useful in full-wave AC applications to control AC power  
either through full-cycle switching or phase control of current to the  
load element. These triacs are rated to block voltage in the “OFF”  
condition from 200 V minimum with selected products capable of  
1000 V operation. Typical applications include motor speed con-  
trols, heater controls, and incandescent light controls.  
Diacs  
Diacs are trigger devices used in phase control circuits to provide  
gate pulses to a triac or SCR. They are voltage-triggered bidirec-  
tional silicon devices housed in DO-35 glass axial lead packages  
and DO-214 surface mount packages.  
Diac voltage selections from 27 V to 45 V provide trigger pulses  
closely matched in symmetry at the positive and negative break-  
over points to minimize DC component in the load circuit.  
Some applications include gate triggers for light controls, dimmers,  
power pulse circuits, voltage references in AC power circuits, and  
triac triggers in motor speed controls.  
Quadrac  
Quadrac devices, originally developed by Teccor, are triacs and  
alternistor triacs with a diac trigger mounted inside the same pack-  
age. These devices save the user the expense and assembly time  
of buying a discrete diac and assembling in conjunction with a  
gated triac.  
Sidacs  
Sidacs represent a unique set of thyristor qualities. The sidac is a  
bidirectional voltage triggered switch. Some characteristics of this  
device include a normal 95 V to 330 V switching point, negative  
resistance range, latching characteristics at turn-on, and a low on-  
state voltage drop.  
One-cycle surge current capability up to 20 A makes the sidac an  
ideal product for dumping charged capacitors through an inductor  
in order to generate high-voltage pulses. Applications include light  
controls, high-pressure sodium lamp starters, power oscillators,  
and high-voltage power supplies.  
The Quadrac is offered in capacities from 4 A to 15 A rms and volt-  
ages from 200 V ac to 600 V ac.  
Alternistor Triacs  
The Teccor alternistor is specifically designed for applications  
required to switch highly inductive loads. The design of this special  
chip effectively offers the same performance as two thyristors  
(SCRs) wired inverse parallel (back-to-back).  
This new chip construction provides the equivalent of two electri-  
cally-separate SCR structures, providing enhanced dv/dt charac-  
teristics while retaining the advantages of a single-chip device.  
Teccor manufactures 6 A to 40 A alternistors with blocking voltage  
rating from 200 V to 1000 V. Alternistors are offered in TO-220,  
TO-218, and TO-218X packages with isolated and non-isolated  
versions.  
http://www.teccor.com  
P - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog(972) 580-7777  
+1 972-580-7777  
Circuit Requirement Diagram  
BILATERAL VOLTAGE  
SWITCH  
RECTIFIER  
REVERSE BLOCKING  
THYRISTOR  
BIDIRECTIONAL  
THYRISTOR  
BILATERAL  
VOLTAGE TRIGGER  
DIAC *  
RECTIFIER *  
SIDAC *  
GATE CONTROL  
DIAC TRIGGER  
GATE CURRENT  
DIRECT  
12-500 µA  
10-50 mA  
OPTIONS  
INTERNAL EXTERNAL  
QUADRANT OPERATION  
(See Quadrant Chart on Data Sheet)  
SCR (Sensitive) *  
SCR *  
I
I I I I I  
I
I I I I I I V  
GATE CURRENT  
10-100 mA  
GATE CURRENT  
3-20 mA  
DIACS *  
QUADRAC *  
TRIAC *  
ALTERNISTOR TRIAC *  
SENSITIVE TRIAC *  
* For detailed information, see specific data sheet in product catalog.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
P - 3  
http://www.teccor.com  
+1 972-580-7777  
Product Packages  
Isolated Mounting Tab  
Package Code  
G
Y
S
C
E
L
K
J
P
Product  
Type  
Current  
(Amps)  
TO-3  
DO-15  
DO-35  
DO-214  
Compak  
TO-92 *  
TO-220  
TO-218  
TO-218X  
Fastpak  
0.8  
1
Sensitive  
Triac  
4
6
8
0.8  
1
4
6
8
10  
15  
25  
35  
4
Triac  
6
8
Quadrac  
10  
15  
6
8
10  
12  
16  
25  
30  
35  
40  
0.8  
1.5  
4
Alternistor  
Sensitive  
SCR  
6
8
10  
1
6
8
10  
12  
15  
16  
20  
25  
35  
40  
55  
65  
70  
15  
20  
25  
SCR  
Rectifier  
Diac  
Sidac  
*  
* No center lead on TO-92 Sidacs.  
http://www.teccor.com  
+1 972-580-7777  
P - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog(972) 580-7777  
Product Packages  
Non-isolated Mounting Tab  
Package Code  
F
R
M
W
D
V
N
Current  
(Amps)  
Product  
Type  
TO-252  
D-Pak  
TO-251  
V-Pak  
TO-263  
D2Pak  
TO-202  
TO-220  
TO-218  
TO-218X  
0.8  
1
Sensitive  
Triac  
4
6
8
0.8  
1
4
6
8
Triac  
10  
15  
25  
35  
4
6
8
Quadrac  
10  
15  
6
8
10  
12  
16  
25  
30  
35  
40  
0.8  
1.5  
4
6
8
10  
1
6
Alternistor  
Sensitive SCR  
8
10  
12  
15  
16  
20  
25  
35  
40  
55  
65  
70  
15  
20  
25  
SCR  
Rectifier  
Diac  
Sidac  
©2002 Teccor Electronics  
Thyristor Product Catalog  
P - 5  
http://www.teccor.com  
+1 972-580-7777  
Description of Part Numbers  
Sensitive Triac  
Triac and Alternistor  
L
20  
04  
F
5
12  
X
Q
20  
04  
F
3
1
X
Special Options  
V = 4000 V Isolation  
Device Type  
Special Options  
Device Type  
(TO-220 Package Only)  
Q = Triac or Alternistor  
V = 4000 V Isolation  
L = Sensitive Triac  
(TO-220 Package Only)  
Lead Form Dimensions  
TO-202  
Voltage Rating  
20 = 200 V  
40 = 400 V  
60 = 600 V  
Voltage Rating  
20 = 200 V  
40 = 400 V  
60 = 600 V  
80 = 800 V  
K0 = 1000 V  
Lead Form Dimensions  
TO-202  
TO-220  
TO-92  
TO-220  
TO-92  
Gate Variations  
3 = 3 mA (Q I, II, III, IV)  
5 = 5 mA (Q I, II, III, IV)  
6 = 5 mA (Q I, II, III)  
6 = 10 mA (Q IV)  
Current Rating  
X8 = 0.8 A  
N = 1 A  
TO-218X  
TO-218  
Current Rating  
X8 = 0.8 A  
01 = 1 A  
01 = 1 A  
Gate Variation  
04 = 4 A  
DH3 and VH3 = 10mA (Q I, II, III)  
3 = 10 mA (Q I, II, III)  
8 = 10 mA (Q I, II, III)  
8 = 20 mA (Q IV)  
06 = 6 A  
04 = 4 A  
08 = 8 A  
H3 = 20mA (Q I, II, III)  
4 = 25 mA (Q I, II, III)  
06 = 6 A  
08 = 8 A  
Package Type  
H4 = 35 mA (Q I, II, III) *  
5 = 50 mA (Q I, II, III)  
10 = 10 A  
12 = 12 A  
15 = 15 A  
25 = 25 A  
30 = 30 A  
35 = 35 A  
40 = 40 A  
Blank = Compak (Surface Mount)  
D = TO-252 (Surface Mount)  
E = TO-92 (Isolated)  
H5 = 50 mA (Q I, II, III) *  
6 = 80 mA (Q I, II, III) *  
7 = 100 mA (Q I, II, III) *  
F = TO-202 (Non-islolated)  
L = TO-220 (Isolated)  
* NOTE:  
V = TO-251 (Non-islolated)  
Alternistor device; no Quadrant IV operation  
Package Type  
D = TO-252 (Surface Mount)  
E = TO-92 (Isolated)  
Quadrac  
F = TO-202 (Non-isolated)  
J = TO-218X (Isolated)  
K = TO-218 (Isolated)  
Q
20  
04  
L
T
H
52  
X
L = TO-220 (Isolated)  
Special Options  
V = 4000 V Isolation  
Device Type  
N = TO-263 (Surface Mount)  
P = Fastpak (Isolated)  
Q = Quadrac  
(TO-220 Package Only)  
R = TO-220 (Non-isolated)  
V = TO-251 (Non-isolated)  
W = TO-218X (Non-isolated)  
Voltage Rating  
20 = 200 V  
40 = 400 V  
60 = 600 V  
Lead Form Dimensions  
TO-220  
Alternistor  
Gate Variation  
Current Rating  
04 = 4 A  
T = Internal Diac Trigger  
06 = 6 A  
Package Type  
08 = 8 A  
L = TO-220 (Isolated)  
10 = 10 A  
15 = 15 A  
Sensitive SCR  
S
20  
06  
F
S2  
21  
X
EC  
103  
D
1
75  
Special Options  
V = 4000 V Isolated  
Device Type  
Lead Form Dimensions  
TO-92  
Device Type  
TCR = TO-92 (Isolated)  
EC = TO-92 (Isolated)  
T = TO-202 (Non-isolated)  
2N = JEDEC (Isolated)  
(TO-220 Package Only)  
S = Sensitive SCR  
TO-202  
Lead Form Dimensions  
TO-202  
Voltage Rating  
20 = 200 V  
40 = 400 V  
60 = 600 V  
Gate Current (for EC series only)  
None = 200 µA  
1 = 12 µA  
TO-220  
Current Rating for TCR  
22 = 1.5 A  
2 = 50 µA  
Gate Variations  
S1 = 50 µA  
3 = 500 µA  
Current Rating for EC  
103 = 0.8 A  
Current Rating  
X8 = 0.8 A  
N = 1 A  
S2 = 200 µA  
S3 = 500 µA  
Voltage Rating for TCR  
-4 = 200 V  
Current Rating for T  
-6 = 400 V  
06 = 6 A  
106 = 4 A (IGT = 200 µA)  
107 = 4 A (IGT = 500 µA)  
-8 = 600 V  
Package Type  
08 = 8 A  
Blank = Compak (Surface Mount)  
D = TO-252 (Surface Mount)  
F = TO-202 (Non-islolated)  
L = TO-220 (Isolated)  
Voltage Rating for EC and T  
B = 200 V  
10 = 10 A  
Current Rating for 2N  
5xxx = 0.8 A  
D = 400 V  
M = 600 V  
V = TO-251 (Non-islolated)  
Voltage Rating for 2N  
5064 = 200 V  
6565 = 400 V  
http://www.teccor.com  
+1 972-580-7777  
P - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog(972) 580-7777  
Description of Part Numbers  
SCR  
Sidac  
S
20  
08  
F
12  
X
K
105  
0
E
70  
Device Type  
Special Options  
Device Type  
K = Sidac  
Lead Form Dimensions  
TO-202  
S = Non-sensitive SCR  
V = 4000 V Isolation  
(TO-220 Package Only)  
TO-92  
Voltage Rating  
20 = 200 V  
40 = 400 V  
60 = 600 V  
80 = 800 V  
K0 = 1000 V  
Voltage Rating  
105 = 95 V to 113 V  
Lead Form Dimensions  
Package Type  
E = TO-92 (Isolated)  
F = TO-202 (Non-islolated)  
G = DO-15X (Isolated)  
S = DO-214 (Surface Mount)  
-
TO 202  
110 = 104 V to 118 V  
120 = 110 V to 125 V  
130 = 120 V to 138 V  
140 = 130 V to 146 V  
150 = 140 V to 170 V  
200 = 190 V to 215 V  
220 = 205 V to 230 V  
240 = 220 V to 250 V  
250 = 240 V to 280 V  
300 = 270 V to 330 V  
-
TO 220  
-
TO 92  
-
TO 218X  
-
TO 218  
Current Rating  
01 = 1 A  
Current Rating  
0 = 1 A  
Package Type  
06 = 6 A  
-
D = TO 252 (Surface Mount)  
08 = 8 A  
-
E = TO 92 (Isolated)  
10 = 10 A  
12 = 12 A  
15 = 15 A  
16 = 16 A  
20 = 20 A  
25 = 25 A  
35 = 35 A  
55 = 55 A  
65 = 65 A  
70 = 70 A  
F = TO-202 (Non-isolated)  
J = TO-218X (Isolated)  
K = TO-218 (Isolated)  
L = TO-220 (Isolated)  
M = TO-218 (Non-isolated)  
N = TO-263 (Surface Mount)  
R = TO-220 (Non-isolated)  
-
V = TO 251 (Non-isolated)  
W = TO-218X (Non-isolated)  
Rectifier  
D
20  
15  
L
55  
V
Device Type  
D = Rectifier  
Special Options  
V = 4000 V Isolation  
Voltage Rating  
20 = 200 V  
40 = 400 V  
60 = 600 V  
80 = 800 V  
K0 = 1000 V  
Lead Form Dimensions  
TO-220  
Package Type  
L = TO-220 (Isolated)  
Current Rating  
15 = 15 A  
20 = 20 A  
25 = 25 A  
Diac  
HT  
32  
91  
Device Type  
HT = Diac Trigger in DO-35  
ST = Diac Trigger in DO-214  
Lead Form Dimensions  
DO-35  
Voltage Rating  
32 = 27 V to 37 V  
35 = 30 V to 40 V  
40 = 35 V to 45 V  
32A / 5761 = 28 V to 36 V  
32B / 5761A = 30 V to 34 V  
34B = 32 V to 36 V  
36A / 5762 = 32 V to 40 V  
36B = 34 V to 38 V  
©2002 Teccor Electronics  
Thyristor Product Catalog  
P - 7  
http://www.teccor.com  
+1 972-580-7777  
Quality and Reliability  
It is Teccor’s policy to ship quality products on time. We accom-  
plish this through Total Quality Management based on the funda-  
mentals of customer focus, continuous improvement, and people  
involvement.  
All products must first undergo rigid quality design reviews and  
pass extensive environmental life testing. Teccor uses Statistical  
Process Control (SPC) with associated control charts throughout  
to monitor the manufacturing processes.  
In support of this commitment, Teccor applies the following princi-  
Only those products which pass tests designed to assure Tec-  
cor's high quality and reliability standards, while economically  
satisfying customer requirements, are approved for shipment. All  
new products and materials must receive approval of QRA prior  
to being released to production.  
The combination of reliability testing, process controls, and lot  
tracking assures the quality and reliability of Teccor's devices.  
Since even the best control systems cannot overcome measure-  
ment limitations, Teccor designs and manufactures its own com-  
puterized test equipment.  
ples:  
Employees shall be respected, involved, informed, and qualified  
for their job with appropriate education, training, and experience.  
Customer expectations shall be met or exceeded by consistently  
shipping products that meet the agreed specifications, quality  
levels, quantities, schedules, and test and reliability parameters.  
Suppliers shall be selected by considering quality, service, deliv-  
ery, and cost of ownership.  
Design of products and processes will be driven by customer  
needs, reliability, and manufacturability.  
Teccor's Reliability Engineering Group conducts ongoing product  
reliability testing to further confirm the design and manufacturing  
parameters.  
It is the responsibility of management to incorporate these  
principles into policies and systems.  
It is the responsibility of those in leadership roles to coach their  
people and to reinforce these principles.  
It is the responsibility of each individual employee to follow the  
spirit of this statement to ensure that we meet the primary policy  
— to ship quality products on time.  
Quality Assurance  
Incoming Material Quality  
Teccor “Vendor Analysis” programs provide stringent require-  
ments before components are delivered to Teccor. In addition,  
purchased materials are tested rigidly at incoming inspection for  
specification compliance prior to acceptance for use.  
Process Controls  
From silicon slice input through final testing, we use statistical  
methods to control all critical processes. Process audits and lot  
inspections are performed routinely at all stages of the manufac-  
turing cycle.  
Parametric Testing  
All devices are 100% computer tested for specific electrical char-  
acteristics at critical processing points.  
Final Inspection  
Each completed manufacturing lot is sampled and tested for  
compliance with electrical and mechanical requirements.  
Reliability Testing  
Random samples are taken from various product families for  
ongoing reliability testing.  
Finished Goods Inspection  
Product assurance inspection is performed immediately prior to  
shipping.  
Design Assurance  
The design and production of Teccor devices is a demanding and  
challenging task. Disciplined skills coupled with advanced com-  
puter-aided design, production techniques, and test equipment  
are essential elements in Teccor's ability to meet your demands  
for the very highest levels of quality.  
http://www.teccor.com  
+1 972-580-7777  
P - 8  
©2002 Teccor Electronics  
Thyristor Product Catalog(972) 580-7777  
Quality and Reliability  
Reliability Stress Tests  
The following table contains brief descriptions of the reliability tests commonly used in evaluating Teccor product reliability on a peri-  
odic basis. These tests are applied across product lines depending on product availability and test equipment capacities. Other tests  
may be performed when appropriate.  
Test Type  
Typical Conditions  
Test Description  
Standards  
T = 100 °C to 150 °C, Bias @  
Evaluation of the reliability of  
product under bias conditions  
and elevated temperature  
MIL-STD-750, M-1040  
High Temperature  
A
AC Blocking  
100%  
Rated VDRM, t = 24 hrs to 1000 hrs  
TA = 150 °C, t = 250 to 1000 hrs Evaluation of the effects on  
devices after long periods of  
MIL-STD-750, M-1031  
High Temperature  
Storage Life  
storage at high temperature  
TA = 85 °C to 95 °C, rh = 85% to Evaluation of the reliability of non- EIA / JEDEC, JESD22-A101  
Temperature and Humidity  
Bias Life  
hermetic packaged devices in  
95%  
humid environments  
Bias @ 80% Rated V  
(320 VDC max)  
DRM  
t = 168 to 1008 hrs  
TA = -65 °C to 150 °C,  
cycles = 10 to 500  
Evaluation of the device’s ability MIL-STD-750, M-1051,  
Temperature Cycle  
[Air to Air]  
to withstand the exposure to  
extreme temperatures and the  
forces of TCE during transitions  
between temperatures  
EIA / JEDEC, JESD22-A104  
TA = 0 °C to 100 °C, ttxfr = 10 s, Evaluation of the device’s ability MIL-STD-750, M-1056  
Thermal Shock  
to withstand the sudden changes  
cycled = 10 to 20  
[Liquid to Liquid]  
in temperature and exposure to  
extreme temperatures  
TA = 121 °C, rh = 100%, P = 15 psig, Accelerated environmental test to EIA / JEDEC, JESD22-A102  
Autoclave  
evaluate the moisture resistance  
t = 24 hrs to 168 hrs  
of plastic packages  
TA = 260 °C, t = 10 s  
Evaluation of the device’s ability MIL-STD-750, M-2031  
to withstand the temperatures as  
seen in wave soldering  
Resistance to  
Solder Heat  
operations  
Steam aging = 1 hr to 8 hrs,  
Evaluation of the solderability of MIL-STD-750, M-2026,  
Solderability  
T
= 245 °C, Flux = R  
device terminals after an  
extended period  
ANSI-J-STD-002  
solder  
Flammability Test  
For the UL 94V0 flammability test, all expoxies used in Teccor encapsulated devices are recognized by Underwriters Laboratories  
©2002 Teccor Electronics  
Thyristor Product Catalog  
P - 9  
http://www.teccor.com  
+1 972-580-7777  
Standard Terms and Conditions  
Supplier shall not be bound by any term proposed by Buyer in the  
absence of written agreement to such term signed by an autho-  
rized officer of Supplier.  
(4) TITLE AND DELIVERY: Title to goods ordered by Buyer and  
risk of loss or damage in transit or thereafter shall pass to  
Buyer upon Supplier's delivery of the goods at Supplier's  
plant or to a common carrier for shipment to Buyer.  
(1) PRICE:  
(A) Supplier reserves the right to change product prices at  
any time but, whenever practicable, Supplier will give  
Buyer at least thirty (30) days written notice before the  
effective date of any price change. Unless Supplier has  
specifically agreed in writing, signed by an authorized  
officer of Supplier, that a quoted price shall not be sub-  
ject to change for a certain time, all products shipped on  
or after the effective date of a price change may be  
billed at the new price level.  
(5) CONTINGENCIES: Supplier shall not be responsible for any  
failure to perform due to causes reasonably beyond its con-  
trol. These causes shall include, but not be restricted to, fire,  
storm, flood, earthquake, explosion, accident, acts of public  
enemy, war rebellion, insurrection, sabotage, epidemic,  
quarantine restrictions, labor disputes, labor shortages, labor  
slow downs and sit downs, transportation embargoes, failure  
or delays in transportation, inability to secure raw materials  
or machinery for the manufacture of its devices, acts of God,  
acts of the Federal Government or any agency thereof, acts  
of any state or local government or agency thereof, and judi-  
cial action. Similar causes shall excuse Buyer for failure to  
take goods ordered by Buyer, from the time Supplier  
receives written notice from Buyer and for as long as the dis-  
abling cause continues, other than for goods already in tran-  
sit or specially fabricated and not readily saleable to other  
buyers.  
(B) Whenever Supplier agrees to a modification of Buyer's  
order (which modification must be in writing and signed  
by an authorized officer of Supplier), Supplier reserves  
the right to alter its price, whether or not such price was  
quoted as “firm.”  
(C) Prices do not include federal, state or local taxes, now or  
hereafter enacted, applicable to the goods sold. Taxes  
will be added by Supplier to the sales prices whenever  
Supplier has legal obligation to collect them and will be  
paid by Buyer as invoiced unless Buyer provides Sup-  
plier with a proper tax exemption certificate.  
Supplier assumes no responsibility for any tools, dies, and  
other equipment furnished Supplier by Buyer.  
(2) PRODUCTION: Supplier may, at its sole discretion and at  
any time, withdraw any catalog item from further production  
without notice or liability to Buyer.  
(6) LIMITED WARRANTY AND EXCLUSIVE REMEDY: Supplier  
warrants all catalog products to be free from defects in mate-  
rials and workmanship under normal and proper use and  
application for a period of twelve (12) months from the date  
code on the product in question (or if none, from the date of  
delivery to Buyer.) With respect to products assembled, pre-  
pared, or manufactured to Buyer's specifications, Supplier  
warrants only that such products will meet Buyer's specifica-  
tions upon delivery. As the party responsible for the specifi-  
cations, Buyer shall be responsible for testing and inspecting  
the products for adherence to specifications, and Supplier  
shall have no liability in the absence of such testing and  
inspection or if the product passes such testing or inspec-  
tion. THE ABOVE WARRANTY IS THE ONLY WARRANTY  
EXTENDED BY SUPPLIER, AND IS IN LIEU OF AND  
EXCLUDES ALL OTHER WARRANTIES AND CONDI-  
TIONS, EXPRESSED OR IMPLIED (EXCEPT AS PRO-  
VIDED HEREIN AS TO TITLE), ON ANY GOODS OR  
SERVICES SOLD OR RENDERED BY SUPPLIER, INCLUD-  
ING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
AND FITNESS FOR A PARTICULAR PURPOSE. THIS  
WARRANTY WILL NOT CREATE WARRANTY COVERAGE  
FOR ANY ITEM INTO WHICH ANY PRODUCT SOLD BY  
SUPPLIER MAY HAVE BEEN INCORPORATED OR  
ADDED.  
(3) INTEREST:  
(A) All late payments shall bear interest thirty (30) days after  
the due date stated on the invoice until paid at the lower  
of one and one-half percent per month or the maximum  
rate permitted by law. All interest becoming due shall, if  
not paid when due, be added to principal and bear inter-  
est from the due date. At Supplier's option, any payment  
shall be applied first to interest and then to principal.  
(B) It is the intention of the parties to comply with the laws of  
the jurisdiction governing any agreement between the  
parties relating to interest. If any construction of the  
agreement between the parties indicates a different  
right given to Supplier to demand or receive any sum  
greater than that permissible by law as interest, such as  
a mistake in calculation or wording, this paragraph shall  
override. In any contingency which will cause the inter-  
est paid or agreed to be paid to exceed the maximum  
rate permitted by law, such excess will be applied to the  
reduction of any principal amount due, or if there is no  
principal amount due, shall be refunded.  
http://www.teccor.com  
+1 972-580-7777  
P - 10  
©2002 Teccor Electronics  
Thyristor Product Catalog(972) 580-7777  
Standard Terms and Conditions  
SUPPLIER'S ENTIRE LIABILITY AND BUYER'S EXCLU-  
SIVE REMEDY UNDER THIS WARRANTY SHALL BE, AT  
SUPPLIER'S OPTION, EITHER THE REPLACEMENT OF,  
REPAIR OF, OR ISSUANCE OF CREDIT TO BUYER'S  
ACCOUNT WITH SUPPLIER FOR ANY PRODUCTS  
WHICH ARE PROPERLY RETURNED BY BUYER DURING  
THE WARRANTY PERIOD. All returns must comply with the  
following conditions:  
(8) NON-WAIVER OF DEFAULT: Each shipment made under  
any order shall be treated as a separate transaction, but in  
the event of any default by Buyer, Supplier may decline to  
make further shipments without in any way affecting its rights  
under such order. If, despite any default by Buyer, Supplier  
elects to continue to make shipments, its action shall not  
constitute a waiver of that or any default by Buyer or in any  
way affect Supplier's legal remedies for any such default. At  
any time, Supplier's failure to exercise any right to remedy  
available to it shall not constitute a waiver of that right or  
remedy.  
(A) Supplier is to be promptly notified in writing upon discov-  
ery of defects by Buyer.  
(B) Buyer must obtain  
a Return Material Authorization  
(RMA) number from the Supplier prior to returning prod-  
uct.  
(9) TERMINATION: If the products to be furnished under this  
order are to be used in the performance of a Government  
contract or subcontract, and the Government terminates  
such contract in whole or part, this order may be canceled to  
the extent it was to be used in the canceled portion of said  
Government contract and the liability of Buyer for termination  
allowances shall be determined by the then applicable regu-  
lations of the Government regarding termination of contracts.  
Supplier may cancel any unfilled orders unless Buyer shall,  
upon written notice, immediately pay for all goods delivered  
or shall pay in advance for all goods ordered but not deliv-  
ered, or both, at Supplier's option.  
(C) The defective product is returned to Supplier, transporta-  
tion charges prepaid by Buyer.  
(D) Supplier's examination of such product discloses, to its  
satisfaction, that such defects have not been caused by  
misuse, neglect, improper installation, repair, alteration,  
or accident.  
(E) The product is returned in the form it was delivered with  
any necessary disassembly carried out by Buyer at  
Buyer's expense.  
IN NO EVENT SHALL SUPPLIER, OR ANYONE ELSE  
ASSOCIATED IN THE CREATION OF ANY OF SUPPLIER'S  
PRODUCTS OR SERVICES, BE LIABLE TO BUYER FOR  
INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY  
NATURE INCLUDING LOSS OF PROFITS, LOSS OF USE,  
BUSINESS INTERUPTION, AND THE LIKE. BUYER  
ACKNOWLEDGES THAT THE ABOVE WARRANTIES AND  
LIMITATIONS THEREON ARE APPROPRIATE AND REA-  
SONABLE IN EFFECTUATING SUPPLIER'S AND BUYER'S  
MUTUAL INTENTION TO CONDUCT AN EFFICIENT  
TRANSACTION AT PRICES MORE ADVANTAGEOUS TO  
BUYER THAN WOULD BE AVAILABLE IN THE PRESENCE  
OF OTHER WARRANTIES AND ASSURANCES.  
(10) LAW: The validity, performance and construction of these  
terms and conditions and any sale made hereunder shall be  
governed by the laws of the state of Texas.  
(11) ASSIGNS: This agreement shall not be assignable by  
either Supplier or Buyer. However, should either Supplier or  
Buyer be sold or transferred in its entirety and as an ongoing  
business, or should Supplier or Buyer sell or transfer in its  
entirety and as an ongoing concern, any division, depart-  
ment, or subsidiary responsible in whole or in part for the  
performance of this Agreement, this Agreement shall be  
binding upon and inure to the benefit of those successors  
and assigns of Supplier, Buyer, or such division, department,  
or subsidiary.  
(7) PATENTS: Buyer shall notify Supplier in writing of any claim  
that any product or any part of use thereof furnished under  
this agreement constitutes an infringement of any U.S.  
patent, copyright, trade secret, or other proprietary rights of a  
third party. Notice shall be given within a reasonable period  
of time which should in most cases be within ten (10) days of  
receipt by Buyer of any letter, summons, or complaint per-  
taining to such a claim. At its option, Supplier may defend at  
its expense any action brought against Buyer to the extent  
that it is based on such a claim. Should Supplier choose to  
defend any such claim, Supplier may fully participate in the  
defense, settlement, or appeal of any action based on such  
claim.  
(12) MODIFICATION OF STANDARD TERMS AND CONDI-  
TIONS: No attempted or suggested modification of or addi-  
tion to any of the provisions upon the face or reverse of this  
form, whether contained or arising in correspondence and/or  
documents passing between Supplier and Buyer, in any  
course of dealing between Supplier or Buyer, or in any cus-  
tomary usage prevalent among businesses comparable to  
those of Supplier and/or Buyer, shall be binding upon Sup-  
plier unless made and agreed to in writing and signed by an  
officer of Supplier.  
Should any product become, or in Supplier's opinion be likely  
to become, the subject of an action based on any such claim,  
Supplier may, at its option, as the Buyer's exclusive remedy,  
either procure for the Buyer the right to continue using the  
product, replace the product or modify the product to make it  
noninfringing. IN NO EVENT SHALL SUPPLIER BE LIABLE  
FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES  
BASED ON ANY CLAIM OF INFRINGEMENT.  
(13) QUANTITIES: Any variation in quantities of electronic com-  
ponents, or other goods shipped over or under the quantities  
ordered (not to exceed 5%) shall constitute compliance with  
Buyer's order and the unit price will continue to apply.  
Supplier shall have no liability for any claim based on modifi-  
cations of a product made by any person or entity other than  
Supplier, or based on use of a product in conjunction with  
any other item, unless expressly approved by Supplier. Sup-  
plier does not warrant goods against claims of infringement  
which are assembled, prepared, or manufactured to Buyer's  
specifications.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
P - 11  
http://www.teccor.com  
+1 972-580-7777  
Notes  
Data Sheets  
E0  
V-I Characteristics of Thyristor Devices - - - - - - - - - - - - - - - - - - - - - E0-2  
Electrical Parameter Terminology - - - - - - - - - - - - - - - - - - - - - - - - - E0-3  
Sensitive Triacs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E1  
Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E2  
QUADRACs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E3  
Alternistor Triacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E4  
Sensitive SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E5  
SCRs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E6  
Rectifiers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E7  
Diacs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E8  
SIDAC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E9  
©2002 Teccor Electronics  
Thyristor Product Catalog  
http://www.teccor.com  
+1 972-580-7777  
V-I Characteristics of Thyristor Devices  
+I  
+I  
Voltage Drop (VT) at  
Specified Current (iT)  
I
I
T
Latching Current (IL)  
R
H
S
Off-state Leakage  
Current – (IDRM  
Specified VDRM  
) at  
I
S
Minimum Holding  
Current (IH)  
I
BO  
I
DRM  
-V  
+V  
-V  
+V  
V
BO  
V
V
T
S
Specified Minimum  
Off-state  
(V - V )  
BO  
S
R
=
V
S
DRM  
Blocking  
(I - I  
)
S
BO  
Voltage (VDRM  
)
Breakover  
Voltage  
-I  
-I  
V-I Characteristics of Triac Device  
V-I Characteristics of Sidac Device with Negative Resistance  
+I  
+I  
Voltage Drop (VT) at  
Specified Current (iT)  
10 mA  
V  
Latching Current (IL)  
Breakover  
Current  
Off - State Leakage  
Current - (IDRM) at  
Specified VDRM  
Reverse Leakage  
Current - (IRRM) at  
I
Minimum Holding  
Specified VRRM  
BO  
Current (IH  
)
-V  
+V  
-V  
+V  
Specified Minimum  
Off - State  
Specified Minimum  
Reverse Blocking  
Blocking  
Breakover  
Voltage  
Voltage (VRRM  
)
Voltage (VDRM  
)
V
BO  
Reverse  
Breakdown  
Voltage  
Forward  
Breakover  
Voltage  
-I  
-I  
V-I Characteristics of SCR Device  
V-I Characteristics of Bilateral Trigger Diac  
http://www.teccor.com  
+1 972-580-7777  
E0 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Electrical Parameter Terminology  
tgt (Gate-controlled Turn-on Time) – Time interval between  
the 10% rise of the gate pulse and the 90% rise of the principal  
current pulse during switching of a thyristor from the off state to  
the on state  
Thyristor  
di/dt (Critical Rate-of-rise of On-state Current) – Maximum  
value of the rate-of-rise of on-state current which a thyristor can  
withstand without deleterious effect  
tq (Circuit-commutated Turn-off Time) – Time interval  
between the instant when the principal current has decreased to  
zero after external switching of the principal voltage circuit and  
the instant when the SCR is capable of supporting a specified  
principal voltage without turning on  
dv/dt (Critical Rate-of-rise of Off-state Voltage or Static  
dv/dt) – Minimum value of the rate-of-rise of principal voltage  
which will cause switching from the off state to the on state  
dv/dt(c) Critical Rate-of-rise of Commutation Voltage of a  
Triac (Commutating dv/dt) – Minimum value of the rate-of-rise  
of principal voltage which will cause switching from the off state  
to the on state immediately following on-state current conduction  
in the opposite quadrant  
VBO (Breakover Voltage) – Principal voltage at the breakover  
point  
VDRM (Repetitive Peak Off-state Voltage) – Maximum allow-  
able instantaneous value of repetitive off-state voltage that may  
be applied across a bidirectional thyristor (forward or reverse  
direction) or SCR (forward direction only)  
I2t (RMS Surge (Non-repetitive) On-state Fusing Current) –  
Measure of let-through energy in terms of current and time for  
fusing purposes  
VGT (Gate Trigger Voltage) – Minimum gate voltage required to  
produce the gate trigger current  
IBO (Breakover Current) – Principal current at the breakover  
point  
VRRM (Repetitive Peak Reverse Voltage) – Maximum allow-  
able instantaneous value of a repetitive reverse voltage that may  
be applied across an SCR without causing reverse current ava-  
lanche  
IDRM (Repetitive Peak Off-state Current) – Maximum leakage  
current that may occur under the conditions of VDRM  
IGT (Gate Trigger Current) – Minimum gate current required to  
VS (Switching Voltage) – Voltage point after VBO when a sidac  
switch a thyristor from the off state to the on state  
switches from a clamping state to on state  
IH (Holding Current) – Minimum principal current required to  
VT (On-state Voltage) – Principal voltage when the thyristor is in  
maintain the thyristor in the on state  
the on state  
IPP (Peak Pulse Current) – Peak pulse current at a short time  
duration and specified waveshape  
Diode Rectifiers  
IRRM (Repetitive Peak Reverse Current) – Maximum leakage  
IF(AV) (Average Forward Current) – Average forward conduc-  
current that may occur under the conditions of VRRM  
tion current  
IS (Switching Current) – Current at VS when a sidac switches  
IFM (Maximum (Peak) Reverse Current) – Maximum reverse  
from the clamping state to on state  
leakage current that may occur at rated VRRM  
IT(RMS) (On-state Current) – Anode cathode principal current  
that may be allowed under stated conditions, usually the full-  
cycle RMS current  
IF(RMS) (RMS Forward Current) – RMS forward conduction cur-  
rent  
IFSM (Maximum (Peak) Forward (Non-repetitive) Surge  
ITSM (Surge (Non-repetitive) On-state Current) – Peak single  
Current) – Maximum (peak) forward single cycle AC surge cur-  
cycle AC current pulse allowed  
rent allowed for specified duration  
PG(AV) (Average Gate Power Dissipation) – Value of gate  
power which may be dissipated between the gate and main ter-  
minal 1 (or cathode) average over a full cycle  
VFM (Maximum (Peak) Forward Voltage Drop) – Maximum  
(peak) forward voltage drop from the anode to cathode at stated  
conditions  
PGM (Peak Gate Power Dissipation) – Maximum power which  
may be dissipated between the gate and main terminal 1 (or  
cathode) for a specified time duration  
VR (Reverse Blocking Voltage) – Maximum allowable DC  
reverse blocking voltage that may be applied to the rectifier  
VRRM (Maximum (Peak) Repetitive Reverse Voltage) – Maxi-  
mum peak allowable value of a repetitive reverse voltage that  
may be applied to the rectifier  
R
θJA (Thermal Resistance, Junction-to-ambient) – Tempera-  
ture difference between the thyristor junction and ambient divided  
by the power dissipation causing the temperature difference  
under conditions of thermal equilibrium  
Note: Ambient is defined as the point where temperature does  
not change as a result of the dissipation.  
R
θJC (Thermal Resistance, Junction-to-case) – Temperature  
difference between the thyristor junction and the thyristor case  
divided by the power dissipation causing the temperature differ-  
ence under conditions of thermal equilibrium  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E0 - 3  
http://www.teccor.com  
+1 972-580-7777  
Notes  
s*  
IZED  
Selected Package  
File #E71639  
U.L. RECOGN  
E1  
TO-92  
*TO-220  
Isolated  
3-lead  
Compak  
TO-252  
D-Pak  
TO-202  
MT2  
MT1  
TO-251  
V-Pak  
G
Sensitive Triacs  
(0.8 A to 8 A)  
GE1eneral Description  
Teccor's line of sensitive gate triacs includes devices with current  
capabilities through 8 A. Voltage ranges are available from 200 V  
to 600 V. This line features devices with guaranteed gate control  
in Quadrants II and IV as well as control in the commonly used  
Quadrants I and III. Four-quadrant control devices require  
sensitive gate triacs. They can be controlled by digital circuitry  
where positive-only or negative-only pulses must control AC  
current in both directions through the device. Note that triacs with  
low IGT values in Quadrants II and IV will have lower dv/dt  
characteristics.  
All Teccor triacs have glass-passivated junctions. This glassing  
process prevents migration of contaminants and ensures long-  
term device reliability with parameter stability.  
Variations of devices covered in this data sheet are available for  
custom design applications. Consult factory for more information.  
Features  
Electrically-isolated packages  
The sensitive gate triac is a bidirectional AC switch and is gate  
controlled for either polarity of main terminal voltage. It is used  
primarily for AC switching and phase control applications such as  
motor speed controls, temperature modulation controls, and  
lighting controls.  
The epoxy TO-92 and TO-220 configurations feature Teccor's  
electrically-isolated construction where the case or mounting tab  
is internally isolated from the semiconductor chip and lead  
attachments. Non-isolated epoxy TO-202 packages are available  
as well as TO-251 and surface mount TO-252 (D-Pak). Tape-  
and-reel capability and tube packing also are available. See  
“Packing Options” section of this catalog.  
Glass-passivated junctions ensure long device  
reliability and parameter stability  
Voltage capability — up to 600 V  
Surge capability — up to 80 A  
Four-quadrant gating guaranteed  
Compak Sensitive Gate Triac  
Surface mount package — 0.8 A and 1 A series  
New small profile three-leaded Compak package  
Packaged in embossed carrier tape with 2,500  
devices per reel  
Can replace SOT-223  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E1 - 1  
http://www.teccor.com  
+1 972-580-7777  
Sensitive Triacs  
Data Sheets  
Part No.  
I
V
I
I
Isolated  
Non-isolated  
T(RMS)  
(11)  
DRM  
(1)  
GT  
(3) (6) (9)  
DRM  
(1) (14)  
MT2  
MT2  
G
MT2  
G
MT2  
MT1  
MT1  
MT2  
MT2  
G
MT1  
G
MT1  
MT1  
G
G
MT2  
MT1  
MT2  
MT2  
mAmps  
mAmps  
TO-252  
D-Pak  
TO-251  
V-Pak  
TC  
QII QIII QIV 25 °C 110 °C  
MAX MAX  
0.01  
=
TC =  
TO-92  
Compak  
TO-220  
TO-202  
Volts  
QI  
MAX  
See “Package Dimensions” section for variations. (12)  
MIN  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
L2X8E3  
L4X8E3  
L6X8E3  
L2X8E5  
L4X8E5  
L6X8E5  
L2X8E6  
L4X8E6  
L6X8E6  
L2X8E8  
L4X8E8  
L6X8E8  
L201E3  
L401E3  
L601E3  
L201E5  
L401E5  
L601E5  
L201E6  
L401E6  
L601E6  
L201E8  
L401E8  
L601E8  
L2X3  
L4X3  
L6X3  
L2X5  
L4X5  
L6X5  
3
3
3
3
3
5
5
5
5
5
5
3
3
3
3
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
3
3
3
5
5
5
5
5
5
0.8 A  
5
5
5
5
5
10  
10  
10  
20  
20  
20  
3
5
5
5
5
10  
10  
10  
3
10  
10  
10  
3
10  
10  
10  
3
L2N3  
L4N3  
L6N3  
L2N5  
L4N5  
L6N5  
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
1 A  
5
5
5
5
5
5
5
10  
10  
10  
20  
20  
20  
3
5
5
5
5
5
5
10  
10  
10  
3
10  
10  
10  
3
10  
10  
10  
3
L2004L3  
L4004L3  
L6004L3  
L2004L5  
L4004L5  
L6004L5  
L2004L6  
L4004L6  
L6004L6  
L2004L8  
L4004L8  
L6004L8  
L2004D3  
L4004D3  
L6004D3  
L2004D5  
L4004D5  
L6004D5  
L2004D6  
L4004D6  
L6004D6  
L2004D8  
L4004D8  
L6004D8  
L2004F31  
L4004F31  
L6004F31  
L2004F51  
L4004F51  
L6004F51  
L2004F61  
L4004F61  
L6004F61  
L2004F81  
L4004F81  
L6004F81  
L2004V3  
L4004V3  
L6004V3  
L2004V5  
L4004V5  
L6004V5  
L2004V6  
L4004V6  
L6004V6  
L2004V8  
L4004V8  
L6004V8  
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
4 A  
5
5
5
5
5
5
5
10  
10  
10  
20  
20  
20  
5
5
5
5
5
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
See “General Notes” on page E1 - 4 and “Electrical Specification Notes” on page E1 - 5.  
http://www.teccor.com  
+1 972-580-7777  
E1 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sensitive Triacs  
2
V
V
I
I
P
P
I
t
dv/dt(c)  
dv/dt  
I t  
di/dt  
TM  
(1) (4)  
GT  
(2) (5) (15)  
H
GTM  
(13)  
GM  
(13)  
G(AV)  
TSM  
(8) (10)  
gt  
(9)  
(1) (7)  
(1) (10)  
(1)  
Volts  
Volts  
Amps  
Volts/µSec  
TC =  
TC  
=
TC  
=
mAmps  
MAX  
5
5
5
10  
10  
10  
10  
10  
10  
15  
15  
15  
5
Amps  
Watts  
Watts  
Volts/µSec  
µSec  
Amps2Sec  
Amps/µSec  
25 °C  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
25 °C  
MAX  
2
60/50 Hz  
100 °C  
TYP  
20  
15  
10  
20  
15  
10  
30  
25  
20  
35  
30  
25  
20  
20  
10  
20  
20  
10  
30  
30  
20  
35  
35  
25  
25  
25  
15  
25  
25  
15  
30  
30  
20  
35  
35  
25  
TYP  
0.5  
0.5  
0.5  
1
TYP  
2.8  
2.8  
2.8  
3
1
1
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
40/33  
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
1.6  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
2
2
1
2
1
2
1
1
3
2
1
1
3
2
1
1
3
2
1
1
3
2
1
1
3
2
1
2
3.2  
3.2  
3.2  
2.8  
2.8  
2.8  
3
2
1
2
2
1
2
2
1
0.5  
0.5  
0.5  
1
2
5
5
1
1.6  
2
1
1.6  
2
10  
10  
10  
10  
10  
10  
15  
15  
15  
5
1
1.6  
2
1
1
3
1.6  
2
1
1
3
1.6  
2
1
1
3
1.6  
2
1
1
3
1.6  
2
1
1
3
1.6  
2
1
1
3.2  
3.2  
3.2  
2.8  
2.8  
2.8  
3
1.6  
2
1
1
1.6  
2
1
1
1.6  
2
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
0.5  
0.5  
0.5  
1
6.6  
2
5
5
40/33  
6.6  
2
40/33  
6.6  
2
10  
10  
10  
10  
10  
10  
15  
15  
15  
40/33  
6.6  
2
40/33  
1
3
6.6  
2
40/33  
1
3
6.6  
2
40/33  
1
3
6.6  
2
40/33  
1
3
6.6  
2
40/33  
1
3
6.6  
2
40/33  
2
3.2  
3.2  
3.2  
6.6  
2
40/33  
2
6.6  
2
40/33  
2
6.6  
See “General Notes” on page E1 - 4 and “Electrical Specification Notes” on page E1 - 5.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E1 - 3  
http://www.teccor.com  
+1 972-580-7777  
Sensitive Triacs  
Data Sheets  
Part No.  
I
V
I
I
DRM  
(1) (14)  
Isolated  
Non-isolated  
T(RMS)  
(11)  
DRM  
(1)  
GT  
(3) (6)  
MT2  
MT2  
G
MT2  
MT1  
G
MT1  
G
MT1  
MT2  
MT2  
TO-252  
D-Pak  
TO-251  
V-Pak  
mAmps  
mAmps  
QIV TC = 25 °C TC = 110 °C  
MAX  
TO-220  
Volts  
QI  
QII  
QIII  
MAX  
See “Package Dimensions” section for variations. (12)  
MIN  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
MAX  
L2006L5  
L2006D5  
L4006D5  
L6006D5  
L2006D6  
L4006D6  
L6006D6  
L2006D8  
L4006D8  
L6006D8  
L2008D6  
L4008D6  
L6008D6  
L2008D8  
L4008D8  
L6008D8  
L2006V5  
5
5
5
5
5
5
5
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
L4006L5  
L6006L5  
L2006L6  
L4006L6  
L6006L6  
L2006L8  
L4006L8  
L6006L8  
L2008L6  
L4008L6  
L6008L6  
L2008L8  
L4008L8  
L6008L8  
L4006V5  
L6006V5  
L2006V6  
L4006V6  
L6006V6  
L2006V8  
L4006V8  
L6006V8  
L2008V6  
L4008V6  
L6008V6  
L2008V8  
L4008V8  
L6008V8  
5
5
5
5
5
6 A  
5
5
5
10  
10  
10  
20  
20  
20  
10  
10  
10  
20  
20  
20  
5
5
5
5
5
5
10  
10  
10  
5
10  
10  
10  
5
10  
10  
10  
5
5
5
10  
10  
10  
5
5
8 A  
5
5
10  
10  
10  
10  
10  
10  
Specified Test Conditions  
General Notes  
di/dt — Maximum rate-of-change of on-state current; IGT = 50 mA with  
All measurements are made with 60 Hz resistive load and at an  
0.1 µs rise time  
ambient temperature of +25 °C unless otherwise specified.  
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM gate open  
Operating temperature range (TJ) is -65 °C to +110 °C for TO-92  
devices and -40 °C to 110 °C for all other devices.  
Storage temperature range (TS) is -65 °C to +150 °C for TO-92  
devices, -40 °C to +150 °C for TO-202 devices, and -40 °C to  
+125 °C for TO-220 devices.  
Lead solder temperature is a maximum of 230 °C for 10 seconds  
maximum at a minimum of 1/16” (1.59 mm) from case.  
The case or lead temperature (TC or TL) is measured as shown on  
dimensional outline drawings. See “Package Dimensions” section  
of this catalog.  
dv/dt(c) — Critical rate-of-rise of commutation voltage at rated VDRM  
and IT(RMS) commutating di/dt = 0.54 rated IT(RMS)/ms; gate  
unenergized  
2
I t — RMS surge (non-repetitive) on-state current for period of 8.3 ms  
for fusing  
I
I
— Peak off-state current, gate open; VDRM = max rated value  
— DC gate trigger current in specific operating quadrants;  
VD = 12 V dc; RL = 60 Ω  
DRM  
GT  
I
I
I
I
— Peak gate trigger current  
— Holding current gate open; initial on-state current = 100 mA dc  
GTM  
H
— RMS on-state current conduction angle of 360°  
T(RMS)  
— Peak one-cycle surge  
TSM  
P
P
— Average gate power dissipation  
— Peak gate power dissipation; IGT IGTM  
G(AV)  
GM  
t
— Gate controlled turn-on time; IGT = 50 mA with 0.1 µs rise time  
gt  
V
V
V
— Repetitive peak off-state/blocking voltage  
— DC gate trigger voltage; VD = 12 V dc; RL = 60 Ω  
— Peak on-state voltage at max rated RMS current  
DRM  
GT  
TM  
http://www.teccor.com  
+1 972-580-7777  
E1 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sensitive Triacs  
2
V
V
I
I
P
P
I
t
dv/dt(c)  
dv/dt  
I t  
di/dt  
TM  
(1) (4)  
GT  
(2) (5) (15)  
H
GTM  
(13)  
GM  
(13)  
G(AV)  
TSM  
(8) (10)  
gt  
(9)  
(1) (7)  
(1) (10)  
(1)  
Volts  
Volts  
Amps  
60/50 Hz  
Volts/µSec  
TC = 100 °C  
mAmps  
Amps  
Watts  
Watts  
Volts/µSec  
µSec  
Amps2Sec  
Amps/µSec  
T
C = 25 °C TC = 25 °C  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
MAX  
2
MAX  
10  
10  
10  
10  
10  
10  
20  
20  
20  
10  
10  
10  
20  
20  
20  
TYP  
1
TYP  
40  
30  
20  
40  
30  
20  
45  
40  
30  
40  
30  
20  
45  
40  
30  
TYP  
3
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
60/50  
60/50  
60/50  
60/50  
60/50  
60/50  
60/50  
60/50  
60/50  
80/65  
80/65  
80/65  
80/65  
80/65  
80/65  
15  
15  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
2
1
3
2
1
3
15  
2
2
3
15  
2
2
3
15  
2
2
3
15  
2
2
3.2  
3.2  
3.2  
3
15  
2
2
15  
2
2
15  
2
2
26.5  
26.5  
26.5  
26.5  
26.5  
26.5  
2
2
3
3
3.2  
3.2  
3.2  
2
2
2
2
2
2
2
2
Electrical Specification Notes  
Gate Characteristics  
(1) For either polarity of MT2 with reference to MT1 terminal  
Teccor triacs may be turned on between gate and MT1 terminals  
in the following ways:  
(2) For either polarity of gate voltage VGT with reference to MT1  
terminal  
In-phase signals (with standard AC line) using Quadrants I  
and III  
Application of unipolar pulses (gate always positive or nega-  
tive), using Quadrants II and III with negative gate pulses and  
Quadrants I and IV with positive gate pulses  
(3) See Gate Characteristics and Definition of Quadrants.  
(4) See Figure E1.4 for iT versus vT.  
(5) See Figure E1.6 for VGT versus TC.  
(6) See Figure E1.7 for IGT versus TC.  
(7) See Figure E1.5 for IH versus TC.  
(8) See Figure E1.9 for surge rating and specific duration.  
When maximum surge capability is required, pulses should be a  
minimum of one magnitude above IGT rating with a steep rising  
waveform (1 µs rise time).  
(9) See Figure E1.8 for tgt versus IGT  
.
(10) See Figure E1.2 and Figure E1.3 for maximum allowable case  
ALL POLARITIES ARE REFERENCED TO MT1  
temperature at maximum rated current.  
MT2 POSITIVE  
(11) See Figure E1.1, Figure E1.2, and Figure E1.3 for TA or TC versus  
(Positive Half Cycle)  
MT2  
MT2  
+
IT(RMS)  
.
(12) See package outlines for lead form configurations. When ordering  
(-)  
I
GATE  
(+)  
I
GT  
GT  
special lead forming, add type number as suffix to part number.  
GATE  
(13) Pulse width 10 µs  
(14) TC or TL = TJ for test conditions in off state  
(15) Minimum non-trigger VGT at 110 °C is 0.2 V.  
MT1  
MT1  
REF  
MT2  
REF  
MT2  
QII QI  
QIII QIV  
I
-
+ I  
GT  
GT  
(-)  
I
GATE  
(+)  
I
GATE  
GT  
GT  
MT1  
REF  
MT1  
REF  
-
MT2 NEGATIVE  
(Negative Half Cycle)  
Definition of Quadrants  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E1 - 5  
http://www.teccor.com  
+1 972-580-7777  
Sensitive Triacs  
Data Sheets  
Electrical Isolation  
Teccor’s isolated triac packages withstand a minimum high  
potential test of 2500 V ac rms from leads to mounting tab over  
the device's operating temperature range. The following isolation  
table shows standard isolation ratings.  
Electrical Isolation  
from Leads to Mounting Tab  
V AC RMS  
2500  
TO-220 *  
Standard  
*UL Recognized File #E71639  
Thermal Resistance (Steady State) Junction to Mounting Tab  
and Junction to Ambient  
R
[R  
F
] °C/W (TYP)  
θJC θJA  
Package Code  
Type  
E
C
L
F2  
D
V
TO-92  
Plastic  
60 [135]  
TO-202  
Type 1  
TO-220  
Isolated  
TO-202  
Type 2  
TO-252  
D-Pak  
TO-251  
V-Pak  
Compak  
60 *  
0.8 A  
1 A  
4 A  
6 A  
8 A  
50 [95]  
40 *  
3.5 [45]  
3.6 [50]  
3.3  
2.8  
6.0 [70]  
3.5  
3.2  
2.7  
6.0 [70]  
3.2  
2.7  
2
* Mounted on 1 cm copper foil surface; two-ounce copper foil  
120  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
110  
CONDUCTION ANGLE: 360  
˚
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360˚  
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawings  
FREE AIR RATING – NO HEATSINK  
100  
100  
90  
80  
70  
60  
50  
TO-220 and  
TYPE 1 and 3 TO-202  
80  
TYPE 2 and 4 TO-202  
and TO-251  
1 A  
60  
1 A TO-92  
0.8 A  
40  
0.8 A TO-92  
25  
20  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
RMS On-State Current [I ] - Amps  
RMS On-State Current [I  
] – Amps  
T(RMS)  
T(RMS)  
Figure E1.1 Maximum Allowable Ambient Temperature versus  
On-state Current  
Figure E1.2 Maximum Allowable Case Temperature versus  
On-state Current (0.8 A and 1 A)  
http://www.teccor.com  
+1 972-580-7777  
E1 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sensitive Triacs  
110  
2.0  
1.5  
1.0  
.5  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
105  
100  
CONDUCTION ANGLE: 360˚  
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawings  
95  
90  
85  
80  
75  
70  
65  
60  
8 A TO-2olated)  
4 A TYPE 1 and 3 TO-202  
4 A TO-220 (Isolated)  
4 A TO-252  
6 A TO-251  
6 A TO-252  
4 A TYPE 2 and 4 TO-202  
4 A TO-251  
0
-65  
-40  
-15  
Case Temperature ( ) - C  
˚
+25  
+65  
+110+125  
0
1
2
3
4
5
6
7
8
T
RMS On-State Current [I  
] - Amps  
C
T(RMS)  
Figure E1.3 Maximum Allowable Case Temperature versus  
On-state Current (4 A, 6 A, and 8 A)  
Figure E1.6 Normalized DC Gate Trigger Voltage for All Quadrants  
versus Case Temperature  
20  
TC = 25  
C
˚
18  
16  
14  
12  
10  
8
4.0  
3.0  
6 A and 8 A  
2.0  
1.0  
0
4 A  
1 A  
6
4
2
0.8 A  
0
-65  
-40  
-15  
+25  
+65  
+110+125  
0
0.5  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
Case Temperature (T ) - ˚C  
C
Positive or Negative Instantaneous  
On-state Voltage (v ) - Volts  
T
Figure E1.4 On-state Current versus On-state Voltage (Typical)  
Figure E1.7 Normalized DC Gate Trigger Current for All Quadrants  
versus Case Temperature  
7.0  
4.0  
T
= 25 ˚C  
C
6.0  
5.0  
I
= 5 mA MAX  
INITIAL ON-STATE CURRENT  
= 100 mA (DC) 0.8 - 4 A Devices  
= 200 mA (DC) 6 - 8 A Devices  
GT  
3.0  
I
= 10 mA MAX  
GT  
4.0  
3.0  
I
= 20 mA  
MAX  
GT  
2.0  
I
GT  
= 3 mA MAX  
2.0  
1.0  
1.0  
0
0
-65  
-40  
-15  
+25  
+65  
+125  
+110  
1
2
3
4
5
6
8
10  
20  
30 40  
60 80 100  
Case Temperature ( ) - C  
T
˚
DC Gate Trigger Current (I ) - mA  
GT  
C
Figure E1.5 Normalized DC Holding Current versus Case Temperature  
Figure E1.8 Turn-on Time versus Gate Trigger Current (Typical)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E1 - 7  
http://www.teccor.com  
+1 972-580-7777  
Sensitive Triacs  
Data Sheets  
200  
150  
SUPPLY FREQUENCY: 60 Hz Sinusoidal  
LOAD: Resistive  
NOTES:  
1) Gate control may be lost during  
and immediately following surge  
current interval.  
2) Overload may not be repeated until  
junction temperature has returned  
to steady-state rated value.  
RMS On-state Current: [I  
]: Maximum  
T(RMS)  
100  
80  
Rated Value at Specified Case Temperature  
60  
40  
30  
20  
4 A  
10  
8
6
4
3
1 A  
2
0.8 A  
1
1
2
3
4
6 8 10  
20 30 40 60 100  
200  
400 600 1000  
Surge Current Duration – Full Cycles  
Figure E1.9 Peak Surge Current versus Surge Current Duration  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360˚  
CONDUCTION ANGLE: 360  
˚
1.5  
1.0  
0.5  
0
6 A and 8 A  
0.8 A  
1 A  
4 A  
0
0.25 0.50 0.75  
1.0  
1.25  
1.5  
RMS On-state Current [I  
] – Amps  
T(RMS)  
0
.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0  
RMS On-state Current [I ] – Amps  
T(RMS)  
Figure E1.10 Power Dissipation (Typical) versus RMS On-state Current  
(0.8 A and 1 A)  
Figure E1.11 Power Dissipation (Typical) versus RMS On-state Current  
(4 A, 6 A, and 8 A)  
http://www.teccor.com  
+1 972-580-7777  
E1 - 8  
©2002 Teccor Electronics  
Thyristor Product Catalog  
s*  
IZED  
Selected Package  
File #E71639  
U.L. RECOGN  
E2  
TO-92  
TO-202  
*TO-220  
3-lead  
Compak  
TO-263  
2
D Pak  
TO-252  
D-Pak  
TO-251  
V-Pak  
*TO-3  
MT2  
MT1  
Fastpak  
G
Triacs  
(0.8 A to 35 A)  
GE2eneral Description  
These gated triacs from Teccor Electronics are part of a broad  
line of bidirectional semiconductors. The devices range in current  
ratings from 0.8 A to 35 A and in voltages from 200 V to 1000 V.  
Variations of devices covered in this data sheet are available for  
custom design applications. Consult factory for more information.  
The triac may be gate triggered from a blocking to conduction  
state for either polarity of applied voltage and is designed for AC  
switching and phase control applications such as speed and tem-  
perature modulation controls, lighting controls, and static switch-  
ing relays. The triggering signal is normally applied between the  
gate and MT1.  
Isolated packages are offered with internal construction, having  
the case or mounting tab electrically isolated from the semicon-  
ductor chip. This feature facilitates the use of low-cost assembly  
and convenient packaging techniques. Tape-and-reel capability  
is available. See “Packing Options” section of this catalog.  
Features  
Electrically-isolated packages  
Glass-passivated junctions  
Voltage capability — up to 1000 V  
Surge capability — up to 200 A  
Compak Package  
Surface mount package — 0.8 A and 1 A series  
New small profile three-leaded Compak package  
Packaged in embossed carrier tape with 2,500  
devices per reel  
All Teccor triacs have glass-passivated junctions to ensure long-  
term device reliability and parameter stability. Teccor's glass-pas-  
sivated junctions offer a rugged, reliable barrier against junction  
contamination.  
Can replace SOT-223  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E2 - 1  
http://www.teccor.com  
+1 972-580-7777  
Triacs  
Data Sheets  
Part Number  
I
V
I
GT  
T(RMS)  
Isolated  
Non-isolated  
DRM  
(4)  
(1)  
(3) (7) (15)  
MT2  
MT2  
MT2  
G
MT2  
MT2  
G
G
MT2  
MT2  
MT1  
MT1  
MT1  
MT2  
MT2  
MT1  
G
MT1  
G
G
G
MT1  
MT1  
G
MT1  
MT2  
MT2  
MT2  
MT2  
Volts  
mAmps  
TO-252  
D-Pak  
TO-251  
V-Pak  
TO-263  
D2Pak  
TO-92  
TO-220  
Compak  
TO-202  
TO-220  
QI QII QIII QIV QIV  
MAX  
0.8 A  
See “Package Dimensions” section for variations. (11)  
MIN  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
MAX  
TYP  
25  
25  
25  
50  
50  
50  
25  
25  
25  
50  
50  
50  
25  
25  
25  
50  
50  
50  
50  
50  
50  
50  
75  
75  
75  
50  
50  
75  
75  
75  
Q2X8E3  
Q4X8E3  
Q6X8E3  
Q2X8E4  
Q4X8E4  
Q6X8E4  
Q201E3  
Q401E3  
Q601E3  
Q201E4  
Q401E4  
Q601E4  
Q2X3  
Q4X3  
Q6X3  
Q2X4  
Q4X4  
Q6X4  
Q2N3  
Q4N3  
Q6N3  
Q2N4  
Q4N4  
Q6N4  
10 10 10  
10 10 10  
10 10 10  
25 25 25  
25 25 25  
25 25 25  
10 10 10  
10 10 10  
10 10 10  
25 25 25  
25 25 25  
25 25 25  
10 10 10  
10 10 10  
10 10 10  
25 25 25  
25 25 25  
25 25 25  
25 25 25  
25 25 25  
25 25 25  
25 25 25  
50 50 50  
50 50 50  
50 50 50  
25 25 25  
25 25 25  
50 50 50  
50 50 50  
50 50 50  
1 A  
4 A  
Q2004L3  
Q4004L3  
Q6004L3  
Q2004L4  
Q4004L4  
Q6004L4  
Q8004L4  
QK004L4  
Q2006L4  
Q4006L4  
Q6006L5  
Q8006L5  
QK006L5  
Q2008L4  
Q4008L4  
Q6008L5  
Q8008L5  
QK008L5  
Q2004F31  
Q4004F31  
Q6004F31  
Q2004F41  
Q4004F41  
Q6004F41  
Q2004D3  
Q4004D3  
Q6004D3  
Q2004D4  
Q4004D4  
Q6004D4  
Q8004D4  
QK004D4  
Q2004V3  
Q4004V3  
Q6004V3  
Q2004V4  
Q4004V4  
Q6004V4  
Q8004V4  
QK004V4  
Q2006F41  
Q4006F41  
Q6006F51  
Q2006R4  
Q4006R4  
Q6006R5  
Q8006R5  
QK006R5  
Q2008R4  
Q4008R4  
Q6008R5  
Q8008R5  
QK008R5  
Q2006N4  
Q4006N4  
Q6006N5  
Q8006N5  
QK006N5  
Q2008N4  
Q4008N4  
Q6008N5  
Q8008N5  
QK008N5  
6 A  
8 A  
Q2008F41  
Q4008F41  
Q6008F51  
See “General Notes” on page E2 - 4 and “Electrical Specification Notes” on page E2 - 5.  
http://www.teccor.com  
+1 972-580-7777  
E2 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Triacs  
2
I
V
(1) (5)  
V
I
I
P
(14)  
P
I
t
dv/dt(c)  
(1) (4) (13)  
dv/dt  
(1)  
I t  
di/dt  
DRM  
TM  
GT  
H
GTM  
(14)  
GM  
G(AV)  
TSM  
gt  
(10)  
(1) (16)  
(2) (6)  
(15) (18)  
(19)  
(1) (8)  
(9) (13)  
(12)  
mAmps  
Volts  
Volts  
Amps  
Volts/µSec  
TC  
=
TC  
=
TC  
=
TC  
=
TC  
=
TC=  
TC=  
mAmps Amps  
MAX  
Watts  
Watts  
Volts/µSec  
µSec Amp2Sec Amps/µSec  
TYP  
25 °C 100 °C 125 °C 25 °C  
25 °C  
MAX  
2
60/50 Hz  
100 °C 125 °C  
MIN  
MAX  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
0.5  
3
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
TYP  
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.02  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
15  
15  
15  
25  
25  
25  
15  
15  
15  
25  
25  
25  
20  
20  
20  
30  
30  
30  
30  
30  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
1
1
1
1
1
1
1
1
1
1
1
1
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.6  
1.6  
1.6  
1.6  
1.6  
1.8  
1.8  
1.8  
1.8  
1.8  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
15  
15  
15  
15  
15  
15  
15  
15  
18  
18  
18  
18  
18  
20  
20  
20  
20  
20  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
10/8.3  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
20/16.7  
55/46  
55/46  
55/46  
55/46  
55/46  
55/46  
55/46  
55/46  
80/65  
80/65  
80/65  
80/65  
80/65  
100/83  
100/83  
100/83  
100/83  
100/83  
40  
35  
25  
50  
45  
35  
40  
40  
30  
50  
50  
40  
50  
50  
40  
100  
100  
75  
60  
50  
200  
200  
150  
125  
100  
250  
250  
220  
150  
100  
30  
25  
15  
40  
35  
25  
30  
30  
20  
40  
40  
30  
40  
40  
30  
75  
75  
50  
40  
2.5  
2.5  
2.5  
3
0.41  
0.41  
0.41  
0.41  
0.41  
0.41  
1.6  
20  
20  
20  
20  
20  
20  
30  
30  
30  
30  
30  
30  
50  
50  
50  
50  
50  
50  
50  
50  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
2
2
2.5  
2.5  
2.5  
2
2
2
2.5  
2.5  
2.5  
2
3
3
2.5  
2.5  
2.5  
3
1.6  
1.6  
1.6  
1.6  
3
3
1.6  
2.5  
2.5  
2.5  
3
3
3
3
3
3
3
3
3
3
3
12.5  
12.5  
12.5  
12.5  
12.5  
12.5  
12.5  
12.5  
26.5  
26.5  
26.5  
26.5  
26.5  
41  
2
2
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2
2
2
2
120  
120  
100  
85  
2
2
2
2
150  
150  
125  
100  
3
3
41  
41  
3
3
41  
41  
See “General Notes” on page E2 - 4 and “Electrical Specification Notes” on page E2 - 5.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E2 - 3  
http://www.teccor.com  
+1 972-580-7777  
Triacs  
Data Sheets  
Part Number  
I
V
I
I
DRM  
T(RMS)  
Isolated  
Non-isolated  
DRM  
GT  
(4) (16)  
(1)  
(3) (7) (15)  
(1) (16)  
MT2  
MT2  
MT1  
MT2  
MT2  
G
MT2  
MT1  
T
MT1  
Gate  
G
G
MT1  
MT1  
MT2  
mAmps  
mAmps  
MT2  
MT2  
TO-3  
TO-263  
D2Pak  
TC  
=
TC  
=
TC =  
Fastpak  
TO-220  
TO-202  
TO-220  
Volts  
QI  
QII QIII QIV QIV 25 °C 100 °C 125 °C  
MAX  
MAX  
See “Package Dimensions” section for variations. (11)  
MIN  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
600  
800  
600  
800  
TYP  
MAX  
1
1
1
1
Q2010L4  
Q4010L4  
Q2010R4  
Q4010R4  
Q6010R4  
Q8010R4  
QK010R4  
Q2010R5  
Q4010R5  
Q6010R5  
Q8010R5  
QK010R5  
Q2015R5  
Q4015R5  
Q6015R5  
Q8015R5  
QK015R5  
Q2025R5  
Q4025R5  
Q6025R5  
Q8025R5  
QK025R5  
Q2010N4  
Q4010N4  
25  
25  
25  
25  
25  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
25  
25  
25  
25  
25  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
25  
25  
25  
25  
25  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
0.05  
0.05  
0.05  
0.1  
Q6010L4  
Q8010L4  
QK010L4  
Q2010L5  
Q4010L5  
Q6010L5  
Q8010L5  
QK010L5  
Q2015L5  
Q4015L5  
Q6015L5  
Q8015L5  
QK015L5  
Q6010N4  
Q8010N4  
QK010N4  
Q2010N5  
Q4010N5  
Q6010N5  
Q8010N5  
QK010N5  
Q2015N5  
Q4015N5  
Q6015N5  
Q8015N5  
QK015N5  
Q2025N5  
Q4025N5  
Q6025N5  
Q8025N5  
QK025N5  
10 A  
0.1  
3
Q2010F51  
Q4010F51  
Q6010F51  
75  
75  
75  
75  
75  
0.05  
0.05  
0.05  
0.1  
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
1
3
1
1
1
2
2
2
2
0.1  
0.05  
0.05  
0.05  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
2
2
2
3
15 A  
3
3
3
3
1
3
25 A  
35 A  
Q6025P5  
Q8025P5  
Q6035P5  
Q8035P5  
120  
120  
120  
120  
5
5
5
5
V
V
V
— Repetitive peak blocking voltage  
DRM  
Specific Test Conditions  
— DC gate trigger voltage; VD = 12 V dc; RL = 60 Ω  
GT  
TM  
di/dt — Maximum rate-of-change of on-state current; IGT = 200 mA with  
— Peak on-state voltage at maximum rated RMS current  
0.1 µs rise time  
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM gate open  
General Notes  
dv/dt(c) — Critical rate-of-rise of commutation voltage at rated VDRM  
and IT(RMS) commutating di/dt = 0.54 rated IT(RMS)/ms; gate  
unenergized  
All measurements are made at 60 Hz with a resistive load at an  
ambient temperature of +25 °C unless specified otherwise.  
2
I t — RMS surge (non-repetitive) on-state current for period of 8.3 ms  
Operating temperature range (TJ) is -65 °C to +125 °C for TO-92,  
-25 °C to +125 °C for Fastpak, and -40 °C to +125 °C for all other  
devices.  
for fusing  
I
I
— Peak off-state current, gate open; VDRM = maximum rated value  
DRM  
— DC gate trigger current in specific operating quadrants;  
Storage temperature range (TS) is -65 °C to +150 °C for TO-92,  
-40 °C to +150 °C for TO-202, and -40 °C to +125 °C for all other  
devices.  
GT  
VD = 12 V dc  
I
I
I
I
— Peak gate trigger current  
— Holding current (DC); gate open  
GTM  
Lead solder temperature is a maximum of 230 °C for 10 seconds,  
maximum; 1/16" (1.59 mm) from case.  
The case temperature (TC) is measured as shown on the dimen-  
sional outline drawings. See “Package Dimensions” section of this  
catalog.  
H
— RMS on-state current conduction angle of 360°  
T(RMS)  
— Peak one-cycle surge  
TSM  
P
P
— Average gate power dissipation  
— Peak gate power dissipation; IGT IGTM  
G(AV)  
GM  
t
— Gate controlled turn-on time; IGT = 200 mA with 0.1 µs rise time  
gt  
http://www.teccor.com  
+1 972-580-7777  
E2 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Triacs  
2
V
(1) (5)  
V
I
I
P
(14)  
P
I
TSM  
(9) (13)  
tgt  
(10) (17)  
dv/dt(c)  
(1) (4) (13)  
dv/dt  
(1)  
I t  
di/dt  
TM  
GT  
H
GTM  
GM  
G(AV)  
(2) (6) (15) (1) (8) (12)  
(14)  
(18) (19)  
Volts  
Volts  
Amps  
Volts/µSec  
TC  
100 °C  
MIN  
150  
150  
100  
75  
=
TC =  
mAmps  
Amps  
Watts  
Watts  
Volts/µSec  
µSec  
Amps2Sec Amps/µSec  
T
C = 25 °C TC = 25 °C  
60/50 Hz  
125 °C  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.8  
1.8  
1.8  
1.8  
1.8  
1.4  
1.4  
1.5  
1.5  
MAX  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.75  
2.75  
2.75  
2.75  
MAX  
35  
35  
35  
35  
35  
50  
50  
50  
50  
50  
70  
70  
70  
70  
70  
100  
100  
100  
100  
100  
50  
50  
50  
50  
TYP  
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
TYP  
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
3
3
3
3
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2
2
2
2
2
2
2
2
2
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
120/100  
120/100  
120/100  
120/100  
120/100  
120/100  
120/100  
120/100  
120/100  
120/100  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
250/220  
250/220  
350/300  
350/300  
60  
60  
60  
70  
70  
70  
60  
60  
70  
70  
50  
350  
350  
300  
250  
150  
400  
400  
350  
300  
200  
400  
400  
350  
300  
200  
550  
450  
550  
450  
225  
225  
200  
175  
60  
60  
70  
70  
60  
60  
70  
70  
60  
70  
275  
275  
225  
200  
166  
166  
166  
166  
166  
166  
166  
166  
166  
166  
260  
260  
508  
508  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
275  
275  
225  
200  
2
2
2
2
475  
400  
475  
400  
2
(15) RL = 60 for 0.8 A to10 A triacs; RL = 30 for 15 A to 35 A triacs  
(16) TC = TJ for test conditions in off state  
(17) IGT = 300 mA for 25 A and 35 A devices  
(18) Quadrants I, II, III only  
(19) Minimum non-trigger VGT at 125 °C is 0.2 V for all except 50 mA  
MAX QIV devices which are 0.2 V at 110 °C.  
Electrical Specification Notes  
(1) For either polarity of MT2 with reference to MT1 terminal  
(2) For either polarity of gate voltage (VGT) with reference to MT1  
terminal  
(3) See Gate Characteristics and Definition of Quadrants.  
(4) See Figure E2.1 through Figure E2.7 for current rating at specific  
operating temperature.  
Gate Characteristics  
(5) See Figure E2.8 through Figure E2.10 for iT versus vT  
(6) See Figure E2.12 for VGT versus TC.  
(7) See Figure E2.11 for IGT versus TC.  
.
Teccor triacs may be turned on between gate and MT1 terminals  
in the following ways:  
In-phase signals (with standard AC line) using Quadrants I  
and III  
Application of unipolar pulses (gate always positive or nega-  
tive), using Quadrants II and III with negative gate pulses and  
Quadrants I and IV with positive gate pulses  
(8) See Figure E2.14 for IH versus TC.  
(9) See Figure E2.13 for surge rating with specific durations.  
(10) See Figure E2.15 for tgt versus IGT  
.
(11) See package outlines for lead form configurations. When ordering  
special lead forming, add type number as suffix to part number.  
However, due to higher gate requirements for Quadrant IV, it  
is recommended that only negative pulses be applied. If pos-  
itive pulses are required, see “Sensitive Triacs” section of  
this catalog or contact the factory. Also, see  
(12) Initial on-state current = 200 mA dc for 0.8 A to10 A devices,  
400 mA dc for 15 A to 35 A devices  
(13) See Figure E2.1 through Figure E2.6 for maximum allowable case  
temperature at maximum rated current.  
Figure AN1002.8, “Amplified Gate” Thyristor Circuit.  
(14) Pulse width 10 µs; IGT IGTM  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E2 - 5  
http://www.teccor.com  
+1 972-580-7777  
Triacs  
Data Sheets  
In all cases, if maximum surge capability is required, pulses  
should be a minimum of one magnitude above IGT rating with a  
steep rising waveform (1 µs rise time).  
Electrical Isolation  
Teccor’s isolated triac packages will withstand a minimum high  
potential test of 2500 V ac rms from leads to mounting tab or  
base, over the operating temperature range of the device. The  
following isolation table shows standard and optional isolation  
ratings.  
ALL POLARITIES ARE REFERENCED TO MT1  
MT2 POSITIVE  
(Positive Half Cycle)  
MT2  
MT2  
+
(-)  
I
GATE  
(+)  
I
Electrical Isolation  
GT  
GT  
GATE  
from Leads to Mounting Tab *  
TO-220  
Fastpak  
Isolated  
MT1  
MT1  
V AC RMS  
2500  
4000  
Isolated  
REF  
MT2  
Standard  
Optional **  
Standard  
N/A  
REF  
MT2  
QII QI  
QIII QIV  
I
-
+ I  
GT  
GT  
* UL Recognized File E71639  
** For 4000 V isolation, use V suffix in part number.  
(-)  
I
GATE  
(+)  
I
GT  
GT  
GATE  
MT1  
REF  
MT1  
REF  
-
MT2 NEGATIVE  
(Negative Half Cycle)  
Definition of Quadrants  
Thermal Resistance (Steady State)  
[R ] (TYP.) °C/W  
R
θ JC  
θ JA  
Package Code  
Type  
P
E
C
F
F2  
L
R
D
V
N
TO-3  
TO-202  
Type 1  
TO-202  
Type 2  
TO-220  
Isolated  
TO-220  
TO-252  
D-Pak  
TO-251  
V-Pak  
TO-263  
D2Pak  
Fastpak  
TO-92  
Non-isolated  
Compak  
0.8 A  
1 A  
4 A  
6 A  
8 A  
60 [135]  
50 [95]  
60 *  
40 *  
3.5 [45]  
3.8  
3.3  
6 [70]  
3.6 [50]  
3.3  
2.8  
3.5  
6.0 [70]  
1.8 [45]  
1.5  
1.8  
1.5  
1.3  
1.1  
0.89  
10 A  
15 A  
25 A  
35 A  
3.5  
2.6  
2.1  
1.3  
1.1  
0.89  
1.6  
1.5  
2
* Mounted on 1 cm copper foil surface; two-ounce copper foil  
http://www.teccor.com  
+1 972-580-7777  
E2 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Triacs  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
10 A TO-220 (Non-isolated)  
10 A D2Pak  
CONDUCTION ANGLE: 360  
CASE TEMPERATURE: Measured  
as shown on Dimensional Drawing  
˚
10 A TO-202  
1 A  
80  
80  
0.8 A  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
70  
70  
CONDUCTION ANGLE: 360  
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawing  
˚
60  
60  
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
2
4
6
8
10  
12  
14  
RMS On-state Current [l  
] – AMPS  
RMS On-state Current [l  
] – Amps  
T(RMS)  
T(RMS)  
Figure E2.1 Maximum Allowable Case Temperature versus On-state  
Current (0.8 A and 1 A)  
Figure E2.4 Maximum Allowable Case Temperature versus  
On-state Current (10 A)  
130  
130  
6 A TO-220 (Non-isolated)  
6 A D2Pak  
120  
120  
15 A TO-220 (Non-isolated)  
2
15 A D Pak  
6 A TO-220 (Isolated)  
6 A TO-202  
110  
110  
100  
100  
15 A TO-220 (Isolated)  
90  
4 A TO-202 (TYPE 2 and 4)  
4 A TO-251  
90  
80  
70  
60  
0
80  
4 A TO-220 (Isolated)  
4 A TO-202 (Type 1 and 3)  
4 A TO-252  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
70  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360  
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawing  
˚
60  
0
CONDUCTION ANGLE: 360  
˚
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawing  
0
1
2
3
4
5
6
7
0
5
10  
15  
RMS On-state Current [l  
] – Amps  
RMS On-state Current [l  
] – AMPS  
T(RMS)  
T(RMS)  
Figure E2.2 Maximum Allowable Case Temperature versus On-state  
Current (4 A and 6 A)  
Figure E2.5 Maximum Allowable Case Temperature versus  
On-state Current (15 A)  
130  
CURRENT WAVEFORM: Sinusoidal  
130  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360˚  
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawing  
120  
110  
100  
90  
10 A TO-220 (Isolated)  
120  
8 A TO-220 (Non-isolated)  
8 A D2Pak  
110  
25 A TO-220 (Non-isolated)  
25 A D2Pak  
100  
8 A TO-202  
8 A TO-220 (Isolated)  
90  
25 A TO-3 Fastpak  
35 A TO-3 Fastpak  
80  
80  
CURRENT WAVEFORM: Sinusoidal  
70  
LOAD: Resistive or Inductive  
70  
CONDUCTION ANGLE: 360  
˚
60  
0
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawing  
60  
0
2
4
6
8
10  
12  
14  
50  
0
10  
20  
30  
40  
50  
RMS On-state Current [l  
] – AMPS  
T(RMS)  
RMS On-state Current [l  
] – Amps  
T(RMS)  
Figure E2.3 Maximum Allowable Case Temperature versus  
On-state Current (8 A and 10 A)  
Figure E2.6 Maximum Allowable Case Temperature versus  
On-state Current (25 A and 35 A)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E2 - 7  
http://www.teccor.com  
+1 972-580-7777  
Triacs  
Data Sheets  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
T
= 25 ˚C  
C
CONDUCTION ANGLE: 360  
FREE AIR RATING – NO HEATSINK  
˚
TO-202 (TYPE 2 and 4)  
TO-251  
TO-220 Devices and  
TO-202 (Type 1 and 3)  
15 A and 25 A Fastpak  
60  
1 A TO-92  
40  
15 A and 25 A  
0.8 A TO-92  
0.2  
25  
20  
0
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
RMS On-state Current [I  
] — Amps  
Positive or Negative Instantaneous On-state Voltage (v ) – Volts  
T (RMS)  
T
Figure E2.7 Maximum Allowable Ambient Temperature versus  
On-state Current  
Figure E2.10 On-state Current versus On-state Voltage (Typical)  
(15 A and 25 A)  
4.0  
10  
9
T
= 25 ˚C  
C
8
7
6
5
4
3
2
1
0
3.0  
2.0  
1.0  
1 A  
0.8 A  
-65  
-40  
-15  
+25  
+65  
+125  
0
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
Positive or Negative Instantaneous On-state Voltage (v ) – Volts  
Case Temperature (TC) – ˚C  
T
Figure E2.8 On-state Current versus On-state Voltage (Typical)  
(0.8 A and 1 A)  
Figure E2.11 Normalized DC Gate Trigger Current for All Quadrants  
versus Case Temperature  
20  
2.0  
T
= 25 ˚C  
C
18  
16  
14  
12  
10  
8
1.5  
6-10 A  
4A  
1.0  
.5  
6
4
2
0
0
-65  
-40  
-15  
+25  
+65  
+125  
0
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
Case Temperature (T ) – ˚C  
Positive or Negative Instantaneous On-state Voltage (v ) – Volts  
C
T
Figure E2.9 On-state Current versus On-state Voltage (Typical)  
(4 A, 6 A, 8 A, and 10 A)  
Figure E2.12 Normalized DC Gate Trigger Voltage for All Quadrants  
versus Case Temperature  
http://www.teccor.com  
+1 972-580-7777  
E2 - 8  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Triacs  
1000  
SUPPLY FREQUENCY: 60 Hz Sinusoidal  
LOAD: Resistive  
RMS ON-STATE CURRENT [l  
]: Maximum  
T(RMS)  
Rated Value at Specified Case Temperature  
1) Gate control may be lost during and  
400  
300  
NOTES:  
immediately following surge current interval.  
2) Overload may not be repeated until  
junction temperature has returned to  
steady-state rated value.  
200  
120  
100  
80  
35 A Fastpak  
25 A Fastp
60  
50  
40  
25 A TO  
-220  
15 A  
30  
20  
10 A  
8 A  
6 A  
10  
4 A  
0.8 A  
1
1
10  
100  
1000  
Surge Current Duration – Full Cycles  
Figure E2.13 Peak Surge Current versus Surge Current Duration  
4.0  
8
l
Devices with  
= 10 mA  
GT  
INITIAL ON-STATE CURRENT  
= 200 mA DC 0.8 A - 10 A Devices  
= 400 mA DC 15 A - 25 A Devices  
3.0  
7
6
5
4
3
2
1
0
l
Devices with  
= 25 mA  
GT  
T
= 25 ˚C  
C
l
Devices with  
= 50 mA  
GT  
2.0  
1.0  
0
25 50 75 100 125 150 175 200 225 250 275 300  
DC Gate Trigger Current (lGT) – mA  
-65  
-40  
-15  
+25  
+65  
+125  
Case Temperature (TC) – ˚C  
Figure E2.14 Normalized DC Holding Current versus Case Temperature  
Figure E2.15 Turn-on Time versus Gate Trigger Current (Typical)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E2 - 9  
http://www.teccor.com  
+1 972-580-7777  
Triacs  
Data Sheets  
4.0  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360˚  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360˚  
1.5  
1.0  
0.5  
0
3.0  
2.0  
1.0  
0.8 A  
1 A  
4 A  
0
0
0.25  
0.50  
0.75  
1.0  
1.25  
0
1.0  
2.0  
3.0  
4.0  
RMS On-state Current [IT(RMS)] – Amps  
RMS On-state Current [IT(RMS)] – Amps  
Figure E2.16 Power Dissipation (Typical) versus On-state Current  
(0.8 A and 1 A)  
Figure E2.19 Power Dissipation (Typical) versus RMS On-state Current  
(4 A)  
18  
16  
15 A  
14  
12  
6-10 A  
10  
8
6
4
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
2
CONDUCTION ANGLE: 360˚  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
RMS On-state Current [lT(RMS)] – Amps  
Figure E2.17 Power Dissipation (Typical) versus On-state Current  
(6 A to 10 A and 15 A)  
45  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360˚  
40  
35  
30  
25  
20  
15  
10  
5
25 A  
25 A - 35 A Fastpaks  
0
0
8
16  
24  
32  
40  
RMS On-state Current [lT(RMS)] – Amps  
Figure E2.18 Power Dissipation (Typical) versus On-state Current  
(25 A to 35 A)  
http://www.teccor.com  
+1 972-580-7777  
E2 - 10  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E3  
TO-220  
Isolated  
MT2  
MT1  
T
Quadrac  
Internally Triggered Triacs (4 A to 15 A)  
GE3eneral Description  
Teccor’s Quadrac devices are triacs that include a diac trigger  
mounted inside the same package. This device, developed by  
Teccor, saves the user the expense and assembly time of buying  
a discrete diac and assembling in conjunction with a gated triac.  
Also, the alternistor Quadrac device (QxxxxLTH) eliminates the  
need for a snubber network.  
All Teccor triac and diac chips have glass-passivated junctions to  
ensure long-term device reliability and parameter stability.  
Variations of devices in this data sheet are available for custom  
design applications. Consult the factory for more information.  
The Quadrac device is a bidirectional AC switch and is gate con-  
trolled for either polarity of main terminal voltage. Its primary pur-  
pose is for AC switching and phase control applications such as  
speed controls, temperature modulation controls, and lighting  
controls where noise immunity is required.  
Features  
Triac current capacities range from 4 A to 15 A with voltage  
ranges from 200 V to 600 V. Quadrac devices are available in the  
TO-220 package.  
The TO-220 package is electrically isolated to 2500 V rms from  
the leads to mounting surface. 4000 V rms is available on special  
order. This means that no external isolation is required, thus  
eliminating the need for separate insulators and insulator-mount-  
ing steps and saving dollars over “hot tab” devices.  
Glass-passivated junctions  
Electrically-isolated package  
Internal trigger diac  
High surge capability — up to 200 A  
High voltage capability — 200 V to 600 V  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E3 - 1  
http://www.teccor.com  
+1 972-580-7777  
Quadrac  
Data Sheets  
Part No.  
Isolated  
Trigger Diac Specifications (T–MT1)  
I
V
I
V
TM  
(1) (3)  
VBO  
(7)  
VBO  
(6)  
[V  
(6)  
]
IBO  
CT  
(11)  
T(RMS)  
(5)  
DRM  
(1)  
DRM  
(1) (10)  
T
MT1  
MT2  
mAmps  
Volts  
TC  
=
TC  
=
TC =  
TO-220  
Volts  
Volts  
Volts  
Volts  
µAmps  
µFarads  
25 °C  
100 °C 125 °C  
TC = 25 °C  
See “Package Dimensions” section  
for variations. (12)  
MIN  
200  
400  
600  
200  
400  
600  
400  
600  
200  
400  
600  
400  
600  
200  
400  
600  
400  
600  
200  
400  
600  
400  
600  
MAX  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
MAX  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
MIN MAX  
MIN  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
MAX  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
MAX  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
Q2004LT  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
43  
4 A  
Q4004LT  
Q6004LT  
Q2006LT  
Q4006LT  
Q6006LT  
Q4006LTH  
Q6006LTH  
Q2008LT  
Q4008LT  
Q6008LT  
Q4008LTH  
Q6008LTH  
Q2010LT  
Q4010LT  
Q6010LT  
Q4010LTH  
Q6010LTH  
Q2015LT  
Q4015LT  
Q6015LT  
Q4015LTH  
Q6015LTH  
6 A  
8 A  
10 A  
15 A  
V
V
— Repetitive peak blocking voltage  
— Peak on-state voltage at maximum rated RMS current  
DRM  
Specific Test Conditions  
TM  
[∆V±] — Dynamic breakback voltage (forward and reverse)  
V — Breakover voltage symmetry  
BO  
General Notes  
C
— Trigger firing capacitance  
T
All measurements are made at 60 Hz with resistive load at an ambi-  
ent temperature of +25 °C unless otherwise specified.  
di/dt — Maximum rate-of-change of on-state current  
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM gate open  
Operating temperature range (T ) is -40 °C to +125 °C.  
dv/dt(c) — Critical rate-of-rise of commutation voltage at rated VDRM  
and IT(RMS) commutating di/dt = 0.54 rated IT(RMS)/ms; gate  
unenergized  
J
Storage temperature range (T ) is -40 °C to +125 °C.  
S
Lead solder temperature is a maximum of +230 °C for 10 seconds  
maximum; 1/16" (1.59 mm) from case.  
The case temperature (TC) is measured as shown on dimensional  
outline drawings. See “Package Dimensions” section of this  
catalog.  
2
I t — RMS surge (non-repetitive) on-state current for period of 8.3 ms  
for fusing  
— Peak breakover current  
I
I
I
I
I
I
BO  
— Peak off-state current gate open; VDRM = maximum rated value  
— Peak gate trigger current (10 µs Max)  
DRM  
GTM  
— Holding current; gate open  
H
Electrical Specification Notes  
(1) For either polarity of MT2 with reference to MT1  
(2) See Figure E3.1 for IH versus TC.  
(3) See Figure E3.4 and Figure E3.5 for iT versus vT.  
(4) See Figure E3.9 for surge ratings with specific durations.  
— RMS on-state current, conduction angle of 360°  
T(RMS)  
— Peak one-cycle surge  
TSM  
t
— Gate controlled turn-on time  
gt  
V
— Breakover voltage (forward and reverse)  
BO  
http://www.teccor.com  
+1 972-580-7777  
E3 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Quadrac  
2
I
I
t
I
GTM  
dv/dt(c)  
(1) (5) (8)  
dv/dt  
(1)  
I t  
di/dt  
(9)  
H
TSM  
(4) (8)  
gt  
(6) (9)  
(1) (2)  
Volts/µSec  
TC  
=
TC =  
mAmps  
Amps  
Volts/µSec  
µSec  
Amps2Sec  
Amps  
Amps/µSec  
100 °C 125 °C  
MAX  
40  
40  
40  
50  
50  
50  
50  
50  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
70  
70  
70  
70  
70  
60/50Hz  
55/46  
55/46  
55/46  
80/65  
80/65  
80/65  
80/65  
80/65  
100/83  
100/83  
100/83  
100/83  
100/83  
120/100  
120/100  
120/100  
120/100  
120/100  
200/167  
200/167  
200/167  
200/167  
200/167  
MIN  
3
3
3
4
4
4
25  
25  
4
4
4
25  
25  
4
4
4
30  
30  
4
MIN  
TYP  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
75  
75  
50  
50  
50  
50  
100  
100  
85  
12.5  
12.5  
12.5  
26.5  
26.5  
26.5  
26.5  
26.5  
41  
41  
41  
41  
41  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
50  
50  
50  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
150  
150  
125  
575  
425  
175  
175  
150  
575  
425  
200  
200  
175  
925  
775  
300  
300  
200  
925  
775  
450  
350  
120  
120  
100  
450  
350  
150  
150  
120  
700  
600  
200  
200  
150  
700  
600  
60  
60  
60  
60  
60  
70  
166  
166  
166  
166  
166  
100  
100  
100  
100  
100  
4
4
30  
30  
(5) See Figure E3.6, Figure E3.7, and Figure E3.8 for current rating at  
specific operating temperature.  
(6) See Figure E3.2 and Figure E3.3 for test circuit.  
Electrical Isolation  
All Teccor isolated Quadrac packages withstand a minimum high  
potential test of 2500 V ac rms from leads to mounting tab over  
the operating temperature range of the device. The following iso-  
lation table shows standard and optional isolation ratings.  
(7) VBO = [+ VBO] - [- VBO  
]
(8) See Figure E3.7 and Figure E3.8 for maximum allowable case  
temperature at maximum rated current.  
(9) Trigger firing capacitance = 0.1 µF with 0.1 µs rise time  
(10) TC = TJ for test conditions in off state  
(11) Maximum required value to ensure sufficient gate current  
Electrical Isolation  
from Leads to Mounting Tab *  
V AC RMS  
2500  
TYPE  
Standard  
Optional **  
(12) See package outlines for lead form configurations. When ordering  
4000  
special lead forming, add type number as suffix to part number.  
* UL Recognized File #E71639  
**For 4000 V isolation, use “V” suffix in part number.  
Thermal Resistance (Steady State)  
R
[R  
] °C/W (TYP)  
θJC θJA  
TYPE  
4 A  
6 A  
Isolated TO-220  
3.6 [50]  
3.3  
8 A  
10 A  
15 A  
2.8  
2.6  
2.1  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E3 - 3  
http://www.teccor.com  
+1 972-580-7777  
Quadrac  
Data Sheets  
20  
18  
16  
14  
12  
10  
8
2.0  
1.5  
1.0  
.5  
T = 25 ˚C  
C
INITIAL ON-STATE CURRENT  
= 200 mA DC 4 A to 10 A  
= 400 mA DC 15 A  
6 A, 8 A, and 10 A  
6
4
4 A  
2
0
-40  
-15  
+25  
+65  
+105 +125  
0
0
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
Case Temperature (TC) – ˚C  
Positive or Negative  
Instantaneous On-state Voltage (vT) – Volts  
Figure E3.1 Normalized DC Holding Current versus Case Temperature  
Figure E3.4 On-state Current versus On-state Voltage (Typical)  
(4 A to 10 A)  
90  
80  
R
L
T
C
= 25˚C  
70  
60  
50  
40  
30  
20  
10  
0
D.U.T.  
MT2  
15 A  
120 V  
60 Hz  
T
V
C
MT1  
0
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
C
= 0.1 µF  
T
Positive or Negative  
Instantaneous On-state Voltage (vT) – Volts  
Figure E3.2 Test Circuit  
Figure E3.5 On-state Current versus On-state Voltage (Typical) (15 A)  
120  
100  
V
C
+V  
BO  
4 A  
80  
V+  
60  
40  
25  
20  
V-  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8 2.0  
-V  
BO  
RMS On-state Current [I  
] – Amps  
T(RMS)  
Figure E3.3 Test Circuit Waveforms  
Figure E3.6 Maximum Allowable Ambient Temperature versus  
On-state Current  
http://www.teccor.com  
+1 972-580-7777  
E3 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Quadrac  
4.0  
3.0  
2.0  
1.0  
0
130  
120  
110  
100  
90  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360  
˚
CASE TEMPERATURE: Measured  
as shown on Dimensional Drawings  
4 A  
4 A  
80  
70  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360˚  
60  
0
.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
2.0  
3.0  
4.0  
5.0  
1.0  
RMS On-state Current [I  
] – Amps  
RMS On-state Current [I  
T(RMS)  
] – Amps  
T(RMS)  
Figure E3.7 Maximum Allowable Case Temperature versus  
On-state Current (4 A)  
Figure E3.10 Power Dissipation (Typical) versus On-state Current (4 A)  
18  
16  
14  
12  
130  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
120  
110  
100  
90  
CONDUCTION ANGLE: 360  
˚
CASE TEMPERATURE: Measured  
as shown on Dimensional Drawings  
15 A  
10  
15 A  
6 A  
6 A to 10 A  
8
80  
10 A  
8 A  
6
70  
4
60  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
2
0
˚
CONDUCTION ANGLE: 360  
0
0
2.0  
10.0  
12.0  
14.0  
16.0  
18.0  
20.0  
4.0  
6.0  
8.0  
0
2
4
6
8
10  
12  
14  
16  
RMS On-state Current [I  
] – Amps  
T(RMS)  
RMS On-state Current [I  
] – Amps  
T(RMS)  
Figure E3.8 Maximum Allowable Case Temperature versus  
On-state Current (6 A to 15 A)  
Figure E3.11 Power Dissipation (Typical) versus On-state Current  
(6 A to 10 A and 15 A)  
200  
NOTES:  
+4  
+2  
0
1) Gates control may be lost during  
and immediately following surge  
current interval.  
2) Overload may not be repeated until  
junction temperature has returned to  
steady state rated value.  
120  
100  
80  
60  
50  
40  
30  
20  
-2  
-4  
-6  
-8  
10  
8
6
5
4
3
SUPPLY FREQUENCY: 60 Hz Sinusoidal  
LOAD: Resistive  
2
RMS ON-STATE CURRENT [I  
]: Maximum  
T(RMS)  
Rated Value at Specified Case Temperature  
-40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
1
1
2
3
4
5
6
8
10  
20  
3040 60 80 100  
200 300  
600 1000  
Junction Temperature (TJ) – ˚C  
Surge Current Duration – Full Cycles  
Figure E3.9 Peak Surge Current versus Surge Current Duration  
Figure E3.12 Normalized diac V  
versus Junction Temperature  
BO  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E3 - 5  
http://www.teccor.com  
+1 972-580-7777  
Notes  
s*  
IZED  
Selected Package  
File #E71639  
E4  
U.L. RECOGN  
*TO-220  
*TO-218X  
*TO-218  
TO-252  
D-Pak  
TO-251  
V-Pak  
TO-263  
2
D Pak  
MT2  
MT1  
G
Alternistor Triacs  
(6 A to 40 A)  
GE4eneral Description  
Teccor offers bidirectional alternistors with current ratings from  
6 A to 40 A and voltages from 200 V to 1000 V as part of Teccor's  
broad line of thyristors. Teccor's alternistor is specifically  
designed for applications that switch highly inductive loads.  
A special chip offers the same performance as two thyristors  
(SCRs) wired inverse parallel (back-to-back), providing better  
turn-off behavior than a standard triac. An alternistor may be trig-  
gered from a blocking to conduction state for either polarity of  
applied AC voltage with operating modes in Quadrants I, II,  
and III.  
Variations of devices covered in this data sheet are available for  
custom design applications. Consult the factory for further  
information.  
This new chip construction provides two electrically separate  
SCR structures, providing enhanced dv/dt characteristics while  
retaining the advantages of a single-chip device.  
All alternistors have glass-passivated junctions to ensure long-  
term reliability and parameter stability. Teccor's glass-passivated  
junctions offer a reliable barrier against junction contamination.  
Teccor's TO-218X package is designed for heavy, steady power-  
handling capability. It features large eyelet terminals for ease of  
soldering heavy gauge hook-up wire. All the isolated packages  
have a standard isolation voltage rating of 2500 V rms.  
Features  
High surge current capability  
Glass-passivated junctions  
2500 V ac isolation for L, J, and K Packages  
High commutating dv/dt  
High static dv/dt  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E4 - 1  
http://www.teccor.com  
+1 972-580-7777  
Alternistor Triacs  
Data Sheets  
Part Number  
Non-isolated  
I
V
I
I
DRM  
(1) (18)  
Isolated  
T(RMS)  
(4)(16)  
DRM  
(1)  
GT  
(3) (7) (15) (17)  
MT2  
MT2  
MT2  
MT2  
G
G
MT2  
MT2  
MT1  
MT1  
G
G
MT1  
MT1  
MT2  
MT2  
G
MT1  
MT2  
mAmps  
mAmps  
TO-251  
V-Pak  
TO-252  
D-Pak  
TO-263  
D2Pak  
TC  
=
TC  
=
TC =  
T0-220  
TO-220  
Volts  
QI  
QII  
MAX  
10  
10  
10  
10  
10  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
10  
10  
10  
10  
10  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
QIII  
25 °C 100 °C 125 °C  
MAX  
MAX  
See “Package Dimensions” section for variations. (11)  
MIN  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
Q2006VH3  
Q4006VH3  
Q6006VH3  
Q8006VH3  
QK006VH3  
Q2006VH4  
Q4006VH4  
Q6006VH4  
Q8006VH4  
QK006VH4  
Q2006DH3  
Q4006DH3  
Q6006DH3  
Q8006DH3  
QK006DH3  
Q2006DH4  
Q4006DH4  
Q6006DH4  
Q8006DH4  
QK006DH4  
10  
10  
10  
10  
10  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
10  
10  
10  
10  
10  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
10  
10  
10  
10  
10  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
10  
10  
10  
10  
10  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
0.01  
0.01  
0.01  
0.01  
0.02  
0.01  
0.01  
0.01  
0.01  
0.02  
0.01  
0.01  
0.01  
0.01  
0.02  
0.01  
0.01  
0.01  
0.01  
0.02  
0.01  
0.01  
0.01  
0.01  
0.02  
0.01  
0.01  
0.01  
0.01  
0.02  
0.01  
0.01  
0.01  
0.01  
0.02  
0.01  
0.01  
0.01  
0.01  
0.02  
0.5  
0.5  
0.5  
0.5  
2
0.5  
0.5  
0.5  
0.5  
2
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
0.5  
2
0.5  
0.5  
0.5  
0.5  
2
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
0.5  
3
2
2
2
2
2
2
2
2
6 A  
Q2006LH4  
Q4006LH4  
Q6006LH4  
Q8006LH4  
QK006LH4  
Q2006RH4  
Q4006RH4  
Q6006RH4  
Q8006RH4  
QK006RH4  
Q2006NH4  
Q4006NH4  
Q6006NH4  
Q8006NH4  
QK006NH4  
2
2
2
2
Q2008VH3  
Q4008VH3  
Q6008VH3  
Q8008VH3  
QK008VH3  
Q2008VH4  
Q4008VH4  
Q6008VH4  
Q8008VH4  
QK008VH4  
Q2008DH3  
Q4008DH3  
Q6008DH3  
Q8008DH3  
QK008DH3  
Q2008DH4  
Q4008DH4  
Q6008DH4  
Q8008DH4  
QK008DH4  
2
2
2
2
2
2
2
2
8 A  
Q2008LH4  
Q4008LH4  
Q6008LH4  
Q8008LH4  
QK008LH4  
Q2010LH5  
Q4010LH5  
Q6010LH5  
Q8010LH5  
QK010LH5  
Q2012LH5  
Q4012LH5  
Q6012LH5  
Q8012LH5  
QK012LH5  
Q2008RH4  
Q4008RH4  
Q6008RH4  
Q8008RH4  
QK008RH4  
Q2010RH5  
Q4010RH5  
Q6010RH5  
Q8010RH5  
QK010RH5  
Q2012RH5  
Q4012RH5  
Q6012RH5  
Q8012RH5  
QK012RH5  
Q2008NH4  
Q4008NH4  
Q6008NH4  
Q8008NH4  
QK008NH4  
Q2010NH5  
Q4010NH5  
Q6010NH5  
Q8010NH5  
QK010NH5  
Q2012NH5  
Q4012NH5  
Q6012NH5  
Q8012NH5  
QK012NH5  
2
2
2
2
2
2
2
2
10 A  
12 A  
2
2
2
2
See “General Notes” and “Electrical Specification Notes” on page E4 - 5.  
http://www.teccor.com  
+1 972-580-7777  
E4 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Alternistor Triacs  
2
V
V
TM  
(1) (5)  
I
I
P
P
I
TSM  
(9) (13)  
tgt  
(10)  
dv/dt(c)  
(1) (4) (13)  
dv/dt  
(1)  
I t  
di/dt  
(19)  
GT  
H
GTM  
(14)  
GM  
(14)  
G(AV)  
(2) (6)  
(15) (17)  
(20)  
(1) (8)  
(12)  
Volts  
Amps  
Volts/µSec  
Volts  
mAmps  
Amps  
Watts  
Watts  
Volts/µSec  
µSec  
Amps2Sec  
Amps/µSec  
T
C = 25 °C  
MAX  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
60/50 Hz  
TC = 100 °C TC = 125 °C  
MIN  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
MAX  
15  
15  
15  
15  
15  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
15  
15  
15  
15  
15  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
MIN  
20  
20  
20  
20  
20  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
20  
20  
20  
20  
20  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
TYP  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
65/55  
65/55  
65/55  
65/55  
65/55  
65/55  
65/55  
65/55  
65/55  
65/55  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
85/80  
100/83  
100/83  
100/83  
100/83  
100/83  
120/110  
120/110  
120/110  
120/110  
120/110  
120/110  
120/110  
120/110  
120/110  
120/110  
100  
100  
75  
75  
75  
50  
40  
17.5  
17.5  
17.5  
17.5  
17.5  
17.5  
17.5  
17.5  
17.5  
17.5  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
41  
41  
41  
41  
41  
60  
60  
60  
60  
60  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
50  
40  
500  
500  
400  
300  
150  
750  
575  
425  
300  
150  
100  
100  
75  
400  
400  
300  
200  
600  
450  
350  
250  
75  
75  
50  
40  
50  
40  
750  
575  
425  
300  
150  
500  
500  
400  
300  
150  
1150  
1000  
850  
650  
300  
1150  
1000  
850  
650  
300  
400  
450  
350  
250  
400  
400  
300  
200  
1000  
750  
650  
500  
1000  
750  
650  
500  
60  
60  
60  
60  
60  
See “General Notes” and “Electrical Specification Notes” on page E4 - 5.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E4 - 3  
http://www.teccor.com  
+1 972-580-7777  
Alternistor Triacs  
Data Sheets  
Part Number  
I
V
I
Isolated  
Non-isolated  
T(RMS)  
(4)(16)  
DRM  
(1)  
GT  
(3) (7) (15) (17)  
A
MT2  
A
MT2  
G
MT2  
MT1  
K
G
G
A
G
K
MT1  
G
A
MT1  
MT2  
MT2  
mAmps  
TO-218  
(16)  
TO-263  
D2Pak  
T0-220  
TO-218X  
TO-220  
Volts  
QI  
QII  
MAX  
20  
20  
20  
20  
20  
35  
35  
35  
35  
35  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
50  
50  
50  
50  
50  
50  
100  
100  
100  
100  
100  
QIII  
MAX  
See “Package Dimensions” section for variations. (11)  
Q2016LH3  
Q4016LH3  
Q6016LH3  
Q8016LH3  
QK016LH3  
Q2016LH4  
Q4016LH4  
Q6016LH4  
Q8016LH4  
QK016LH4  
Q2016LH6  
Q4016LH6  
Q6016LH6  
Q8016LH6  
QK016LH6  
Q2025L6  
Q4025L6  
Q6025L6  
Q8025L6  
QK025L6  
Q2030LH5  
Q4030LH5  
Q6030LH5  
Q2016RH3  
Q4016RH3  
Q6016RH3  
Q8016RH3  
QK016RH3  
Q2016RH4  
Q4016RH4  
Q6016RH4  
Q8016RH4  
QK016RH4  
Q2016RH6  
Q4016RH6  
Q6016RH6  
Q8016RH6  
QK016RH6  
Q2016NH3  
Q4016NH3  
Q6016NH3  
Q8016NH3  
QK016NH3  
Q2016NH4  
Q4016NH4  
Q6016NH4  
Q8016NH4  
QK016NH4  
Q2016NH6  
Q4016NH6  
Q6016NH6  
Q8016NH6  
QK016NH6  
Q2025NH6  
Q4025NH6  
Q6025NH6  
Q8025NH6  
QK025NH6  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
200  
400  
600  
200  
400  
600  
800  
1000  
20  
20  
20  
20  
20  
35  
35  
35  
35  
35  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
50  
50  
50  
50  
50  
50  
100  
100  
100  
100  
100  
20  
20  
20  
20  
20  
35  
35  
35  
35  
35  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
50  
50  
50  
50  
50  
50  
100  
100  
100  
100  
100  
16 A  
Q2025K6  
Q4025K6  
Q6025K6  
Q8025K6  
QK025K6  
Q2025J6  
Q4025J6  
Q6025J6  
Q8025J6  
Q2025R6  
Q4025R6  
Q6025R6  
Q8025R6  
QK025R6  
25 A  
30 A  
35 A  
Q2035RH5  
Q4035RH5  
Q6035RH5  
Q2035NH5  
Q4035NH5  
Q6035NH5  
Q2040K7  
Q4040K7  
Q6040K7  
Q8040K7  
QK040K7  
Q2040J7  
Q4040J7  
Q6040J7  
Q8040J7  
40 A  
See “General Notes” and “Electrical Specification Notes” on page E4 - 5.  
I
I
I
P
P
— Holding current (DC); gate open  
H
Test Conditions  
— RMS on-state current conduction angle of 360°  
T(RMS)  
di/dt — Maximum rate-of-change of on-state current  
— Peak one-cycle surge  
TSM  
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM gate open  
— Average gate power dissipation  
G(AV)  
dv/dt(c) — Critical rate-of-rise of commutation voltage at rated VDRM  
and IT(RMS) commutating di/dt = 0.54 rated IT(RMS)/ms; gate  
unenergized  
— Peak gate power dissipation; IGT IGTM  
GM  
t
— Gate controlled turn-on time; IGT = 300 mA with 0.1 µs rise time  
gt  
2
I t — RMS surge (non-repetitive) on-state current for period of 8.3 ms  
V
V
V
— Repetitive peak blocking voltage  
DRM  
for fusing  
— DC gate trigger voltage; VD = 12 V dc  
— Peak on-state voltage at maximum rated RMS current  
GT  
TM  
I
I
— Peak off-state current gate open; VDRM = maximum rated value  
— DC gate trigger current in specific operating quadrants;  
VD = 12 V dc  
DRM  
GT  
I
— Peak gate trigger current  
GTM  
http://www.teccor.com  
+1 972-580-7777  
E4 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Alternistor Triacs  
2
I
V
V
I
I
P
P
G(AV)  
I
TSM  
(9) (13)  
tgt  
(10)  
dv/dt(c)  
(1) (4) (13)  
dv/dt  
(1)  
I t  
di/dt  
(19)  
DRM  
(1) (18)  
GT  
TM  
H
GTM  
(14)  
GM  
(14)  
(2) (6) (1) (5) (1) (8)  
(15) (17)  
(20)  
(12)  
mAmps  
Volts  
Volts  
TC  
Amps  
Volts/µSec  
TC  
=
TC  
=
TC  
=
TC  
=
=
TC  
=
TC =  
mAmps Amps  
MAX  
Watts  
Watts  
Volts/µSec  
µSec Amps2Sec Amps/µSec  
TYP  
25 °C 100 °C 125 °C  
MAX  
25 °C  
MAX  
1.5  
1.5  
1.5  
1.5  
1.5  
2
25 °C  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.8  
1.8  
1.8  
1.8  
1.8  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
60/50 Hz  
100 °C 125 °C  
MIN  
MIN  
20  
20  
20  
20  
20  
25  
25  
25  
25  
25  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
20  
20  
20  
20  
20  
20  
50  
50  
50  
50  
50  
0.05  
0.05  
0.05  
0.1  
0.5  
0.5  
0.5  
1
2
27  
2
35  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
40  
40  
40  
40  
40  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
0.8  
0.8  
0.8  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
200/167  
250/208  
250/208  
250/208  
250/208  
250/208  
350/290  
350/290  
350/290  
350/290  
350/290  
350/290  
400/335  
400/335  
400/335  
400/335  
400/335  
500  
400  
300  
275  
200  
650  
600  
500  
425  
300  
875  
875  
800  
700  
350  
875  
875  
800  
700  
400  
650  
600  
500  
650  
600  
500  
1100  
1100  
1000  
900  
500  
400  
350  
250  
200  
3
3
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
5
5
3
3
3
3
3
3
5
5
5
5
5
166  
166  
166  
166  
166  
166  
166  
166  
166  
166  
166  
166  
166  
166  
166  
259  
259  
259  
259  
259  
508  
508  
508  
508  
508  
508  
664  
664  
664  
664  
664  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
150  
150  
150  
150  
150  
35  
35  
35  
35  
3
0.1  
3
0.05  
0.05  
0.05  
0.1  
0.5  
0.5  
0.5  
1
2
2
2
3
50  
50  
50  
50  
500  
475  
400  
350  
2
2
2
2
0.1  
3
50  
70  
70  
70  
70  
70  
0.05  
0.05  
0.05  
0.1  
0.5  
0.5  
0.5  
1
2
2
2
3
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2
600  
600  
520  
475  
0.1  
3
0.05  
0.05  
0.05  
0.1  
0.5  
0.5  
0.5  
1
2
2
2
3
100  
100  
100  
100  
100  
75  
600  
600  
520  
475  
0.1  
3
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.2  
0.2  
0.2  
0.2  
0.2  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
2
2
2
5
2
2
2
2
2
2
5
5
5
5
500  
475  
400  
500  
475  
400  
700  
700  
625  
575  
2
2
2
2
75  
75  
75  
75  
2
75  
2.5  
2.5  
2.5  
2.5  
2.5  
120  
120  
120  
120  
120  
General Notes  
Electrical Specification Notes  
All measurements are made at 60 Hz with a resistive load at an  
(1) For either polarity of MT2 with reference to MT1 terminal  
ambient temperature of +25 °C unless specified otherwise.  
(2) For either polarity of gate voltage (VGT) with reference to MT1  
terminal  
Operating temperature range (TJ) is -40 °C to +125 °C.  
Storage temperature range (TS) is -40 °C to +125 °C.  
Lead solder temperature is a maximum of 230 °C for 10 seconds  
maximum 1/16" (1.59 mm) from case.  
(3) See Gate Characteristics and Definition of Quadrants.  
(4) See Figure E4.1 through Figure E4.4 for current rating at specific  
operating temperature and Figure 4.16 for free air rating (no heat  
sink).  
(5) See Figure E4.5 and Figure E4.6 for iT and vT.  
(6) See Figure E4.7 for VGT versus TC.  
(7) See Figure E4.8 for IGT versus TC.  
The case temperature (TC) is measured as shown in the dimen-  
sional outline drawings. See “Package Dimensions” section.  
(8) See Figure E4.9 for IH versus TC.  
(9) See Figure E4.10 and Figure E4.11 for surge rating with specific  
durations.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E4 - 5  
http://www.teccor.com  
+1 972-580-7777  
Alternistor Triacs  
Data Sheets  
(10) See Figure E4.12 for tgt versus IGT  
.
(11) See package outlines for lead form configurations. When ordering  
ALL POLARITIES ARE REFERENCED TO MT1  
special lead forming, add type number as suffix to part number.  
MT2 POSITIVE  
(Positive Half Cycle)  
(12) Initial on-state current = 400 mA dc for 16 A to 40 A devices and  
100 mA for 6 A to 12 A devices.  
MT2  
MT2  
+
(-)  
IGT  
GATE  
(+)  
IGT  
(13) See Figure E4.1 through Figure E4.4 for maximum allowable case  
GATE  
temperature at maximum rated current.  
MT1  
REF  
MT2  
MT1  
REF  
(14) Pulse width 10 µs; IGT IGTM  
(15) For 6 A to 12 A devices, R = 60 ; 16 A and above, RL = 30 Ω  
L
QII QI  
QIII QIV  
IGT  
-
+ IGT  
(16) 40 A pin terminal leads on K package can run 100 °C to 125 °C.  
(17) Alternistor does not turn on in Quadrant IV.  
(18) TC = TJ for test conditions in off state  
MT2  
(-)  
IGT  
(+)  
IGT  
GATE  
GATE  
(19) IGT = 200 mA for 6 A to 12 A devices and 500 mA for 16 A to 40 A  
MT1  
REF  
MT1  
REF  
devices with gate pulse having rise time of 0.1 µs.  
-
(20) Minimum non-trigger VGT at 125 °C is 0.2 V.  
MT2 NEGATIVE  
(Negative Half Cycle)  
NOTE: Alternistors will not operate in QIV  
Gate Characteristics  
Teccor triacs may be turned on in the following ways:  
Definition of Quadrants  
In-phase signals (with standard AC line) using Quadrants I  
and III  
Electrical Isolation  
Teccor’s isolated alternistor packages withstand a minimum high  
potential test of 2500 V ac rms from leads to mounting tab, over  
the operating temperature range of the device. The following iso-  
lation table shows standard and optional isolation ratings.  
Application of unipolar pulses (gate always negative), using  
Quadrants II and III with negative gate pulses  
In all cases, if maximum surge capability is required, gate pulses  
should be a minimum of one magnitude above minimum IGT rating  
with a steep rising waveform (1 µs rise time).  
If QIV and QI operation is required (gate always positive), see  
Figure AN1002.8, “Amplified Gate” Thyristor Circuit.  
Electrical Isolation  
from Leads to Mounting Tab *  
TO-218  
TO-220  
TO-218X  
Isolated  
Standard  
N/A  
V AC RMS  
2500  
Isolated  
Isolated  
Standard  
N/A  
Standard  
Optional **  
4000  
* UL Recognized File E71639  
** For 4000 V isolation, use V suffix in part number.  
Thermal Resistance (Steady State)  
R
[R  
] (TYP.) °C/W  
θ JC  
θ JA  
L
Package Code  
Type  
K
J
R
D
V
N
TO-218  
TO-252  
D-Pak  
2.1  
TO-251  
V-Pak  
2.3 [64]  
2.1  
TO-263  
D2Pak  
1.80  
TO-220  
TO-220  
Non-Isolated  
1.80 [45]  
1.50  
TO-218X  
Isolated *  
Isolated *  
Isolated **  
3.3 [50]  
2.8  
6 A  
8 A  
1.8  
1.50  
10 A  
12 A  
16 A  
25 A  
30 A  
35 A  
40 A  
2.6  
1.30  
1.30  
2.3  
1.20  
1.20  
2.1  
1.10  
1.10  
1.35  
0.97  
1.32  
0.95  
2.0  
0.87  
0.87  
2.3  
0.85  
* UL Recognized Product per UL File E71639  
** For 4000 V isolation, use V suffix in part number.  
http://www.teccor.com  
+1 972-580-7777  
E4 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Alternistor Triacs  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
10A TO-220 (NON-ISOLATED)  
AND D PAK  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360˚  
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawing  
2
12A TO-220 (ISOLATED)  
35 A TO-220 (Non-isolated)  
and TO-263  
6A TO-220  
25 A and 30 A  
TO-220 (Isolated)  
(NON-ISOLATED)  
40 A TO-218  
(Isolated)  
2
AND D PAK  
6A TO-220 (ISOLATED)  
80  
80  
25 A TO-220 (Non-isolated)  
TO-218 (Isolated)  
TO-263  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
70  
70  
CONDUCTION ANGLE: 360  
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawing  
˚
60  
60  
0
50  
0
10  
20  
25  
30  
40  
] – Amps  
50  
0
2
4
6
8
10  
12  
14  
RMS On-State Current [l  
] - AMPS  
RMS On-state Current [l  
T(RMS)  
T(RMS)  
Figure E4.1 Maximum Allowable Case Temperature versus  
On-state Current (6 A to 12 A)  
Figure E4.4 Maximum Allowable Case Temperature versus  
On-state Current (25 A to 40 A)  
20  
18  
130  
12 A TO-220 (Non-isolated)  
and TO-263  
120  
T
= 25 ˚C  
C
16  
14  
12  
10  
8
110  
10 A TO-220 (Isolated)  
100  
90  
80  
70  
60  
0
6 A to 12 A Devices  
8 A TO-220 (Isolated)  
8 A TO-220 (Non-isolated),  
TO-263, TO-251, and TO-252  
6
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360˚  
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawing  
4
2
0
0.8  
0
0.6  
1.0  
1.2  
1.4  
1.6  
0
2
4
6
8
10  
12  
14  
Positive or Negative Instantaneous  
On-state Voltage (vT) – Volts  
RMS On-state Current [l  
] – Amps  
T(RMS)  
Figure E4.2 Maximum Allowable Case Temperature versus  
On-state Current (8 A to 12 A)  
Figure E4.5 On-state Current versus On-state Voltage (Typical)  
(6 A to 12 A)  
90  
80  
130  
120  
16A TO-220 (Non-isolated) and TO-263  
T
= 25˚C  
C
70  
60  
50  
40  
30  
20  
10  
0
110  
16A TO  
40 A Devices  
-220 (Isolated)  
100  
90  
80  
25 A to 35 A Devices  
CURRENT WAVEFORM: Sinusoidal  
70  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360  
˚
16 A Devices  
60  
CASE TEMPERATURE: Measured as  
shown on Dimensional Drawing  
0
0
5
10  
15  
0
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
Positive or Negative Instantaneous On-state Voltage (v ) – Volts  
RMS On-state Current [IT(RMS)] – Amps  
T
Figure E4.3 Maximum Allowable Case Temperature versus  
On-state Current (16 A)  
Figure E4.6 On-state Current versus On-state Voltage (Typical)  
(16 A to 40 A)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E4 - 7  
http://www.teccor.com  
+1 972-580-7777  
Alternistor Triacs  
Data Sheets  
200  
Notes:  
2.0  
1.5  
1.0  
.5  
1) Gate control may be lost during and  
immediately following surge current  
interval  
2) Overload may not be repeated until  
junction temperature has returned  
to steady state rated value.  
10 A to 12 A  
Devices  
120  
100  
80  
8 A Devices  
60  
50  
40  
8 A TO-251  
and TO-252  
30  
20  
6 A Devices  
6 A TO-251  
and TO-252  
10  
8
6
5
4
3
SUPPLY FREQUENCY: 60 Hz Sinusoidal  
LOAD: Resistive  
2
RMS ON-STATE CURRENT [I  
]: Maximum  
Rated Value at Specified Case Temperature  
0
T(RMS)  
-65 -40 -15  
+25  
+65  
+125  
1
1
2
3
4
5
6
8
10  
20  
30 40 60 80 100  
200 300  
600 1000  
Case Temperature (T ) – ˚C  
C
Surge Current Duration – Full Cycles  
Figure E4.7 Normalized DC Gate Trigger Voltage for all Quadrants  
versus Case Temperature  
Figure E4.10 Peak Surge Current versus Surge Current Duration  
(6 A to 12 A)  
1000  
4.0  
3.0  
2.0  
1.0  
SUPPLY FREQUENCY: 60Hz Sinusoidal  
LOAD: Resistive  
RMS ON-STATE CURRENT [I  
]: Maximum  
T(RMS)  
400  
Rated Value at Specified Case Temperature  
300  
250  
200  
40 A Devices  
35 A Devices  
100  
80  
30 A Device  
s
60  
50  
40  
Notes:  
1) Gate control may be lost during and  
immediately following surge current  
interval.  
2) Overload may not be repeated until  
junction temperature has returned to  
steady-state rated value.  
25 A Device  
30  
s
20  
10  
16 A Devices  
0
-65  
-40  
-15  
+25  
+65  
+125  
1
10  
100  
1000  
Case Temperature (T ) – ˚C  
C
Surge Current Duration – Full Cycles  
Figure E4.8 Normalized DC Gate Trigger Current for all Quadrants  
versus Case Temperature  
Figure E4.11 Peak Surge Current versus Surge Current Duration  
(16 A to 40 A)  
4.0  
10  
8
INITIAL ON-STATE CURRENT  
= 400 mA dc 16 A to 40 A Devices  
= 100 mA dc 6 to 12A Devices  
3.0  
I
= 80 to 100 mA  
GT  
6
4
2
0
2.0  
1.0  
0
I
= 50 mA  
GT  
I
= 10 mA to 35 mA  
GT  
0
100  
200  
300  
400  
500  
-65 -40 -15  
+25  
+65  
+125  
DC Gate Trigger Current (  
) – mA  
I
GT  
Case Temperature (T ) – ˚C  
C
Figure E4.9 Normalized DC Holding Current versus Case Temperature  
Figure E4.12 Turn-on Time versus Gate Trigger Current (Typical)  
http://www.teccor.com  
+1 972-580-7777  
E4 - 8  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Alternistor Triacs  
18  
16  
14  
12  
10  
8
120  
100  
80  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 360  
FREE AIR RATING – NO HEATSINK  
˚
TO-220 Devices  
6A to 12A Devices  
60  
6
TO-251 Devices  
4
40  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
2
CONDUCTION ANGLE: 360  
˚
25  
20  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
RMS On-state Current [l  
] – AmpsS  
RMS On-state Current [I  
] – Amps  
T (RMS)  
T(RMS)  
Figure E4.13 Power Dissipation (Typical) versus On-state Current  
(6 A to 12 A)  
Figure E4.16 Maximum Allowable Ambient Temperature versus  
On-state Current  
18  
CURRENT WAVEFORM: Sinusoidal  
16  
14  
12  
10  
8
LOAD: Resistive or inductive  
CONDUCTION ANGLE: 360˚  
16A Devices  
6
4
2
0
0
2
4
6
8
10 12 14 16  
RMS On-state Current [I ] – Amps  
T(RMS)  
Figure E4.14 Power Dissipation (Typical) versus On-state Current  
(16 A)  
45  
Current Waveform: Sinusoidal  
40  
35  
30  
25  
20  
15  
10  
5
Load: Resistive or Inductive  
Conduction Angle: 360˚  
30 A and  
35 A Devices  
25 A  
40 A  
0
0
4
8
12 16 20 24 28 32 36 40  
RMS On-State Current [I ]—Amps  
T(RMS)  
Figure E4.15 Power Dissipation (Typical) versus On-state Current  
(25 A to 40 A)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E4 - 9  
http://www.teccor.com  
+1 972-580-7777  
Notes  
s*  
IZED  
Selected Package  
File #E71639  
E5  
U.L. RECOGN  
TO-92  
*TO-220  
Isolated  
3-lead  
Compak  
TO-202  
TO-251  
V-Pak  
A
K
TO-252  
D-Pak  
G
Sensitive SCRs  
(0.8 A to 10 A)  
GE5eneral Description  
The Teccor line of sensitive SCR semiconductors are half-wave  
unidirectional, gate-controlled rectifiers (SCR-thyristor) which  
complement Teccor's line of power SCRs. This group of  
packages offers ratings of 0.8 A to 10 A, and 200 V to 600 V with  
gate sensitivities of 12 µA to 500 µA. For gate currents in the  
10 mA to 50 mA ranges, see “SCRs” section of this catalog.  
The TO-220 and TO-92 are electrically isolated where the case  
or tab is internally isolated to allow the use of low-cost assembly  
and convenient packaging techniques.  
Features  
Electrically-isolated TO-220 package  
High voltage capability — up to 600 V  
High surge capability — up to 100 A  
Glass-passivated chip  
Teccor's line of SCRs features glass-passivated junctions to  
ensure long-term device reliability and parameter stability.  
Teccor's glass offers a rugged, reliable barrier against junction  
contamination.  
Tape-and-reel packaging is available for the TO-92 package.  
Consult the factory for more information.  
Variations of devices covered in this data sheet are available for  
custom design applications. Consult the factory for more  
information.  
Compak Features  
Surface mount package — 0.8 A series  
New small-profile three-leaded Compak package  
Four gate sensitivities available  
Packaged in embossed carrier tape with 2,500  
devices per reel  
Can replace SOT-223  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E5 - 1  
http://www.teccor.com  
+1 972-580-7777  
Sensitive SCRs  
Data Sheets  
Part Number  
Non-isolated  
V
&
I
&
DRM  
DRM  
I
V
I
I
V
T
(1)  
RRM  
GT  
(2) (12)  
RRM  
TM  
(3) (10)  
(20) (21)  
A
(14) (18)  
A
G
A
G
K
A
TYPE  
A
K
A
K
K
G
G
G
K
A
A
TO-251  
V-Pak  
TO-252  
D-Pak  
Amps  
µAmps  
TO-92  
TO-202  
Compak  
TC or TL = TC or TL = TC or TL  
=
Volts  
µAmps  
Volts  
IT(RMS) IT(AV)  
MAX  
25 °C  
100 °C  
MAX  
110 °C  
See “Package Dimensions” section for variations. (11)  
MIN  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
MAX  
12  
MAX  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.5  
1.5  
1.5  
2.2  
2.2  
2.2  
2.5  
2.5  
2.5  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
S2S1  
S4S1  
S6S1  
S2S2  
S4S2  
S6S2  
S2S  
S4S  
S6S  
S2S3  
S4S3  
S6S3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
1.5  
1.5  
1.5  
4
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.51  
0.95  
0.95  
0.95  
2.5  
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
12  
12  
50  
50  
50  
200  
200  
200  
500  
500  
500  
200  
200  
200  
12  
0.8 A  
EC103B  
50  
50  
EC103D  
EC103M  
EC103B1  
EC103D1  
EC103M1  
EC103B2  
EC103D2  
EC103M2  
EC103B3  
EC103D3  
EC103M3  
2N5064  
100  
50  
12  
50  
12  
100  
50  
50  
50  
50  
50  
100  
50  
500  
500  
500  
200  
200  
200  
200  
200  
200  
200  
200  
500  
500  
500  
50  
50  
100  
50  
2N6565  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
TCR22-4  
TCR22-6  
TCR22-8  
1.5 A  
4 A  
T106B1  
T106D1  
T106M1  
T107B1  
T107D1  
T107M1  
4
2.5  
4
2.5  
4
2.5  
4
2.5  
4
2.5  
S2004VS1  
S4004VS1  
S6004VS1  
S2004VS2  
S4004VS2  
S6004VS2  
S2004DS1  
4
2.5  
S4004DS1  
S6004DS1  
S2004DS2  
S4004DS2  
S6004DS2  
4
2.5  
50  
50  
200  
200  
200  
4
2.5  
4
2.5  
4
2.5  
4
2.5  
See “General Notes” on page E5 - 4 and “Electrical Specifications Notes” on page E5 - 5  
http://www.teccor.com  
+1 972-580-7777  
E5 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sensitive SCRs  
.
l2t  
P
G(AV)  
V
I
I
V
GRM  
P
I
t
t
q
(9)  
dv/dt  
di/dt  
GT  
H
GM  
(17)  
GM  
(17)  
TSM  
(6) (7) (13)  
gt  
(8)  
(4) (12) (22)  
(5) (15)  
(16) (19)  
Volts  
Amps  
T
C or TL = TC or TL = TC or TL =  
mAmps Amps  
MAX  
Volts  
Watts  
Watts  
Volts/µSec  
Amps/µSec  
µSec  
µSec  
Amps2/Sec  
-40 °C  
25 °C  
110 °C  
60/50 Hz  
MAX  
MIN  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
MIN TYP (23)  
TYP  
2
MAX  
60  
60  
60  
60  
60  
60  
50  
50  
50  
45  
45  
45  
50  
50  
50  
60  
60  
60  
60  
60  
60  
45  
45  
45  
60  
60  
50  
50  
50  
50  
50  
50  
45  
45  
45  
50  
50  
50  
50  
50  
50  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.2  
0.2  
5
5
5
5
5
5
5
5
5
8
8
8
5
5
5
5
5
5
5
5
5
8
8
8
5
5
5
5
5
5
5
5
6
6
6
4
4
4
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
20/16  
30/25  
30/25  
30/25  
30/25  
30/25  
30/25  
20  
20  
10  
25  
25  
10  
30  
30  
15  
40  
40  
20  
30  
30  
15  
20  
20  
10  
25  
25  
10  
40  
40  
20  
25  
25  
60  
40  
30  
8
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
2
0.2  
2
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.2  
3
3
3
4
4
4
5
5
5
3.5  
3.5  
3.5  
2
0.2  
0.2  
2
2
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.2  
3
3
3
5
5
5
2.2  
2.2  
3.5  
3.5  
3.5  
4
1
1
1
1
0.2  
8
4
1
0.2  
8
4
1
0.2  
8
5
1
0.2  
8
5
1
0.2  
8
5
1
0.2  
8
3
1
0.2  
8
3
1
0.2  
8
3
1
0.2  
8
4
1
0.2  
8
4
1
0.2  
8
4
See “General Notes” on page E5 - 4 and “Electrical Specifications Notes” on page E5 - 5  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E5 - 3  
http://www.teccor.com  
+1 972-580-7777  
Sensitive SCRs  
Data Sheets  
Part Number  
Non-isolated  
V
&
I
&
DRM  
DRM  
I
V
I
I
V
Isolated  
T
(1)  
RRM  
GT  
(2) (12)  
RRM  
(20) (21)  
TM  
(3) (10)  
A
A
A
G
A
TYPE  
K
G
K
K
G
G
A
K
A
A
TO-251  
V-Pak  
TO-252  
D-Pak  
Amps  
µAmps  
TC =  
TO-220  
TO-202  
TC  
=
Volts  
µAmps  
Volts  
IT(RMS) IT(AV)  
25 °C 110 °C  
See “Package Dimensions” section for variations. (11)  
MAX  
6
MAX  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
5.1  
5.1  
5.1  
5.1  
5.1  
5.1  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
MIN  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
200  
400  
600  
MAX  
200  
200  
200  
500  
500  
500  
200  
200  
200  
500  
500  
500  
200  
200  
200  
500  
500  
500  
MAX  
5
MAX  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
S2006LS2  
S4006LS2  
S6006LS2  
S2006LS3  
S4006LS3  
S6006LS3  
S2008LS2  
S4008LS2  
S6008LS2  
S2008LS3  
S4008LS3  
S6008LS3  
S2010LS2  
S4010LS2  
S6010LS2  
S2010LS3  
S4010LS3  
S6010LS3  
S2006FS21  
S4006FS21  
S6006FS21  
S2006FS31  
S4006FS31  
S6006FS31  
S2008FS21  
S4008FS21  
S6008FS21  
S2008FS31  
S4008FS31  
S6008FS31  
S2010FS21  
S4010FS21  
S6010FS21  
S2010FS31  
S4010FS31  
S6010FS31  
S2006VS2  
S4006VS2  
S6006VS2  
S2006VS3  
S4006VS3  
S6006VS3  
S2008VS2  
S4008VS2  
S6008VS2  
S2008VS3  
S4008VS3  
S6008VS3  
S2010VS2  
S4010VS2  
S6010VS2  
S2010VS3  
S4010VS3  
S6010VS3  
S2006DS2  
S4006DS2  
S6006DS2  
S2006DS3  
S4006DS3  
S6006DS3  
S2008DS2  
S4008DS2  
S6008DS2  
S2008DS3  
S4008DS3  
S6008DS3  
S2010DS2  
S4010DS2  
S6010DS2  
S2010DS3  
S4010DS3  
S6010DS3  
6
5
6 A  
6
5
6
5
6
5
6
5
8
5
8
5
8
5
8 A  
8
5
8
5
8
5
10  
10  
10  
10  
10  
10  
5
5
5
10 A  
5
5
5
Specific Test Conditions  
General Notes  
di/dt — Maximum rate-of-change of on-state current; IGT = 50 mA pulse  
Teccor 2N5064 and 2N6565 Series devices conform to all JEDEC  
registered data. See specifications table on pages E5 - 2 and  
E5 - 3.  
width 15 µsec with 0.1 µs rise time  
dv/dt — Critical rate-of-rise of forward off-state voltage  
I2t — RMS surge (non-repetitive) on-state current for period of 8.3 ms  
The case lead temperature (TC or TL) is measured as shown on  
dimensional outline drawings in the “Package Dimensions” section  
of this catalog.  
for fusing  
I
I
I
I
DRM and IRRM — Peak off-state current at VDRM and VRRM  
GT — DC gate trigger current VD = 6 V dc; RL = 100 Ω  
GM — Peak gate current  
H — DC holding current; initial on-state current = 20 mA  
IT — Maximum on-state current  
TSM — Peak one-cycle forward surge current  
All measurements (except IGT) are made with an external resistor  
RGK = 1 kunless otherwise noted.  
All measurements are made at 60 Hz with a resistive load at an  
ambient temperature of +25 °C unless otherwise specified.  
Operating temperature (TJ) is -65 °C to +110 °C for EC Series  
devices, -65 °C to +125 °C for 2N Series devices, -40 °C to  
+125 °C for “TCR” Series, and -40 °C to +110 °C for all others.  
I
P
G(AV) — Average gate power dissipation  
GM — Peak gate power dissipation  
P
Storage temperature range (TS) is -65 °C to +150 °C for TO-92  
devices, -40 °C to +150 °C for TO-202 and Compak devices, and  
-40 °C to +125 °C for all others.  
Lead solder temperature is a maximum of +230 °C for 10 seconds  
maximum 1/16" (1.59 mm) from case.  
t
gt — Gate controlled turn-on time gate pulse = 10 mA; minimum  
width = 15 µS with rise time 0.1 µs  
tq — Circuit commutated turn-off time  
V
V
V
V
DRM and VRRM — Repetitive peak off-state forward and reverse voltage  
GRM — Peak reverse gate voltage  
GT — DC gate trigger voltage; VD = 6 V dc; RL = 100 Ω  
TM — Peak on-state voltage  
http://www.teccor.com  
+1 972-580-7777  
E5 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sensitive SCRs  
l2t  
V
I
I
V
GRM  
P
P
I
t
t
q
(9)  
dv/dt  
di/dt  
GT  
(4) (12) (22)  
H
GM  
(17)  
GM  
(17)  
G(AV)  
TSM  
(6) (13)  
gt  
(8)  
(5) (19)  
Volts  
TC  
Volts/µSec  
TC  
=
=
TC =  
mAmps  
Amps  
Volts  
Watts  
Watts  
Amps  
Amps/µSec  
µSec  
µSec  
Amps2Sec  
-40 °C  
25 °C  
MAX  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
110 °C  
TC = 110 °C  
MAX  
6
MIN  
6
60/50 Hz  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
TYP  
10  
8
TYP  
4
MAX  
50  
50  
50  
45  
45  
45  
50  
50  
50  
45  
45  
45  
50  
50  
50  
45  
45  
45  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
6
6
4
6
6
8
4
8
6
10  
8
5
8
6
5
8
6
8
5
6
6
10  
8
4
6
6
4
6
6
8
4
8
6
10  
8
5
8
6
5
8
6
8
5
6
6
10  
8
4
6
6
4
6
6
8
4
8
6
10  
8
5
8
6
5
8
6
8
5
(10) Test condition is maximum rated RMS current except TO-92  
devices are 1.2 APK; T106/T107 devices are 4 APK  
Electrical Specifications Notes  
.
(1) See Figure E5.1 through Figure E5.9 for current ratings at  
(11) See package outlines for lead form configurations. When ordering  
specified operating temperatures.  
(2) See Figure E5.10 for IGT versus TC or TL.  
special lead forming, add type number as suffix to part number.  
(12) VD = 6 V dc, RL = 100 (See Figure E5.19 for simple test circuit  
for measuring gate trigger voltage and gate trigger current.)  
(3) See Figure E5.11 for instantaneous on-state current (iT) versus on-  
state voltage (vT) TYP.  
(13) See Figure E5.1 through Figure E5.9 for maximum allowable case  
temperature at maximum rated current.  
(4) See Figure E5.12 for VGT versus TC or TL.  
(5) See Figure E5.13 for IH versus TC or TL.  
(6) For more than one full cycle, see Figure E5.14.  
(7) 0.8 A to 4 A devices also have a pulse peak forward current on-  
state rating (repetitive) of 75 A. This rating applies for operation at  
60 Hz, 75 °C maximum tab (or anode) lead temperature, switching  
from 80 V peak, sinusoidal current pulse width of 10 µs minimum,  
15 µs maximum. See Figure E5.20 and Figure E5.21.  
(14) IGT = 500 µA maximum at TC = -40 °C for T106 devices  
(15) IH = 10 mA maximum at TC = -65 °C for 2N5064 Series and  
2N6565 Series devices  
(16) IH = 6 mA maximum at TC = -40 °C for T106 devices  
(17) Pulse Width 10 µs  
(18) IGT = 350 µA maximum at TC = -65 °C for 2N5064 Series and  
2N6565 Series devices  
(8) See Figure E5.15 for t versus I  
.
GT  
gt  
(19) Latching current can be higher than 20 mA for higher IGT types.  
Also, latching current can be much higher at -40 °C. See Figure  
E5.18.  
(9) Test conditions as follows:  
– TC or TL 80 °C, rectangular current waveform  
– Rate-of-rise of current 10 A/µs  
(20) TC or TL = TJ for test conditions in off state  
– Rate-of-reversal of current 5 A/µs  
(21) IDRM and IRRM = 50 µA for 2N5064 and 100 µA for 2N6565 at  
– ITM = 1 A (50 µs pulse), Repetition Rate = 60 pps  
– VRRM = Rated  
125 °C  
– VR = 15 V minimum, VDRM = Rated  
(22) TO-92 devices specified at -65 °C instead of -40 °C  
(23) TC = 110 °C  
– Rate-of-rise reapplied forward blocking voltage = 5 V/µs  
– Gate Bias = 0 V, 100 (during turn-off time interval)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E5 - 5  
http://www.teccor.com  
+1 972-580-7777  
Sensitive SCRs  
Data Sheets  
Thermal Resistance (Steady State)  
R
[R  
θJC  
F2  
] °C/W (TYPICAL)  
θ JA  
E
L
F
C
D
V
Package Code  
Type  
TO-92  
TO-220  
TO-202  
TO-202  
Compak  
TO-252  
D-Pak  
TO-251  
V-Pak  
Type 2, 4, & 41  
Type 1 & 3  
0.8 A  
1.5 A  
4.0 A  
6.0 A  
8.0 A  
10.0 A  
75 [160]  
50 [160]  
60*  
10 [100]  
6.2 [80]  
4.3  
3.9  
3.0  
1.8  
1.5  
3.8 [85]  
2.4  
2.1  
4.0 [65]  
3.4  
3.0  
3.4  
1.45  
1.72  
*Mounted on 1 cm2 copper foil surface; two-ounce copper foil  
Electrical Isolation  
130  
120  
110  
100  
90  
Teccor’s isolated sensitive SCRs will withstand a minimum high  
potential test of 2500 V ac rms from leads to mounting tab over  
the device's operating temperature range. The following table  
shows other standard and optional isolation ratings.  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
4 A TO-251  
and TO-252  
CASE TEMPERATURE: Measured  
as Shown on Dimensional Drawing  
Electrical Isolation *  
from Leads to Mounting Tab  
80  
V AC RMS  
2500  
TO-220  
Standard  
Optional **  
T106 and T107  
Type 2 and 4  
70  
T106 and T107  
Type 1 and 3  
60  
4000  
TCR22 Devices  
50  
*UL Recognized File #E71639  
**For 4000 V isolation, use “V” suffix in part number.  
40  
2.6  
2.5  
0
0.5  
1.0  
1.5  
2.0  
3.0  
3.5  
4.0  
RMS On-state Current [ ] – Amps  
IT(RMS)  
130  
CURRENT WAVEFORM: Sinusoidal  
Figure E5.2 Maximum Allowable Case Temperature versus  
RMS On-state Current  
LOAD: Resistive or Inductive  
120  
110  
CONDUCTION ANGLE: 180  
˚
CASE TEMPERATURE: Measured  
as Shown on Dimensional Drawing  
100  
90  
130  
JEDEC 2N Series  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measured  
as Shown on Dimensional Drawing  
120  
110  
100  
90  
80  
EC Series  
70  
60  
Compak  
JEDEC 2N Series  
50  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
EC Series  
80  
RMS On-State Current [  
] – Amps  
I
T(RMS)  
Compak  
70  
60  
Figure E5.1 Maximum Allowable Case Temperature versus  
RMS On-state Current  
50  
0.51  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Average On-state Current [  
] – Amps  
I
T(AV)  
Figure E5.3 Maximum Allowable Case Temperature versus  
Average On-state Current  
http://www.teccor.com  
+1 972-580-7777  
E5 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sensitive SCRs  
140  
120  
100  
130  
120  
110  
100  
90  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
˚
CONDUCTION ANGLE: 180  
CASE TEMPERATURE: Measured  
as Shown on Dimensional Drawing  
FREE AIR RATING  
˚
T106/T107 TO-202  
Type 1 and 3  
80  
60  
80  
70  
T106 and T107  
Type 2 and 4  
T106 and T107  
Type 1 and 3  
60  
TCR22  
Devices  
TO-220  
40  
20  
50  
T106/T107 TO-202  
Type 2 and 4  
and TO-251  
40  
0.95  
1.65  
1.9  
2.54  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
Average On-state Current [I  
] – Amps  
T(AV)  
Average On-state Current [I  
] – Amps  
T(AV)  
Figure E5.4 Maximum Allowable Case Temperature versus  
Average On-state Current  
Figure E5.7 Maximum Allowable Ambient Temperature versus  
Average On-state Current  
140  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
115  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
120  
100  
CONDUCTION ANGLE: 180  
FREE AIR RATING  
˚
110  
6 A TO-251  
and TO-252  
CONDUCTION ANGLE: 180  
˚
TEMPERATURE: Measured as  
Shown on Dimensional Drawings  
105  
100  
95  
8 A TO-251  
and TO-252  
10 A TO-251  
and TO-252  
EC Series I  
T(RMS)  
6 A TO-220  
and TO-202  
80  
60  
40  
20  
1.5 A Devices  
and JEDEC  
2N Series I  
8 A TO-220  
and TO-202  
T(RMS)  
90  
1.5 A and JEDEC  
2N Series I  
T(AV)  
85  
80  
10 A TO-220  
and TO-202  
and EC Series I  
T(AV)  
0
2
4
6
8
10  
RMS On-state Current [I  
] – Amps  
T(RMS)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
On-state Current – Amps  
Figure E5.5 Maximum Allowable Ambient Temperature versus  
On-state Current  
Figure E5.8 Maximum Allowable Case Temperature versus  
RMS On-state Current  
140  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
110  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
6 A TO-251  
and TO-252  
120  
CONDUCTION ANGLE: 180  
˚
CONDUCTION ANGLE: 180  
CASE TEMPERATURE: Measured  
as Shown on Dimensional Drawings  
FREE AIR RATING  
105  
˚
100  
100  
95  
6 A TO-220  
and TO-202  
80  
60  
40  
20  
T106/T107 TO-202  
Type 1 and 3  
8 A TO-251  
and TO-252  
8 A TO-220  
and TO-202  
90  
85  
T106/T107 TO-202  
Type 2 and 4  
and TO-251  
10 A TO-251  
and TO-252  
TO-220  
10 A TO-220  
and TO-202  
80  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0
1
2
3
4
5
6
7
Average On-state Current [I  
] – Amps  
T(AV)  
RMS On-state Current [I  
] – Amps  
T(RMS)  
Figure E5.6 Maximum Allowable Ambient Temperature versus  
RMS On-state Current  
Figure E5.9 Maximum Allowable Case Temperature versus  
Average On-state Current  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E5 - 7  
http://www.teccor.com  
+1 972-580-7777  
Sensitive SCRs  
Data Sheets  
4.0  
3.0  
2.0  
1.0  
0
9.0  
8.0  
See General Notes for specific  
operating temperature range.  
See General Notes for specific device  
operating temperature range.  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
-65  
-40  
-15  
+25  
+65  
+110 +125  
-65  
-40  
-15  
+25  
+65  
+110 +125  
Case Temperature (T ) – ˚C  
C
Case Temperature (T ) – ˚C  
C
Figure E5.10 Normalized DC Gate-Trigger Current versus  
Case Temperature  
Figure E5.13 Normalized DC Holding Current versus Case Temperature  
32  
28  
T
= 25˚C  
C
24  
20  
16  
12  
8
6 A to 10 A Devices  
4 A TO-251 and TO-252  
0.8 A to 1.5 A TO-92,  
T106/T107, and  
Compak  
4
0
0
.6  
.8  
1.0  
1.2  
1.4  
1.6  
Instantaneous On-state Voltage (v ) – Volts  
T
Figure E5.11 Instantaneous On-state Current versus  
On-state Voltage (Typical)  
2.0  
See General Notes for specific  
operating temperature range  
1.5  
1.0  
0.5  
0
-65  
-40  
-15  
+25  
+65  
+110 +125  
Case Temperature (T ) –  
C
˚
C
Figure E5.12 Normalized DC Gate-Trigger Voltage versus  
Case Temperature  
http://www.teccor.com  
+1 972-580-7777  
E5 - 8  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sensitive SCRs  
200  
SUPPLY FREQUENCY: 60 Hz Sinusoidal  
LOAD: Resistive  
RMS ON-STATE CURRENT: [I  
Rated Value at Specified Case Temperature  
]: Max  
T(RMS)  
100  
80  
10 A Devices  
60  
50  
8 A Devices  
6 A Devices  
40  
30  
4 A TO-251 and TO-252  
20  
10  
8
TO-106  
and TO-107  
6
5
1.5 A Devices  
4
Notes:  
3
1) Gate control may be lost during  
and immediately following surge  
current interval.  
2) Overload may not be repeated  
until junction temperature has  
returned to steady-state rated value.  
2
1
0.8 A TO-92  
and Compak  
1
2
3
4
5
6
8 10  
20  
30 40 50 60 80100  
200 300 400 600 1000  
Surge Current Duration – Full Cycles  
Figure E5.14 Peak Surge On-state Current versus Surge Current Duration  
100  
CURRENT WAVEFORM: Half Sine Wave  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
5.0  
4.0  
3.0  
2.0  
1.0  
IGT = 50 µA MAX  
IGT = 200 µA MAX  
IGT = 500 µA MAX  
T106 and T107  
10  
4 A TO-251 and TO-252  
IGT = 12 µA MAX  
0.8 A TO-92 and Compak  
1.5 A Devices  
1.0  
0
1
2
3
4
RMS On-state Current [I  
] – Amps  
T(RMS)  
T
= 25 ˚C  
C
Figure E5.16 Power Dissipation (Typical) versus RMS On-state Current  
0.1  
0.01  
0.1  
1
10  
100  
DC Gate Trigger Current (I ) – mA  
GT  
Figure E5.15 Typical Turn-on Time versus Gate Trigger Current  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E5 - 9  
http://www.teccor.com  
+1 972-580-7777  
Sensitive SCRs  
Data Sheets  
12  
10  
8
CURRENT WAVEFORM: Half Sine Wave  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
Reset  
Normally-closed  
Pushbutton  
100  
6
+
D.U.T.  
6 V  
4
I
DC  
IN4001  
GT  
6 A to 10 A  
TO-220, TO-202,  
TO-251, and TO-252  
I
R1  
G
100  
V1  
1 k  
(1%)  
2
V
GT  
0
0
2
4
6
8
10  
RMS On-state Current [I  
] – Amps  
T(RMS)  
Figure E5.17 Power Dissipation (Typical) versus RMS On-state Current  
Figure E5.19 Simple Test Circuit for Gate Trigger Voltage and  
Current Measurement  
Note: V1 — 0 V to 10 V dc meter  
V
GT — 0 V to 1 V dc meter  
9.0  
IG — 0 mA to 1 mA dc milliammeter  
R1 — 1 k potentiometer  
8.0  
See General Notes for specific device  
operating temperature range.  
7.0  
To measure gate trigger voltage and current, raise gate voltage  
(VGT) until meter reading V1 drops from 6 V to 1 V. Gate trigger  
voltage is the reading on VGT just prior to V1 dropping. Gate trig-  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
ger current I can be computed from the relationship  
GT  
V
1000  
GT  
I
= I ------------ Amps  
GT  
G
where IG is reading (in amperes) on meter just prior to V1 drop-  
ping.  
Note: IGT may turn out to be a negative quantity (trigger current  
flows out from gate lead).  
-65  
-40  
-15  
+25  
+65  
+110 +125  
Case Temperature (T ) – ˚C  
C
Figure E5.18 Normalized DC Latching Current versus Case Temperature  
http://www.teccor.com  
+1 972-580-7777  
E5 - 10  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sensitive SCRs  
180  
160  
140  
120  
100  
80  
1 Hz  
12 Hz  
60 Hz  
60  
I
TM  
40  
20  
0.8 A to 4 A  
t
W
t
= 5 TIME CONSTANTS  
W
0
100  
70  
5.0  
10  
30  
1.0  
3.0  
7.0  
50  
Peak Current Duration (t ) – µs  
W
Figure E5.20 Peak Repetitive Capacitor Discharge Current  
180  
160  
140  
120  
100  
80  
1 Hz  
12 Hz  
60  
I
60 Hz  
TM  
40  
20  
t
0.8 A to 4 A  
W
0
100  
70  
5.0  
10  
30  
1.0  
3.0  
7.0  
50  
Peak Current Duration (t ) – µs  
W
Figure E5.21 Peak Repetitive Sinusoidal Curve  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E5 - 11  
http://www.teccor.com  
+1 972-580-7777  
Notes  
s*  
IZED  
Selected Package  
File #E71639  
E6  
TO-263  
U.L. RECOGN  
2
D Pak  
TO-92  
*TO-218  
TO-252  
D-Pak  
TO-202  
*TO-218X  
*TO-220  
3-lead  
A
K
TO-251  
Compak  
V-Pak  
G
SCRs  
(1 A to 70 A)  
GE6eneral Description  
The Teccor line of thyristor SCR semi-conductors are half-wave,  
unidirectional, gate-controlled rectifiers which complement Tec-  
cor's line of sensitive SCRs. Teccor offers devices with ratings of  
1 A to 70 A and 200 V to 1000 V, with gate sensitivities from  
10 mA to 50 mA. If gate currents in the 12 µA to 500 µA ranges  
are required, see “Sensitive SCRs” section of this catalog.  
Three packages are offered in electrically isolated construction  
where the case or tab is internally isolated to allow the use of  
low-cost assembly and convenient packaging techniques.  
The Teccor line of SCRs features glass-passivated junctions to  
ensure long-term reliability and parameter stability. Teccor’s  
glass offers a rugged, reliable barrier against junction contamina-  
tion.  
Features  
Electrically-isolated package  
High voltage capability — 200 V to 1000 V  
High surge capability — up to 950 A  
Glass-passivated chip  
Variations of devices covered in this data sheet are available for  
custom design applications. Consult the factory for more informa-  
tion.  
Compak SCR  
Surface mount package — 1 A series  
New small profile three-leaded Compak package  
Packaged in embossed carrier tape with 2,500  
devices per reel  
Can replace SOT-223  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E6 - 1  
http://www.teccor.com  
+1 972-580-7777  
SCRs  
Data Sheets  
Part Number  
V
DRM  
I
& V  
I
Isolated  
Non-isolated  
T
RRM  
GT  
(4)  
(1) (2) (15)  
A
A
A
TYPE  
G
A
G
A
K
A
K
A
G
K
K
G
K
G
K
G
G
A
K
A
A
A
TO-251  
V-Pak  
TO-252  
D-Pak  
TO-220  
Compak  
Amps  
IT(RMS)  
TO-220  
TO-202  
TO-92  
Volts  
mAmps  
IT(AV)  
MAX  
0.64  
0.64  
0.64  
3.8  
3.8  
3.8  
3.8  
3.8  
5.1  
5.1  
5.1  
5.1  
5.1  
6.4  
6.4  
6.4  
6.4  
6.4  
7.6  
7.6  
7.6  
7.6  
7.6  
See “Package Dimensions” section for variations. (11)  
S2N1  
MAX  
1
1
1
6
6
6
6
6
8
8
8
8
MIN  
200  
400  
600  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
MIN  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
MAX  
10  
10  
10  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
20  
20  
20  
20  
20  
S201E  
S401E  
S601E  
1 A  
6 A  
S4N1  
S6N1  
S2006L  
S4006L  
S6006L  
S8006L  
SK006L  
S2008L  
S4008L  
S6008L  
S8008L  
SK008L  
S2010L  
S4010L  
S6010L  
S8010L  
SK010L  
S2006F1  
S4006F1  
S6006F1  
S2006V  
S4006V  
S6006V  
S8006V  
SK006V  
S2008V  
S4008V  
S6008V  
S8008V  
SK008V  
S2010V  
S4010V  
S6010V  
S8010V  
SK010V  
S2012V  
S4012V  
S6012V  
S8012V  
SK012V  
S2006D  
S4006D  
S6006D  
S8006D  
SK006D  
S2008D  
S4008D  
S6008D  
S8008D  
SK008D  
S2010D  
S4010D  
S6010D  
S8010D  
SK010D  
S2012D  
S4012D  
S6012D  
S8012D  
SK012D  
S2008F1  
S4008F1  
S6008F1  
S2008R  
S4008R  
S6008R  
S8008R  
SK008R  
S2010R  
S4010R  
S6010R  
S8010R  
SK010R  
S2012R  
S4012R  
S6012R  
S8012R  
SK012R  
8 A  
8
S2010F1  
S4010F1  
S6010F1  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
10 A  
12 A  
V
V
DRM and VRRM — Repetitive peak off-state forward and reverse voltage  
gt — DC gate trigger voltage; VD = 12 V dc; RL = 60 for 1 to 16 A  
devices and 30 for 20 to 70 A devices  
Specific Test Conditions  
di/dt — Maximum rate-of-rise of on-state current; IGT = 150 mA with  
0.1 µs rise time  
V
TM — Peak on-state voltage at maximum rated RMS current  
dv/dt — Critical rate of applied forward voltage  
I2t — RMS surge (non-repetitive) on-state current for period of 8.3 ms  
General Notes  
for fusing  
All measurements are made at 60 Hz with a resistive load at an  
ambient temperature of +25 °C unless otherwise specified.  
I
DRM and IRRM — Peak off-state forward and reverse current at VDRM and  
VRRM  
Operating temperature range (TJ) is -65 °C to +125 °C for TO-92  
devices and -40 °C to +125 °C for all other packages.  
Storage temperature range (TS) is -65 °C to +150 °C for TO-92  
devices, -40 °C to +150 °C for TO-202 and TO-220 devices, and  
-40 °C to +125 °C for all others.  
Lead solder temperature is a maximum of 230 °C for 10 seconds  
maximum; 1/16" (1.59 mm) from case.  
The case temperature (TC) is measured as shown on dimensional  
outline drawings in the “Package Dimensions” sectionof this  
catalog.  
Igt — dc gate trigger current; VD = 12 V dc; RL = 60 for 1 to 16 A  
devices and 30 for 20 to 70 A devices  
IGM — Peak gate current  
IH — dc holding current; gate open  
IT — Maximum on-state current  
TSM — Peak one-cycle forward surge current  
I
P
P
G(AV) — Average gate power dissipation  
GM — Peak gate power dissipation  
t
gt — Gate controlled turn-on time; gate pulse = 100 mA; minimum  
width = 15 µs with rise time 0.1 µs  
tq — Circuit commutated turn-off time  
http://www.teccor.com  
+1 972-580-7777  
E6 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
SCRs  
2
I
& I  
DRM  
(14)  
V
TM  
(3)  
V
I
I
P
P
I
t
t
dv/dt  
I t  
di/dt  
RRM  
GT  
(8)  
H
GM  
(12)  
GM  
(12)  
G(AV)  
TSM  
(6) (10)  
gt  
(7)  
q
(5) (13)  
(9) (10)  
(17)  
mAmps  
TC  
Volts  
TC  
Volts  
TC =  
Amps  
Volts/µSec  
TC  
=
TC =  
TC  
=
=
TC  
=
=
25 °C 100 °C 125 °C  
MAX  
25 °C  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
25 °C  
MAX  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
mAmps  
MAX  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
40  
40  
40  
40  
40  
Amps  
Watts  
Watts  
Amps2Sec Amps/µSec  
µSec  
TYP  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
µSec  
MAX  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
60/50 Hz 100 °C 125 °C  
MIN  
40  
40  
MIN  
20  
20  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0.02  
0.01  
0.01  
0.01  
0.01  
0.02  
0.01  
0.01  
0.01  
0.02  
0.02  
0.01  
0.01  
0.01  
0.02  
0.02  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
3
0.2  
0.2  
0.2  
0.2  
3
0.2  
0.2  
0.2  
0.5  
3
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
15  
15  
15  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
30/25  
30/25  
30/25  
3.7  
3.7  
3.7  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
41  
60  
60  
60  
60  
60  
50  
50  
50  
40  
20  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
100/83  
120/100  
120/100  
120/100  
120/100  
120/100  
350  
350  
300  
250  
100  
350  
350  
300  
250  
100  
350  
350  
300  
250  
100  
350  
350  
300  
250  
100  
250  
250  
225  
200  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
0.5  
0.5  
0.5  
0.5  
250  
250  
225  
200  
0.5  
0.5  
0.5  
1
250  
250  
225  
200  
1
1
1
1
2
2
2
2
250  
250  
225  
200  
2
(11) See package outlines for lead form configuration. When ordering  
special lead forming, add type number as suffix to part number.  
(12) Pulse width 10 µs  
Electrical Specification Notes  
(1) See Figure E6.5 through Figure E6.16 for current rating at  
specified operating case temperature.  
(2) See Figure E6.1 and Figure E6.2 for free air current rating.  
(13) Initial on-state current = 200 mA dc for 1 A through 16 A devices;  
400 mA dc for 20 A through 70 A devices.  
(3) See Figure E6.19 and Figure E6.20 for instantaneous on-state  
(14) TC = TJ for test conditions in off state.  
current versus on-state voltage (typical).  
(15) The R, K, or M package rating is intended for high surge condition  
use only and not recommended for 50 A rms continuous current  
usesincenarrowpinleadtemperaturecanexceedPCBsoldermelting  
temperature. Teccor's J package or W package is recommended  
for 50 A rms continuous current requirements.  
(16) For various durations of an exponentially decaying current  
waveform, see Figure E6.3 and Figure E6.4. (tW is defined as  
5 time constants.)  
(4) See Figure E6.18 for IGT versus TC.  
(5) See Figure E6.17 for IH versus TC.  
(6) For more than one full cycle rating, see Figure E6.23.  
(7) See Figure E6.22 for tgt versus IGT  
.
(8) See Figure E6.21 for VGT versus TC.  
(9) Test conditions are as follows:  
(17) Minimum non-trigger VGT at 125 °C is 0.2 V.  
• IT = 1 A for 1 A devices and 2 A for all other devices  
• Pulse duration = 50 µs, dv/dt = 20 V/µs, di/dt = -10 A/µs for 1 A  
devices, and -30 A/µs for other devices  
• IGT = 200 mA at turn-on  
(10) See Figure E6.5 through Figure E6.10 for maximum allowable  
case temperatures at maximum rated current.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E6 - 3  
http://www.teccor.com  
+1 972-580-7777  
SCRs  
Data Sheets  
Part Number  
V
&
DRM  
I
V
I
I
& I  
DRM RRM  
(14)  
Isolated  
Non-isolated  
T
RRM  
GT  
(4)  
(1) (15)  
A
A
A
A
A
A
G
TYPE  
A
K
G
K
K
G
K
G
G
K
A
G
G
A
A
K
A
K
A
A
Amps  
mAmps  
TC  
TO-263  
D2Pak  
TC  
=
=
TC =  
Volts  
mAmps  
TO-220  
TO-218X  
TO-218  
TO-220  
TO-218X  
TO-218  
IT(RMS) IT(AV)  
MAX  
25 °C 100 °C 125 °C  
MAX  
See “Package Dimensions” section for variations. (11)  
MIN  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
MIN MAX  
S2015L  
S4015L  
S6015L  
S8015L  
SK015L  
15  
15  
15  
15  
15  
16  
16  
16  
16  
16  
20  
20  
20  
20  
20  
25  
25  
25  
25  
25  
35  
35  
35  
35  
35  
40  
40  
40  
40  
40  
55  
55  
55  
55  
55  
65  
65  
65  
65  
65  
70  
70  
70  
70  
9.5  
9.5  
9.5  
9.5  
9.5  
10  
10  
10  
10  
10  
12.8  
12.8  
12.8  
12.8  
12.8  
16  
16  
16  
16  
16  
22  
22  
22  
22  
22  
25  
25  
25  
25  
25  
35  
35  
35  
35  
35  
41  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
35  
35  
35  
35  
35  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
50  
50  
50  
50  
50  
50  
50  
50  
50  
0.01  
0.01  
0.01  
0.02  
0.02  
0.01  
0.01  
0.01  
0.02  
0.02  
0.01  
0.01  
0.01  
0.02  
0.02  
0.01  
0.01  
0.01  
0.02  
0.02  
0.01  
0.01  
0.01  
0.02  
0.02  
0.01  
0.01  
0.01  
0.02  
0.03  
0.01  
0.01  
0.01  
0.02  
0.03  
0.02  
0.02  
0.02  
0.02  
0.03  
0.02  
0.02  
0.02  
0.02  
0.5  
0.5  
0.5  
1
1
1
1
2
15 A  
16 A  
20 A  
25 A  
35 A  
40 A  
55 A  
65 A  
70 A  
3
S2016R  
S4016R  
S6016R  
S8016R  
SK016R  
S2016N  
S4016N  
S6016N  
S8016N  
SK016N  
0.5  
0.5  
0.5  
1
1
1
1
2
3
S2020L  
S4020L  
S6020L  
S8020L  
SK020L  
S2025L  
S4025L  
S6025L  
S8025L  
SK025L  
0.5  
0.5  
0.5  
1.0  
3
1
1
1
1.5  
3
1
1
1
1.5  
3
1
1
1
1.5  
5
1
1
1
1
1
2
S2025R  
S4025R  
S6025R  
S8025R  
SK025R  
S2025N  
S4025N  
S6025N  
S8025N  
SK025N  
2
2
2
3
S2035J  
S2035K  
S4035K  
S6035K  
S8035K  
SK035K  
2
2
2
3
S4035J  
S6035J  
S8035J  
S2040R  
S4040R  
S6040R  
S8040R  
SK040R  
S2055R  
S4055R  
S6055R  
S8055R  
SK055R  
S2040N  
S4040N  
S6040N  
S8040N  
SK040N  
S2055N  
S4055N  
S6055N  
S8055N  
SK055N  
2
2
2
3
S2055W  
S4055W  
S6055W  
S8055W  
S2055M  
S4055M  
S6055M  
S8055M  
SK055M  
2
2
2
3
1
1.5  
5
1.5  
1.5  
1.5  
2
S2065J  
S4065J  
S6065J  
S8065J  
S2065K  
S4065K  
S6065K  
S8065K  
SK065K  
3
3
3
5
41  
41  
41  
41  
45  
45  
45  
45  
5
S2070W  
S4070W  
S6070W  
S8070W  
1.5  
1.5  
1.5  
2
3
3
3
5
See “General Notes” on page E6 - 2 and “Electrical Specification Notes” on page E6 - 3.  
http://www.teccor.com  
+1 972-580-7777  
E6 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
SCRs  
2
V
V
I
I
P
P
I
t
t
dv/dt  
I t  
di/dt  
TM  
(3)  
GT  
(8) (17)  
H
GM  
(12)  
GM  
(12)  
G(AV)  
TSM  
(6) (10) (16)  
gt  
(7)  
q
(5) (13)  
(9) (10)  
Volts  
Volts  
Amps  
Volts/µSec  
TC  
=
TC  
=
mAmps  
Amps  
Watts  
Watts  
Amps2Sec  
Amps/µSec  
µSec  
µSec  
T
C = 25 °C TC = 25 °C  
60/50 Hz  
100 °C  
MIN  
450  
450  
425  
400  
200  
450  
450  
425  
400  
200  
450  
450  
425  
400  
200  
450  
450  
425  
400  
200  
450  
450  
425  
400  
200  
650  
650  
600  
500  
250  
650  
650  
600  
500  
250  
650  
650  
600  
500  
250  
650  
650  
600  
500  
125 °C  
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
MAX  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2
MAX  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
80  
80  
80  
80  
80  
80  
80  
80  
80  
MIN  
350  
350  
325  
300  
TYP  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
MAX  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
4
4
4
4
4
5
5
5
5
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
40  
40  
40  
40  
40  
50  
50  
50  
50  
50  
50  
50  
50  
50  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
1
225/188  
225/188  
225/188  
225/188  
225/188  
225/188  
225/188  
225/188  
225/188  
225/188  
300/255  
300/255  
300/255  
300/255  
300/255  
350/300  
350/300  
350/300  
350/300  
350/300  
500/425  
500/425  
500/425  
500/425  
500/425  
520/430  
520/430  
520/430  
520/430  
520/430  
650/550  
650/550  
650/550  
650/550  
650/550  
950/800  
950/800  
950/800  
950/800  
950/800  
950/800  
950/800  
950/800  
950/800  
210  
210  
210  
210  
210  
210  
210  
210  
210  
210  
374  
374  
374  
374  
374  
510  
510  
125  
125  
125  
125  
125  
125  
125  
125  
125  
125  
125  
125  
125  
125  
125  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
175  
175  
175  
175  
175  
175  
175  
175  
175  
175  
200  
200  
200  
200  
200  
200  
200  
200  
200  
350  
350  
325  
300  
350  
350  
325  
300  
350  
350  
325  
300  
510  
510  
510  
350  
350  
325  
300  
1035  
1035  
1035  
1035  
1035  
1122  
1122  
1122  
1122  
1122  
1750  
1750  
1750  
1750  
1750  
3745  
3745  
3745  
3745  
3745  
3745  
3745  
3745  
3745  
2
550  
550  
500  
475  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
550  
550  
500  
475  
550  
550  
500  
475  
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
5
5
5
5
550  
550  
500  
475  
5
See “General Notes” on page E6 - 2 and “Electrical Specification Notes” on page E6 - 3.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E6 - 5  
http://www.teccor.com  
+1 972-580-7777  
SCRs  
Data Sheets  
Thermal Resistance (Steady State)  
R
[R  
]
θJA  
°C/W (TYP.)  
W
θJC  
J
L
F
F2  
R
K
M
D
V
N
Pkg.  
Code  
Type  
TO-220  
Isolated  
TO-202  
Type 1  
TO-202  
Type 2  
TO-220  
TO-218X  
Isolated  
TO-218X  
TO-218  
TO-218  
TO-252  
D-Pak  
TO-251AA  
V-Pak  
TO-263  
D2Pak  
Non-isolated  
Non-isolated Isolated Non-isolated  
Non-isolated Non-isolated  
Surface Mount Non-isolated Non-isolated  
See below  
1 A  
6 A  
4.0 [50]  
3.4  
3.0  
4.3 [45]  
3.9  
3.4  
9.5 [70]  
1.7  
1.5  
2.3 [70]  
2.0  
1.8 [40]  
1.6  
1.5  
8 A  
1.45  
1.4  
1.7  
1.6  
10 A  
12 A  
15 A  
16 A  
20 A  
25 A  
35 A  
40 A  
55 A  
65 A  
70 A  
2.5  
1.3  
1.0  
1.3  
1.0  
2.4  
2.35  
0.70  
0.86  
0.70  
0.6  
0.5  
0.6  
0.5  
0.53  
0.60  
0.53  
0.86  
Electrical Isolation  
Thermal Resistance (Steady State)  
Teccor’s isolated SCR packages will withstand a minimum high  
potential test of 2500 V ac rms from leads to mounting tab over  
the device's operating temperature range. The following table  
shows standard and optional isolation ratings.  
R
[R  
]
°C/W (TYP.)  
θJC  
θJA  
Package Code  
Type  
C
E
Electrical Isolation *  
from Leads to Mounting Tab  
TO-220  
TO-218X  
TO-218  
V AC RMS  
2500  
Isolated  
Isolated  
Isolated  
Standard  
Standard  
N/A  
Standard  
N/A  
Optional **  
4000  
Compak  
TO-92  
* UL Recognized File #E71639  
** For 4000 V isolation, use “V” suffix in part number.  
1 A  
35 *  
50 [145]  
2
* Mounted on 1cm copper foil surface; two-ounce copper foil  
http://www.teccor.com  
+1 972-580-7777  
E6 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
SCRs  
120  
100  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
FREE AIR RATING  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8 A TO-220 (Non-isolated)  
6 A TO-220 (Isolated) and  
6 A TO-202 (Types 1 and 3)  
80  
60  
40  
20  
1 A TO-92  
6 A TO-202  
(Types 2 and 4)  
and 6 A TO-251  
25  
50  
75  
100  
125  
Case Temperature (TC) – ˚C  
0.2  
0
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
RMS On-state Current [IT(RMS)] – Amps  
Figure E6.1 Maximum Allowable Ambient Temperature versus  
RMS On-state Current  
Figure E6.4 Peak Capacitor Discharge Current Derating  
(6 A through 55 A)  
120  
130  
120  
110  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
FREE AIR RATING  
100  
8 A TO-220 (Non-isolated)  
100  
90  
1 A Devices  
80  
6 A TO-220 (Isolated) and  
6 A TO-202 (Types 1 and 3)  
1 A TO-92  
80  
60  
40  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measure as  
shown on dimensional drawing  
70  
60  
50  
6 A TO-202  
(Types 2 and 4)  
and 6 A TO-251  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
20  
0.2  
0
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
RMS On-state Current [IT(RMS)] – Amps  
Average On-state Current [IT(AV)] – Amps  
Figure E6.2 Maximum Allowable Ambient Temperature versus  
Average On-state Current  
Figure E6.5 Maximum Allowable Case Temperature versus  
RMS On-state Current (1 A)  
130  
)
8 A TO-220 (Non-isolated  
TO-251 and TO-252  
1000  
120  
110  
100  
90  
55 A Devices  
)
10 A TO-220 (Isolated  
and 10 A TO-202  
6 A Devi  
ces  
300  
200  
25 A Devices  
15 A and 16 A  
Devices  
8 A TO-220 (Isolated)  
and 8 A TO-202  
80  
70  
60  
100  
50  
6 A to 10 A Devices  
12 A Devices  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180º  
CASE TEMPERATURE: Measure as  
shown on dimensional drawings  
ITM  
tw  
tw = 5 times constants  
20  
50  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
0
2
4
6
8
10  
12  
RMS On-state Current [IT(RMS)] – Amps  
Pulse Current Duration (tw) – ms  
Figure E6.3 Peak Capacitor Discharge Current (6 A through 55 A)  
Figure E6.6 Maximum Allowable Case Temperature versus  
RMS On-state Current (6 A, 8 A, and 10 A)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E6 - 7  
http://www.teccor.com  
+1 972-580-7777  
SCRs  
Data Sheets  
130  
120  
110  
100  
90  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
130  
120  
110  
100  
90  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measure as  
shown on dimensional drawings  
16 A TO-220 (Non-isolated)  
and TO-263  
55 A TO-218AC  
(Non-isolated) *  
10 A TO-220  
(Non-isolated)  
20 A TO-220 (Isolated)  
55 A TO-220  
(Non-isolated)  
and TO-263 *  
10 A TO-251 and 10 A TO-252  
65 A TO-218AC  
(Isolated) *  
12 A TO-220 (Non-isolated)  
TO-251 and TO-252  
* The R, K or M package rating  
is intended only for high surge  
80  
80  
70  
60  
50  
15 A TO-220  
(Isolated)  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measure as  
shown on dimensional drawing  
condition use and is not recommended  
for >50 A rms continuous  
70  
current use, since narrow pin lead  
temperature can exceed PCB solder  
melting temperature. J or W packages  
are recommended for >50 A rms  
continuous current requirements.  
60  
50  
0
4
8
12  
16  
20  
RMS On-state Current [IT(RMS)] – Amps  
0
10  
20  
30  
40  
50  
60  
70 75  
RMS On-state Current [IT(RMS)] – Amps  
Figure E6.7 Maximum Allowable Case Temperature versus  
RMS On-state Current (10 A, 12 A, 16 A, and 20 A)  
Figure E6.10 Maximum Allowable Case Temperature versus  
RMS On-state Current (55 A and 65 A)  
130  
120  
110  
100  
130  
120  
110  
35 A TO-218  
(Isolated)  
25 A TO-220  
(Isolated)  
100  
90  
80  
70  
60  
50  
1 A Devices  
90  
25 A TO-220  
(Non-isolated)  
and TO-263  
80  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
70  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measure as  
shown on dimensional drawings  
CONDUCTION ANGLE: 180  
˚
60  
50  
CASE TEMPERATURE: Measure  
as shown on dimensional drawings  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
0.2  
0.4  
0.6  
0.8  
RMS On-state Current [IT(RMS)] – Amps  
Average On-state Current [IT(AV)] – Amps  
Figure E6.8 Maximum Allowable Case Temperature versus  
RMS On-state Current (25 A and 35 A)  
Figure E6.11 Maximum Allowable Case Temperature versus  
Average On-state Current (1 A)  
130  
130  
CURRENT WAVEFORM: Sinusoidal  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measure as  
shown on dimensional drawings  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measure as  
shown on dimensional drawings  
12 A TO-220 (Non-isolated)  
-252  
120  
110  
100  
90  
and TO-251 and TO  
120  
110  
100  
90  
10 A TO-251  
10 A TO-252  
10 A TO-220  
(Non-isolated)  
70 A TO-218X  
(Non-isolated)  
6 A TO-220  
6 A TO-202  
65 A TO-218X  
(Isolated)  
10 A TO-220 (Isolated)  
and 10 A TO-202  
6 A TO-251  
6 A TO-252  
80  
55 A TO-218X  
(Non-isolated)  
8 A TO-220 (Isolated)  
8 A TO-202  
70  
8 A TO-220  
(Non-isolated)  
40 A TO-220  
(Non-isolated)  
and TO-263  
60  
80  
50  
0
1
2
3
4
5
6
7
8
0
10  
20  
30  
40  
50  
60  
70  
Average On-state Current [IT(AV)] – Amps  
RMS On-state Current [IT(RMS)] – Amps  
Figure E6.9 Maximum Allowable Case Temperature versus  
RMS On-state Current (40 A through 70 A)  
Figure E6.12 Maximum Allowable Case Temperature versus  
Average On-state Current (8 A, 10 A, and 12 A)  
http://www.teccor.com  
+1 972-580-7777  
E6 - 8  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
SCRs  
130  
120  
110  
100  
90  
130  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measure  
as shown on dimensional drawings  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measured  
as shown on dimensional drawings  
120  
110  
100  
90  
55 A TO-218AC (Non-isolated)  
*
55 A TO-220  
(Non-isolated)  
20 A TO-220  
(Isolated)  
65 A TO-218AC  
(Isolated) *  
and TO-263  
*
80  
80  
The R, K, or M package  
rating is intended only for high  
surge condition use and is not  
recommended for >32 A (AV)  
*
10 A TO-220  
(Non-isolated)  
70  
70  
continuous current use since narrow  
pin lead temperature can exceed PCB  
solder melting temperature. J or W  
packages are recommended for >32 A  
(AV) continuous current requirements.  
60  
60  
15 A TO-220  
(Isolated)  
50  
50  
0
2
4
6
8
10  
12  
14  
0
10  
20  
30  
40  
50  
Average On-state Current [I  
] – Amps  
Average On-state Current [I  
] – Amps  
T(AV)  
T(AV)  
Figure E6.13 Maximum Allowable Case Temperature versus  
Average On-state Current (10 A through 20 A)  
Figure E6.16 Maximum Allowable Case Temperature versus  
Average On-state Current (55 A and 65 A)  
130  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measure as  
shown on dimensional drawings  
2.0  
120  
110  
100  
90  
INITIAL ON-STATE CURRENT =  
200 mA dc for 1 A to 20 A Devices  
and 400 mA dc for 25 A to 70 A Devices  
35 A TO-218 (Non-isolated)  
35 A TO-218 (Isolated)  
1.5  
1.0  
.5  
220 (Isolated)  
25A TO-  
80  
70  
60  
25A TO-220 (Non-isolated)  
and TO-263  
0
-40  
-15  
+25  
+65  
+105 +125  
50  
0
.4  
8
12  
16  
20  
] – Amps  
24  
Case Temperature (T ) – ˚C  
C
Average On-state Current [I  
T(AV)  
Figure E6.14 Maximum Allowable Case Temperature versus  
Average On-state Current (25 A and 35 A)  
Figure E6.17 Normalized dc Holding Current versus Case Temperature  
130  
2.0  
1.5  
1.0  
0.5  
0
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CASE TEMPERATURE: Measure as  
shown on dimensional drawings  
120  
110  
100  
90  
70 A TO-218X  
(Non-isolated)  
40 A TO-220  
(Non-isolated)  
and TO-263  
80  
55 A TO-218X  
(Non-isolated)  
70  
65 A TO-218X  
(Isolated)  
60  
50  
-40  
-15  
+25  
+65  
+105 +125  
0
10  
20  
30  
40  
50  
Case Temperature (TC) – ˚C  
Average On-state Current [IT(AV)] – Amps  
Figure E6.15 Maximum Allowable Case Temperature versus  
Average On-state Current (40 A through 70 A)  
Figure E6.18 Normalized DC Gate-Trigger Current versus  
Case Temperature  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E6 - 9  
http://www.teccor.com  
+1 972-580-7777  
SCRs  
Data Sheets  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
1.0  
0.5  
0
25 A Devices  
T
= 25˚C  
C
15 A to 20 A Devices  
12 A Devices  
6 A to 10 A Devices  
1 A Devices  
1.4 1.6  
-40  
-15  
+25  
+65  
+105 +125  
Case Temperature (T ) – ˚C  
0
0.6  
0.8  
1.0  
1.2  
C
Instantaneous On-state Voltage (v ) – Volts  
T
Figure E6.19 Instantaneous On-state Current versus On-state Voltage  
(Typical) (6 A through 25 A)  
Figure E6.21 Normalized DC Gate-trigger Voltage versus  
Case Temperature  
7
200  
180  
TC = 25˚C  
6 A to 12 A Devices  
6
5
T
= 25˚C  
C
160  
140  
120  
100  
80  
15 A to 35 A Devices  
65 A and 70 A Devices  
4
3
2
1
0
40 A to 70 A Devices  
1 A Devices  
55 A Devices  
60  
40  
20  
35 A to 40 A Devices  
1.2 1.4 1.6  
0
0
.6  
.8  
1.0  
10  
20  
30  
40 50 60  
80 100  
200  
Instantaneous On-state Voltage (v ) – Volts  
DC Gate Trigger Current (IGT) – mA  
T
Figure E6.20 Instantaneous On-state Current versus On-state Voltage  
(Typical) (35 A through 70 A)  
Figure E6.22 Typical Turn-on Time versus Gate-trigger Current  
http://www.teccor.com  
+1 972-580-7777  
E6 - 10  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
SCRs  
1000  
800  
SUPPLY FREQUENCY: 60 Hz Sinusoidal  
LOAD: Resistive  
600  
500  
RMS ON-STATE CURRENT: [I  
]: Max-  
Rated Value at Specified Case Temperature  
T(RMS)  
400  
300  
200  
100  
80  
60  
50  
40  
30  
20  
10  
8
6
5
4
Notes:  
1) Gate control may be lost during and  
immediately following surge current  
interval.  
2) Overload may not be repeated until  
junction temperature has returned to  
steady-state rated value.  
3
2
1
1
2
3
4 5 6 7 8 10  
20 30 40 60 80100  
200 300400 600 1000  
Surge Current Duration – Full Cycles  
Figure E6.23 Peak Surge Current versus Surge Current Duration  
18  
16  
14  
12  
10  
8
CURRENT WAVEFORM: Half Sine Wave  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CURRENT WAVEFORM: Half Sine Wave  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
15 A to 20 A Devices  
1.0  
12 A Devices  
0.8  
6 A to 10 A Devices  
1.0 A Devices  
0.6  
6
0.4  
4
0.2  
0
2
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.2 0.4 0.6 0.8 1.0  
RMS On-state Current [IT(RMS)] – Amps  
RMS On-state Current [IT(RMS)] – Amps  
Figure E6.24 Power Dissipation (Typical) versus RMS On-state Current  
(1 A)  
Figure E6.25 Power Dissipation (Typical) versus RMS On-state Current  
(6 A through 20 A)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E6 - 11  
http://www.teccor.com  
+1 972-580-7777  
SCRs  
Data Sheets  
60  
50  
40  
30  
20  
10  
0
32  
28  
24  
20  
16  
12  
8
CURRENT WAVEFORM: Half Sine Wave  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
CURRENT WAVEFORM: Half Sine Wave  
LOAD: Resistive or Inductive  
CONDUCTION ANGLE: 180˚  
4
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
10  
20  
30  
40  
50  
60  
70  
RMS On-state Current [IT(RMS)] – Amps  
RMS On-state Current [IT(RMS)] – Amps  
Figure E6.26 Power Dissipation (Typical) versus RMS On-state Current  
(25 A and 35 A)  
Figure E6.27 Power Dissipation (Typical) versus RMS On-state Current  
(40 A through 70 A)  
http://www.teccor.com  
+1 972-580-7777  
E6 - 12  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E7  
TO-220  
Isolated  
A
C
Rectifiers  
(15 A to 25 A)  
GE7eneral Description  
Teccor manufactures 15 A rms to 25 A rms rectifiers with volt-  
ages rated from 200 V to 1000 V. Due to the electrically-isolated  
TO-220 package, these rectifiers may be used in common anode  
or common cathode circuits using only one part type, thereby  
simplifying stock requirements.  
Teccor's silicon rectifiers feature glass-passivated junctions to  
ensure long term reliability and stability. In addition, glass offers a  
rugged, reliable barrier against junction contamination.  
Features  
Electrically-isolated packages  
High voltage capabilities — 200 V to 1000 V  
High surge capabilities — up to 350 A  
Glass-passivated junctions  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E7 - 1  
http://www.teccor.com  
+ 1 972-580-7777  
Rectifiers  
Data Sheets  
Part Number  
I2t  
VRRM  
VR  
IF(AV)  
(1)  
IF(RMS)  
IFSM  
(2)  
IRM  
(3)  
VFM  
RθJC  
Isolated  
Type  
Not  
Used  
C
A
Amps  
mA  
Volts  
TC  
=
TC  
=
TC =  
TO-220  
Volts  
Volts  
Amps  
Amps  
Amps2Sec  
°C/W  
60/50 Hz  
25 °C  
100 °C  
125 °C  
TC=25 °C  
See “Package Dimensions”  
section for variations. (4)  
MIN  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
MIN  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
MAX  
9.5  
9.5  
9.5  
9.5  
MAX  
15  
15  
15  
15  
15  
20  
20  
20  
20  
20  
25  
25  
25  
25  
25  
MAX  
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
0.5  
3
MAX  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
TYP  
2.85  
2.85  
2.58  
2.85  
2.85  
2.5  
2.5  
2.5  
2.5  
2.5  
D2015L  
D4015L  
D6015L  
D8015L  
DK015L  
D2020L  
D4020L  
D6020L  
D8020L  
DK020L  
D2025L  
D4025L  
D6025L  
D8025L  
DK025L  
225/188  
225/188  
225/188  
225/188  
225/188  
300/255  
300/255  
300/255  
300/255  
300/255  
350/300  
350/300  
350/300  
350/300  
350/300  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
1
1
1
1
210  
210  
210  
210  
210  
374  
374  
374  
374  
374  
508  
508  
508  
508  
508  
15 A  
20 A  
25 A  
9.5  
12.7  
12.7  
12.7  
12.7  
12.7  
15.9  
15.9  
15.9  
15.9  
15.9  
1
1
1
1
1
1
1
1
2.7  
2.7  
2.7  
2.7  
2.7  
Test Conditions  
Electrical Specification Notes  
(1) See Figure E7.3 for current rating at specified case temperature.  
(2) For more than one full cycle rating, see Figure E7.4.  
(3) TC = TJ for test conditions  
I2t — RMS surge (non-repetitive) forward current for 8.3 ms for fusing  
IF(AV) — Average forward current  
IF(RMS) — RMS forward current  
IFSM — Peak one-cycle surge current  
IRM — Peak reverse current  
(4) See package outlines for lead form configurations. When ordering  
special lead forming, add type number as suffix to part number.  
R
JC — Thermal resistance (steady state) junction to case  
θ
Electrical Isolation  
V
V
V
FM — Peak forward voltage at rated average forward current  
R — DC blocking voltage  
RRM — Peak repetitive reverse voltage  
Electrical Isolation  
from Leads to Mounting Tab *  
TO-220  
General Notes  
V AC RMS  
2500  
Isolated  
Standard  
Optional **  
Operating temperature range (TJ) is -40 °C to +125 °C.  
Storage temperature range (TS) is -40 °C to +125 °C.  
Lead solder temperature is a maximum of 230 °C for 10 seconds  
maximum at a minimum of 1/16" (1.59 mm) from case.  
4000  
* UL Recognized File #E71639  
** For 4000 V isolation, use “V” suffix in the part number.  
The case temperature (TC) is measured as shown on dimensional  
outline drawings in the “Package Dimensions” section of this  
catalog.  
Teccor's electrically-isolated TO-220 devices withstand a high  
potential test of 2500 V ac rms from leads to mounting tab over the  
operating temperature range.  
Typical Reverse Recovery Time (trr) is 4 µs. (Test conditions =  
0.9 A forward current and 1.5 A reverse current)  
http://www.teccor.com  
+ 1 972-580-7777  
E7 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Rectifiers  
140  
120  
100  
80  
TC = 25˚C  
1000  
800  
600  
25 A Devices  
20 A Devices  
400  
300  
15 A Devices  
20 A Devices  
200  
25 A Devices  
100  
80  
60  
60  
40  
30  
SUPPLY FREQUENCY: 60 Hz Sinewave  
LOAD: Resistive or Inductive  
40  
15 A Devices  
RMS ON-STATE CURRENT: [IF(RMS)  
Maximium Rated Value at Specified  
Case Temperature  
]
20  
20  
0
10  
1
2
4
6
10  
20  
40  
60 100  
200  
400 600 1000  
Surge Current Duration – Cycles  
0
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
Instantaneous Forward Voltage (vF) – Volts  
Figure E7.1 Instantaneous Forward Current versus Forward Voltage  
(Typical)  
Figure E7.4 Peak Surge Forward Current versus Surge Current  
Duration  
20  
SINGLE PULSE RECTIFICATION  
60 Hz SINE WAVE  
16  
12  
20 A Devices  
8
15 A Devices  
4
0
25 A Devices  
0
2
4
6
8
10  
12  
14  
16  
Average Forward Current [IF(AV)] – Amps  
Figure E7.2 Forward Power Dissipation (Typical)  
125  
SUPPLY FREQUENCY: 60 Hz Sine Wave  
LOAD: Resistive or Inductive  
CASE TEMPERATURE:  
Measured As Shown on Dimensional Drawing  
120  
115  
110  
105  
100  
95  
20 A Devices  
25 A Devices  
15 A Devices  
90  
85  
80  
75  
70  
0
0
2
4
6
8
10  
12  
14  
16  
Average Forward Current [IF (AV)] – Amps  
Figure E7.3 Maximum Allowable Case Temperature versus  
Average Forward Current  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E7 - 3  
http://www.teccor.com  
+1 972-580-7777  
Notes  
E8  
DO-35  
DO-214  
Diac  
HT and ST Series  
GE8eneral Description  
Teccor’s HT and ST Series of bilateral trigger diacs offer a range  
of voltage characteristics from 27 V to 45 V.  
A diac semiconductor is a full-wave or bidirectional thyristor. It is  
triggered from a blocking- to conduction-state for either polarity  
of applied voltage whenever the amplitude of applied voltage  
exceeds the breakover voltage rating of the diac.  
The Teccor line of diacs features glass-passivated junctions to  
ensure long-term reliability and parameter stability. Teccor’s  
glass offers a rugged, reliable barrier against junction  
contamination.  
Features  
Bilateral triggering device  
Glass-passivated junctions  
Wide voltage range selections  
The diac specifications listed in this data sheet are for standard  
products. Special parameter selections such as close tolerance  
voltage symmetry are available. Consult the factory for more  
information about custom design applications.  
ST Series  
Epoxy SMT package  
High-temperature, solder-bonded die attachment  
HT Series  
DO-35 trigger package  
Pre-tinned leads  
2002 Teccor Electronics  
E8 - 1  
http://www.teccor.com  
+1 972-580-7777  
Thyristor Product Catalog  
Diac  
Data Sheets  
Electrical Characteristics T = 25°C  
C
Part No.  
VBO  
VBO  
VBB  
IBO  
ITRM  
Breakover Voltage  
(Forward and  
Reverse)  
Breakover Voltage  
Dynamic  
Breakback  
Voltage  
(3)  
Peak Breakover  
Peak Pulse  
Symmetry  
Current  
Current  
at  
for 10 µs  
120 PPS  
TA 40 °C  
VBO  
=
Breakover  
Voltage  
[ | +VBO | - | - VBO | ]  
| V |  
Volts  
Volts  
MAX  
3 (1)  
2 (1)  
2 (1)  
2 (1)  
3 (1)  
2 (1)  
2 (1)  
3 (1)  
Volts  
MIN  
10 (2)  
7 at 10 mA (4)  
7 at 10 mA (4)  
10 (2)  
10 (2)  
7 at 10 mA (4)  
10 (2)  
µAmps  
MAX  
25  
25  
25  
25  
25  
25  
25  
Amps  
MAX  
DO-35  
DO-214  
MIN  
27  
28  
30  
32  
30  
32  
34  
35  
MAX  
37  
36  
34  
36  
40  
40  
38  
45  
HT-32  
ST-32  
2
2
2
2
2
2
2
2
HT-32A / HT-5761  
HT-32B / HT-5761A  
HT-34B  
HT-35  
HT-36A / HT-5762  
HT-36B  
ST-32B  
ST-34B  
ST-35  
ST-36A  
ST-36B  
ST-40  
HT-40  
10 (2)  
25  
General Notes  
Current  
Lead solder temperature is +230 °C for 10-second maximum;  
1/16" (1.59 mm) from case.  
10 mA  
V
See “Package Dimensions” section of this catalog.  
Electrical Specification Notes  
Breakover  
Current  
IBO  
(1) Breakover voltage symmetry as close as 1 V is available from the  
factory on these products.  
-VBO  
Voltage  
(2) See Figure E8.4 and Figure E8.5 for test circuit and waveforms.  
+VBO  
(3) Typical switching time is 900 nano-seconds measured at IPK  
(Figure E8.4) across a 20 resistor (Figure E8.5). Switching time  
is defined as rise time of IPK between the 10% to 90% points.  
Breakover  
Voltage  
VBO  
(4) See V-I Characteristics.  
Bilateral Trigger DIAC Specifications  
Maximum Ratings, Absolute-Maximum Values  
V-I Characteristics  
– Maximum Trigger Firing Capacitance: 0.1 µF  
– Device dissipation (at TA = -40 °C to +40 °C):  
250 mW for DO-35 and 300 mW for DO-214  
– Derate above +40 °C:  
HT and ST Series Thermal Resistance  
Junction to Lead - R JL: °C/W  
θ
Junction to Ambient [R JA]: °C/W  
3.6 mW/°C for DO-35 and 3 mW/°C for DO-214  
θ
(based on maximum lead temperature of  
Temperature Ranges  
90 °C for DO-214 and 85 °C for DO-35 devices)  
Storage: -40 °C to +125 °C  
Y Package  
S Package  
Operating (Junction): -40 °C to +125 °C  
DO-35  
DO-214  
100 [278] °C/W  
65 °C/W *  
2
* Mounted on 1 cm copper foil surface; two-ounce copper foil  
http://www.teccor.com  
+1 972-580-7777  
E8 - 2  
2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Diac  
LOAD — Up to 1500 W  
3.3 k  
Triac  
Q2015L5  
MT2  
MT1  
200 k  
120 V ac  
60 Hz  
G
HT-35  
Bilateral  
Trigger  
Diac  
0.1 µF  
100 V  
Figure E8.1 Typical Diac/Triac Full-wave Phase Control Circuit Using  
Lower Voltage Diacs.  
10  
5.0  
3.0  
2.0  
1.0  
0.5  
0.3  
0.2  
Safe Operating  
0.1  
Area  
0.05  
0.03  
0.02  
.01  
.005  
.003  
.002  
PULSE REPETITION RATE = 120 pps  
T
A
= 40 ˚C  
.001  
1
2
4
6
10  
20  
40 60 100  
200  
4006001000  
2000  
4000 10000  
Base Pulse Duration – µs  
Figure E8.2 Repetitive Peak On-state Current versus Pulse Duration  
2002 Teccor Electronics  
E8 - 3  
http://www.teccor.com  
+1 972-580-7777  
Thyristor Product Catalog  
Diac  
Data Sheets  
+8  
+6  
+4  
+2  
0
47 k  
*
100 k  
D.U.T.  
HT Series  
R
L
ST Series  
C
T
V
C
-2  
-4  
-6  
-8  
O.1 µF  
I
L
20 Ω  
1%  
120 V rms  
60 Hz  
-40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
* Adjust for one firing in each half cycle. D.U.T. = Diac  
Junction Temperature (TJ) – ˚C  
Figure E8.3 Normalized VBO Change versus Junction Temperature  
Figure E8.5 Circuit Used to Measure Diac Characteristics  
(Refer to Figure E8.4.)  
VC  
300  
250  
200  
+VBO  
V+  
t
0
V-  
ice)  
-VBO  
150  
35 V Dev  
IL  
100  
50  
0
Typical (  
+IPK  
0
t
.01 .02 .03 .04 .05 .06 .07 .08 .09 .10  
-IPK  
Triggering Capacitance (CT) – µF  
Typical pulse base width is 10 µs  
Figure E8.4 Test Circuit Waveforms (Refer to Figure E8.5.)  
Figure E8.6 Peak Output Current versus Triggering Capacitance  
(Per Figure E8.5 with RL of 20 )  
http://www.teccor.com  
+1 972-580-7777  
E8 - 4  
2002 Teccor Electronics  
Thyristor Product Catalog  
E9  
DO-15X  
DO-214  
Surface Mount  
TO-92  
Type 70  
TO-202  
Sidac  
(79 V to 330 V)  
GE9eneral Description  
The sidac is a silicon bilateral voltage triggered switch with  
greater power-handling capabilities than standard diacs. Upon  
application of a voltage exceeding the sidac breakover voltage  
point, the sidac switches on through a negative resistance region  
to a low on-state voltage. Conduction continues until the current  
is interrupted or drops below the minimum holding current of the  
device.  
Teccor’s sidacs feature glass-passivated junctions to ensure a  
rugged and dependable device capable of withstanding harsh  
environments.  
Applications  
High-voltage lamp ignitors  
Natural gas ignitors  
Gas oil ignitors  
High-voltage power supplies  
Xenon ignitors  
Overvoltage protector  
Pulse generators  
Variations of devices covered in this data sheet are available for  
custom design applications. Consult the factory for more informa-  
tion.  
Fluorescent lighting ignitors  
HID lighting ignitors  
Features  
AC circuit oriented  
Glass-passivated junctions  
High surge current capability  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E9 - 1  
http://www.teccor.com  
+ 1 972-580-7777  
Sidac  
Data Sheets  
IT(RMS)  
(7) (8)  
VDRM  
VBO  
(1)  
IDRM  
IBO  
(2)  
IH  
(3) (4)  
Part No.  
(10)  
Type  
TO-92  
DO-15X  
DO-214  
TO-202  
Amps  
MAX  
1
1
1
1
1
1
1
1
1
1
1
Volts  
MIN  
±70  
±90  
±90  
±90  
±90  
±90  
±90  
±180  
±180  
±190  
±200  
±200  
Volts  
µAmps  
MAX  
5
5
5
5
5
5
5
5
5
5
5
µAmps  
MAX  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
mAmps  
See “Package Dimensions” section for variations. (9)  
K0900E70  
MIN  
79  
95  
MAX  
97  
TYP  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
MAX  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
K0900G  
K1050G  
K1100G  
K1200G  
K1300G  
K1400G  
K1500G  
K2000G  
K2200G  
K2400G  
K2500G  
K0900S  
K1050E70  
K1100E70  
K1200E70  
K1300E70  
K1400E70  
K1500E70  
K2000E70  
K2200E70  
K2400E70  
K2500E70  
K1050S  
K1100S  
K1200S  
K1300S  
K1400S  
K1500S  
K2000S  
K2200S  
K2400S  
K2500S  
113  
118  
125  
138  
146  
170  
215  
230  
250  
280  
330  
104  
110  
120  
130  
140  
190  
205  
220  
240  
270  
K2000F1  
K2200F1  
K2400F1  
K2500F1  
K3000F1  
1
5
10  
Specific Test Conditions  
di/dt — Critical rate-of-rise of on-state current  
Electrical Specification Notes  
(1) See Figure E9.5 for VBO change versus junction temperature.  
dv/dt — Critical rate-of-rise of off-state voltage at rated VDRM  
;
(2) See Figure E9.6 for IBO versus junction temperature.  
(3) See Figure E9.2 for IH versus case temperature.  
(4) See Figure E9.13 for test circuit.  
TJ 100 °C  
I
I
I
I
I
BO — Breakover current 50/60 Hz sine wave  
DRM — Repetitive peak off-state current 50/60 Hz sine wave; V = VDRM  
H — Dynamic holding current 50/60 Hz sine wave; R = 100 Ω  
(5) See Figure E9.1 for more than one full cycle rating.  
(6)  
T
C 90 °C for TO-92 Sidac  
T
C 105 °C for TO-202 Sidacs  
T(RMS) — On-state RMS current T 125 °C 50/60 Hz sine wave  
J
TL 100 °C for DO-15X  
TL 90 °C for DO-214  
TSM — Peak one-cycle surge current 50/60 Hz sine wave (non-  
repetitive)  
(V  
V )  
BO  
S
)
(7) See Figure E9.14 for clarification of sidac operation.  
RS — Switching resistance R = ------------------------------- 50/60 Hz sine wave  
S
(I I  
(8) For best sidac operation, the load impedance should be near or  
BO  
S
less than switching resistance.  
VBO — Breakover voltage 50/60 Hz sine wave  
VDRM — Repetitive peak off-state voltage  
VTM — Peak on-state voltage; IT = 1 A  
(9) See package outlines for lead form configurations. When ordering  
special lead forming, add type number as suffix to part number.  
(10) Do not use electrically connected mounting tab or center lead.  
+I  
General Notes  
I
T
All measurements are made at 60 Hz with a resistive load at an  
ambient temperature of +25 °C unless otherwise specified.  
I
R
H
S
Storage temperature range (TS) is -65 °C to +150 °C.  
I
The case (TC) or lead (TL) temperature is measured as shown on  
the dimensional outline drawings in the “Package Dimensions” sec-  
tion of this catalog.  
S
I
BO  
I
DRM  
-V  
+V  
Junction temperature range (TJ) is -40 °C to +125 °C.  
Lead solder temperature is a maximum of +230 °C for 10-second  
maximum; 1/16" (1.59 mm) from case.  
V
BO  
V
V
T
S
(V - V )  
BO  
S
)
R
=
V
S
DRM  
(I - I  
S
BO  
-I  
V-I Characteristics  
http://www.teccor.com  
+1 972-580-7777  
E9 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sidac  
V
I
R
(8)  
dv/dt  
di/dt  
TM  
TSM  
(5)  
S
Volts  
MAX  
Amps  
Package  
60 Hz  
50 Hz  
kΩ  
MIN  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
Volts/µSec  
MIN  
Amps/µSec  
TYP  
150  
E
G
F
S
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
150  
150  
150  
150  
150  
150  
150  
150  
3
3
3
3
3
150  
150  
150  
Thermal Resistance (Steady State)  
θJC [RθJA] °C/W (TYPICAL)  
2.0  
1.5  
1.0  
.5  
R
E Package  
G Package  
F Package  
S Package  
35 [95]  
18 [75]  
7 [45] **  
30 * [85]  
2
* Mounted on 1 cm copper foil surface; two-ounce copper foil  
** RθJA for TO-202 Type 23 and Type 41 is 70 °C/Watt.  
0
-40  
-15  
+25  
+65  
+105  
+125  
Case Temperature (T ) –  
C
C
˚
100  
SUPPLY FREQUENCY: 60 Hz Sinusoidal  
LOAD: Resistive  
Figure E9.2 Normalized DC Holding Current versus Case/Lead  
Temperature  
RMS ON-STATE CURRENT: I RMS Maximum Rated  
T
Value at Specified Junction Temperature  
40  
20  
10  
8.0  
6.0  
4.0  
Notes:  
1) Blocking capability may be lost during  
and immediately following surge  
current interval.  
2.0  
1.0  
2) Overload may not be repeated until  
junction temperature has returned  
to steady-state rated value.  
1.0  
10  
100  
1000  
Surge Current Duration – Full Cycles  
Figure E9.1 Peak Surge Current versus Surge Current Duration  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E9 - 3  
http://www.teccor.com  
+1 972-580-7777  
Sidac  
Data Sheets  
di/dt Limit Line  
600  
400  
I
TRM  
VBO Firing  
Current  
Waveform  
200  
9
8
7
6
to  
l/f  
100  
80  
60  
5
4
40  
V = V  
BO  
3
20  
TJ = 125 ºC Max  
2
10  
8
6
4
1
130  
2
20  
30  
40  
50  
60  
70 80  
90 100 110 120  
1
Junction Temperature (T ) –  
C
J
˚
0.8  
0.6  
4
6 8  
1 x 10-2  
2
4
6 8  
1 x 10-1  
2
4 6 8 1  
2 x 10-3  
Pulse base width (to) – ms  
Figure E9.3 Repetitive Peak On-state Current (ITRM) versus  
Pulse Width at Various Frequencies  
Figure E9.6 Normalized Repetitive Peak Breakover Current versus  
Junction Temperature  
9
140  
T
= 25 ˚C  
L
CURRENT WAVEFORM: Sinusoidal - 60 Hz  
LOAD: Resistive or Inductive  
FREE AIR RATING  
8
7
6
5
4
3
2
120  
100  
80  
TO-92, DO-214 and DO-15X  
"E", "S" and "G" Packages  
60  
TO-202 "F" Package  
40  
1
0
25  
20  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
Positive or Negative Instantaneous On-state Voltage (vT) – Volts  
RMS On-state Current [IT(RMS)] – Amps  
Figure E9.4 Maximum Allowable Ambient Temperature versus  
On-state Current  
Figure E9.7 On-state Current versus On-state Voltage (Typical)  
+4  
CURRENT WAVEFORM: Sinusoidal  
LOAD: Resistive or Inductive  
2.2  
K2xxxF1  
CONDUCTION ANGLE:  
See Basic Sidac Cirucit  
+2  
2.0  
1.8  
1.6  
1.4  
1.2  
0
-2  
K1xxxE  
K1xxxG  
K1xxxS  
-4  
TO-202 "F" Package  
1.0  
0.8  
0.6  
0.4  
0.2  
-6  
K2xxxE  
K2xxxG  
K2xxxS  
-8  
-10  
-12  
"E", "S" and "G" Packages  
TO-92, DO-214 and DO-15X  
+25  
+20  
-40  
-20  
0
+40  
+60  
+80 +100 +120 +140  
0.6  
0.8  
0
0.2  
1.0  
0.4  
Junction Temperature (TJ) – ˚C  
RMS On-state Current [IT(RMS)] – Amps  
Figure E9.5 Normalized VBO Change versus Junction Temperature  
Figure E9.8 Power Dissipation (Typical) versus On-state Current  
[Refer to Figure E9.14 for Basic Sidac Circuit]  
http://www.teccor.com  
+1 972-580-7777  
E9 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Sidac  
Xenon Lamp  
100  
2 W  
10 µF  
SCR  
Sidac  
-
+
250 V  
20 M  
K2200G  
4 kV  
+
-
100-250 V ac  
60 Hz  
100-250 V ac  
60 Hz  
10 µF  
450 V  
Sidac  
120 V ac  
60 Hz  
0.01 µF  
400 V  
200-  
400 V  
Trigger  
Transformer  
20:1  
Figure E9.9 Comparison of Sidac versus SCR for Gas Ignitor Circuit  
Figure E9.12 Xenon Lamp Flashing Circuit  
Push to test  
S1  
Switch to test  
in each direction  
4.7 µF  
-
+
4.7 k  
½ W  
10 µF  
100 V  
100-250 V ac  
60 Hz  
Device  
Under  
Test  
-
+
100 Ω  
1%  
K1200E  
Sidac  
50 V  
+
-
4.7 µF  
100 V  
200 V  
1.2 µF  
S1  
24 V ac  
60 Hz  
Scope  
IPK  
Trace Stops  
IH  
H.V.  
Ignitor  
Scope Indication  
Figure E9.10 Circuit (Low Voltage Input) for Gas Ignition  
Figure E9.13 Dynamic Holding Current Test Circuit for Sidacs  
Ballast  
Ballast  
VBO  
VBO  
0.47 µF  
400 V  
Sidac  
Sidac  
0.22 µF  
VBO  
Lamp  
3.3 k  
7.5 k  
100-250 V ac  
60 Hz  
Lamp  
IH  
Load  
IH  
IH  
120 V ac  
60 Hz  
220 V ac  
60 Hz  
120-145  
˚
Conduction  
Angle  
16 mH  
Load Current  
120 V ac  
220 V ac  
Figure E9.11 Typical High Pressure Sodium Lamp Firing Circuit  
Figure E9.14 Basic Sidac Circuit  
©2002 Teccor Electronics  
Thyristor Product Catalog  
E9 - 5  
http://www.teccor.com  
+1 972-580-7777  
Sidac  
Data Sheets  
(a) Circuit  
(b) Waveforms  
V
BO  
R
SIDAC  
V
C
V
V  
B0  
V
DC(IN)  
C
t
t
I
C
L
R
L
I
L
V
V
- V  
BO  
- V  
IN  
BO  
R
max  
I
IN  
TM  
R
min  
I
H (MIN)  
Figure E9.15 Relaxation Oscillator Using a Sidac  
Input  
Voltage  
tw 3 ms  
VCE Monitor  
(See Note A)  
0 V  
tw  
(See Note B)  
RBB1  
5 V  
Collector  
Current  
0.63 A  
100 mH  
100 ms  
2N6127  
(or equivalent)  
=
150 Ω  
TIP-47  
Input  
0
50 Ω  
Sidac VBO  
+
RBB2  
=
IC Monitor  
50 Ω  
VCC = 20 V  
100 Ω  
-
Collector  
Voltage  
VBB2 =0  
+
-
R
S = 0.1 Ω  
10 V  
VBB1 =10 V  
VCE(sat)  
Test Circuit  
Voltage and Current Waveforms  
Note A: Input pulse width is increased until I  
= 0.63 A.  
CM  
Note B: Sidac (or Diac or series of Diacs) chosen so that V is just below V  
rating of transistor to be protected.  
BO  
CEO  
The Sidac (or Diac) eliminates a reverse breakdown of the transistor in inductive switching circuits where otherwise the  
transistor could be destroyed.  
Figure E9.16 Sidac Added to Protect Transistor for Typical Transistor Inductive Load Switching Requirements  
http://www.teccor.com  
+1 972-580-7777  
E9 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
M1  
Package Dimensions  
M1  
This section contains the dimensions for the following packages:  
F Package — TO-202AB, Type 1 (Non-isolated)  
Y Package — DO-35 or DO-204AH  
R Package — TO-220AB (Non-isolated)  
L Package — TO-220AB (Isolated)  
P Package — TO-3 Fastpak (Isolated)  
E Package — TO-92 (Isolated)  
S Package — DO-214AA  
M Package — TO-218AC (Non-isolated)  
K Package — TO-218AC (Isolated)  
W Package — TO-218X (Non-isolated)  
J Package — TO-218X (Isolated)  
G Package — DO-15X Axial Lead  
C Package — Compak  
N Package — TO-263  
D Package — TO-252  
V Package — TO-251  
2002 Teccor Electronics  
M1 - 1  
http://www.teccor.com  
+1 972-580-7777  
Thyristor Product Catalog  
Package Dimensions  
Data Sheets  
F Package — TO-202AB, Type 1  
Non-isolated Mounting Tab Common with MT2 / Anode / PIN 2  
A
B
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.385  
0.253  
0.120  
0.810  
0.310  
0.430  
0.062  
0.065  
0.029  
0.105  
0.205  
0.059  
0.023  
0.065  
0.185  
0.130  
0.405  
MIN  
9.27  
6.17  
2.79  
19.81  
7.37  
10.16  
1.32  
1.40  
0.58  
2.41  
4.95  
1.24  
0.43  
1.40  
4.45  
3.15  
9.91  
MAX  
9.78  
6.43  
3.05  
20.57  
7.87  
10.92  
1.58  
1.65  
0.74  
2.67  
5.21  
1.50  
0.58  
1.65  
4.70  
3.30  
10.29  
Tab Common to  
MT2 / Anode / PIN 2  
A
B
C
D
E
F
G
H
J
0.365  
0.243  
0.110  
0.780  
0.290  
0.400  
0.052  
0.055  
0.023  
0.095  
0.195  
0.049  
0.017  
0.055  
0.175  
0.124  
0.390  
C
E
R
DIA.  
G
D
F
Case  
Temperature  
Measurement  
Point  
MT1 / Cathode / PIN 1  
K
L
H
J
MT2 / Anode / PIN 2  
M
M
N
P
Q
R
S
N
P
K
Q
L
Gate / Trigger / PIN 3  
0.070 x 45 Chamfer Common to  
All Types  
˚
S
Notes:  
(1) Maximum torque to be applied to mounting tab is 8 in-lbs. (0.904 Nm)  
(2) Pin 2 and mounting tab are electrically connected. Do not use either  
for Sidac operation.  
Y Package — DO-35 or DO-204AH  
A
DIA.  
Inches  
Millimeters  
1
Dimension  
MIN  
MAX  
0.090  
0.015  
0.165  
0.022  
MIN  
MAX  
2.280  
0.381  
4.190  
0.558  
A
B
C
D
E
0.060  
1.530  
B
0.135  
0.018  
1.000  
3.430  
0.458  
25.400  
C
(1) Package contour optional within dimensions A and C. Slugs, if any,  
shall be included within this cylinder but shall not be subject to the  
minimum limit of Dimension A.  
1
(2) Lead diameter is not controlled in this zone to allow for flash, lead  
finish build-up, and minor irregularities other than slugs.  
B
2
E
TYP  
D
DIA.  
TYP  
http://www.teccor.com  
+1 972-580-7777  
M1 - 2  
2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Package Dimensions  
R Package — TO-220AB  
Non-isolated Mounting Tab Common with Center Lead  
Inches  
Millimeters  
R Package  
MT2 / Anode  
A
O
P
Dimension  
MIN  
MAX  
0.420  
0.115  
0.250  
0.620  
0.147  
0.130  
0.575  
0.035  
0.205  
0.105  
0.075  
0.085  
0.024  
0.188  
0.060  
0.048  
MIN  
MAX  
10.67  
2.92  
6.35  
15.75  
3.73  
3.30  
14.60  
0.89  
5.21  
2.67  
1.91  
2.16  
0.61  
4.78  
1.53  
1.22  
A
B
C
D
E
F
G
H
J
K
L
M
N
O
P
R
0.380  
0.105  
0.230  
0.590  
0.142  
0.110  
0.540  
0.025  
0.195  
0.095  
0.060  
0.070  
0.018  
0.178  
0.045  
0.038  
9.65  
2.66  
5.85  
14.98  
3.61  
2.80  
13.71  
0.63  
4.95  
2.41  
1.52  
1.78  
0.45  
4.52  
1.14  
0.97  
Case  
B
C
Temperature  
Measurement  
Point  
D
G
E
DIA.  
Notch in gate  
lead identifies  
non-isolated tab  
F
Gate/Trigger *  
MT2 / Anode  
MT1 / Cathode  
R
H
N
M
L
K
J
* The gate pin is not used  
on diode rectifiers.  
Note: Maximum torque  
to be applied to mounting tab  
is 8 in-lbs. (0.904 Nm).  
L Package — TO-220AB  
Isolated Mounting Tab  
Inches  
Millimeters  
R Package  
MT2 / Anode  
A
O
P
Dimension  
MIN  
MAX  
0.420  
0.115  
0.250  
0.620  
0.147  
0.130  
0.575  
0.035  
0.205  
0.105  
0.075  
0.085  
0.024  
0.188  
0.060  
0.048  
MIN  
9.65  
2.66  
5.85  
14.98  
3.61  
2.80  
13.71  
0.63  
4.95  
2.41  
1.52  
1.78  
0.45  
4.52  
1.14  
0.97  
MAX  
10.67  
2.92  
6.35  
15.75  
3.73  
3.30  
14.60  
0.89  
5.21  
2.67  
1.91  
2.16  
0.61  
4.78  
1.53  
1.22  
A
B
C
D
E
F
0.380  
0.105  
0.230  
0.590  
0.142  
0.110  
0.540  
0.025  
0.195  
0.095  
0.060  
0.070  
0.018  
0.178  
0.045  
0.038  
B
C
Case  
Temperature  
Measurement  
Point  
D
G
E
DIA.  
F
G
H
J
Gate/Trigger *  
MT2 / Anode  
MT1 / Cathode  
K
L
R
H
N
M
M
N
O
L
K
P
R
* The gate pin is not used  
on diode rectifiers.  
J
Note: Maximum torque  
to be applied to mounting tab  
is 8 in-lbs. (0.904 Nm).  
2002 Teccor Electronics  
M1 - 3  
http://www.teccor.com  
+1 972-580-7777  
Thyristor Product Catalog  
Package Dimensions  
Data Sheets  
P Package — TO-3 Fastpak  
Isolated Mounting Base  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
1.543  
1.185  
0.850  
0.795  
0.791  
0.906  
0.169  
0.465  
0.587  
0.087  
0.055  
0.319  
0.396  
0.059  
0.331  
0.106  
0.886  
0.256  
0.130  
0.329  
0.329  
0.228  
0.254  
0.254  
0.191  
0.130  
0.185  
MIN  
38.90  
29.90  
21.40  
19.80  
19.90  
22.20  
4.10  
9.80  
12.90  
2.00  
1.20  
7.80  
9.45  
1.10  
8.00  
2.50  
21.50  
6.20  
2.70  
8.15  
8.15  
5.60  
6.25  
6.25  
4.65  
3.05  
4.45  
MAX  
39.20  
30.10  
21.60  
20.20  
20.10  
23.00  
4.30  
11.80  
14.90  
2.20  
1.40  
8.10  
A
B
C
D
E
F
1.531  
1.177  
0.843  
0.780  
0.783  
0.874  
0.161  
0.386  
0.508  
0.079  
0.047  
0.307  
0.372  
0.043  
0.315  
0.098  
0.846  
0.244  
0.106  
0.321  
0.321  
0.220  
0.246  
0.246  
0.183  
0.120  
0.175  
MT2  
G
H
MT1  
Gate  
I
Φ G  
J
K
T
Measuring Point  
C
L
M
10.05  
1.50  
8.40  
2.70  
N
O
P
Φ
Φ
Q
22.50  
6.50  
R
S
3.30  
T (MT1)  
T (MT2)  
T (Gate)  
U (MT1)  
U (MT2)  
U (Gate)  
V
8.35  
8.35  
Φ
5.80  
6.45  
6.45  
4.85  
3.30  
W
4.70  
Note: Maximum torque to be applied to mounting tab is 8 in-lbs.  
(0.904 Nm).  
E Package — TO-92  
T
C Measuring Point  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
MIN  
MAX  
A
B
D
E
F
G
H
J
0.176  
0.500  
0.095  
0.150  
0.046  
0.135  
0.088  
0.176  
0.088  
0.013  
0.013  
0.196  
4.47  
12.70  
2.41  
3.81  
1.16  
3.43  
2.23  
4.47  
2.23  
0.33  
0.33  
4.98  
A
0.105  
2.67  
0.054  
0.145  
0.096  
0.186  
0.096  
0.019  
0.017  
1.37  
3.68  
2.44  
4.73  
2.44  
0.48  
0.43  
B
K
L
M
Cathode /  
MT1 / PIN 1  
Anode / MT2 / PIN 3  
All leads insulated from case. Case is electrically nonconductive.  
Gate / PIN 2  
E
G
H
M
F
L
D
K
J
http://www.teccor.com  
+1 972-580-7777  
M1 - 4  
2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Package Dimensions  
S Package — DO-214AA  
Inches  
Millimeters  
TC TL Temperature  
/
B
D
Measurement Point  
Dimension  
MIN  
MAX  
0.155  
0.220  
0.083  
0.180  
0.056  
0.083  
0.008  
0.086  
0.053  
0.012  
0.049  
MIN  
MAX  
3.94  
5.59  
2.11  
4.57  
1.42  
2.11  
0.20  
2.18  
1.35  
0.30  
1.24  
A
B
C
D
E
F
G
H
J
0.140  
0.205  
0.077  
0.166  
0.036  
0.073  
0.004  
0.077  
0.043  
0.008  
0.027  
3.56  
5.21  
1.96  
4.22  
0.91  
1.85  
0.10  
1.96  
1.09  
0.20  
0.69  
A
C
H
F
L
E
J
K
L
K
G
0.079  
(2.0)  
0.110  
(2.8)  
Dimensions are in inches  
(and millimeters).  
0.079  
(2.0)  
Pad Outline  
M Package — TO-218AC  
Non-Isolated Mounting Tab Common with Center Lead  
K Package — TO-218AC  
Isolated Mounting Tab  
Inches  
Millimeters  
T
C Measurement Point  
U DIA.  
M Package  
MT2 / Anode  
C
Dimension  
MIN  
MAX  
0.835  
0.630  
0.188  
0.070  
0.497  
0.655  
0.029  
0.095  
0.625  
0.219  
0.437  
0.068  
0.055  
0.115  
0.016  
0.016  
0.163  
0.095  
MIN  
20.57  
15.49  
4.52  
1.40  
12.37  
16.13  
0.56  
1.91  
14.61  
5.36  
10.72  
1.47  
1.14  
2.41  
0.20  
0.20  
4.04  
2.17  
MAX  
21.21  
16.00  
4.78  
1.78  
12.62  
16.64  
0.74  
2.41  
15.88  
5.56  
11.10  
1.73  
1.40  
2.92  
0.41  
0.41  
4.14  
2.42  
B
D
A
B
C
D
E
F
G
H
J
0.810  
0.610  
0.178  
0.055  
0.487  
0.635  
0.022  
0.075  
0.575  
0.211  
0.422  
0.058  
0.045  
0.095  
0.008  
0.008  
0.159  
0.085  
A
F
E
W
Gate / PIN 3  
J
P
MT1 / Cathode / PIN 1  
MT2 / Anode / PIN 2  
K
L
H
M
Q
G
M
N
P
Q
R
U
W
R
N 3 Times  
Note: Maximum torque  
to be applied to mounting  
tab is 8 in-lbs. (0.904 Nm).  
K
L
2002 Teccor Electronics  
M1 - 5  
http://www.teccor.com  
+1 972-580-7777  
Thyristor Product Catalog  
Package Dimensions  
Data Sheets  
W Package — TO-218X  
Non-isolated Mounting Tab Common with Center Lead  
J Package — TO-218X  
Isolated Mounting Tab  
C
INCHES  
MILLIMETERS  
W Package  
MT2 / Anode  
DIM  
A
B
C
D
E
MIN  
MAX  
0.835  
0.630  
0.188  
0.070  
0.497  
0.655  
0.029  
0.095  
0.625  
0.264  
0.228  
0.088  
0.177  
0.042  
0.121  
0.096  
0.166  
0.163  
0.618  
0.005  
0.012  
0.032  
0.095  
MIN  
20.57  
15.49  
4.52  
1.40  
12.37  
16.13  
0.56  
1.91  
14.61  
6.50  
5.58  
2.03  
4.29  
0.86  
2.87  
2.18  
3.96  
4.04  
15.31  
0.00  
0.07  
0.71  
2.17  
MAX  
21.21  
16.00  
4.78  
1.78  
12.62  
16.64  
0.74  
2.41  
15.88  
6.71  
5.79  
2.24  
4.49  
1.07  
3.07  
2.44  
4.22  
4.14  
15.70  
0.13  
0.30  
0.81  
2.42  
D
B
U DIA.  
0.810  
0.610  
0.178  
0.055  
0.487  
0.635  
0.022  
0.075  
0.575  
0.256  
0.220  
0.080  
0.169  
0.034  
0.113  
0.086  
0.156  
0.159  
0.603  
0.000  
0.003  
0.028  
0.085  
T
c
Measurement  
Point  
A
F
Z
E
F
G
H
J
K
L
M
N
P
R
S
T
U
V
MT1 / Cathode  
X
W
J
Gate  
R
N
T
S
P
G
H
M
MT2 / Anode  
Y
K
L
Note: Maximum torque to  
be applied to mounting tab  
is 8 in-lbs. (0.904 Nm).  
V
W
X
Y
Z
G Package — DO-15X  
Axial Lead  
Inches  
Millimeters  
φD  
L
L
G
Dimension  
MIN  
MAX  
0.035  
0.150  
0.300  
MIN  
0.686  
2.640  
5.840  
25.400  
MAX  
0.889  
3.810  
7.620  
φB2  
φD  
G
0.027  
0.104  
0.230  
1.000  
L
φB2  
T Measuring Point  
L
http://www.teccor.com  
+1 972-580-7777  
M1 - 6  
2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Package Dimensions  
C Package — Compak  
T
/ T Temperature  
L
Inches  
Millimeters  
C
Measurement Point  
Dimension  
MIN  
MAX  
0.155  
0.220  
0.083  
0.180  
0.056  
0.083  
0.008  
0.086  
0.053  
0.012  
0.049  
0.028  
MIN  
MAX  
3.94  
5.59  
2.11  
4.57  
1.42  
2.11  
0.20  
2.18  
1.35  
0.30  
1.24  
0.71  
Gate  
P
B
D
A
B
C
D
E
F
G
H
J
0.140  
0.205  
0.077  
0.166  
0.036  
0.073  
0.004  
0.077  
0.043  
0.008  
0.027  
0.022  
3.56  
5.21  
1.96  
4.22  
0.91  
1.85  
0.10  
1.96  
1.09  
0.20  
0.69  
M
N
A
C
MT1 / Cathode  
MT2 / Anode  
K
L
M
F
H
L
1
E
J
K
0.56  
G
N
P
0.027  
0.052  
0.033  
0.058  
0.69  
1.32  
0.84  
1.47  
0.079  
(2.0)  
0.079  
(2.0)  
0.079  
(2.0)  
0.040  
(1.0)  
0.110  
(2.8)  
0.030  
(0.76)  
Dimensions are in inches  
(and millimeters).  
Pad Outline  
N Package — TO-263  
D2Pak Surface Mount  
MT2 / Anode  
V
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.370  
0.420  
0.188  
0.035  
0.055  
0.075  
0.105  
0.093  
0.024  
0.110  
0.625  
0.045  
0.010  
0.070  
MIN  
9.14  
9.65  
4.52  
0.63  
1.22  
1.52  
2.41  
2.11  
0.46  
2.29  
14.99  
0.89  
0.05  
1.02  
MAX  
9.40  
10.67  
4.78  
0.89  
1.40  
1.91  
2.67  
2.36  
0.61  
2.79  
15.87  
1.14  
0.25  
1.78  
C
B
E
A
0.360  
0.380  
0.178  
0.025  
0.048  
0.060  
0.095  
0.083  
0.018  
0.090  
0.590  
0.035  
0.002  
0.040  
Case  
Temperature  
Measurement  
B
C
D
E
F
A
S
G
U
H
W
J
K
K
MT1 / Cathode  
F
Gate  
J
G
S
D 2PL  
H
V
U
0.46  
(11.684)  
W
0.085 (2.159)  
0.17 (4.318)  
0.665  
(16.891)  
0.35  
(8.89)  
0.115 (2.921)  
0.26  
(6.604)  
Dimensions are  
in inches  
0.15 (3.81)  
0.08 (2.032)  
(and millimeters).  
Pad Outline  
2002 Teccor Electronics  
M1 - 7  
http://www.teccor.com  
+1 972-580-7777  
Thyristor Product Catalog  
Package Dimensions  
Data Sheets  
D Package — TO-252AA  
D-Pak Surface Mount  
H
G
MT2 / Anode  
Inches  
Millimeters  
M
K
Dimension  
MIN  
MAX  
0.244  
0.409  
0.184  
0.050  
0.093  
0.033  
0.213  
0.261  
0.050  
0.094  
0.036  
0.023  
0.180  
0.010  
0.023  
MIN  
6.00  
9.63  
4.47  
0.89  
2.21  
0.69  
5.21  
6.38  
1.02  
2.18  
0.66  
0.46  
4.32  
0.05  
0.46  
MAX  
6.20  
10.39  
4.67  
0.27  
2.36  
0.84  
5.41  
6.63  
1.27  
2.39  
0.91  
0.58  
4.57  
0.25  
0.58  
Case  
A
B
C
D
E
F
G
H
J
K
L
M
N
O
P
0.236  
0.379  
0.176  
0.035  
0.087  
0.027  
0.205  
0.251  
0.040  
0.086  
0.026  
0.018  
0.170  
0.002  
0.018  
Temperature  
Measurement  
Point  
A
B
Gate  
L
O
D
F
E
MT1 / Cathode  
C
P
Dimensions  
are in inches  
(and millimeters).  
0.264  
(6.7)  
0.264  
(6.7)  
0.071 (1.8)  
0.118 (3.0)  
0.063  
(1.6)  
0.181  
(4.6)  
Pad Outline  
V Package — TO-251AA  
V-Pak Through Hole  
MT2 / Anode  
Inches  
Millimeters  
H
E
J
Dimension  
MIN  
MAX  
0.050  
0.244  
0.375  
0.213  
0.261  
0.033  
0.093  
0.094  
0.023  
0.042  
0.023  
MIN  
1.02  
6.00  
8.89  
5.21  
6.38  
0.69  
2.21  
2.18  
0.46  
0.91  
0.46  
MAX  
1.27  
6.20  
9.53  
5.41  
6.63  
0.84  
2.36  
2.39  
0.58  
1.07  
0.58  
D
A
A
B
C
D
E
F
G
H
J
0.040  
0.236  
0.350  
0.205  
0.251  
0.027  
0.087  
0.086  
0.018  
0.036  
0.018  
Case  
Mounting  
Tab  
Internally  
Connected  
to MT2  
Temperature  
Measurement  
Point  
B
K
C
K
L
F
L
Gate  
MT1 / Cathode  
MT2 / Anode  
G
http://www.teccor.com  
+1 972-580-7777  
M1 - 8  
2002 Teccor Electronics  
Thyristor Product Catalog  
M2  
Lead Form Dimensions  
M2  
The TO-202AB, TO-220AB, and TO-92 package configurations,  
because of their unique design, can be mounted in a variety of  
methods, depending upon heat sink requirements and circuit  
packaging methods. Any of the derived types shown in this sec-  
tion are available as standard parts direct from the factory. Cus-  
tom package variations are available. Consult the factory for  
more information.  
Lead Bending Specifications  
Leads may be bent easily and may be bent to any desired angle,  
provided that the bend is made at a minimum 0.063" (0.1 for  
TO-218) away from the package body with a minimum radius of  
0.032". DO-15X device leads may be bent with a minimum radius  
of 0.050", and DO-35 device leads may be bent with a minimum  
radius of 0.028". Leads should be held firmly between the pack-  
age body and the bend, so that strain on the leads is not trans-  
mitted to the package body.  
To designate lead form options, simply indicate the type number  
at the end of the Teccor standard part number.  
Example: Q2004F312 (Signifies Type 12)  
When bending leads in the plane of the leads (spreading), bend  
only the narrow part.  
Sharp angle bends should be done only once, as repetitive bend-  
ing will fatigue and break the leads.  
Note: When ordering a TO-202 F package, include a 1 for stan-  
dard full tab package. When ordering anything other than full tab,  
remove the 1 and add the Lead Form Type.  
See “Description of Part Numbers” in the Product Selection  
Guide of this catalog for a complete description of Teccor part  
numbers.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
M2 - 1  
http://www.teccor.com  
+1 972-580-7777  
Lead Form Dimensions  
Data Sheets  
TO-202AB Type 11 — F Package  
TO-202AB Type 2 — F Package  
Tab Common to  
MT2 / Anode  
A
B
A
MT1 / Cathode  
MT2 / Anode  
Gate  
MT1 / Cathode  
MT2 / Anode  
MT2 / Anode  
B
Gate  
C
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.120  
0.361  
0.120  
MIN  
2.03  
7.65  
2.03  
MAX  
3.05  
9.17  
3.05  
Dimension  
MIN  
0.240  
0.030  
MAX  
0.260  
0.050  
MIN  
MAX  
6.60  
1.27  
A
B
C
0.080  
0.301  
0.080  
A
B
6.100  
0.762  
TO-202AB Type 21 — F Package  
TO-202AB Type 12 — F Package  
B
Tab Common  
to MT2 / Anode  
A
A
B
C
D
MT1 / Cathode  
MT2 / Anode  
MT2 /  
Anode  
Gate  
MT1 / Cathode  
MT2 / Anode  
Gate  
E
Inches  
Millimeters  
MIN  
0.762  
6.100  
2.030  
7.650  
2.030  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.050  
0.260  
0.120  
0.361  
0.120  
MAX  
1.27  
6.60  
3.05  
9.17  
3.05  
Dimension  
MIN  
0.435  
0.120  
MAX  
0.495  
0.160  
MIN  
MAX  
12.57  
4.06  
A
B
C
D
E
0.030  
0.240  
0.080  
0.301  
0.080  
A
B
11.05  
3.05  
http://www.teccor.com  
+1 972-580-7777  
M2 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Lead Form Dimensions  
TO-202AB Type 23 — F Package  
TO-202AB Type 3 — F Package  
Sidac Only  
Non-isolated  
MT2 / Anode  
C
A
B
B
A
MT1 / Pin 1  
MT2 / Pin 2  
MT1 / Cathode  
Gate  
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.260  
0.050  
0.050  
MIN  
MAX  
6.60  
1.27  
1.27  
Dimension  
MIN  
0.030  
0.645  
MAX  
0.050  
0.705  
MIN  
0.762  
16.380  
MAX  
A
B
C
0.240  
0.030  
0.030  
6.100  
0.762  
0.762  
A
B
1.27  
17.91  
TO-202AB Type 32 — F Package  
TO-202AB Type 26 — F Package  
Non-isolated  
MT2 / Anode  
A
B
B
C
C
A
Gate  
MT2 / Anode  
MT1 / Cathode  
D
MT1 / Cathode  
Gate  
E
Inches  
Millimeters  
Inches  
Millimeters  
MIN  
6.100  
0.762  
0.127  
2.410  
4.370  
Dimension  
MIN  
MAX  
0.050  
0.495  
0.160  
MIN  
MAX  
Dimension  
MIN  
MAX  
0.260  
0.050  
0.070  
0.105  
0.202  
MAX  
6.60  
1.27  
1.78  
2.67  
5.13  
A
B
C
0.030  
0.435  
0.120  
0.762  
11.050  
3.050  
1.27  
12.57  
4.06  
A
B
C
D
E
0.240  
0.030  
0.050  
0.095  
0.172  
©2002 Teccor Electronics  
Thyristor Product Catalog  
M2 - 3  
http://www.teccor.com  
+1 972-580-7777  
Lead Form Dimensions  
Data Sheets  
TO-202AB Type 4 — F Package  
TO-202AB Type 43 — F Package  
Surface Mount  
B
A
C
MT2 / Anode  
C
G
G
D
MT2 / Anode  
0.150  
0.450  
0.150  
D
E
A
B
Gate  
F
E
0.050  
Five  
PLCs  
MT1 / Cathode  
F
Pad Outline  
MT1 / Cathode  
Gate  
Inches  
Millimeters  
Inches  
Millimeters  
MIN  
Dimension  
MIN  
MAX  
MIN  
MAX  
6.600  
3.400  
0.737  
1.270  
8.310  
1.270  
8.310  
Dimension  
MIN  
MAX  
0.050  
0.760  
0.130  
0.100  
0.100  
0.130  
0.013  
MAX  
1.270  
19.300  
3.300  
2.540  
2.540  
3.300  
0.330  
A
B
C
D
E
F
0.240  
0.114  
0.023  
0.030  
0.297  
0.030  
0.297  
0.260  
0.134  
0.029  
0.050  
0.327  
0.050  
0.327  
6.100  
2.900  
0.584  
0.762  
7.540  
0.765  
7.540  
A
B
C
D
E
F
0.030  
0.680  
0.110  
0.080  
0.080  
0.110  
0.000  
0.762  
17.270  
2.800  
2.030  
2.030  
2.800  
0.000  
G
G
TO-202AB Type 41 — F Package  
TO-220 Type 51 — R or L Package  
Replaces RCA 6249  
MT2 / Anode  
Mounting Tab  
Common to  
MT2 / Anode  
for Non-isolated  
R Package  
A
C
B
Gate  
MT2 / Anode  
MT1 / Cathode  
A
B
Gate  
Ref Only  
MT1 / Cathode  
Inches  
Millimeters  
Dimension  
MIN  
0.380  
0.180  
MAX  
0.420  
0.220  
MIN  
9.65  
4.57  
MAX  
10.67  
5.59  
Inches  
Millimeters  
A
B
Dimension  
MIN  
MAX  
MIN  
MAX  
A
B
C
0.320  
0.190  
0.795  
0.340  
8.13  
4.83  
8.64  
0.850  
20.19  
21.59  
http://www.teccor.com  
+1 972-580-7777  
M2 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Lead Form Dimensions  
TO-220 Type 52 — R or L Package  
TO-220 Type 54 — R Package  
Replaces Motorola Form 4, G.E. Type 4, RCA 6206  
Mounting Tab  
Common to  
MT2 / Anode  
for Non-isolated  
R Package  
MT2 / Anode  
B
C
D
A
Gate / Trigger  
MT2 / Anode  
MT1 / Cathode  
A
Gate  
B
MT1 / Cathode  
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.189  
0.060  
MIN  
4.29  
1.02  
6.35  
2.79  
MAX  
4.80  
1.52  
Dimension  
MIN  
0.040  
0.500  
MAX  
0.070  
MIN  
MAX  
A
B
C
D
0.169  
0.040  
0.250  
0.110  
A
B
1.02  
1.78  
12.70  
0.170  
4.32  
TO-220 Type 55 — R or L Package  
Replaces G.E. Type 5  
TO-220 Type 53 — R or L Package  
Mounting Tab  
Common to  
Mounting Tab  
Common to  
MT2 / Anode  
for Non-isolated  
R Package  
MT2 / Anode  
for Non-isolated  
R Package  
B
A
A
MT1 / Cathode  
MT1 / Cathode  
MT2 / Anode  
Gate / Trigger  
B
MT2 / Anode  
MT2 / Anode  
Gate / Trigger  
C
MT2 / Anode  
C
D
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.095  
0.433  
0.130  
MIN  
1.65  
8.97  
2.92  
MAX  
Dimension  
MIN  
MAX  
MIN  
MAX  
A
B
C
0.065  
0.353  
0.115  
2.41  
11.00  
3.30  
A
B
C
D
0.175  
0.542  
0.167  
0.355  
4.45  
13.77  
4.24  
0.582  
0.207  
0.395  
14.78  
5.26  
10.03  
9.02  
©2002 Teccor Electronics  
Thyristor Product Catalog  
M2 - 5  
http://www.teccor.com  
+1 972-580-7777  
Lead Form Dimensions  
Data Sheets  
TO-220 Type 56 — R or L Package  
TO-220 Type 58 — R or L Package  
Replaces G.E. Type 6, Motorola Lead Form 3, RCA 6221  
Mounting Tab  
Common to  
MT2 / Anode  
for Non-isolated  
R Package  
Mounting Tab  
Common to  
MT2 / Anode  
for Non-isolated  
R Package  
B
A
A
Gate / Trigger  
MT2 / Anode  
B
MT2 / Anode  
MT1 / Cathode  
Gate  
C
MT2 / Anode  
C
MT2 / Anode  
MT1 / Cathode  
D
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
MIN  
MAX  
Dimension  
MIN  
MAX  
0.590  
0.130  
0.202  
MIN  
MAX  
14.99  
3.30  
A
B
C
D
0.175  
0.542  
0.167  
0.355  
4.45  
13.77  
4.24  
A
B
C
0.570  
0.120  
0.172  
14.48  
3.05  
4.37  
0.582  
0.207  
0.395  
14.78  
5.26  
10.03  
5.13  
9.02  
TO-220 Type 57 — R Package  
TO-220 Type 59 — R or L Package  
Similar to TO-66, Gate-Cathode Reversed  
Mounting Tab  
Common to  
MT2 / Anode  
for Non-isolated  
R Package  
MT2 / Anode  
B
A
MT2 /  
Anode  
B
Gate  
MT1 / Cathode  
Gate  
A
D
C
C
MT1 / Cathode  
MT2 / Anode  
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.725  
0.598  
MIN  
17.40  
14.17  
9.53  
MAX  
18.42  
15.19  
Dimension  
MIN  
MAX  
0.070  
0.590  
0.422  
MIN  
MAX  
A
B
C
D
0.685  
0.558  
0.375  
0.250  
A
B
C
0.040  
0.570  
0.340  
1.02  
14.48  
8.64  
1.78  
14.99  
10.72  
6.35  
http://www.teccor.com  
+1 972-580-7777  
M2 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Lead Form Dimensions  
TO-220 Type 65 — R or L Package  
TO-220 Type 68 — R or L Package  
Replaces RCA 6210  
Surface Mount  
Mounting Tab  
Common to  
MT2 / Anode  
for Non-isolated  
R Package  
Mounting Tab  
Common to  
MT2 / Anode  
for Non-isolated  
R Package  
D
0.460  
This Footprint  
Optional  
0.270  
B
A
0.170  
0.860  
0.230  
0.115  
MT1 / Cathode  
B
C
MT2 / Anode  
C
A
.150  
MT2 / Anode  
Gate / Trigger  
Gate / Trigger  
0.045  
0.055 TYP  
0.050 TYP  
MT2 / Anode  
MT1 / Cathode  
D
Pad Outline  
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.580  
0.260  
0.570  
0.120  
MIN  
MAX  
14.27  
15.75  
Dimension  
MIN  
MAX  
0.850  
0.100  
0.130  
0.013  
MIN  
19.05  
2.03  
2.79  
MAX  
21.59  
2.54  
3.30  
0.33  
A
B
C
D
0.550  
0.820  
0.530  
0.080  
12.70  
14.73  
7.62  
A
B
C
D
0.780  
0.080  
0.110  
2.03  
3.05  
TO-220 Type 67 — R Package  
TO-92 Type 70 — E Package  
Surface Mount  
Sidac Only  
MT2 / Anode  
D
0.460  
Flat  
Side  
This Footprint  
Optional  
0.270  
A
A
0.170  
0.860  
0.115  
0.230  
B
B
C
0.150  
0.155  
0.050 TYP  
Gate  
MT1 / Cathode  
MT1 / Pin 1  
MT2 / Pin 3  
Pad Outline  
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
MAX  
0.850  
0.100  
0.130  
0.013  
MIN  
19.05  
2.03  
2.79  
MAX  
Dimension  
MIN  
MAX  
0.060  
MIN  
MAX  
1.52  
A
B
C
D
0.780  
0.080  
0.110  
21.59  
2.54  
3.30  
0.33  
A
B
0.50  
12.7  
©2002 Teccor Electronics  
Thyristor Product Catalog  
M2 - 7  
http://www.teccor.com  
+1 972-580-7777  
Lead Form Dimensions  
Data Sheets  
TO-92 Type 73 — E Package  
TO-218 Type 81 — K, M, J, or W Packages  
Surface Mount  
Mounting Tab Common to  
MT2 / Anode on W Package  
A
MT1 / Cathode / Pin 1  
Gate / Pin 2  
B
MT2 / Anode/ Pin 3  
C
A
0.08  
0.034  
TYP  
0.016  
TYP  
B
MT1 / Cathode  
MT2 / Anode  
Gate  
Pad Outline  
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
0.080  
0.580  
MAX  
0.120  
0.640  
MIN  
MAX  
Dimension  
MIN  
MAX  
0.010  
0.067  
0.315  
MIN  
MAX  
0.254  
1.700  
8.000  
A
B
2.03  
3.05  
16.26  
A
B
C
0.000  
0.052  
0.295  
0.000  
1.320  
7.490  
14.73  
TO-218 Type 82 — M and W Packages  
TO-92 Type 75 — E Package  
Replaces TO-5 Pinout  
Mounting Tab  
Common to  
MT2 / Anode  
Flat Side  
D TYP  
A
B
A
MT1 / Cathode / Pin 1  
B
Gate / Pin 2  
C
MT1 / Cathode  
Gate  
Gate / Pin 2  
MT2 / Anode / Pin 3  
F
C
E
Inches  
Millimeters  
Dimension  
MIN  
MAX  
MIN  
MAX  
A
B
C
0.095  
0.120  
0.640  
2.41  
3.05  
16.26  
Inches  
Millimeters  
0.080  
0.580  
2.03  
14.73  
Dimension  
MIN  
MAX  
MIN  
10.16  
12.70  
2.03  
1.14  
4.57  
2.03  
MAX  
A
B
C
D
E
F
0.400  
0.500  
0.080  
0.045  
0.180  
0.080  
0.120  
0.085  
0.220  
0.120  
3.05  
2.16  
5.59  
3.05  
http://www.teccor.com  
+1 972-580-7777  
M2 - 8  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Lead Form Dimensions  
DO-35 Type 91 — Y Package  
DO-35 Type 93 — Y Package  
Surface Mount  
B
A
D
A
B
C
Inches  
Millimeters  
Inches  
Millimeters  
Dimension  
MIN  
0.519  
0.140  
MAX  
0.521  
0.172  
MIN  
MAX  
13.23  
4.37  
Dimension  
MIN  
MAX  
0.060  
0.310  
0.430  
0.060  
MIN  
MAX  
1.52  
7.87  
10.92  
1.52  
A
B
12.18  
3.56  
A
B
C
D
0.020  
0.290  
0.370  
0.040  
0.508  
7.370  
9.400  
1.020  
DO-35 Type 92 — Y Package  
B
A
Inches  
Millimeters  
Dimension  
MIN  
0.610  
0.140  
MAX  
0.630  
0.172  
MIN  
15.49  
3.56  
MAX  
16.00  
4.37  
A
B
©2002 Teccor Electronics  
Thyristor Product Catalog  
M2 - 9  
http://www.teccor.com  
+1 972-580-7777  
Notes  
M3  
Packing Options  
M3  
Packing options include:  
Sample Instructions for Choosing a  
Packing Option  
Bulk Pack  
Reel Pack (RP)  
Ammo Pack (AP)  
Tube Pack (TP)  
Embossed Carrier (RP)  
(1) If selecting an “L401E6” (sensitive gate, 400 V, 1 A triac in a  
TO-92 package), choose one of the options available for that  
device:  
• Bulk packed in 2,000 quantity  
• Tape and Reel with 2,000 parts per reel  
• Tape and Ammo with 2,000 parts per box  
See “Package Type and Packing Options” on page M3-2.  
(2) Add the designated code as a suffix to the device number,  
such as “L401E6 RP” if selecting Tape and Reel or “L401E6  
AP” if selecting Tape and Ammo. (Bulk packing requires no  
suffix.)  
2002 Teccor Electronics  
M3 - 1  
http://www.teccor.com  
+1 972-580-7777  
Thyristor Product Catalog  
Packing Options  
Data Sheets  
Package Type and Packing Options  
Packing Options  
Reel Pack  
(RP)  
2,000  
Ammo Pack  
Tube Pack  
(TP)  
Embossed Carrier  
(RP)  
Package Type  
TO-92  
Package Code  
E
Bulk Pack  
2,000  
(AP)  
2,000  
Contact factory  
Only  
for availability  
Type 73  
TO-220  
L, R  
500  
n/a  
n/a  
50  
50  
Only  
Type 67 and 68  
TO-202  
TO-218  
F
500  
250  
700 (Type 2)  
n/a  
n/a  
n/a  
Only  
Type 43  
K, J, M, W  
Contact factory  
for availability  
n/a  
Fastpak  
P
V
200  
n/a  
n/a  
n/a  
n/a  
75  
n/a  
n/a  
TO-251 V-Pak  
1,000  
Contact factory  
for availability  
TO-252 D-Pak  
TO-263 D2Pak  
DO-214  
D
N
S
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
75  
50  
2500  
500  
1,000  
n/a  
2500  
Compak  
DO-35  
C
Y
1,000  
n/a  
n/a  
n/a  
n/a  
n/a  
2500  
n/a  
10,000  
5,000  
Minimum order  
of 5,000  
available  
DO-15X  
G
1,000  
5,000  
n/a  
n/a  
n/a  
http://www.teccor.com  
+1 972-580-7777  
M3 - 2  
2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Packing Options  
TO-92 (3-lead) Reel Pack (RP) Radial Leaded  
Meets all EIA-468-B 1994 Standards  
0.02 (0.5)  
0.236  
(6.0)  
0.098 (2.5) MAX  
1.26  
(32.0)  
1.6  
(41.0)  
0.708  
(18.0)  
0.354  
(9.0)  
0.5  
(12.7)  
MT1 / Cathode  
MT2 / Anode  
0.1 (2.54)  
14.17(360.0)  
0.2 (5.08) Gate  
0.157  
(4.0)  
DIA  
Flat up  
1.97  
(50.0)  
Dimensions  
are in inches  
(and millimeters).  
Direction of Feed  
TO-92 (3-lead) Ammo Pack (AP) Radial Leaded  
Meets all EIA-468-B 1994 Standards  
0.02 (0.5)  
0.236  
(6.0)  
0.098 (2.5) MAX  
1.27  
(32.2)  
1.62  
(41.2)  
0.708  
(18.0)  
0.354  
(9.0)  
0.157  
(4.0)  
MT2 / Anode  
0.2 (5.08)  
0.5  
(12.7)  
0.1 (2.54)  
MT1 / Cathode  
DIA  
Gate  
Flat down  
25 Devices per fold  
1.85  
(47.0)  
12.2  
(310.0)  
Dimensions  
are in inches  
(and millimeters).  
1.85  
(47.0)  
13.3  
(338.0)  
2002 Teccor Electronics  
Thyristor Product Catalog  
M3 - 3  
http://www.teccor.com  
+1 972-580-7777  
Packing Options  
Data Sheets  
TO-92 Type 70 Reel Pack (RP3) Optional  
Meets all EIA-468-B 1994 Standards  
0.02 (0.5)  
0.236  
(6.0)  
0.95  
(24.1)  
1.3  
(33.1)  
0.708  
(18.0)  
0.354  
(9.0)  
0.5  
(12.7)  
0.1 (2.54)  
0.157  
(4.0)  
DIA  
14.17  
(360.0)  
Dimensions  
are in inches  
(and millimeters).  
Flat Up  
1.97  
(50.0)  
Direction of Feed  
TO-92 Type 70 Reel Pack (RP2) Standard  
Meets all EIA-468-B 1994 Standards  
0.25  
(6.35)  
0.50  
(12.7)  
0.02  
(0.5)  
(6.0)  
0.236  
0.125 (3.2) MAX  
1.27  
(32.2)  
1.62  
(41.2)  
0.708  
(18.0)  
0.354  
(9.0)  
0.50  
(12.7)  
0.20  
(5.08)  
0.157  
(4.0)  
DIA  
14.17  
(360.0)  
Flat Down  
Dimensions  
are in inches  
(and millimeters).  
1.97  
(50.0)  
Direction of Feed  
http://www.teccor.com  
+1 972-580-7777  
M3 - 4  
2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Packing Options  
TO-92 Type 70 Ammo Pack (AP) Radial Leaded  
Meets all EIA-468-B 1994 Standards  
0.25  
(6.35)  
0.50  
(12.7)  
0.02 (0.5)  
0.236  
(6.0)  
0.125 (3.2) MAX  
1.62  
(41.2)  
MAX  
1.27  
(32.2)  
0.708  
(18.0)  
0.354  
(9.0)  
0.50  
(12.7)  
0.157  
(4.0)  
DIA  
0.20 (5.08)  
Flat down  
25 Devices per fold  
1.85  
(47.0)  
12.2  
(310.0)  
Dimensions  
are in inches  
(and millimeters).  
1.85  
(47.0)  
13.3  
(338.0)  
2002 Teccor Electronics  
M3 - 5  
http://www.teccor.com  
+1 972-580-7777  
Thyristor Product Catalog  
Packing Options  
Data Sheets  
TO-202 Type 2 Reel Pack (RP)  
Meets all EIA-468-B 1994 Standards  
0.02 (0.5)  
0.236  
(6.0)  
1.33  
(33.8)  
0.63  
(16.0)  
0.708  
(18.0)  
0.354  
(9.0)  
0.1 (2.54)  
0.5  
(12.7)  
0.2 (5.08)  
MT1 / Cathode  
0.157  
(4.0)  
Gate  
DIA  
MT2 / Anode  
14.17  
(360.0)  
Dimensions  
are in inches  
(and millimeters).  
1.97  
(50.0)  
Direction of Feed  
Reel Pack (RP) for TO-252 Embossed Carrier  
Meets all EIA-481-2 Standards  
0.157  
(4.0)  
0.059  
DIA  
(1.5)  
Gate  
MT1 / Cathode  
0.63  
(16.0)  
0.524  
(13.3)  
*
0.315  
(8.0)  
*
Cover tape  
MT2 / Anode  
12.99  
(330.0)  
0.512 (13.0) Arbor  
Hole Dia.  
Dimensions  
are in inches  
(and millimeters).  
0.64  
(16.3)  
Direction of Feed  
http://www.teccor.com  
+1 972-580-7777  
M3 - 6  
2002 Teccor Electronics  
Thyristor Product Catalog  
Data Sheets  
Packing Options  
TO-263 Embossed Carrier Reel Pack (RP)  
Meets all EIA-481-2 Standards  
0.63  
(16.0)  
0.157  
(4.0)  
Gate  
0.059  
(1.5)  
DIA  
MT1 / Cathode  
0.945  
(24.0)  
0.827  
(21.0)  
*
*
Cover tape  
MT2 / Anode  
12.99  
(330.0)  
0.512 (13.0) Arbor  
Hole Dia.  
Dimensions  
are in inches  
(and millimeters).  
1.01  
(25.7)  
Direction of Feed  
DO-214 Embossed Carrier Reel Pack (RP)  
Meets all EIA-481-1 Standards  
0.157  
(4.0)  
0.472  
(12.0)  
0.36  
(9.2)  
0.315  
(8.0)  
0.059  
(1.5)  
DIA  
Cover tape  
12.99  
(330.0)  
0.512 (13.0) Arbor  
Hole Dia.  
Dimensions  
are in inches  
(and millimeters).  
0.49  
(12.4)  
Direction of Feed  
2002 Teccor Electronics  
M3 - 7  
http://www.teccor.com  
+1 972-580-7777  
Thyristor Product Catalog  
Packing Options  
Data Sheets  
Compak Embossed Carrier Reel Pack (RP)  
Meets all EIA-481-1 Standards  
0.157  
(4.0)  
Anode / MT2  
0.47  
(12.0)  
0.36  
(9.2)  
8.0  
0.315  
(8.0)  
Gate  
Cover tape  
0.059  
(1.5)  
DIA  
Cathode / MT1  
12.99  
(330.0)  
0.512 (13.0) Arbor  
Hole Dia.  
Dimensions  
are in inches  
(and millimeters).  
0.49  
(12.4)  
Direction of Feed  
DO-15X and DO-35 Reel Pack (RP)  
Meets all EIA RS-296 Standards  
DO-15X  
DO-35  
2.063  
(52.4)  
2.063  
(52.4)  
0.956  
(24.3)  
0.898  
(22.8)  
0.252  
(6.4)  
0.252  
(6.4)  
0.197  
(5.0)  
0.197  
(5.0)  
10.0 - 14.0  
(254.0 - 356.0)  
Dimensions  
are in inches  
(and millimeters).  
3.15 (80.0) TYP  
Direction of Feed  
http://www.teccor.com  
+1 972-580-7777  
M3 - 8  
2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
Fundamental Characteristics of Thyristors - - - - - - - - - - - - - - - - - - - AN1001  
Gating, Latching, and Holding of SCRs and Triacs - - - - - - - - - - - - - AN1002  
Phase Control Using Thyristors- - - - - - - - - - - - - - - - - - - - - - - - - - - AN1003  
Mounting and Handling of Semiconductor Devices - - - - - - - - - - - - - AN1004  
Surface Mount Soldering Recommendations - - - - - - - - - - - - - - - - - AN1005  
Testing Teccor Semiconductor Devices Using Curve Tracers - - - - - AN1006  
Thyristors Used as AC Static Switches and Relays- - - - - - - - - - - - - AN1007  
Explanation of Maximum Ratings and Characteristics for Thyristors - AN1008  
Miscellaneous Design Tips and Facts - - - - - - - - - - - - - - - - - - - - - - AN1009  
Thyristors for Ignition of Fluorescent Lamps- - - - - - - - - - - - - - - - - - AN1010  
©2002 Teccor Electronics  
Thyristor Product Catalog  
http://www.teccor.com  
+1 972-580-7777  
Notes  
AN1001  
AN1001  
Fundamental Characteristics of Thyristors  
The connections between the two transistors trigger the occur-  
rence of regenerative action when a proper gate signal is applied  
Introduction  
The thyristor family of semiconductors consists of several very  
useful devices. The most widely used of this family are silicon  
controlled rectifiers (SCRs), triacs, sidacs, and diacs. In many  
applications these devices perform key functions and are real  
assets in meeting environmental, speed, and reliability specifica-  
tions which their electro-mechanical counterparts cannot fulfill.  
This application note presents the basic fundamentals of SCR,  
triac, sidac, and diac thyristors so the user understands how they  
differ in characteristics and parameters from their electro-  
mechanical counterparts. Also, thyristor terminology is defined.  
to the base of the NPN transistor. Normal leakage current is so  
low that the combined hFE of the specially coupled two-transistor  
feedback amplifier is less than unity, thus keeping the circuit in  
an off-state condition. A momentary positive pulse applied to the  
gate biases the NPN transistor into conduction which, in turn,  
biases the PNP transistor into conduction. The effective hFE  
momentarily becomes greater than unity so that the specially  
coupled transistors saturate. Once saturated, current through the  
transistors is enough to keep the combined hFE greater than  
unity. The circuit remains “on” until it is “turned off” by reducing  
the anode-to-cathode current (IT) so that the combined hFE is less  
than unity and regeneration ceases. This threshold anode current  
is the holding current of the SCR.  
SCR  
Basic Operation  
Figure AN1001.1 shows the simple block construction of an SCR.  
Geometric Construction  
Figure AN1001.3 shows cross-sectional views of an SCR chip  
and illustrations of current flow and junction biasing in both the  
blocking and triggering modes.  
Anode  
Anode  
P
J1  
Cathode  
(-)  
Gate  
(+)  
Cathode  
(-)  
N
P
N
I
J2  
J3  
GT  
Forward  
Blocking  
Junction  
Gate  
Gate  
N
P
Cathode  
N
Cathode  
P
Block Construction  
Figure AN1001.1  
Schematic Symbol  
(+)  
Anode  
(+)  
Anode  
I
T
SCR Block Construction  
The operation of a PNPN device can best be visualized as a spe-  
cially coupled pair of transistors as shown in Figure AN1001.2.  
Equivalent Diode  
Relationship  
Forward Bias and Current Flow  
Load  
Anode  
Anode  
P
Cathode  
(+)  
Gate  
P
Cathode  
(+)  
Reverse Biased  
Gate Junction  
P
N
P
N
J1  
J2  
N
N
P
N
J2  
J3  
Gate  
N
P
N
N
P
Gate  
Reverse Biased  
Junction  
(-)  
(-)  
Cathode  
Anode  
Anode  
Cathode  
Equivalent Diode  
Relationship  
Reverse Bias  
Two-transistor  
Schematic  
Two-transistor Block  
Construction Equivalent  
Figure AN1001.2  
Coupled Pair of Transistors as a SCR  
Figure AN1001.3  
Cross-sectional View of SCR Chip  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1001 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1001  
Application Notes  
Geometric Construction  
Triac  
Figure AN1001.6 show simplified cross-sectional views of a triac  
Basic Operation  
chip in various gating quadrants and blocking modes.  
Figure AN1001.4 shows the simple block construction of a triac.  
Its primary function is to control power bilaterally in an AC circuit.  
MT1(-)  
P
GATE(+)  
I
GT  
Main  
N
N
Terminal 1  
(MT1)  
MT1(-)  
N
Main  
Terminal 2  
(MT2)  
N
P
P
N
Gate  
N
N
P
I
N
T
MT2  
MT2(+)  
Block Construction  
Blocking  
Junction  
QUADRANT I  
MT1(-)  
P
GATE(-)  
GT  
I
N
N
Gate  
MT2(+)  
N
Equivalent Diode  
Relationship  
P
MT1  
N
Schematic Symbol  
MT2(+)  
QUADRANT II  
Figure AN1001.4  
Triac Block Construction  
Operation of a triac can be related to two SCRs connected in par-  
allel in opposite directions as shown in Figure AN1001.5.  
GATE(-)  
MT1(+)  
P
I
GT  
N
N
Although the gates are shown separately for each SCR, a triac  
has a single gate and can be triggered by either polarity.  
N
MT1(+)  
P
N
MT1  
I
MT2(-)  
T
QUADRANT III  
Blocking  
Junction  
MT1(+)  
P
GATE(+)  
I
GT  
N
N
N
P
N
MT2(-)  
I
MT2(-)  
T
Equivalent Diode  
Relationship  
MT2  
QUADRANT IV  
Figure AN1001.5  
SCRs Connected as a Triac  
Since a triac operates in both directions, it behaves essentially  
the same in either direction as an SCR would behave in the for-  
ward direction (blocking or operating).  
Figure AN1001.6  
Simplified Cross-sectional of Triac Chip  
http://www.teccor.com  
+1 972-580-7777  
AN1001 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1001  
Sidac  
Diac  
Basic Operation  
Basic Operation  
The construction of a diac is similar to an open base NPN tran-  
sistor. Figure AN1001.9 shows a simple block construction of a  
diac and its schematic symbol.  
The sidac is a multi-layer silicon semiconductor switch. Figure  
AN1001.7 illustrates its equivalent block construction using two  
Shockley diodes connected inverse parallel. Figure AN1001.7  
also shows the schematic symbol for the sidac.  
N
N
P
MT1  
MT2  
MT2  
MT1  
MT1  
MT1  
Block Construction  
Schematic Symbol  
P
1
N2  
P3  
N4  
P5  
Figure AN1001.9  
Diac Block Construction  
N2  
P3  
N4  
The bidirectional transistor-like structure exhibits a high-imped-  
ance blocking state up to a voltage breakover point (VBO) above  
which the device enters a negative-resistance region. These  
basic diac characteristics produce a bidirectional pulsing oscilla-  
tor in a resistor-capacitor AC circuit. Since the diac is a bidirec-  
tional device, it makes a good economical trigger for firing triacs  
in phase control circuits such as light dimmers and motor speed  
controls. Figure AN1001.10 shows a simplified AC circuit using a  
diac and a triac in a phase control application.  
MT2  
Equivalent Diode Relationship  
MT2  
Schematic Symbol  
Figure AN1001.7  
Sidac Block Construction  
The sidac operates as a bidirectional switch activated by voltage.  
In the off state, the sidac exhibits leakage currents (IDRM) less  
than 5 µA. As applied voltage exceeds the sidac VBO, the device  
begins to enter a negative resistance switching mode with char-  
acteristics similar to an avalanche diode. When supplied with  
enough current (IS), the sidac switches to an on state, allowing  
high current to flow. When it switches to on state, the voltage  
across the device drops to less than 5 V, depending on magni-  
tude of the current flow. When the sidac switches on and drops  
into regeneration, it remains on as long as holding current is less  
than maximum value (150 mA, typical value of 30 mA to 65 mA).  
The switching current (IS) is very near the holding current (IH)  
value. When the sidac switches, currents of 10 A to 100 A are  
easily developed by discharging small capacitor into primary or  
small, very high-voltage transformers for 10 µs to 20 µs.  
Load  
Figure AN1001.10 AC Phase Control Circuit  
Geometric Construction  
The main application for sidacs is ignition circuits or inexpensive  
high voltage power supplies.  
MT1  
MT1  
Geometric Construction  
N
P
N
MT1  
MT2  
MT2  
Cross-section of Chip  
Equivalent Diode  
Relationship  
P1  
N2  
Figure AN1001.11 Cross-sectional View of Diac Chip  
P3  
N4  
P5  
MT2  
Figure AN1001.8  
Cross-sectional View of a Bidirectional Sidac Chip  
with Multi-layer Construction  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1001 - 3  
http://www.teccor.com  
+1 972-580-7777  
AN1001  
Application Notes  
Electrical Characteristic Curves of Thyristors  
+I  
+I  
IT  
Voltage Drop (VT) at  
Specified Current (iT)  
IH  
RS  
Latching Current (IL)  
IS  
Off - State Leakage  
Current - (IDRM) at  
Specified VDRM  
IBO  
IDRM  
Reverse Leakage  
Current - (IRRM) at  
Specified VRRM  
-V  
+V  
Minimum Holding  
Current (IH  
)
VBO  
VS  
-V  
+V  
VT  
(VBO - VS)  
=
RS  
VDRM  
(IS - IBO  
)
Specified Minimum  
Off - State  
Blocking  
Specified Minimum  
Reverse Blocking  
Voltage (VRRM  
)
Voltage (VDRM  
)
-I  
Reverse  
Breakdown  
Voltage  
Forward  
Breakover  
Voltage  
Figure AN1001.15  
V-I Characteristics of a Sidac Chip  
-I  
Figure AN1001.12  
V-I Characteristics of SCR Device  
Methods of Switching on Thyristors  
Three general methods are available for switching thyristors to  
+I  
on-state condition:  
Application of gate signal  
Static dv/dt turn-on  
Voltage breakover turn-on  
Voltage Drop (VT) at  
Specified Current (iT)  
Latching Current (IL)  
Off-state Leakage  
Current – (IDRM  
) at  
Specified VDRM  
Application Of Gate Signal  
Minimum Holding  
Current (IH  
)
Gate signal must exceed IGT and VGT requirements of the thyristor  
used. For an SCR (unilateral device), this signal must be positive  
with respect to the cathode polarity. A triac (bilateral device) can  
be turned on with gate signal of either polarity; however, different  
polarities have different requirements of IGT and VGT which must  
be satisfied. Since diacs and sidacs do not have a gate, this  
method of turn-on is not applicable. In fact, the single major  
application of diacs is to switch on triacs.  
-V  
+V  
Specified Minimum  
Off-state  
Blocking  
Voltage (VDRM  
)
Breakover  
Voltage  
-I  
Static dv/dt Turn-on  
Figure AN1001.13  
V-I Characteristics of Triac Device  
Static dv/dt turn-on comes from a fast-rising voltage applied  
across the anode and cathode terminals of an SCR or the main  
terminals of a triac. Due to the nature of thyristor construction, a  
small junction capacitor is formed across each PN junction.  
Figure AN1001.16 shows how typical internal capacitors are  
linked in gated thyristors.  
+I  
10 mA  
V  
Breakover  
Current  
I
BO  
-V  
+V  
Breakover  
Voltage  
V
BO  
Figure AN1001.16 Internal Capacitors Linked in Gated Thyristors  
-I  
Figure AN1001.14  
V-I Characteristics of Bilateral Trigger Diac  
http://www.teccor.com  
+1 972-580-7777  
AN1001 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1001  
When voltage is impressed suddenly across a PN junction, a  
charging current flows, equal to:  
modes are Quadrants II and III where the gate has a negative  
polarity supply with an AC main terminal supply. Typically, Quad-  
rant II is approximately equal in gate sensitivity to Quadrant I;  
however, latching current sensitivity in Quadrant II is lowest.  
Therefore, it is difficult for triacs to latch on in Quadrant II when  
the main terminal current supply is very low in value.  
dv  
.
------  
dt  
i = C  
 
0
dv  
------  
.
When C  
becomes greater or equal to thyristor IGT,  
Special consideration should be given to gating circuit design  
when Quadrants I and IV are used in actual application, because  
Quadrant IV has the lowest gate sensitivity of all four operating  
quadrants.  
 
0
dt  
the thyristor switches on. Normally, this type of turn-on does not  
damage the device, providing the surge current is limited.  
Generally, thyristor application circuits are designed with static  
dv/dt snubber networks if fast-rising voltages are anticipated.  
General Terminology  
Voltage Breakover Turn-on  
This method is used to switch on sidacs and diacs. However,  
exceeding voltage breakover of SCRs and triacs is definitely not  
recommended as a turn-on method.  
In the case of SCRs and triacs, leakage current increases until it  
exceeds the gate current required to turn on these gated thyris-  
tors in a small localized point. When turn-on occurs by this  
method, localized heating in a small area may melt the silicon or  
damage the device if di/dt of the increasing current is not suffi-  
ciently limited.  
Diacs used in typical phase control circuits are basically pro-  
tected against excessive current at breakover as long as the fir-  
ing capacitor is not excessively large. When diacs are used in a  
zener function, current limiting is necessary.  
The following definitions of the most widely-used thyristor terms,  
symbols, and definitions conform to existing EIA-JEDEC stan-  
dards:  
Breakover Point – Any point on the principal voltage-current  
characteristic for which the differential resistance is zero and  
where the principal voltage reaches a maximum value  
Principal Current – Generic term for the current through the col-  
lector junction (the current through main terminal 1 and main ter-  
minal 2 of a triac or anode and cathode of an SCR)  
Principal Voltage – Voltage between the main terminals:  
(1) In the case of reverse blocking thyristors, the principal volt-  
age is called positive when the anode potential is higher than  
the cathode potential and negative when the anode potential  
is lower than the cathode potential.  
(2) For bidirectional thyristors, the principal voltage is called  
positive when the potential of main terminal 2 is higher than  
the potential of main terminal 1.  
Sidacs are typically pulse-firing, high-voltage transformers and  
are current limited by the transformer primary. The sidac should  
be operated so peak current amplitude, current duration, and  
di/dt limits are not exceeded.  
Off State – Condition of the thyristor corresponding to the high-  
resistance, low-current portion of the principal voltage-current  
characteristic between the origin and the breakover point(s) in  
the switching quadrant(s)  
Triac Gating Modes Of Operation  
Triacs can be gated in four basic gating modes as shown in  
Figure AN1001.17.  
On State – Condition of the thyristor corresponding to the low-  
resistance, low-voltage portion of the principal voltage-current  
characteristic in the switching quadrant(s).  
ALL POLARITIES ARE REFERENCED TO MT1  
MT2 POSITIVE  
(Positive Half Cycle)  
MT2  
MT2  
+
Specific Terminology  
Average Gate Power Dissipation [PG(AV)] – Value of gate power  
which may be dissipated between the gate and main terminal 1  
(or cathode) averaged over a full cycle  
(-)  
I
GATE  
(+)  
I
GT  
GT  
GATE  
MT1  
MT1  
REF  
MT2  
REF  
MT2  
QII QI  
QIII QIV  
Breakover Current (IBO) – Principal current at the breakover  
I
-
+ I  
GT  
GT  
point  
Breakover Voltage (VBO) – Principal voltage at the breakover  
(-)  
I
GATE  
(+)  
I
GATE  
GT  
GT  
point  
MT1  
REF  
MT1  
REF  
Circuit-commutated Turn-off Time (tq) – Time interval between  
the instant when the principal current has decreased to zero after  
external switching of the principal voltage circuit and the instant  
when the thyristor is capable of supporting a specified principal  
voltage without turning on  
-
MT2 NEGATIVE  
(Negative Half Cycle)  
NOTE: Alternistors will not operate in Q IV  
Figure AN1001.17  
Gating Modes  
Critical Rate-of-rise of Commutation Voltage of a Triac  
(Commutating dv/dt) – Minimum value of the rate-of-rise of prin-  
cipal voltage which will cause switching from the off state to the  
on state immediately following on-state current conduction in the  
opposite quadrant  
The most common quadrants for triac gating-on are Quadrants I  
and III, where the gate supply is synchronized with the main ter-  
minal supply (gate positive — MT2 positive, gate negative —  
MT2 negative). Gate sensitivity of triacs is most optimum in  
Quadrants I and III due to the inherent thyristor chip construction.  
If Quadrants I and III cannot be used, the next best operating  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1001 - 5  
http://www.teccor.com  
+1 972-580-7777  
AN1001  
Application Notes  
Critical Rate-of-rise of Off-state Voltage or Static dv/dt  
(dv/dt) – Minimum value of the rate-of-rise of principal voltage  
which will cause switching from the off state to the on state  
Critical Rate-of-rise of On-state Current (di/dt) – Maximum  
value of the rate-of-rise of on-state current that a thyristor can  
withstand without harmful effect  
Gate-controlled Turn-on Time (tgt) – Time interval between a  
specified point at the beginning of the gate pulse and the instant  
when the principal voltage (current) has dropped to a specified  
low value (or risen to a specified high value) during switching of a  
thyristor from off state to the on state by a gate pulse.  
Gate Trigger Current (IGT) – Minimum gate current required to  
maintain the thyristor in the on state  
Gate Trigger Voltage (VGT) – Gate voltage required to produce  
the gate trigger current  
Holding Current (IH) Minimum principal current required to  
maintain the thyristor in the on state  
Latching Current (IL) – Minimum principal current required to  
maintain the thyristor in the on state immediately after the switch-  
ing from off state to on state has occurred and the triggering sig-  
nal has been removed  
On-state Current (IT) – Principal current when the thyristor is in  
the on state  
On-state Voltage (VT) – Principal voltage when the thyristor is in  
the on state  
Peak Gate Power Dissipation (PGM) – Maximum power which  
may be dissipated between the gate and main terminal 1 (or  
cathode) for a specified time duration  
Repetitive Peak Off-state Current (IDRM) – Maximum instanta-  
neous value of the off-state current that results from the applica-  
tion of repetitive peak off-state voltage  
Repetitive Peak Off-state Voltage (VDRM) – Maximum instanta-  
neous value of the off-state voltage which occurs across a thyris-  
tor, including all repetitive transient voltages and excluding all  
non-repetitive transient voltages  
Repetitive Peak Reverse Current of an SCR (IRRM) – Maximum  
instantaneous value of the reverse current resulting from the  
application of repetitive peak reverse voltage  
Repetitive Peak Reverse Voltage of an SCR (VRRM) – Maximum  
instantaneous value of the reverse voltage which occurs across  
the thyristor, including all repetitive transient voltages and exclud-  
ing all non-repetitive transient voltages  
Surge (Non-repetitive) On-state Current (ITSM) – On-state cur-  
rent of short-time duration and specified waveshape  
Thermal Resistance, Junction to Ambient (RθJA) – Temperature  
difference between the thyristor junction and ambient divided by  
the power dissipation causing the temperature difference under  
conditions of thermal equilibrium  
Note: Ambient is the point at which temperature does not change  
as the result of dissipation.  
Thermal Resistance, Junction to Case (RθJC) – Temperature dif-  
ference between the thyristor junction and the thyristor case  
divided by the power dissipation causing the temperature differ-  
ence under conditions of thermal equilibrium  
http://www.teccor.com  
+1 972-580-7777  
AN1001 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1002  
AN1002  
Gating, Latching, and Holding of SCRs and Triacs  
Triacs (bilateral devices) can be gated on with a gate signal of  
either polarity with respect to the MT1 terminal; however, differ-  
Introduction  
Gating, latching, and holding currents of thyristors are some of  
the most important parameters. These parameters and their  
interrelationship determine whether the SCRs and triacs will  
function properly in various circuit applications.  
ent polarities have different requirements of IGT and VGT.  
Figure AN1002.2 illustrates current flow through the triac chip in  
various gating modes.  
This application note describes how the SCR and triac parame-  
ters are related. This knowledge helps users select best operat-  
ing modes for various circuit applications.  
MT1(-)  
Gate(+)  
I
GT  
N
N
P
N
Gating of SCRs and Triacs  
N
QUADRANT I  
Three general methods are available to switch thyristors to  
P
on-state condition:  
I
T
Applying proper gate signal  
Exceeding thyristor static dv/dt characteristics  
Exceeding voltage breakover point  
MT2(+)  
MT1(-)  
Gate(-)  
GT  
I
This application note examines only the application of proper  
gate signal. Gate signal must exceed the IGT and VGT require-  
ments of the thyristor being used. IGT (gate trigger current) is the  
minimum gate current required to switch a thyristor from the off  
state to the on state. VGT (gate trigger voltage) is the voltage  
required to produce the gate trigger current.  
SCRs (unilateral devices) require a positive gate signal with  
respect to the cathode polarity. Figure AN1002.1 shows the cur-  
rent flow in a cross-sectional view of the SCR chip.  
N
N
P
N
QUADRANT II  
P
N
MT2(+)  
Gate(-)  
MT1(+)  
I
GT  
Gate  
(+)  
Cathode  
(-)  
N
N
P
IGT  
N
QUADRANT III  
QUADRANT IV  
N
P
P
N
I
N
P
MT2(-)  
T
MT1(+)  
Gate(+)  
I
GT  
(+)  
IT  
N
N
P
Anode  
N
Figure AN1002.1  
SCR Current Flow  
P
N
In order for the SCR to latch on, the anode-to-cathode current (IT)  
must exceed the latching current (IL) requirement. Once latched  
on, the SCR remains on until it is turned off when anode-to-cath-  
ode current drops below holding current (IH) requirement.  
I
MT2(-)  
T
Figure AN1002.2  
Triac Current Flow (Four Operating Modes)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1002 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1002  
Application Notes  
Triacs can be gated on in one of four basic gating modes as  
shown in Figure AN1002.3. The most common quadrants for  
gating on triacs are Quadrants I and III, where the gate supply is  
synchronized with the main terminal supply (gate positive — MT2  
positive, gate negative — MT2 negative). Optimum triac gate  
sensitivity is achieved when operating in Quadrants I and III due  
to the inherent thyristor chip construction. If Quadrants I and III  
cannot be used, the next best operating modes are Quadrants II  
and III where the gate supply has a negative polarity with an AC  
main terminal supply. Typically, Quadrant II is approximately  
equal in gate sensitivity to Quadrant I; however, latching current  
sensitivity in Quadrant II is lowest. Therefore, it is difficult for  
triacs to latch on in Quadrant II when the main terminal current  
supply is very low in value.  
2.0  
1.5  
1.0  
.5  
0
-40  
-15  
+25  
+65  
+100  
Case Temperature (T ) – ˚C  
C
Figure AN1002.4  
Typical DC Gate Trigger Current versus Case  
Temperature  
Special consideration should be given to gating circuit design  
when Quadrants I and IV are used in actual application, because  
Quadrant IV has the lowest gate sensitivity of all four operating  
quadrants.  
For applications where low temperatures are expected, gate cur-  
rent supply should be increased to at least two to eight times the  
°
gate trigger current requirements at 25 C. The actual factor var-  
ies by thyristor type and the environmental temperature.  
Example of a 10 A triac:  
ALL POLARITIES ARE REFERENCED TO MT1  
MT2 POSITIVE  
If IGT(I) = 10 mA at 25 °C, then  
GT(I) = 20 mA at -40 °C  
(Positive Half Cycle)  
MT2  
MT2  
+
I
(-)  
I
GATE  
(+)  
In applications where high di/dt, high surge, and fast turn-on are  
expected, gate drive current should be steep rising (1 µs rise  
time) and at least twice rated IGT or higher with minimum 3 µs  
pulse duration. However, if gate drive current magnitude is very  
high, then duration may have to be limited to keep from over-  
stressing (exceeding the power dissipation limit of) gate junction.  
I
GT  
GT  
GATE  
MT1  
MT1  
REF  
MT2  
REF  
MT2  
QII QI  
I
-
+ I  
GT  
GT  
QIII QIV  
(
-
)
Latching Current of SCRs and Triacs  
I
(+)  
I
GATE  
GT  
GT  
GATE  
Latching current (IL) is the minimum principal current required to  
maintain the thyristor in the on state immediately after the switch-  
ing from off state to on state has occurred and the triggering sig-  
nal has been removed. Latching current can best be understood  
by relating to the “pick-up” or “pull-in” level of a mechanical relay.  
Figure AN1002.5 and Figure AN1002.6 illustrate typical thyristor  
latching phenomenon.  
MT1  
REF  
MT1  
REF  
-
MT2 NEGATIVE  
(Negative Half Cycle)  
NOTE: Alternistors will not operate in Q IV  
Figure AN1002.3  
Definition of Operating Quadrants in Triacs  
The following table shows the relationships between different  
gating modes in current required to gate on triacs.  
In the illustrations in Figure AN1002.5, the thyristor does not stay  
on after gate drive is removed due to insufficient available princi-  
pal current (which is lower than the latching current requirement).  
I
(In given Quadrant)  
GT  
Typical Ratio of ---------------------------------------------------------------------------- at 25 °C  
I
(Quadrant 1)  
GT  
Gate Pulse  
(Gate Drive to Thyristor)  
Operating Mode  
Quadrant II Quadrant III Quadrant IV  
Type  
4 A Triac  
10 A Triac  
Quadrant I  
Time  
1
1
1.6  
1.5  
2.5  
1.4  
2.7  
3.1  
Latching  
Current  
Requirement  
Example of 4 A triac:  
If IGT(I) = 10 mA, then  
Principal  
Current  
Through  
Zero  
Crossing Point  
Thyristor  
I
I
I
GT(II) = 16 mA  
GT(III) = 25 mA  
GT(IV) = 27 mA  
Time  
Figure AN1002.5  
Latching Characteristic of Thyristor (Device Not  
Latched)  
Gate trigger current is temperature-dependent as shown in  
Figure AN1002.4. Thyristors become less sensitive with  
decreasing temperature and more sensitive with increasing  
temperature.  
In the illustration in Figure AN1002.6 the device stays on for the  
remainder of the half cycle until the principal current falls below  
the holding current level. Figure AN1002.5 shows the character-  
istics of the same device if gate drive is removed or shortened  
before latching current requirement has been met.  
http://www.teccor.com  
+1 972-580-7777  
AN1002 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Typical Ratio of ----------------------------------------------------------------------- at 25 °C  
(Quadrant 1)  
                                                                                                                                         
Application Notes  
AN1002  
Holding current modes of the thyristor are strictly related to the  
voltage polarity across the main terminals. The following table  
illustrates how the positive and negative holding current modes  
of triacs relate to each other.  
Gate  
Drive  
to Thyristor  
Gate Pulse  
Time  
Typical Triac Holding Current Ratio  
Operating Mode  
Principal  
Current  
Through  
Thyristor  
Type  
IH(+)  
1
IH(-)  
1.1  
1.3  
Latching  
Current  
Point  
Holding Current Point  
Zero Crossing Point  
4 A Triac  
10 A Triac  
1
Time  
Example of a 10 A triac:  
If IH(+) = 10 mA, then  
IH(-) = 13 mA  
Figure AN1002.6  
Latching and Holding Characteristics of Thyristor  
Similar to gating, latching current requirements for triacs are dif-  
ferent for each operating mode (quadrant). Definitions of latching  
modes (quadrants) are the same as gating modes. Therefore,  
definitions shown in Figure AN1002.2 and Figure AN1002.3 can  
be used to describe latching modes (quadrants) as well. The fol-  
lowing table shows how different latching modes (quadrants)  
relate to each other. As previously stated, Quadrant II has the  
lowest latching current sensitivity of all four operating quadrants.  
Holding current is also temperature-dependent like gating and  
latching shown in Figure AN1002.7. The initial on-state current is  
200 mA to ensure that the thyristor is fully latched on prior to  
holding current measurement. Again, applications with low tem-  
perature requirements should have sufficient principal (anode)  
current available to maintain the thyristor in the on-state condi-  
tion.  
Both minimum and maximum holding current specifications may  
be important, depending on application. Maximum holding cur-  
rent must be considered if the thyristor is to stay in conduction at  
low principal (anode) current; the minimum holding current must  
be considered if the device is expected to turn off at a low princi-  
pal (anode) current.  
I
(In given Quadrant)  
L
I
L
Operating Mode  
Quadrant II Quadrant III Quadrant IV  
Type  
Quadrant I  
1
4
4
1.2  
1.1  
1
4 A Triac  
10 A Triac  
2.0  
1
1.1  
INITIAL ON-STATE CURRENT = 200 mA dc  
1.5  
Example of a 4 Amp Triac:  
If IL(I) = 10 mA, then  
IL(II) = 40 mA  
IL(III) = 12 mA  
1.0  
.5  
IL(IV) = 11 mA  
Latching current has even somewhat greater temperature depen-  
dence compared to the DC gate trigger current. Applications with  
low temperature requirements should have sufficient principal  
current (anode current) available to ensure thyristor latch-on.  
0
Two key test conditions on latching current specifications are  
gate drive and available principal (anode) current durations.  
Shortening the gate drive duration can result in higher latching  
current values.  
-40  
-15  
+25  
+65  
+100  
Case Temperature (TC) – ˚C  
Figure AN1002.7  
Typical DC Holding Current vs Case Temperatures  
Example of a 10 A triac:  
Holding Current of SCRs and Triacs  
If IH(+) = 10 mA at 25 °C, then  
IH(+) 7.5 mA at 65 °C  
Holding current (IH) is the minimum principal current required to  
maintain the thyristor in the on state. Holding current can best be  
understood by relating it to the “drop-out” or “must release” level  
of a mechanical relay. Figure AN1002.6 shows the sequences of  
gate, latching, and holding currents. Holding current will always  
be less than latching. However, the more sensitive the device,  
the closer the holding current value approaches its latching cur-  
rent value.  
Relationship of Gating, Latching, and  
Holding Currents  
Although gating, latching, and holding currents are independent  
of each other in some ways, the parameter values are related. If  
gating is very sensitive, latching and holding will also be very  
sensitive and vice versa. One way to obtain a sensitive gate and  
not-so-sensitive latching-holding characteristic is to have an  
“amplified gate” as shown in Figure AN1002.8.  
Holding current is independent of gating and latching, but the  
device must be fully latched on before a holding current limit can  
be determined.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1002 - 3  
http://www.teccor.com  
+1 972-580-7777  
AN1002  
Application Notes  
The following table and Figure AN1002.9 show the relationship of  
gating, latching, and holding of a 4 A device.  
*
Typical 4 A Triac Gating, Latching,  
and Holding Relationship  
A
K
A
K
Sensitive  
SCR  
Power  
SCR  
Quadrants or Operating Mode  
Parameter  
IGT (mA)  
IL (mA)  
Quadrant I  
10  
Quadrant II Quadrant III Quadrant IV  
17  
48  
10  
18  
12  
12  
27  
13  
12  
G
12  
10  
G
IH (mA)  
*
MT2  
MT1  
MT2  
Sensitive  
Triac  
Power  
Triac  
MT1  
G
G
Resistor is provided for limiting gate  
*
current (I  
) peaks to power device.  
GTM  
Figure AN1002.8  
“Amplified Gate” Thyristor Circuit  
(mA)  
I (+)  
H
20  
QUADRANT II  
QUADRANT I  
I
(Solid Line)  
GT  
I (Dotted Line)  
L
10  
(mA)  
50  
40  
30  
20  
10  
0
10  
20  
30  
40  
10  
20  
QUADRANT III  
QUADRANT IV  
I (–)  
H
Figure AN1002.9  
Typical Gating, Latching, and Holding Relationships of 4 A Triac at 25 °C  
The relationships of gating, latching, and holding for several  
device types are shown in the following table. For convenience  
all ratios are referenced to Quadrant I gating.  
Typical Ratio of Gating, Latching, and Holding Currents at 25 °C  
Ratio  
I
I
(II)  
I
(III)  
I
(IV)  
I (I)  
L
I
(II)  
I (III)  
L
I (IV)  
L
I
(+)  
I (-)  
H
GT  
------------------  
GT  
--------------------  
GT  
--------------------  
L
H
---------------  
---------------  
(I)  
---------------  
---------------  
---------------  
(I)  
---------------  
(I)  
(I)  
I
(I)  
I
(I)  
I
(I)  
I
I
(I)  
I
(I)  
I
I
GT  
1.6  
GT  
2.5  
GT  
2.7  
GT  
GT  
GT  
GT  
GT  
GT  
Devices  
4 A Triac  
1.2  
4.8  
1.2  
1.3  
1.0  
1.2  
1.5  
1.5  
1.4  
1.8  
3.1  
1.6  
2.4  
25  
4.0  
7.0  
1.8  
2.1  
2.0  
1.1  
2.2  
25  
1.6  
1.9  
10 A Triac  
15 A Alternistor  
1 A Sensitive SCR  
6 A SCR  
3.2  
2.6  
http://www.teccor.com  
+1 972-580-7777  
AN1002 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1002  
Examples of a 10 A triac:  
If IGT(I) = 10 mA, then  
I
I
I
GT(II) = 15 mA  
GT(III) = 14 mA  
GT(IV) = 31 mA  
If IL(I) = 16 mA, then  
IL(II) = 40 mA  
IL(III) = 18 mA  
IL(IV) = 20 mA  
If IH(+) = 11 mA at 25 °C, then  
IH(+) = 16 mA  
Summary  
Gating, latching, and holding current characteristics of thyristors  
are quite important yet predictable (once a single parameter  
value is known). Their interrelationships (ratios) can also be used  
to help designers in both initial circuit application design as well  
as device selection.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1002 - 5  
http://www.teccor.com  
+1 972-580-7777  
Notes  
AN1003  
AN10039  
Phase Control Using Thyristors  
It is important to note that the circuit current is determined by the  
load and power source. For simplification, assume the load is  
resistive; that is, both the voltage and current waveforms are  
identical.  
Introduction  
Due to high-volume production techniques, thyristors are now  
priced so that almost any electrical product can benefit from elec-  
tronic control. A look at the fundamentals of SCR and triac phase  
controls shows how this is possible.  
Full-wave Rectified Operation  
Voltage Applied to Load  
Output Power Characteristics  
Phase control is the most common form of thyristor power con-  
trol. The thyristor is held in the off condition — that is, all current  
flow in the circuit is blocked by the thyristor except a minute leak-  
age current. Then the thyristor is triggered into an “on” condition  
by the control circuitry.  
Delay (Triggering) Angle  
Conduction Angle  
For full-wave AC control, a single triac or two SCRs connected in  
inverse parallel may be used. One of two methods may be used  
for full-wave DC control — a bridge rectifier formed by two SCRs  
or an SCR placed in series with a diode bridge as shown in  
Figure AN1003.1.  
Figure AN1003.2  
Sine Wave Showing Principles of Phase Control  
Different loads respond to different characteristics of the AC  
waveform. For example, some are sensitive to average voltage,  
some to RMS voltage, and others to peak voltage. Various volt-  
age characteristics are plotted against conduction angle for  
half- and full-wave phase control circuits in Figure AN1003.3  
and Figure AN1003.4.  
Control  
Circuit  
Control  
Circuit  
Line  
Load  
Line  
Load  
Two SCR AC Control  
Triac AC Control  
Line  
Line  
Control  
Circuit  
Control  
Circuit  
Load  
Load  
One SCR DC Control  
Two SCR DC Control  
Figure AN1003.1  
SCR/Triac Connections for Various Methods of  
Phase Control  
Figure AN1003.2 illustrates voltage waveform and shows com-  
mon terms used to describe thyristor operation. Delay angle is  
the time during which the thyristor blocks the line voltage. The  
conduction angle is the time during which the thyristor is on.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1003 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1003  
Application Notes  
phase angle. Thus, a 180° conduction angle in a half-wave circuit  
provides 0.5 x full-wave conduction power.  
In a full-wave circuit, a conduction angle of 150° provides 97%  
full power while a conduction angle of 30° provides only 3% of full  
power control. Therefore, it is usually pointless to obtain conduc-  
tion angles less than 30° or greater than 150°.  
Figure AN1003.5 and Figure AN1003.6 give convenient direct  
output voltage readings for 115 V/230 V input voltage. These  
curves also apply to current in a resistive circuit.  
HALF WAVE  
Peak Voltage  
θ
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
HALF WAVE  
Input  
Voltage  
θ
RMS  
230 V  
115 V  
360 180  
320 160  
280 140  
240 120  
200 100  
160 80  
120 60  
80 40  
Power  
Peak Voltage  
AVG  
RMS  
0
20 40 60 80 100 120 140 160 180  
Conduction Angle (θ)  
Figure AN1003.3  
Half-Wave Phase Control (Sinusoidal)  
AVG  
40 20  
θ
0
0
0
20 40 60 80 100 120 140 160 180  
FULL WAVE  
θ
Conduction Angle (θ)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Figure AN1003.5  
Output Voltage of Half-wave Phase  
Peak Voltage  
θ
FULL WAVE  
Input  
Voltage  
θ
RMS  
230 V  
115 V  
360 180  
320 160  
280 140  
240 120  
200 100  
160 80  
120 60  
80 40  
Power  
Peak Voltage  
RMS  
AVG  
AVG  
0
20 40 60 80 100 120 140 160 180  
Conduction Angle (θ)  
Figure AN1003.4  
Symmetrical Full-Wave Phase Control (Sinusoidal)  
40 20  
Figure AN1003.3 and Figure AN1003.4 also show the relative  
power curve for constant impedance loads such as heaters.  
Because the relative impedance of incandescent lamps and  
motors change with applied voltage, they do not follow this curve  
precisely. To use the curves, find the full-wave rated power of the  
load, and then multiply by the ratio associated with the specific  
0
0
0
20 40 60 80 100 120 140 160 180  
Conduction Angle (θ)  
Figure AN1003.6  
Output Voltage of Full-wave Phase Control  
http://www.teccor.com  
+1 972-580-7777  
AN1003 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1003  
Upon final selection of the capacitor, the curve shown in Figure  
AN1003.8 can be used in determining the charging resistance  
needed to obtain the desired control characteristics.  
Many circuits begin each half-cycle with the capacitor voltage at  
or near zero. However, most circuits leave a relatively large  
residual voltage on the capacitor after discharge. Therefore, the  
charging resistor must be determined on the basis of additional  
charge necessary to raise the capacitor to trigger potential.  
For example, assume that we want to trigger an S2010L SCR  
with a 32 V trigger diac. A 0.1 µF capacitor will supply the neces-  
sary SCR gate current with the trigger diac. Assume a 50 V dc  
power supply, 30° minimum conduction angle, and 150° maxi-  
mum conduction angle with a 60 Hz input power source. At  
approximately 32 V, the diac triggers leaving 0.66 VBO of diac  
voltage on the capacitor. In order for diac to trigger, 22 V must be  
added to the capacitor potential, and 40 V additional (50-10) are  
available. The capacitor must be charged to 22/40 or 0.55 of the  
available charging voltage in the desired time. Looking at Figure  
AN1003.8, 0.55 of charging voltage represents 0.8 time constant.  
The 30° conduction angle required that the firing pulse be  
delayed 150° or 6.92 ms. (The period of 1/2 cycle at 60 Hz is  
8.33 ms.) To obtain this time delay:  
Control Characteristics  
A relaxation oscillator is the simplest and most common control  
circuit for phase control. Figure AN1003.7 illustrates this circuit  
as it would be used with a thyristor. Turn-on of the thyristor  
occurs when the capacitor is charged through the resistor from a  
voltage or current source until the breakover voltage of the  
switching device is reached. Then, the switching device changes  
to its on state, and the capacitor is discharged through the thyris-  
tor gate. Trigger devices used are neon bulbs, unijunction tran-  
sistors, and three-, four-, or five-layer semiconductor trigger  
devices. Phase control of the output waveform is obtained by  
varying the RC time constant of the charging circuit so the trigger  
device breakdown occurs at different phase angles within the  
controlled half or full cycle.  
Switching  
Device  
R
Voltage  
or  
SCR  
Triac  
Current  
Source  
C
6.92 ms = 0.8 RC  
RC = 8.68 ms  
if C = 0.10 µF  
Figure AN1003.7  
Relaxation Oscillator Thyristor Trigger Circuit  
8.68×103  
then, R = ------------------------- = 86,000 Ω  
Figure AN1003.8 shows the capacitor voltage-time characteristic  
if the relaxation oscillator is to be operated from a pure DC  
source.  
0.1×106  
To obtain the minimum R (150° conduction angle), the delay is  
30° or  
(30/180) x 8.33 = 1.39 ms  
1.39 ms = 0.8 RC  
RC = 1.74 ms  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.74×103  
R = -------------------------- = 17,400 Ω  
0.1×106  
Using practical values, a 100 k potentiometer with up to 17 k min-  
imum (residual) resistance should be used. Similar calculations  
using conduction angles between the maximum and minimum  
values will give control resistance versus power characteristic of  
this circuit.  
Triac Phase Control  
The basic full-wave triac phase control circuit shown in  
Figure AN1003.9 requires only four components. Adjustable  
resistor R1 and C1 are a single-element phase-shift network.  
When the voltage across C1 reaches breakover voltage (VBO) of  
the diac, C1 is partially discharged by the diac into the triac gate.  
The triac is then triggered into the conduction mode for the  
remainder of that half-cycle. In this circuit, triggering is in Quad-  
rants I and III. The unique simplicity of this circuit makes it suit-  
able for applications with small control range.  
0
1
2
3
4
5
6
Time Constants  
Figure AN1003.8  
Capacitor Charging from DC Source  
Usually, the design starting point is the selection of a capacitance  
value which will reliably trigger the thyristor when the capacitance  
is discharged. Trigger devices and thyristor gate triggering char-  
acteristics play a part in the selection. All the device characteris-  
tics are not always completely specified in applications, so  
experimental determination is sometimes needed.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1003 - 3  
http://www.teccor.com  
+1 972-580-7777  
AN1003  
Application Notes  
Load  
Load  
Triac  
Triac  
(Q2010L5)  
R
R
R
4
250 k  
3.3 k  
(Q2010L5)  
1
3.3 k  
100  
R
68 k  
2
R
250 k  
2
1
120 V  
(60 Hz)  
R
3
120 V  
(60 Hz)  
(For Inductive  
Loads)  
100 k  
Trim  
C
0.1 µF  
1
Diac  
HT34B  
C
C
1
0.1 µF  
Diac  
HT34B  
0.1 µF  
2
0.1 µF  
Figure AN1003.9  
Basic Diac-Triac Phase Control  
Figure AN1003.11 Extended Range Full-wave Phase Control  
The hysteresis (snap back) effect is somewhat similar to the  
action of a kerosene lantern. That is, when the control knob is  
first rotated from the off condition, the lamp can be lit only at  
some intermediate level of brightness, similar to turning up the  
wick to light the lantern. Brightness can then be turned down until  
it finally reaches the extinguishing point. If this occurs, the lamp  
can only be relit by turning up the control knob again to the inter-  
mediate level. Figure AN1003.10 illustrates the hysteresis effect  
in capacitor-diac triggering. As R1 is brought down from its maxi-  
mum resistance, the voltage across the capacitor increases until  
the diac first fires at point A, at the end of a half-cycle (conduction  
angle θi). After the gate pulse, however, the capacitor voltage  
drops suddenly to about half the triggering voltage, giving the  
capacitor a different initial condition. The capacitor charges to the  
diac, triggering voltage at point B in the next half-cycle and giving  
a steady-state conduction angle shown as θ for the triac.  
By using one of the circuits shown in Figure AN1003.12, the hys-  
teresis effect can be eliminated entirely. The circuit (a) resets the  
timing capacitor to the same level after each positive half-cycle,  
providing a uniform initial condition for the timing capacitor. This  
circuit is useful only for resistive loads since the firing angle is not  
symmetrical throughout the range. If symmetrical firing is  
required, use the circuit (b) shown in Figure AN1003.12.  
Load  
Triac  
R
3
3.3 k  
(Q2010L5)  
R
(a)  
2
15 k  
1/2 W  
R
D
1
250 k  
1
120 V  
(60 Hz)  
C
0.1 µF  
D
1
Diac  
2
D
, D = 200 V Diodes  
2
1
AC Line  
Load  
θ
Triac  
(Q2010L5)  
Diac Triggers at "A"  
R
4
(b)  
R
2
R
3
[+Diac VBO  
]
]
R
1
1
A
120 V  
(60 Hz)  
B
D
D
3
[–Diac VBO  
Diac Does Not  
Capacitor  
Voltage  
Diac  
θTi rigger at "A"  
D
C
1
0.1 µF  
D
2
4
R
R
= 250 k POT  
R
D
= 3.3 k  
1
2
4
1
, D , D , D = 200 V Diodes  
2 3 4  
, R = 15 k, 1/2 W  
3
Figure AN1003.10 Relationship of AC Line Voltage and Triggering  
Voltage  
Figure AN1003.12 Wide-range Hysteresis Free Phase Control  
In the Figure AN1003.11 illustration, the addition of a second RC  
phase-shift network extends the range on control and reduces  
the hysteresis effect to a negligible region. This circuit will control  
from 5% to 95% of full load power, but is subject to supply volt-  
age variations. When R1 is large, C1 is charged primarily through  
R3 from the phase-shifted voltage appearing across C2. This  
action provides additional range of phase-shift across C1 and  
enables C2 to partially recharge C1 after the diac has triggered,  
thus reducing hysteresis. R3 should be adjusted so that the circuit  
just drops out of conduction when R1 is brought to maximum  
resistance.  
For more complex control functions, particularly closed loop con-  
trols, the unijunction transistor may be used for the triggering  
device in a ramp and pedestal type of firing circuit as shown in  
Figure AN1003.13.  
http://www.teccor.com  
+1 972-580-7777  
AN1003 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1003  
L
1
Ramp  
Load  
UJT Triggering Level  
Cool  
Hot  
R
2
R
3
*
Pedestal  
C
1
3.3 k  
UJT Emitter Voltage  
100  
0
Time  
Load  
R
1
Q
AC  
Input  
1
D
1
D
D
D
2
1
R
R
6
2
"Gain"  
C
C
*
2
R
3
1
HT-32  
0.1 µF  
100 V  
R
R
Q
R
Q
2
Triac  
7
8
3
120 V  
(60 Hz)  
D
5
D
6
D
3
4
1
Note: L and C form an  
RFI filter that may be eliminated  
* dv/dt snubber network  
when required  
R
Temp  
1
1
5
C
1
T
R
4
T
1
AC  
AC  
Input  
Voltage Current  
Load  
R
C , C  
L
Q
1
1
1
3
1
R
R
R
R
= 2.2 k, 2 W  
Q
Q
T
= 2N2646  
= Q2010L5  
= Dale PT 10-101  
or equivalent  
= 200 V Diode  
= 20 V Zener  
= 100 V Diode  
= 0.1 µF, 30 V  
,
2
1
3
4
1
2
1
= 2.2 k, 1/2 W  
= Thermistor, approx. 5 k  
at operating temperature  
= 10 k Potentiometer  
= 5 M Potentiometer  
= 100 k, 1/2 W  
120 V ac 12 A  
60 Hz  
250 k  
500 k  
0.1 µF 200 V 100 µH Q2015L9  
0.1 µF 400 V 200 µH Q4004L4  
R
R
R
R
D
D
D
C
5
6
7
8
1-4  
240 V ac  
50/60 Hz  
3 A  
5
6
1
= 1 k, 1/2 W  
Figure AN1003.14 Single-time-constant Circuit for Incandescent Light  
Dimming, Heat Control, and Motor Speed Control  
Figure AN1003.13 Precision Proportional Temperature Control  
The circuit shown in Figure AN1003.15 is a double-time-constant  
circuit which has improved performance compared to the circuit  
shown in Figure AN1003.14. This circuit uses an additional RC  
network to extend the phase angle so that the triac can be trig-  
gered at small conduction angles. The additional RC network  
also minimizes any hysteresis effect explained and illustrated in  
Figure AN1003.10 and Figure AN1003.11.  
Several speed control and light dimming (phase) control circuits  
have been presented that give details for a complete 120 V appli-  
cation circuit but none for 240 V. Figure AN1003.14 and Figure  
AN1003.15 show some standard phase control circuits for 240 V,  
60 Hz/50 Hz operation along with 120 V values for comparison.  
Even though there is very little difference, there are a few key  
things that must be remembered. First, capacitors and triacs con-  
nected across the 240 V line must be rated at 400 V. Secondly,  
the potentiometer (variable resistor) value must change consider-  
ably to obtain the proper timing or triggering for 180° in each half-  
cycle.  
L
1
Load  
R
1
R
*
4
3.3 k  
Figure AN1003.14 shows a simple single-time-constant light dim-  
mer (phase control) circuit, giving values for both 120 V and  
240 V operation.  
100  
Q
1
AC  
Input  
R
3
R
2
D
1
C
15 k  
1/2 W  
1
C
2
C
C
*
3
4
HT-32  
0.1 µF  
100 V  
Note: L and C form an  
RFI filter that may be eliminated  
* dv/dt snubber network  
when required  
1
1
AC  
Input  
AC  
Load  
Voltage  
Current  
C , C , C  
1 2 4  
R
2
L
1
Q
1
120 V ac  
60 Hz  
8 A  
6 A  
6 A  
250 k  
500 k  
500 k  
0.1 µF 200 V 100 µH Q2010L5  
0.1 µF 400 V 200 µH Q4008L4  
0.1 µF 400 V 200 µH Q4008L4  
240 V ac  
50 Hz  
240 V ac  
60 Hz  
Figure AN1003.15 Double-time-constant Circuit for Incandescent Light  
Dimming, Heat Control, and Motor Speed Control  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1003 - 5  
http://www.teccor.com  
+1 972-580-7777  
AN1003  
Application Notes  
Permanent Magnet Motor Control  
Figure AN1003.16 illustrates a circuit for phase controlling a per-  
manent magnet (PM) motor. Since PM motors are also genera-  
tors, they have characteristics that make them difficult for a  
standard triac to commutate properly. Control of a PM motor is  
easily accomplished by using an alternistor triac with enhanced  
commutating characteristics.  
Load  
R
1
2.2 k  
SCR  
1
R
2
AC  
Input  
CR  
1
R
3
+
DC  
1.5 A  
MTR  
AC  
Input  
Voltage Current  
AC  
Load  
3.3 k  
-
100  
MT2  
CR  
R
SCR  
1
R
3
1
2
Q4006LH4  
250 k  
120 V ac 0.8 A  
60 Hz  
500 k  
100 k  
1 M  
IN4003  
EC103B  
1 k  
115 V ac  
Input  
15 k 1/2 W  
G
MT1  
Not  
0.1 µF  
400 V  
IN4003 S2010F1 Required  
120 V ac 8.5 A  
60 Hz  
HT-32  
0.1 µF  
400 V  
0.1 µF  
100 V  
1 k  
IN4004  
EC103D  
240 V ac 0.8 A  
60 Hz  
Not  
Figure AN1003.16 Circuit for Phase Controlling a Permanent Magnet  
Motor  
IN4004 S4010F1 Required  
240 V ac 8.5 A  
60 Hz  
250 k  
1 M  
1 k  
IN4004  
T106D1  
PM motors normally require full-wave DC rectification. Therefore,  
the alternistor triac controller should be connected in series with  
the AC input side of the rectifier bridge. The possible alternative  
of putting an SCR controller in series with the motor on the DC  
side of the rectifier bridge can be a challenge when it comes to  
timing and delayed turn-on near the end of the half cycle. The  
alternistor triac controller shown in Figure AN1003.16 offers a  
wide range control so that the alternistror triac can be triggered at  
a small conduction angle or low motor speed; the rectifiers and  
alternistors should have similar voltage ratings, with all based on  
line voltage and actual motor load requirements.  
240 V ac 2.5 A  
50Hz  
Figure AN1003.17 Half-wave Control, 0° to 90° Conduction  
Figure AN1003.18 shows a half-wave phase control circuit using  
an SCR to control a universal motor. This circuit is better than  
simple resistance firing circuits because the phase-shifting char-  
acteristics of the RC network permit the firing of the SCR beyond  
the peak of the impressed voltage, resulting in small conduction  
angles and very slow speed.  
Universal Motor  
M
SCR Phase Control  
Figure AN1003.17 shows a very simple variable resistance half-  
wave circuit. It provides phase retard from essentially zero (SCR  
full on) to 90 electrical degrees of the anode voltage wave (SCR  
half on). Diode CR1 blocks reverse gate voltage on the negative  
half-cycle of anode supply voltage. This protects the reverse gate  
junction of sensitive SCRs and keeps power dissipation low for  
gate resistors on the negative half cycle. The diode is rated to  
block at least the peak value of the AC supply voltage. The retard  
angle cannot be extended beyond the 90-degree point because  
the trigger circuit supply voltage and the trigger voltage produc-  
ing the gate current to fire are in phase. At the peak of the AC  
supply voltage, the SCR can still be triggered with the maximum  
value of resistance between anode and gate. Since the SCR will  
trigger and latch into conduction the first time IGT is reached, its  
conduction cannot be delayed beyond 90 electrical degrees with this  
circuit.  
R
1
2
1
3.3 k  
SCR  
1
D
1
CR  
1
R
C
AC  
Supply  
HT-32  
AC  
Input  
AC  
Load  
Voltage Current  
R
CR  
SCR  
C
1
2
1
1
120 V ac  
60 Hz  
8 A  
150 k  
200 k  
200 k  
IN4003  
IN4004  
IN4004  
S2015L 0.1µF 200 V  
S4008L 0.1µF 400 V  
S4008L 0.1µF 400 V  
240 V ac 6.5 A  
60 Hz  
240 V ac 6.5 A  
50 Hz  
Figure AN1003.18 Half-wave Motor Control  
http://www.teccor.com  
+1 972-580-7777  
AN1003 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1003  
For a circuit to control a heavy-duty inductive load where an  
Phase Control from Logic (DC) Inputs  
alternistor is not compatible or available, two SCRs can be driven  
by an inexpensive TO-92 triac to make a very high current triac or  
alternistor equivalent, as shown in Figure AN1003.21. See ”Rela-  
tionship of IAV, IRMS, and IPK’ in AN1009 for design calcula-  
tions.  
Triacs can also be phase-controlled from pulsed DC unidirec-  
tional inputs such as those produced by a digital logic control  
system. Therefore, a microprocessor can be interfaced to AC  
load by using a sensitive gate triac to control a lamp's intensity or  
a motor's speed.  
Hot  
There are two ways to interface the unidirectional logic pulse to  
control a triac. Figure AN1003.19 illustrates one easy way if load  
current is approximately 5 A or less. The sensitive gate triac  
serves as a direct power switch controlled by HTL, TTL, CMOS,  
or integrated circuit operational amplifier. A timed pulse from the  
system's logic can activate the triac anywhere in the AC sine-  
wave producing a phase-controlled load.  
Load  
MT  
2
Non-sensitive  
Gate SCRs  
Triac  
A
K
K
G
A
Gate Pulse  
Input  
G
G
OR  
MT  
1
Hot  
Load  
V
= 15 V  
DC  
DD  
MT  
MT  
Neutral  
2
V
Sensitive Gate  
Triac  
DD  
OV  
Figure AN1003.21 Triac Driving Two Inverse Parallel Non-Sensitive  
Gate SCRs  
120 V  
60 Hz  
1
16  
Figure AN1003.22 shows another way to interface a unidirec-  
tional pulse signal and activate AC loads at various points in the  
AC sine wave. This circuit has an electrically-isolated input which  
allows load placement to be flexible with respect to AC line. In  
other words, connection between DC ground and AC neutral is  
not required.  
G
8
Neutral  
Figure AN1003.19 Sensitive Gate Triac Operating in  
Quadrants I and IV  
The key to DC pulse control is correct grounding for DC and AC  
supply. As shown in Figure AN1003.19, DC ground and AC  
ground/neutral must be common plus MT1 must be con-  
nected to common ground. MT1 of the triac is the return for  
both main terminal junctions as well as the gate junction.  
Load  
Hot  
R
in  
100  
100  
6
4
1
2
Timed  
Input  
Pulse  
120 V  
60 Hz  
MT  
MT  
2
0.1 µF  
250 V  
C
1
Triac or  
Alternistor  
1
G
Figure AN1003.20 shows an example of a unidirectional (all neg-  
ative) pulse furnished from a special I.C. that is available from  
LSI Computer Systems in Melville, New York. Even though the  
circuit and load is shown to control a Halogen lamp, it could be  
applied to a common incandescent lamp for touch-controlled  
dimming.  
Neutral  
Load could be here  
instead of upper location  
Figure AN1003.22 Opto-isolator Driving a Triac or Alternistor  
Microcontroller Phase Control  
L
Traditionally, microcontrollers were too large and expensive to be  
used in small consumer applications such as a light dimmer.  
Microchip Technology Inc. of Chandler, Arizona has developed a  
line of 8-pin microcontrollers without sacrificing the functionality  
of their larger counterparts. These devices do not provide high  
drive outputs, but when combined with a sensitive triac can be  
used in a cost-effective light dimmer.  
Figure AN1003.23 illustrates a simple circuit using a transformer-  
less power supply, PIC 12C508 microcontroller, and a sensitive  
triac configured to provide a light dimmer control. R3 is connected  
to the hot lead of the AC power line and to pin GP4. The ESD pro-  
tection diodes of the input structure allow this connection without  
damage. When the voltage on the AC power line is positive, the  
protection diode form the input to VDD is forward biased, and the  
input buffer will see approximately VDD + 0.7 V. The software will  
read this pin as high. When the voltage on the line is negative,  
the protection diode from VSS to the input pin is forward biased,  
and the input buffer sees approximately VSS - 0.7 V. The software  
will read the pin as low. By polling GP4 for a change in state, the  
software can detect zero crossing.  
R
3
G
MT1  
MT2  
+
C
T
Z
5
115 V ac  
220 V ac  
D
1
L
R
R
6
5
Touch  
Plate  
C
1
8
7
6
5
C
TRIG VSS  
EXT SENS  
2
LS7631 / LS7632  
R
1
VDD MODE CAP SYNC  
R
4
R
2
1
2
4
3
N
NOTE: As a precaution,  
transformer should have  
thermal protection.  
C
C
4
3
Halogen  
Lamp  
115 V ac  
220 V ac  
C
C
C
C
C
R
R
= 0.15 µF, 200 V  
= 0.22 µF, 200 V  
= 0.02 µF, 12 V  
= 0.002 µF, 12 V  
= 100 µF, 12 V  
= 270, ¼ W  
R
R
= 62, ¼ W  
= 1 M to 5 M, ¼ W  
(Selected for sensitivity)  
, R = 4.7 M, ¼ W  
= 1N4148  
Z = 5.6 V, 1 W Zener  
T = Q4006LH4 Alternistor  
L = 100 µH (RFI Filter)  
C
= 0.15 µF, 400 V  
= 0.1 µF, 400 V  
= 0.02 µF, 12 V  
= 0.002 µF, 12 V  
= 100 µF, 12 V  
= 1 k, ¼ W  
R
R
= 62, ¼ W  
= 1 M to 5 M, ¼ W  
(Selected for sensitivity)  
, R = 4.7 M, ¼ W  
1
2
3
4
5
1
2
3
4
1
2
3
4
5
1
2
3
4
C
C
C
C
R
R
R
D
R
D
5
1
6
5
1
6
= 1N4148  
Z = 5.6 V, 1 W Zener  
T = Q6006LH4 Alternistor  
L = 200 µH (RFI Filter)  
= 680 k, ¼ W  
= 1.5 M, ¼ W  
Figure AN1003.20 Typical Touch Plate Halogen Lamp Dimmer  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1003 - 7  
http://www.teccor.com  
+1 972-580-7777  
AN1003  
Application Notes  
C3  
0.1 µF  
R1  
47  
D1  
1N4001  
VDD  
120 V ac  
(High)  
R2  
1 M  
RV1  
Varistor  
D1  
1N4001  
D3  
1N5231  
C1  
220 µF  
C2  
0.01 µF  
AC  
(Return)  
White  
+5 V  
U1  
150 W  
Lamp  
VDD  
VSS  
GP0  
GP1  
GP2  
Q1  
L4008L5  
GP5  
GP4  
GP3  
R3  
20 M  
R6  
470  
12C508  
Remote  
Switch  
Connector  
R4  
470  
JP1  
S1  
S2  
Dim  
3
2
1
R5  
470  
Bright  
Figure AN1003.23 Microcontroller Light Dimmer Control  
With a zero crossing state detected, software can be written to  
turn on the triac by going from tri-state to a logic high on the gate  
and be synchronized with the AC phase cycles (Quadrants I  
and IV). Using pull-down switches connected to the microcontol-  
ler inputs, the user can signal the software to adjust the duty  
cycle of the triac.  
For higher amperage loads, a small 0.8 A, TO-92 triac (operating  
in Quadrants I and IV) can be used to drive a 25 A alternistor  
triac (operating in Quadrants I and III) as shown in the heater  
control illustration in Figure AN1003.24.  
For a complete listing of the software used to control this circuit,  
see the Microchip application note PICREF-4. This application  
note can be downloaded from Microchip's Web site at  
www.microchip.com.  
http://www.teccor.com  
+1 972-580-7777  
AN1003 - 8  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1003  
C3  
.1µF  
R1  
47  
D1  
1N4001  
VDD  
120VAC  
(HIGH)  
R2  
1M  
RV1  
VARISTOR  
D1  
1N4001  
D3  
1N5231  
C1  
220µF  
C2  
.01µF  
AC  
(RETURN)  
WHITE  
+5V  
2000 W  
U1  
R70  
100Ω  
VDD  
VSS  
GP0  
GP1  
GP2  
Q1  
L4X8E5  
Q2  
Q4025L6  
GP5  
GP4  
GP3  
R3  
20M  
R6  
470  
12C508  
R4  
470  
DECREASE HEAT  
S1  
R5  
470  
S2  
INCREASE HEAT  
Figure AN1003.24 Microcontroller Heater Control  
Summary  
The load currents chosen for the examples in this application  
note were strictly arbitrary, and the component values will be the  
same regardless of load current except for the power triac or  
SCR. The voltage rating of the power thyristor devices must be a  
minimum of 200 V for 120 V input voltage and 400 V for 240 V  
input voltage.  
The use of alternistors instead of triacs may be much more  
acceptable in higher current applications and may eliminate the  
need for any dv/dt snubber network.  
For many electrical products in the consumer market, competitive  
thyristor prices and simplified circuits make automatic control a  
possibility. These simple circuits give the designer a good feel for  
the nature of thyristor circuits and their design. More sophistica-  
tion, such as speed and temperature feedback, can be devel-  
oped as the control techniques become more familiar. A  
remarkable phenomenon is the degree of control obtainable with  
very simple circuits using thyristors. As a result, industrial and  
consumer products will greatly benefit both in usability and mar-  
ketability.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1003 - 9  
http://www.teccor.com  
+1 972-580-7777  
Notes  
AN1004  
4
Mounting and Handling of Semiconductor Devices  
These are suitable only for vibration-free environments and low-  
power, free-air applications. For best results, the device should  
Introduction  
Proper mounting and handling of semiconductor devices, particu-  
larly those used in power applications, is an important, yet some-  
times overlooked, consideration in the assembly of electronic  
systems. Power devices need adequate heat dissipation to  
increase operating life and reliability and allow the device to  
operate within manufacturers' specifications. Also, in order to  
avoid damage to the semiconductor chip or internal assembly,  
the devices should not be abused during assembly. Very often,  
device failures can be attributed directly to a heat sinking or  
assembly damage problem.  
be in a vertical position for maximum heat dissipation from con-  
vection currents.  
Standard Lead Forms  
Teccor encourages users to allow factory production of all lead  
and tab form options. Teccor has the automated machinery and  
expertise to produce pre-formed parts at minimum risk to the  
device and with greater convenience for the consumer. See the  
“Lead Form Dimensions” section of this catalog for a complete  
list of readily available lead form options. Contact Teccor for  
information regarding custom lead form designs.  
The information in this application note guides the semi-  
conductor user in the proper use of Teccor devices, particularly  
the popular and versatile TO-220 and TO-202 epoxy packages.  
Lead Bending Method  
Contact the Teccor Applications Engineering Group for further  
details or suggestions on use of Teccor devices.  
Leads may be bent easily and to any desired angle, provided that  
the bend is made at a minimum 0.063" (0.1" for TO-218 package)  
away from the package body with a minimum radius of 0.032"  
(0.040" for TO-218 package) or 1.5 times lead thickness rule.  
DO-15X device leads may be bent with a minimum radius of  
0.050”, and DO-35 device leads may be bent with a minimum  
radius of 0.028”. Leads should be held firmly between the pack-  
age body and the bend so that strain on the leads is not transmit-  
ted to the package body, as shown in Figure AN1004.2. Also,  
leads should be held firmly when trimming length.  
Lead Forming — Typical Configurations  
A variety of mounting configurations are possible with Teccor  
power semiconductor TO-202, TO-92, DO-15X, and TO-220  
packages, depending upon such factors as power requirements,  
heat sinking, available space, and cost considerations. Figure  
AN1004.1 shows typical examples and basic design rules.  
A
B
C
SOCKET TYPE MOUNTING:  
Useful in applications for testing or  
where frequent removal is  
necessary. Excellent selection of  
socket products available from  
companies such as Molex.  
D
Figure AN1004.1  
Component Mounting  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1004 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1004  
Application Notes  
Figure AN1004.4 through Figure AN1004.6 show additional  
examples of acceptable heat sinks.  
Incorrect  
(A)  
Correct  
Figure AN1004.4  
Examples of PC Board Mounts  
Heat Sink  
Printed  
Circuit  
Board  
(B)  
Lead Bending Method  
Figure AN1004.2  
When bending leads in the plane of the leads (spreading), bend  
only the narrow part. Sharp angle bends should be done only  
once as repetitive bending will fatigue and break the leads.  
B
A
The mounting tab of the TO-202 package may also be bent or  
formed into any convenient shape as long as it is held firmly  
between the plastic case and the area to be formed or bent. With-  
out this precaution, bending the tab may fracture the chip and  
permanently damage the unit.  
Figure AN1004.5  
Vertical Mount Heat Sink  
Several types of vertical mount heat sinks are available. Keep  
heat sink vertical for maximum convection.  
Heat Sinking  
Use of the largest, most efficient heat sink as is practical and cost  
effective extends device life and increases reliability. In the illus-  
tration shown in Figure AN1004.3, each device is electrically iso-  
lated.  
Heat Sink  
Figure AN1004.6  
Examples of Extruded Aluminum  
When coupled with fans, extruded aluminum mounts have the  
highest efficiency.  
Heat Sinking Notes  
Care should be taken not to mount heat sinks near other heat-  
producing elements such as power resistors, because black  
anodized heat sinks may absorb more heat than they dissipate.  
Figure AN1004.3  
Several Isolated TO-220 Devices Mounted to a  
Common Heat Sink  
Some heat sinks can hold several power devices. Make sure that  
if they are in electrical contact to the heat sink, the devices do not  
short-circuit the desired functions. Isolate the devices electrically  
or move to another location. Recall that the mounting tab of Tec-  
cor isolated TO-220 devices is electrically isolated so that several  
devices may be mounted on the same heat sink without extra  
insulating components. If using an external insulator such as  
mica, with a thickness of 0.004", an additional thermal resistance  
of 0.8° C/W for TO-220 or 0.5° C/W for TO-218 devices is added  
to the RθJC device rating.  
Many power device failures are a direct result of improper  
heat dissipation. Heat sinks with a mating area smaller than the  
metal tab of the device are unacceptable. Heat sinking material  
should be at least 0.062" thick to be effective and efficient.  
Note that in all applications the maximum case temperature (TC)  
rating of the device must not be exceeded. Refer to the individual  
device data sheet rating curves (TC versus IT) as well as the indi-  
vidual device outline drawings for correct TC measurement point.  
http://www.teccor.com  
+1 972-580-7777  
AN1004 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1004  
Allow for adequate ventilation. If possible, route heat sinks to out-  
side of assembly for maximum airflow.  
Mounting Surface Selection  
* Screw head must not touch  
the epoxy body of the device  
* Mounting  
screw  
Proper mounting surface selection is essential to efficient trans-  
fer of heat from the semiconductor device to the heat sink and  
from the heat sink to the ambient. The most popular heat sinks  
are flat aluminum plates or finned extruded aluminum heat sinks.  
The mounting surface should be clean and free from burrs or  
scratches. It should be flat within 0.002 inch per inch, and a sur-  
face finish of 30 to 60 microinches is acceptable. Surfaces with a  
higher degree of polish do not produce better thermal conductiv-  
ity.  
6-32  
Heatsink  
Lockwasher  
6-32 Nut  
High potential appication  
using Isolated TO-220  
On heavy aluminum heatsinks  
Figure AN1004.7  
TO-220 Mounting  
Many aluminum heat sinks are black anodized to improve ther-  
mal emissivity and prevent corrosion. Anodizing results in high  
electrical but negligible thermal insulation. This is an excellent  
choice for isolated TO-220 devices. For applications of TO-202  
devices where electrical connection to the common anode tab is  
required, the anodization should be removed. Iridite or chromate  
acid dip finish offers low electrical and thermal resistance. Either  
TO-202 or isolated TO-220 devices may be mounted directly to  
this surface, regardless of application. Both finishes should be  
cleaned prior to use to remove manufacturing oils and films.  
Some of the more economical heat sinks are painted black. Due  
to the high thermal resistance of paint, the paint should be  
removed in the area where the semiconductor is attached.  
Bare aluminum should be buffed with #000 steel wool and fol-  
lowed with an acetone or alcohol rinse. Immediately, thermal  
grease should be applied to the surface and the device mounted  
down to prevent dust or metal particles from lodging in the critical  
interface area.  
For good thermal contact, the use of thermal grease is essential  
to fill the air pockets between the semiconductor and the mount-  
ing surface. This decreases the thermal resistance by 20%. For  
example, a typical TO-220 with RθJC of 1.2 °C/W may be lowered  
to 1 °C/W by using thermal grease.  
Punched holes are not acceptable due to cratering around the  
hole which can cause the device to be pulled into the crater by  
the fastener or can leave a significant portion of the device out of  
contact with the heat sink. The first effect may cause immediate  
damage to the package and early failure, while the second can  
create higher operating temperatures which will shorten operat-  
ing life. Punched holes are quite acceptable in thin metal plates  
where fine-edge blanking or sheared-through holes are  
employed.  
Drilled holes must have a properly prepared surface. Excessive  
chamfering is not acceptable as it may create a crater effect.  
Edges must be deburred to promote good contact and avoid  
puncturing isolation materials.  
For high-voltage applications, it is recommended that only the  
metal portion of the TO-220 package (as viewed from the bottom  
of the package) be in contact with the heat sink. This will provide  
maximum oversurface distance and prevent a high voltage path  
over the plastic case to a grounded heat sink.  
TO-202  
The mounting hole for the Teccor TO-202 devices should not  
exceed 0.112” (4/40) clearance. (Figure AN1004.8) Since tab is  
electrically common with anode, heat sink may or may not need  
to be electrically isolated from tab. If not, use 4/40 screw with  
lock washer and nut. Mounting torque is 6 inch-lbs.  
Teccor recommends Dow-Corning 340 as a proven effective ther-  
mal grease. Fibrous applicators are not recommended as they  
may tend to leave lint or dust in the interface area. Ensure that  
the grease is spread adequately across the device mounting sur-  
face, and torque down the device to specification.  
A
B
Appropriate  
Screw  
Contact Teccor Applications Engineering for assistance in choos-  
ing and using the proper heat sink for specific application.  
Tab  
Form  
4/40 Nylon  
Bushing  
Hardware And Methods  
Mica  
Insulator  
TO-220  
The mounting hole for the Teccor TO-220 devices should not  
exceed 0.140” (6/32) clearance. (Figure AN1004.7) No insulating  
bushings are needed for the L Package (isolated) devices as the  
tab is electrically isolated from the semiconductor chip. 6/32  
mounting hardware, especially round head or Fillister machine  
screws, is recommended and should be torqued to a value of  
6 inch-lbs.  
Nut  
Heat Sink  
Heat Sink  
at Case  
Potential  
Compression  
Washer  
Figure AN1004.8  
TO-202 Mounting  
A nylon bushing and mica insulation are required to insulate the  
tab in an isolated application. A compression washer is recom-  
mended to avoid damage to the bushing. Do not attempt to  
mount non-formed tabs to a plane surface, as the resulting strain  
on the case may cause it or the semiconductor chip assembly to  
fail. Teccor has the facilities and expertise to properly tab form  
TO-202 devices for the convenience of the consumer.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1004 - 3  
http://www.teccor.com  
+1 972-580-7777  
AN1004  
Application Notes  
the device. The curve shown in Figure AN1004.10 illustrates the  
effect of proper torque.  
TO-218  
The mounting hole for the TO-218 device should not exceed  
0.164” (8/32) clearance. Isolated versions of TO-218 do not  
require any insulating material since mounting tab is electrically  
isolated from the semiconductor chip. Round lead or Fillister  
machine screws are recommended. Maximum torque to be  
applied to mounting tab should not exceed 8 inch-lbs.  
θ C-S  
˚C/Watt  
Torque – inch-lbs  
Effect of Torque on Case to Sink  
Thermal Resistance  
The same precautions given for the TO-220 package concerning  
punched holes, drilled holes, and proper prepared heat sink  
mounting surface apply to the TO-218 package. Also for high-  
voltage applications, it is recommended that only the metal por-  
tion of the mounting surface of the TO-218 package be in contact  
with heat sink. This achieves maximum oversurface distance to  
prevent a high-voltage path over the device body to grounded  
heat sink.  
1/2 Rated Rated  
Torque Torque  
Figure AN1004.10 Effect of Torque to Sink Thermal Resistance  
With proper care, the mounting tab of a device can be soldered to  
a surface. However, the heat required to accomplish this opera-  
tion can damage or destroy the semiconductor chip or internal  
assembly. See “Surface Mount Soldering Recommendations”  
(AN1005) in this catalog.  
Spring-steel clips can be used to replace torqued hardware in  
assembling thyristors to heat sinks. Clips snap into heat sink  
slots to hold the device in place for PC board insertion. Clips are  
available in several sizes for various heat sink thicknesses and  
thyristor case styles from Aavid Thermalloy in Concord, New  
Hampshire. A typical heatsink is shown in Figure AN1004.11  
General Mounting Notes  
Care must be taken on both packages at all times to avoid strain  
to the tab or leads. For easy insertion of the part onto the board  
or heat sink, avoid axial strain on the leads. Carefully measure  
mounting holes for the tab and the leads, and do any forming of  
the tab or leads before mounting. Refer to the “Lead Form  
Dimensions” section of this catalog before attempting lead form  
operations.  
Rivets may be used for less demanding and more economical  
applications. 1/8" all-aluminum pop rivets can be used on both  
TO-220 and TO-202 packages. Use a 0.129”-0.133” (#30) drill for  
the hole and insert the rivet from the top side, as shown in Figure  
AN1004.9. An insertion tool, similar to a “USM” PRG 430 hand  
riveter, is recommended. A wide selection of grip ranges is avail-  
able, depending upon the thickness of the heat sink material. Use  
an appropriate grip range to securely anchor the device, yet not  
deform the mounting tab. The recommended rivet tool has a pro-  
truding nipple that will allow easy insertion of the rivet and keep  
the tool clear of the plastic case of the device.  
Figure AN1004.9  
Pop Riveting Technique  
A Milford #511 (Milford Group, Milford, CT) semi-tubular steel  
rivet set into a 0.129" receiving hole with a riveting machine simi-  
lar to a Milford S256 is also acceptable. Contact the rivet  
machine manufacturer for exact details on application and set-up  
for optimum results.  
Figure AN1004.11 Typical Heat Sink Using Clips  
Pneumatic or other impact riveting devices are not recommended  
due to the shock they may apply to the device.  
Under no circumstance should any tool or hardware come into  
contact with the case. The case should not be used as a brace  
for any rotation or shearing force during mounting or in use. Non-  
standard size screws, nuts, and rivets are easily obtainable to  
avoid clearance problems.  
Always use an accurate torque wrench to mount devices. No gain  
is achieved by overtorquing devices. In fact, overtorquing may  
cause the tab and case to deform or rupture, seriously damaging  
http://www.teccor.com  
+1 972-580-7777  
AN1004 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1004  
Use a clean pre-tinned iron, and solder the joint as quickly as  
Soldering Of Leads  
possible. Avoid overheating the joint or bringing the iron or solder  
into contact with other leads that are not heat sinked.  
A prime consideration in soldering leads is the soldering of  
device leads into PC boards, heat sinks, and so on. Significant  
damage can be done to the device through improper soldering. In  
any soldering process, do not exceed the data sheet lead solder  
temperature of +230 °C for 10 seconds, maximum, 1/16" from  
the case.  
Wave Solder  
Wave soldering is one of the most efficient methods of soldering  
large numbers of PC boards quickly and effectively. Guidelines  
for soldering by this method are supplied by equipment manufac-  
turers. The boards should be pre-heated to avoid thermal shock  
to semiconductor components, and the time-temperature cycle in  
the solder wave should be regulated to avoid heating the device  
beyond the recommended temperature rating. A mildly activated  
resin flux is recommended. Figure AN1004.12 shows typical heat  
and time conditions.  
This application note presents details about the following three  
types of soldering:  
Hand soldering  
Wave soldering  
Dip soldering  
Hand Soldering  
This method is mostly used in prototype breadboarding applica-  
tions and production of small modules. It has the greatest poten-  
tial for misuse. The following recommendations apply to Teccor  
TO-92, TO-202, TO-220, and TO-218 packages.  
Select a small- to medium-duty electric soldering iron of 25 W to  
45 W designed for electrical assembly application. Tip tempera-  
ture should be rated from 600 °F to 800 °F (300 °C to 425 °C).  
The iron should have sufficient heat capacity to heat the joint  
quickly and efficiently in order to minimize contact time to the  
part. Pencil tip probes work very well. Neither heavy-duty electri-  
cal irons of greater than 45 W nor flame-heated irons and large  
heavy tips are recommended, as the tip temperatures are far too  
high and uncontrollable and can easily exceed the time-tempera-  
ture limit of the part.  
Pre-heat  
Soak  
Reflow  
Cool  
260  
240  
220  
Down  
Peak Temperature  
220 C - 245  
C
˚
˚
200  
180  
160  
140  
120  
100  
80  
1.3 - 1.6 C/s  
˚
<2.5 C/s  
˚
0.5 - 0.6 C/s  
˚
Soaking Zone  
Reflow Zone  
60 - 90 s typical  
( 2 min. MAX )  
30 - 60 s typical  
( 2 min. MAX )  
<2.5 C/s  
˚
Pre-heating Zone  
( 2-4 min MAX )  
60  
40  
20  
0
0
30  
60  
90  
120  
150  
180  
210  
240  
270  
300  
Teccor Fastpak devices require a different soldering technique.  
Circuit connection can be done by either quick-connect terminals  
or solder.  
Since most quick-connect 0.250” female terminals have a maxi-  
mum rating of 30 A, connection to terminals should be made by  
soldering wires instead of quick-connects.  
Recommended wire is 10 AWG stranded wire for use with MT1  
and MT2 for load currents above 30 A. Soldering should be per-  
formed with a 100-watt soldering iron. The iron should not remain  
in contact with the wire and terminal longer than 40 seconds so  
the Fastpak triac is not damaged.  
For the Teccor TO-218X package, the basic rules for hand sol-  
dering apply; however, a larger iron may be required to apply suf-  
ficient heat to the larger leads to efficiently solder the joint.  
Time (Seconds)  
Figure AN1004.12 Reflow Soldering with Pre-heating  
Dip Soldering  
Dip soldering is very similar to wave soldering, but it is a hand  
operation. Follow the same considerations as for wave soldering,  
particularly the time-temperature cycle which may become oper-  
ator dependent because of the wide process variations that may  
occur. This method is not recommended.  
Board or device clean-up is left to the discretion of the customer.  
Teccor devices are tolerant of a wide variety of solvents, and they  
conform to MIL-STD 202E method 215 “Resistance to Solvents.”  
Remember not to exceed the lead solder temperatures of  
+230 °C for 10 seconds, maximum, 1/16" (1.59mm) from the  
case.  
A 60/40 or 63/37 Sn/Pb solder is acceptable. This low melting-  
point solder, used in conjunction with a mildly activated rosin flux,  
is recommended.  
Insert the device into the PC board and, if required, attach the  
device to the heat sink before soldering. Each lead should be  
individually heat sinked as it is soldered. Commercially available  
heat sink clips are excellent for this use. Hemostats may also be  
used if available. Needle-nose pliers are a good heat sink choice;  
however, they are not as handy as stand-alone type clips.  
In any case, the lead should be clipped or grasped between the  
solder joint and the case, as near to the joint as possible. Avoid  
straining or twisting the lead in any way.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1004 - 5  
http://www.teccor.com  
+1 972-580-7777  
Notes  
AN1005  
5AN1005  
Surface Mount Soldering Recommendations  
With the components in position, the substrate is heated to a  
point where the solder begins to flow. This can be done on a  
Introduction  
The most important consideration in reliability is achieving a good  
solder bond between surface mount device (SMD) and substrate  
since the solder provides the thermal path from the chip. A good  
bond is less subject to thermal fatiguing and will result in  
improved device reliability.  
The most economic method of soldering is a process in which all  
different components are soldered simultaneously, such as  
DO-214, Compak, TO-252 devices, capacitors, and resistors.  
heating plate, on a conveyor belt running through an infrared tun-  
nel, or by using vapor phase soldering.  
In the vapor phase soldering process, the entire PC board is uni-  
formly heated within a vapor phase zone at a temperature of  
approximately 215 °C. The saturated vapor phase zone is  
obtained by heating an inert (inactive) fluid to the boiling point.  
The vapor phase is locked in place by a secondary vapor. (Figure  
AN1005.1) Vapor phase soldering provides uniform heating and  
prevents overheating.  
Reflow Of Soldering  
Transport  
The preferred technique for mounting microminiature compo-  
nents on hybrid thick- and thin-film is reflow soldering.  
The DO-214 is designed to be mounted directly to or on thick-film  
metallization which has been screened and fired on a substrate.  
The recommended substrates are Alumina or P.C. Board mate-  
rial.  
Vapor lock  
(secondary  
medium)  
Cooling pipes  
Recommended metallization is silver palladium or molymanga-  
nese (plated with nickel or other elements to enhance solderabil-  
ity). For more information, consult Du Pont's Thick-Film  
handbook or the factory.  
PC board  
Vapor phase  
zone  
Heating  
elements  
It is best to prepare the substrate by either dipping it in a solder  
bath or by screen printing a solder paste.  
After the substrate is prepared, devices are put in place with  
vacuum pencils. The device may be laid in place without special  
alignment procedures since it is self-aligning during the solder  
reflow process and will be held in place by surface tension.  
Boiling liquid (primary medium)  
Figure AN1005.1  
Principle of Vapor Phase Soldering  
No matter which method of heating is used, the maximum  
allowed temperature of the plastic body must not exceed 250 °C  
during the soldering process. For additional information on tem-  
perature behavior during the soldering process, see Figure  
AN1005.2 and Figure AN1005.3.  
For reliable connections, keep the following in mind:  
(1) Maximum temperature of the leads or tab during the solder-  
ing cycle does not exceed 275 °C.  
Pre-heat  
Soak  
Reflow  
Cool  
260  
240  
220  
(2) Flux must affect neither components nor connectors.  
(3) Residue of the flux must be easy to remove.  
Good flux or solder paste with these properties is available on the  
market. A recommended flux is Alpha 5003 diluted with benzyl  
alcohol. Dilution used will vary with application and must be  
determined empirically.  
Having first been fluxed, all components are positioned on the  
substrate. The slight adhesive force of the flux is sufficient to  
keep the components in place.  
Because solder paste contains a flux, it has good inherent adhe-  
sive properties which eases positioning of the components. Allow  
flux to dry at room temperature or in a 70 °C oven. Flux should be  
dry to the touch. Time required will depend on flux used.  
Down  
Peak Temperature  
220 C - 245  
˚
C
˚
200  
180  
160  
140  
120  
100  
80  
1.3 - 1.6 C/s  
˚
<2.5 C/s  
˚
0.5 - 0.6 C/s  
˚
Soaking Zone  
Reflow Zone  
60 - 90 s typical  
( 2 min. MAX )  
30 - 60 s typical  
( 2 min. MAX )  
<2.5 C/s  
˚
Pre-heating Zone  
( 2-4 min MAX )  
60  
40  
20  
0
0
30  
60  
90  
120  
150  
180  
210  
240  
270  
300  
Time (Seconds)  
Figure AN1005.2  
Reflow Soldering Profile  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1005 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1005  
Application Notes  
Reflow Soldering Zones  
0.079  
(2.0)  
0.079  
(2.0)  
0.079  
(2.0)  
Zone 1: Initial Pre-heating Stage (25 °C to 150 °C)  
Excess solvent is driven off.  
PCB and Components are gradually heated up.  
Temperature gradient shall be <2.5 °C/Sec.  
0.040  
(1.0)  
0.030  
(0.76)  
0.110  
(2.8)  
Zone 2: Soak Stage (150 °C to 180 °C)  
Pad Outline  
Flux components start activation and begin to reduce the  
Dimensions are in inches (and millimeters).  
oxides on component leads and PCB pads.  
PCB components are brought nearer to the temperature at  
which solder bonding can occur.  
Soak allows different mass components to reach the same  
temperature.  
Figure AN1005.4  
Modified DO-214 Compak — Three-leaded Surface  
Mount Package  
Activated flux keeps metal surfaces from re-oxidizing.  
Zone 3: Reflow Stage (180 °C to 235 °C)  
Paste is brought to the alloy’s melting point.  
Activated flux reduces surface tension at the metal interface so  
metallurgical bonding occurs.  
Zone 4: Cool-down Stage (180 °C to 25 °C)  
1. Screen print solder paste  
(or flux)  
Assembly is cooled evenly so thermal shock to the components  
or PCB is reduced.  
The surface tension of the liquid solder tends to draw the leads of  
the device towards the center of the soldering area and so has a  
correcting effect on slight mispositionings. However, if the layout  
is not optimized, the same effect can result in undesirable shifts,  
particularly if the soldering areas on the substrate and the com-  
ponents are not concentrically arranged. This problem can be  
solved by using a standard contact pattern which leaves suffi-  
cient scope for the self-positioning effect (Figure AN1005.3 and  
Figure AN1005.4) Figure AN1005.5 shows the reflow soldering  
procedure.  
2. Place component  
(allow flux to dry)  
0.079  
Pad Outline  
(2.0)  
0.110  
(2.8)  
3. Reflow solder  
0.079  
(2.0)  
Dimensions are in inches (and millimeters).  
Figure AN1005.5  
Reflow Soldering Procedure  
After the solder is set and cooled, visually inspect the connec-  
tions and, where necessary, correct with a soldering iron. Finally,  
the remnants of the flux must be removed carefully.  
Use vapor degrease with an azeotrope solvent or equivalent to  
remove flux. Allow to dry.  
Figure AN1005.3  
Minimum Required Dimensions of Metal Connection  
of Typical DO-214 Pads on Hybrid Thick- and Thin-  
film Substrates  
After the drying procedure is complete, the assembly is ready for  
testing and/or further processing.  
http://www.teccor.com  
+1 972-580-7777  
AN1005 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1005  
Wave Soldering  
Wave soldering is the most commonly used method for soldering  
components in PCB assemblies. As with other soldering pro-  
cesses, a flux is applied before soldering. After the flux is  
applied, the surface mount devices are glued into place on a PC  
board. The board is then placed in contact with a molten wave of  
solder at a temperature between 240 °C and 260 °C, which  
affixes the component to the board.  
PC board  
Insert  
leaded  
components  
Dual wave solder baths are also in use. This procedure is the  
same as mentioned above except a second wave of solder  
removes excess solder.  
Turn over the  
PC board  
Apply  
glue  
Although wave soldering is the most popular method of PCB  
assembly, drawbacks exist. The negative features include solder  
bridging and shadows (pads and leads not completely wetted) as  
board density increases. Also, this method has the sharpest ther-  
mal gradient. To prevent thermal shock, some sort of pre-heating  
device must be used. Figure AN1005.6 shows the procedure for  
wave soldering PCBs with surface mount devices only. Figure  
AN1005.7 shows the procedure for wave soldering PCBs with  
both surface mount and leaded components.  
Place  
SMDs  
Cure  
glue  
or  
Turn over the  
PC board  
Apply glue  
Screen print glue  
Wave solder  
Place component  
Figure AN1005.7  
Wave Soldering PCBs With Both Surface Mount  
and Leaded Components  
Immersion Soldering  
Maximum allowed temperature of the soldering bath is 235 °C.  
Maximum duration of soldering cycle is five seconds, and forced  
cooling must be applied.  
Cure glue  
Hand Soldering  
It is possible to solder the DO-214, Compak, and TO-252 devices  
with a miniature hand-held soldering iron, but this method has  
particular drawbacks and should be restricted to laboratory use  
and/or incidental repairs on production circuits.  
Recommended Metal-alloy  
(1) 63/37 Sn/Pb  
(2) 60/40 Sn/Pb  
Wave solder  
Pre-Heating  
Figure AN1005.6  
Wave Soldering PCBs With Surface Mount Devices  
Only  
Pre-heating is recommended for good soldering and to avoid  
damage to the DO-214, Compak, TO-252 devices, other compo-  
nents, and the substrate. Maximum pre-heating temperature is  
165 °C while the maximum pre-heating duration may be 10 sec-  
onds. However, atmospheric pre-heating is permissible for sev-  
eral minutes provided temperature does not exceed 125 °C.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1005 - 3  
http://www.teccor.com  
+1 972-580-7777  
AN1005  
Application Notes  
(3) Cut small pieces of the alloy solder and flow each piece onto  
each of the other legs of the component.  
Indium-tin solder is available from ACI Alloys, San Jose, CA and  
Indium Corporation of America, Utica, NY.  
Gluing Recommendations  
Prior to wave soldering, surface mount devices (SMDs) must be  
fixed to the PCB or substrate by means of an appropriate adhe-  
sive. The adhesive (in most cases a multicomponent adhesive)  
has to fulfill the following demands:  
Multi-use Footprint  
Uniform viscosity to ensure easy coating  
Package soldering footprints can be designed to accommodate  
more than one package. Figure AN1005.8 shows a footprint  
design for using both the Compak and an SOT-223. Using the  
dual pad outline makes it possible to use more than one supplier  
source.  
No chemical reactions upon hardening in order not to deterio-  
rate component and PC board  
Straightforward exchange of components in case of repair  
Low-temperature Solder for Reducing  
PC Board Damage  
Cleaning Recommendations  
In testing and troubleshooting surface-mounted components,  
changing parts can be time consuming. Moreover, desoldering  
and soldering cycles can loosen and damage circuit-board pads.  
Use low-temperature solder to minimize damage to the PC board  
and to quickly remove a component. One low-temperature alloy  
is indium-tin, in a 50/50 mixture. It melts between 118 °C and  
125 °C, and tin-lead melts at 183 °C. If a component needs  
replacement, holding the board upside down and heating the  
area with a heat gun will cause the component to fall off. Per-  
forming the operation quickly minimizes damage to the board and  
component.  
Using solvents for PC board or substrate cleaning is permitted  
from approximately 70 °C to 80 °C.  
The soldered parts should be cleaned with azeotrope solvent fol-  
lowed by a solvent such as methol, ethyl, or isopropyl alcohol.  
Ultrasonic cleaning of surface mount components on PCBs or  
substrates is possible.  
The following guidelines are recommended when using ultra-  
sonic cleaning:  
Cleaning agent: Isopropanol  
Bath temperature: approximately 30 °C  
Duration of cleaning: MAX 30 seconds  
Ultrasonic frequency: 40 kHz  
Proper surface preparation is necessary for the In-Sn alloy to wet  
the surface of the copper. The copper must be clean, and you  
must add flux to allow the alloy to flow freely.You can use rosin  
dissolved in alcohol. Perform the following steps:  
Ultrasonic changing pressure: approximately 0.5 bar  
(1) Cut a small piece of solder and flow it onto one of the pads.  
Cleaning of the parts is best accomplished using an ultrasonic  
cleaner which has approximately 20 W of output per one liter of  
solvent. Replace the solvent on a regular basis.  
(2) Place the surface-mount component on the pad and melt the  
soldered pad to its pin while aligning the part. (This operation  
places all the pins flat onto their pads.)  
0.079  
(2.0)  
0.079  
(2.0)  
0.079  
(2.0)  
Gate  
MT2 / Anode  
0.040  
(1.0)  
Compak  
Footprint  
0.110  
(2.8)  
MT1 / Cathode  
Gate  
0.030  
(.76)  
Pad Outline  
Footprint  
for either  
Compak  
M
T
2
Not  
used  
0.328  
(8.33)  
0.079  
(2.0)  
or SOT-223  
0.059  
(1.5)  
0.019  
(.48)  
TYP  
MT1  
0.040  
(1.0)  
0.091  
(2.31)  
TYP  
0.150  
(3.8)  
Gate  
0.030  
(.76)  
SOT-223  
Footprint  
0.079  
(2.0)  
MT2 / Anode  
MT2 / Anode  
0.079  
(2.0)  
.055  
(1.4)  
MT1 / Cathode  
Dual Pad Outline  
Dimensions are in inches (and millimeters).  
Figure AN1005.8  
Dual Footprint for Compak Package  
http://www.teccor.com  
+1 972-580-7777  
AN1005 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006  
6
Testing Teccor Semiconductor Devices  
Using Curve Tracers  
through several values, and a different trace is drawn on each  
sweep to generate a family of curves.  
Introduction  
One of the most useful and versatile instruments for testing semi-  
conductor devices is the curve tracer (CT). Tektronix is the best  
known manufacturer of curve tracers and produces four basic  
models: 575, 576, 577 and 370. These instruments are specially  
adapted CRT display screens with associated electronics such  
as power supplies, amplifiers, and variable input and output func-  
tions that allow the user to display the operating characteristics of  
a device in an easy-to-read, standard graph form. Operation of  
Tektronix CTs is simple and straightforward and easily taught to  
non-technical personnel. Although widely used by semiconductor  
manufacturers for design and analytical work, the device con-  
sumer will find many uses for the curve tracer, such as incoming  
quality control, failure analysis, and supplier comparison. Curve  
tracers may be easily adapted for go-no go production testing.  
Tektronix also supplies optional accessories for specific applica-  
tions along with other useful hardware.  
Limitations, Accuracy, and Correlation  
Although the curve tracer is a highly versatile device, it is not  
capable of every test that one may wish to perform on semicon-  
ductor devices such as dv/dt, secondary reverse breakdown,  
switching speeds, and others. Also, tests at very high currents  
and/or voltages are difficult to conduct accurately and without  
damaging the devices. A special high-current test fixture avail-  
able from Tektronix can extend operation to 200 A pulsed peak.  
Kelvin contacts available on the 576 and 577 eliminate inaccu-  
racy in voltage measured at high current (VTM) by sensing voltage  
drop due to contact resistance and subtracting from the reading.  
Accuracy of the unit is within the published manufacturer’s speci-  
fication. Allow the curve tracer to warm up and stabilize before  
testing begins. Always expand the horizontal or vertical scale as  
far as possible to increase the resolution. Be judicious in record-  
ing data from the screen, as the trace line width and scale resolu-  
tion factor somewhat limit the accuracy of what may be read.  
Regular calibration checks of the instrument are recommended.  
Some users keep a selection of calibrated devices on hand to  
verify instrument operation when in doubt. Re-calibration or  
adjustment should be performed only by qualified personnel.  
Often discrepancies exist between measurements taken on  
different types of instrument. In particular, most semiconductor  
manufacturers use high-speed, computerized test equipment to  
test devices. They test using very short pulses. If a borderline  
unit is then measured on a curve tracer, it may appear to be out  
of specification. The most common culprit here is heat. When a  
semiconductor device increases in temperature due to current  
flow, certain characteristics may change, notably gate character-  
istics on SCRs, gain on transistors, leakage, and so on. It is very  
difficult to operate the curve tracer in such a way as to eliminate  
the heating effect. Pulsed or single-trace operation helps reduce  
this problem, but care should be taken in comparing curve tracer  
measurements to computer tests. Other factors such as stray  
capacitances, impedance matching, noise, and device oscillation  
also may create differences.  
Tektronix Equipment  
Although Tektronix no longer produces curve tracer model 575,  
many of the units are still operating in the field, and it is still an  
extremely useful instrument. The 576, 577 and 370 are current  
curve tracer models and are more streamlined in their appear-  
ance and operation. The 577 is a less elaborate version of the  
576, yet retains all necessary test functions.  
The following basic functions are common to all curve tracers:  
Power supply supplies positive DC voltage, negative DC volt-  
age, or AC voltage to bias the device. Available power is varied  
by limiting resistors.  
Step generator supplies current or voltage in precise steps to  
control the electrode of the device. The number, polarity, and  
frequency of steps are selectable.  
Horizontal amplifier displays power supply voltage as applied  
to the device. Scale calibration is selectable.  
Vertical amplifier displays current drawn from the supply by  
the device. Scale calibration is selectable.  
Curve tracer controls for beam position, calibration, pulse opera-  
tion, and other functions vary from model to model. The basic  
theory of operation is that for each curve one terminal is driven  
with a constant voltage or current and the other one is swept with  
a half sinewave of voltage. The driving voltage is stepped  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1006  
Application Notes  
Safety (Cautions and Warnings)  
Model 576 Curve Tracer Procedures  
Adhere rigidly to Tektronix safety rules supplied with each  
curve tracer. No attempt should be made to defeat any of the  
safety interlocks on the device as the curve tracer can produce a  
lethal shock. Also, older 575 models do not have the safety inter-  
locks as do the new models. Take care never to touch any device  
or open the terminal while energized.  
The following test procedures are written for use with the model  
576 curve tracer. (Figure AN1006.1)  
See “Model 370 Curve Tracer Procedure Notes” on page  
AN1006-16 and “Model 577 Curve Tracer Procedure Notes” on  
page AN1006-18 for setting adjustments required when using  
model 370 and 577 curve tracers.  
The standard 575 model lacks AC mode, voltage greater than  
200 V, pulse operations, DC mode, and step offset controls. The  
575 MOD122C does allow voltage up to 400 V, including 1500 V  
in an AC mode. Remember that at the time of design, the 575  
was built to test only transistors and diodes. Some ingenuity,  
experience, and external hardware may be required to test other  
types of devices.  
For further information or assistance in device testing on Tek-  
tronix curve tracers, contact the Teccor Applications Engineering  
group.  
WARNING: Devices on the curve tracer may be easily dam-  
aged from electrical overstress.  
Follow these rules to avoid destroying devices:  
Familiarize yourself with the expected maximum limits of the  
device.  
Limit the current with the variable resistor to the minimum nec-  
essary to conduct the test.  
Increase power slowly to the specified limit.  
Watch for device “runaway” due to heating.  
Apply and increase gate or base drive slowly and in small  
steps.  
Conduct tests in the minimum time required.  
General Test Procedures  
Read all manuals before operating a curve tracer.  
Perform the following manufacturer’s equipment check:  
1. Turn on and warm up curve tracer, but turn off, or down, all  
power supplies.  
2. Correctly identify terminals of the device to be tested. Refer  
to the manufacturer’s guide if necessary.  
3. Insert the device into the test fixture, matching the device  
and test terminals.  
4. Remove hands from the device and/or close interlock cover.  
5. Apply required bias and/or drive.  
6. Record results as required.  
7. Disconnect all power to the device before removing.  
http://www.teccor.com  
+1 972-580-7777  
AN1006 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1006  
TYPE 576  
CURVE TRACER  
PORTLAND, ORE, U.S.A.  
VERTICAL  
TEKTRONIX, INC.  
PER  
V
E
R
T
DIV  
DISPLAY OFFSET  
PER  
H
O
R
I
Z
DIV  
CRT  
PER  
S
T
E
P
()k  
DIV  
9m  
HORIZONTAL  
PER  
DIV  
HORIZONTAL  
VOLTAGE CONTROL  
Note: All Voltage  
Settings Will Be  
Referenced to  
"Collector"  
COLLECTOR SUPPLY  
STEP GENERATOR  
AMPLITUDE  
VARIABLE  
COLLECTOR  
SUPPLY  
STEP/OFFSET  
AMPLITUDE  
(AMPS/VOLTS)  
VOLTAGE RANGE  
MAX PEAK  
POWER  
(POWER DISSIPATION)  
OFFSET  
STEP/OFFSET  
POLARITY  
STEP FAMILY  
RATE  
TERMINAL  
JACKS  
TERMINAL  
SELECTOR  
C
C
MT2/ANODE  
B
E
B
E
VARIABLE  
COLLECTOR  
SUPPLY VOLTAGE  
GATE/TRIGGER  
MT1/CATHODE  
LEFT-RIGHT SELECTOR  
FOR TERMINAL JACKS  
KELVIN TERMINALS  
USED WHEN  
V
V
MEASURING TM OR FM  
Figure AN1006.1 Tektronix Model 576 Curve Tracer  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 3  
http://www.teccor.com  
+1 972-580-7777  
AN1006  
Application Notes  
tronix model 176 high-current module. The procedure below is  
Power Rectifiers  
done at I  
= 10 A (20 APK). This test parameter allows the  
T(RMS)  
use of a standard curve tracer and still provides an estimate of  
whether VFM is within specification.  
The rectifier is a unidirectional device which conducts when for-  
ward voltage (above 0.7 V) is applied.  
To connect the rectifier:  
1. Connect Anode to Collector Terminal (C).  
2. Connect Cathode to Emitter Terminal (E).  
SOCKET  
To begin testing, perform the following procedures.  
Procedure 1: VRRM and IRM  
To measure the VRRM and IRM parameter:  
1. Set Variable Collector Supply Voltage Range to 1500 V.  
(2000 V on 370)  
2. Set Horizontal knob to sufficient scale to allow viewing of  
trace at the required voltage level (100 V/DIV for 400 V and  
600 V devices and 50 V/DIV for 200 V devices).  
3. Set Mode to Leakage.  
SOCKET PINS  
One set of  
pins wired to  
Collector (C),  
Base (B), and  
Emitter (E)  
Terminals  
4. Set Vertical knob to 100 µA/DIV. (Due to leakage setting, the  
CRT readout will be 100 nA per division.)  
Socket used  
must have two  
sets of pins  
5. Set Terminal Selector to Emitter Grounded-Open Base.  
6. Set Polarity to (–).  
7. Set Power Dissipation to 2.2 W. (2 W on 370)  
8. Set Left-Right Terminal Jack Selector to correspond with  
The pins which correspond to  
the anode and cathode of the  
device are wired to the terminals  
marked CSENSE (MT2/Anode) and  
ESENSE (MT1/Cathode). The gate  
does not require a Kelvin  
connection.  
location of test fixture.  
9. Increase Variable Collector Supply Voltage to the rated  
V
RRM of the device and observe the dot on the CRT. Read  
across horizontally from the dot to the vertical current scale.  
This measured value is the leakage current.  
(Figure AN1006.2)  
Figure AN1006.3 Instructions for Wiring Kelvin Socket  
To measure the VFM parameter:  
PER  
V
100  
nA  
E
R
I
T
RM  
DIV  
1. Set Variable Collector Supply Voltage Range to 15 Max  
Peak Volts. (16 V on 370)  
2. Set Horizontal knob to 0.5 V/DIV.  
3. Set Mode to Norm.  
4. Set Vertical knob to 2 A/DIV.  
5. Set Power Dissipation to 220 W (100 W on 577).  
6. Set Polarity to (+).  
PER  
H
O
100  
V
R
V
RRM  
I
Z
DIV  
PER  
S
T
E
P
()k  
DIV  
9m  
PER  
DIV  
7. Set Left-Right Terminal Jack Selector to correspond with  
location of test fixture.  
Figure AN1006.2  
IRM = 340 nA at VRRM = 600 V  
8. Increase Variable Collector Supply Voltage until current  
reaches 20 A.  
Procedure 2: VFM  
Before testing, note the following:  
WARNING: Limit test time to 15 seconds maximum.  
To measure VFM, follow along horizontal scale to the point where  
the trace crosses the 20 A axis. The distance from the left-hand  
side of scale to the crossing point is the VFM value.  
(Figure AN1006.4)  
A Kelvin test fixture is required for this test. If a Kelvin fixture is  
not used, an error in measurement of VFM will result due to  
voltage drop in fixture. If a Kelvin fixture is not available,  
Figure AN1006.3 shows necessary information to wire a test  
fixture with Kelvin connections.  
Note: Model 370 current is limited to 10 A.  
Due to the current limitations of standard curve tracer  
model 576, V cannot be tested at rated current without a Tek-  
FM  
http://www.teccor.com  
+1 972-580-7777  
AN1006 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1006  
Procedure 2: VDRM, IDRM  
PER  
V
To measure the VDRM and IDRM parameter:  
2
E
V
R
FM  
A
1. Set Left-Right Terminal Jack Selector to correspond with  
T
DIV  
location of test fixture.  
PER  
H
2. Set Variable Collector Supply Voltage to the rated VDRM of  
the device and observe the dot on CRT. Read across hori-  
zontally from the dot to the vertical current scale. This mea-  
sured value is the leakage current. (Figure AN1006.5)  
O
R
500  
mV  
I
Z
DIV  
I
T
PER  
S
T
E
WARNING: Do NOT exceed VDRM/VRRM rating of SCRs, triacs,  
P
or Quadracs. These devices can be damaged.  
()k  
DIV  
9m  
PER  
DIV  
PER  
V
100  
nA  
E
R
T
DIV  
Figure AN1006.4 VFM = 1 V at IPK = 20 A  
PER  
H
O
100  
V
R
I
SCRs  
Z
DIV  
V
DRM  
PER  
S
SCRs are half-wave unidirectional rectifiers turned on when cur-  
rent is supplied to the gate terminal. If the current supplied to the  
gate is to be in the range of 12 µA and 500 µA, then a sensitive  
SCR is required; if the gate current is between 1 mA and 50 mA,  
then a non-sensitive SCR is required.  
T
E
P
I
DRM  
()k  
DIV  
9m  
PER  
DIV  
To connect the rectifier:  
1. Connect Anode to Collector Terminal (C).  
2. Connect Cathode to Emitter Terminal (E).  
Figure AN1006.5 IDRM = 350 nA at VDRM = 600 V  
Procedure 3: VRRM, IRRM  
To measure the VRRM and IRRM parameter:  
1. Set Polarity to (–).  
Note: When sensitive SCRs are being tested, a 1 kresistor  
must be connected between the gate and the cathode, except  
when testing I  
.
GT  
2. Repeat Steps 1 and 2 (VDRM, IDRM) except substitute VRRM  
To begin testing, perform the following procedures.  
value for VDRM. (Figure AN1006.6)  
.
Procedure 1: VDRM, VRRM, IDRM, IRRM  
To measure the VDRM, VRRM, IDRM, and IRRM parameter:  
1. Set Variable Collector Supply Voltage Range to appropri-  
ate Max Peak Volts for device under test. (Value selected  
should be equal to or greater than the device’s VDRM rating.)  
PER  
V
100  
nA  
E
R
T
I
RRM  
DIV  
PER  
H
O
R
100  
V
V
RRM  
I
Z
DIV  
2. Set Horizontal knob to sufficient scale to allow viewing of  
trace at the required voltage level. (The 100 V/DIV scale  
should be used for testing devices having a VDRM value of  
600 V or greater; the 50 V/DIV scale for testing parts rated  
from 300 V to 500 V, and so on.)  
3. Set Mode to Leakage.  
4. Set Polarity to (+).  
PER  
S
T
E
P
()k  
DIV  
9m  
PER  
DIV  
5. Set Power Dissipation to 0.5 W. (0.4 W on 370)  
6. Set Terminal Selector to Emitter Grounded-Open Base.  
7. Set Vertical knob to approximately ten times the maximum  
leakage current (IDRM, IRRM) specified for the device. (For  
sensitive SCRs, set to 50 µA.)  
Note: The CRT screen readout should show 1% of the maximum  
leakage current if the vertical scale is divided by 1,000 when  
leakage current mode is used.  
Figure AN1006.6 IRRM = 340 nA at VRRM = 600 V  
Procedure 4: VTM  
To measure the VTM parameter:  
1. Set Terminal Selector to Step Generator-Emitter Grounded.  
2. Set Polarity to (+).  
3. Set Step/Offset Amplitude to twice the maximum IGT rating  
of the device (to ensure the device turns on). For sensitive  
SCRs, set to 2 mA.  
4. Set Max Peak Volts to 15 V. (16 V on 370)  
5. Set Offset by depressing 0 (zero).  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 5  
http://www.teccor.com  
+1 972-580-7777  
AN1006  
Application Notes  
6. Set Rate by depressing Norm.  
7. Set Step Family by depressing Rep (repetitive).  
8. Set Mode to DC.  
3. Set Max Peak Volts to 75 V. (80 V on 370)  
4. Set Mode to DC.  
5. Set Horizontal knob to Step Generator.  
9. Set Horizontal knob to 0.5 V/DIV.  
10. Set Power Dissipation to 220 W (100 W on 577).  
11. Set Number of Steps to 1. (Set steps to 0 (zero) on 370.)  
6. Set Vertical knob to approximately 10 percent of the maxi-  
mum I specified.  
H
Note: Due to large variation of holding current values, the  
scale may have to be adjusted to observe holding current.  
7. Set Number of Steps to 1.  
12. Set Vertical knob to a sufficient setting to allow the viewing  
of 2 times the IT(RMS) rating of the device (IT(peak)) on CRT.  
8. Set Offset by depressing 0 (zero). (Press Aid and Oppose at  
Before continuing with testing, note the following:  
the same time on 370.)  
(1) Due to the excessive amount of power that can be  
generated in this test, only parts with an IT(RMS) rating  
of 6 A or less should be tested on standard curve  
tracer. If testing devices above 6 A, a Tektronix model  
176 high-current module is required.  
9. Set Step/Offset Amplitude to twice the maximum IGT of the  
device.  
10. Set Terminal Selector to Step Generator-Emitter Grounded.  
11. Set Step Family by depressing Single.  
(2) A Kelvin test fixture is required for this test. If a  
12. Set Left-Right Terminal Jack Selector to correspond with  
Kelvin fixture is not used, an error in measurement of  
location of test fixture.  
V
TM will result due to voltage drop in the fixture. If a  
Kelvin fixture is not available, Figure AN1006.3 shows  
necessary information to wire a test fixture with  
Kelvin connectors.  
13. Increase Variable Collector Supply Voltage to maximum  
position (100).  
14. Set Step Family by depressing Single. (This could possibly  
cause the dot on CRT to disappear, depending on the verti-  
cal scale selected.)  
13. Set Left-Right Terminal Jack Selector to correspond with  
the location of the test fixture.  
14. Increase Variable Collector Supply Voltage until current  
reaches rated IT(peak), which is twice the IT(RMS) rating of the-  
SCR under test.  
15. Change Terminal Selector from Step Generator-Emitter  
Grounded to Open Base-Emitter Grounded.  
16. Decrease Variable Collector Supply Voltage to the point  
where the line on the CRT changes to a dot. The position of  
the beginning point of the line, just before the line becomes a  
dot, represents the holding current value. (Figure AN1006.8)  
Note: Model 370 current is limited to 10 A.  
WARNING: Limit test time to 15 seconds maximum after the  
Variable Collector Supply has been set to IT(peak), After the  
Variable Collector Supply Voltage has been set to IT(peak), the  
test time can automatically be shortened by changing Step  
Family from repetitive to single by depressing the Single  
button.  
To measure VTM, follow along horizontal scale to the point where  
the trace crosses the IT(peak) value. The distance from the left-  
hand side of scale to the intersection point is the VTM value.  
(Figure AN1006.7)  
PER  
V
500  
E
R
A
T
DIV  
PER  
H
O
R
I
Z
DIV  
PER  
S
T
E
P
PER  
V
2
E
R
A
T
()k  
DIV  
9m  
PER  
DIV  
I
DIV  
H
PER  
H
V
TM  
O
R
I
500  
mV  
Figure AN1006.8 IH = 1.2 mA  
Z
DIV  
Procedure 6: IGT and VGT  
To measure the IGT and VGT parameter:  
1. Set Polarity to (+).  
2. Set Number of Steps to 1.  
3. Set Offset by depressing Aid.  
PER  
S
100  
mA  
T
E
P
I
PK  
()k  
DIV  
9m  
PER  
DIV  
20  
4. Set Offset Multiplier to 0 (zero). (Press Aid and Oppose at  
Figure AN1006.7 VTM = 1.15 V at IT(peak) = 12 A  
the same time on 370.)  
Procedure 5: IH  
To measure the IH parameter:  
1. Set Polarity to (+).  
2. Set Power Dissipation to 2.2 W. (2 W on 370)  
5. Set Terminal Selector to Step Generator-Emitter Grounded.  
6. Set Mode to Norm.  
7. Set Max Peak Volts to 15 V. (16 V on 370)  
http://www.teccor.com  
+1 972-580-7777  
AN1006 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1006  
8. Set Power Dissipation to 2.2 W. (2 W on 370) For sensitive  
SCRs, set at 0.5 W. (0.4 W on 370)  
9. Set Horizontal knob to 2 V/DIV.  
10. Set Vertical knob to 50 mA/DIV.  
Procedure 9: GT will be numerically displayed on screen  
under offset value.)  
PER  
V
50  
mA  
E
R
11. Increase Variable Collector Supply Voltage until voltage  
T
DIV  
reaches 12 V on CRT.  
PER  
H
12. After 12 V setting is completed, change Horizontal knob to  
O
R
Step Generator.  
I
Z
DIV  
Procedure 7: IGT  
To measure the IGT parameter:  
PER  
S
200  
mV  
T
E
P
V
GT  
1. Set Step/Offset Amplitude to 20% of maximum rated IGT.  
Note: RGK should be removed when testing IGT.  
()k  
DIV  
9m  
PER  
DIV  
250m  
2. Set Left-Right Terminal Jack Selector to correspond with  
location of the test fixture.  
Figure AN1006.10 VGT = 580 mV  
3. Gradually increase Offset Multiplier until device reaches  
the conduction point. (Figure AN1006.9) Measure IGT by fol-  
lowing horizontal axis to the point where the vertical line  
crosses axis. This measured value is IGT. (On 370, IGT will be  
numerically displayed on screen under offset value.)  
Triacs  
Triacs are full-wave bidirectional AC switches turned on when  
current is supplied to the gate terminal of the device. If gate con-  
trol in all four quadrants is required, then a sensitive gate triac is  
needed, whereas a standard triac can be used if gate control is  
only required in Quadrants I through III.  
PER  
V
50  
mA  
E
R
T
DIV  
To connect the triac:  
PER  
H
O
R
1. Connect the Gate to the Base Terminal (B).  
2. Connect MT1 to the Emitter Terminal (E).  
3. Connect MT2 to the Collector Terminal (C).  
To begin testing, perform the following procedures.  
I
Z
DIV  
PER  
S
10  
A
T
E
P
I
GT  
Procedure 1: (+)VDRM, (+)IDRM, (-)VDRM, (-)IDRM  
Note: The (+) and (-) symbols are used to designate the polarity  
MT2 with reference to MT1.  
()k  
DIV  
9m  
PER  
DIV  
5
K
Figure AN1006.9 IGT = 25 µA  
To measure the (+)VDRM, (+)IDRM, (-)VDRM, and (-)IDRM parameter:  
1. Set Variable Collector Supply Voltage Range to appropri-  
ate Max Peak Volts for device under test. (Value selected  
should be equal to the device’s VDRM rating.)  
Procedure 8: VGT  
To measure the VGT parameter:  
1. Set Offset Multiplier to 0 (zero). (Press Aid and Oppose at  
WARNING: Do NOT exceed VDRM/VRRM rating of SCRs, tri-  
the same time on 370.)  
acs, or Quadracs. These devices can be damaged.  
2. Set Step Offset Amplitude to 20% rated VGT.  
2. Set Horizontal knob to sufficient scale to allow viewing of  
trace at the required voltage level. (The 100 V/DIV scale  
should be used for testing devices having a VDRM rating of  
600 V or greater; the 50 V/DIV scale for testing parts rated  
from 30 V to 500 V, and so on.)  
3. Set Mode to Leakage.  
4. Set Polarity to (+).  
3. Set Left-Right Terminal Jack Selector to correspond with  
location of test fixture.  
4. Gradually increase Offset Multiplier until device reaches  
the conduction point. (Figure AN1006.10) Measure VGT by  
following horizontal axis to the point where the vertical line  
crosses axis. This measured value is VGT. (On 370, V will  
GT  
be numerically displayed on screen, under offset value.)  
5. Set Power Dissipation to 0.5 W. (0.4 W on 370)  
6. Set Terminal Selector to Emitter Grounded-Open Base.  
7. Set Vertical knob to ten times the maximum leakage current  
(IDRM) specified for the device.  
Note: The CRT screen readout should show 1% of the maxi-  
mum leakage current. The vertical scale is divided by 1,000  
when leakage mode is used.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 7  
http://www.teccor.com  
+1 972-580-7777  
AN1006  
Application Notes  
A Kelvin test fixture is required for this test. If a Kelvin fixture is  
not used, an error in measurement of VTM will result due to volt-  
age drop in fixture. If a Kelvin fixture is not available,  
Figure AN1006.3 shows necessary information to wire a test  
fixture with Kelvin connections.  
Procedure 2: (+)VDRM, (+)IDRM  
To measure the (+)VDRM and (+)IDRM parameter:  
1. Set Left-Right Terminal Jack Selector to correspond with  
location of the test fixture.  
2. Increase Variable Collector Supply Voltage to the rated  
Procedure 5: VTM (Forward)  
To measure the VTM (Forward) parameter:  
1. Set Polarity to (+).  
V
DRM of the device and observe the dot on the CRT. Read  
across horizontally from the dot to the vertical current scale.  
This measured value is the leakage current.  
(Figure AN1006.11)  
2. Set Left-Right Terminal Jack Selector to correspond with  
location of test fixture.  
PER  
V
50  
nA  
E
R
3. Increase Variable Collector Supply Voltage until current  
reaches rated IT(peak), which is 1.4 times IT(RMS) rating of the  
triac under test.  
T
DIV  
PER  
H
O
100  
V
R
Note: Model 370 current is limited to 10 A.  
I
Z
DIV  
WARNING: Limit test time to 15 seconds maximum. After  
PER  
S
the Variable Collector Supply Voltage has been set to IT(peak)  
,
T
the test time can automatically be set to a short test time by  
changing Step Family from repetitive to single by depress-  
ing the Single button.  
E
P
V
DRM  
I
DRM  
()k  
DIV  
9m  
To measure VTM, follow along horizontal scale to the point where  
the trace crosses the IT(peak) value. The distance from the left-  
hand side of scale to the crossing point is the VTM value.  
(Figure AN1006.12)  
PER  
DIV  
Figure AN1006.11 (+)IDRM = 205 nA at (+)VDRM = 600 V  
Procedure 3: (-)VDRM, (-)IDRM  
PER  
V
2
E
To measure the (-)VDRM and (-)IDRM parameter:  
1. Set Polarity to (–).  
R
A
T
DIV  
PER  
H
2. Repeat Procedures 1 and 2. (Read measurements from  
O
500  
mV  
upper right corner of the screen.)  
R
I
V
TM  
Z
DIV  
Procedure 4: VTM (Forward and Reverse)  
To measure the VTM (Forward and Reverse) parameter:  
1. Set Terminal Selector to Step Generator-Emitter Grounded.  
PER  
S
100  
mA  
T
E
P
I
PK  
()k  
DIV  
9m  
PER  
DIV  
2. Set Step/Offset Amplitude to twice the maximum IGT rating  
20  
of the device (to insure the device turns on).  
3. Set Variable Collector Supply Voltage Range to 15 V Max  
Peak volts. (16 V on 370)  
Figure AN1006.12 VTM (forward) = 1.1 V at IPK = 11.3 A (8 A rms)  
4. Set Offset by depressing 0 (zero).  
5. Set Rate by depressing Norm.  
6. Set Step Family by depressing Rep (Repetitive).  
7. Set Mode to Norm.  
8. Set Horizontal knob to 0.5 V/DIV.  
9. Set Power Dissipation to 220 W (100 W on 577).  
10. Set Number of Steps to 1.  
Procedure 6: VTM (Reverse)  
To measure the VTM (Reverse) parameter:  
1. Set Polarity to (–).  
2. Set Left-Right Terminal Jack Selector to correspond with  
the location of the test fixture.  
3. Increase Variable Collector Supply Voltage until current  
reaches rated IT(peak)  
.
11. Set Step/Offset Polarity to non-inverted (button extended;  
4. Measure VTM(Reverse) similar to Figure AN1006.12, except from  
upper right hand corner of screen.  
on 577 button depressed).  
12. Set Vertical knob to a sufficient setting to allow the viewing  
Procedure 7: IH(Forward and Reverse)  
of 1.4 times the IT(RMS) rating of the device [IT(peak) on CRT].  
To measure the IH (Forward and Reverse) parameter:  
Note the following:  
1. Set Step/Offset Amplitude to twice the IGT rating of the  
Due to the excessive amount of power that can be generated in  
this test, only parts with an IT(RMS) rating of 8 A or less should be  
tested on standard curve tracer. If testing devices above 8 A, a  
Tektronix model 176 high-current module is required.  
device.  
2. Set Power Dissipation to 10 W.  
http://www.teccor.com  
+1 972-580-7777  
AN1006 - 8  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1006  
3. Set Max Peak Volts to 75 V. (80 V on 370)  
4. Set Mode to DC.  
Procedure 10: IGT  
To measure the IGT parameter:  
5. Set Horizontal knob to Step Generator.  
1. Set Polarity to (+).  
6. Set Vertical knob to approximately 10% of the maximum IH  
2. Set Number of Steps to 1. (Set number of steps to 0 (zero)  
specified.  
on 370.)  
Note: Due to large variation of holding current values, the  
scale may have to be adjusted to observe holding current.  
3. Set Offset by depressing Aid. (On 577, also set Zero button  
to Offset. Button is extended.)  
7. Set Number of Steps to 1.  
4. Set Offset Multiplier to 0 (zero). (Press Aid and Oppose at  
same time on 370.)  
8. Set Step/Offset Polarity to non-inverted (button extended,  
on 577 button depressed).  
5. Set Terminal Selector to Step Generator-Emitter Grounded.  
6. Set Mode to Norm.  
7. Set Max Peak Volts to 15 V. (16 V on 370)  
8. Set Power Dissipation to 10 W.  
9. Set Offset by depressing 0 (zero). (Press Aid and Oppose at  
same time on 370.)  
10. Set Terminal Selector to Step Generator-Emitter Grounded.  
9. Set Step Family by depressing Single.  
10. Set Horizontal knob to 2 V/DIV.  
Procedure 8: IH(Forward)  
To measure the IH (Forward) parameter:  
11. Set Vertical knob to 50 mA/DIV.  
1. Set Polarity to (+).  
12. Set Step/Offset Polarity to non-inverted position (button  
2. Set Left-Right Terminal Jack Selector to correspond with  
extended, on 577 button depressed).  
location of test fixture.  
13. Set Variable Collector Supply Voltage until voltage  
3. Increase Variable Collector Supply Voltage to maximum  
reaches 12 V on CRT.  
position (100).  
14. After 12 V setting is completed, change Horizontal knob to  
4. Set Step Family by depressing Single.  
Step Generator.  
This could possibly cause the dot on the CRT to disappear,  
depending on the vertical scale selected).  
Procedure 11: IGT – Quadrant I [MT2 (+) Gate (+)]  
To measure the IGT – Quadrant I parameter:  
5. Decrease Variable Collector Supply Voltage to the point  
where the line on the CRT changes to a dot. The position of  
the beginning point of the line, just before the line becomes a  
dot, represents the holding current value.  
1. Set Step/Offset Amplitude to approximately 10% of rated  
IGT.  
(Figure AN1006.13)  
2. Set Left-Right Terminal Jack Selector to correspond with  
location of test fixture.  
PER  
V
3. Gradually increase Offset Multiplier until device reaches  
conduction point. (Figure AN1006.14) Measure IGT by follow-  
ing horizontal axis to the point where the vertical line passes  
through the axis. This measured value is IGT. (On 370, IGT is  
numerically displayed on screen under offset value.)  
5
mA  
E
R
T
DIV  
PER  
H
O
R
I
Z
DIV  
PER  
V
PER  
S
50  
mA  
50  
mA  
E
T
R
E
P
T
DIV  
PER  
H
()k  
DIV  
9m  
PER  
DIV  
O
R
100m  
I
H
I
Z
DIV  
Figure AN1006.13 IH (Forward) = 8.2 mA  
PER  
S
5
mA  
T
E
P
Procedure 9: IH(Reverse)  
()k  
DIV  
9m  
PER  
DIV  
To measure the IH (Reverse) parameter:  
1. Set Polarity to (–).  
I
GT  
10  
2. Repeat Procedure 7 measuring IH(Reverse). (Read measure-  
ments from upper right corner of the screen.)  
Figure AN1006.14 IGT in Quadrant I = 18.8 mA  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 9  
http://www.teccor.com  
+1 972-580-7777  
AN1006  
Application Notes  
9. Set Step Family by depressing Single.  
10. Set Horizontal knob to 2 V/DIV.  
Procedure 12: IGT – Quadrant II [MT2 (+) Gate (-)]  
To measure the IGT – Quadrant II parameter:  
11. Set Step/Offset Polarity to non-inverted position (button  
1. Set Step/Offside Polarity by depressing Invert (release but-  
extended, on 577 button depressed).  
ton on 577).  
12. Set Current Limit to 500 mA (not available on 577).  
2. Set Polarity to (+).  
3. Set observed dot to bottom right corner of CRT grid by turn-  
ing the horizontal position knob. When Quadrant II testing is  
complete, return dot to original position.  
13. Increase Variable Collector Supply Voltage until voltage  
reaches 12 V on CRT.  
14. After 12 V setting is complete, change Horizontal knob to  
Step Generator.  
4. Repeat Procedure 11.  
Procedure 16: VGT – Quadrant I [MT2 (+) Gate (+)]  
To measure the VGT – Quadrant I parameter:  
1. Set Step/Offset Amplitude to 20% of rated VGT.  
Procedure 13: IGT – Quadrant III [MT2 (-) Gate (-)]  
To measure the IGT – Quadrant III parameter:  
1. Set Polarity to (–).  
2. Set Left-Right Terminal Jack Selector to correspond with  
2. Set Step/Offset Polarity to non-inverted position (button  
location of test fixture.  
extended, on 577 button depressed).  
3. Gradually increase Offset Multiplier until device reaches  
conduction point. (Figure AN1006.16) Measure VGT by fol-  
lowing horizontal axis to the point where the vertical line  
passes through the axis. This measured value will be VGT.  
(On 370, VGT will be numerically displayed on screen under  
offset value.)  
3. Repeat Procedure 11. (Figure AN1006.15)  
PER  
V
50  
mA  
E
R
I
T
GT  
DIV  
PER  
H
O
R
I
PER  
V
Z
DIV  
50  
mA  
E
R
T
PER  
DIV  
S
5
mA  
T
PER  
H
O
R
E
P
I
V
()k  
DIV  
9m  
PER  
DIV  
GT  
Z
DIV  
10  
PER  
S
500  
mV  
T
E
P
Figure AN1006.15 IGT in Quadrant III = 27 mA  
()k  
DIV  
9m  
PER  
DIV  
Procedure 14: IGT – Quadrant IV [MT2 (-) Gate (+)]  
100m  
To measure the IGT – Quadrant IV parameter:  
1. Set Polarity to (–).  
Figure AN1006.16 VGT in Quadrant I = 780 mV  
2. Set Step/Offset Polarity by depressing Invert (release but-  
Procedure 17: VGT – Quadrant II [MT2 (+) Gate (-)]  
ton on 577).  
To measure the VGT – Quadrant II parameter:  
3. Set observed dot to top left corner of CRT grid by turning the  
Horizontal position knob. When Quadrant IV testing is com-  
plete, return dot to original position.  
1. Set Step/Offset Polarity by depressing Invert (release but-  
ton on 577).  
4. Repeat Procedure 11.  
2. Set Polarity to (+).  
3. Set observed dot to bottom right corner of CRT grid by turn-  
ing the horizontal position knob. When Quadrant II testing is  
complete, return dot to original position.  
Procedure 15: VGT  
To measure the VGT parameter:  
1. Set Polarity to (+).  
4. Repeat Procedure 16.  
2. Set Number of Steps to 1. (Set steps to 0 (zero) on 370.)  
Procedure 18: VGT – Quadrant III [MT2 (-) Gate (-)]  
To measure the VGT – Quadrant III parameter:  
3. Set Offset by depressing Aid. (On 577, also set 0 (zero) but-  
ton to Offset. Button is extended.)  
1. Set Polarity to (–).  
4. Set Offset Multiplier to 0 (zero). (Press Aid and Oppose at  
same time on 370.)  
2. Set Step/Offset Polarity to non-inverted position (button  
extended, on 577 button depressed).  
5. Set Terminal Selector to Step Generator-Emitter Grounded.  
6. Set Mode to Norm.  
7. Set Max Peak Volts to 15 V. (16 V on 370)  
8. Set Power Dissipation to 10 W.  
http://www.teccor.com  
+1 972-580-7777  
AN1006 - 10  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1006  
3. Repeat Procedure 16. (Figure AN1006.17)  
7. Set Vertical knob to ten times the maximum leakage current  
(IDRM) specified for the device.  
PER  
V
Note: The CRT readout should show 1% of the maximum  
leakage current. The vertical scale is divided by 1,000 when  
the leakage mode is used.  
50  
mA  
E
R
T
DIV  
V
GT  
PER  
H
O
R
Procedure 2: (+)VDRM and (+)IDRM  
To measure the (+)VDRM and (+)IDRM parameter:  
I
Z
DIV  
1. Set Left-Right Terminal Jack Selector to correspond with  
PER  
S
500  
mV  
T
the location of the test fixture.  
E
P
2. Increase Variable Collector Supply Voltage to the rated  
()k  
DIV  
9m  
PER  
DIV  
V
DRM of the device and observe the dot on the CRT. (Read  
100m  
across horizontally from the dot to the vertical current scale.)  
This measured value is the leakage current.  
(Figure AN1006.18)  
Figure AN1006.17 VGT in Quadrant III = 820 mV  
WARNING: Do NOT exceed VDRM/VRRM rating of SCRs, triacs,  
Procedure 19: VGT – Quadrant IV [MT2 (-) Gate (+)]  
or Quadracs. These devices can be damaged.  
To measure the VGT – Quadrant IV parameter:  
1. Set Polarity to (–).  
PER  
V
50  
nA  
E
R
T
2. Set Step/Offset Polarity by depressing Invert (release but-  
DIV  
ton on 577).  
PER  
H
O
50  
V
3. Set observed dot to top left corner of CRT grid by turning the  
Horizontal position knob. When testing is complete in Quad-  
rant IV, return dot to original position.  
R
I
Z
DIV  
PER  
S
4. Repeat Procedure 16.  
T
E
P
V
DRM  
Quadracs  
()k  
DIV  
9m  
PER  
DIV  
I
DRM  
Quadracs are simply triacs with an internally-mounted diac. As  
with triacs, Quadracs are bidirectional AC switches which are  
gate controlled for either polarity of main terminal voltage.  
Figure AN1006.18 (+)IDRM = 51 nA at (+)VDRM = 400 V  
To connect the Quadrac:  
Procedure 3: (-)VDRM and (-)IDRM  
1. Connect Trigger to Base Terminal (B).  
2. Connect MT1 to Emitter Terminal (E).  
3. Connect MT2 to Collector Terminal (C).  
To measure the (-)VDRM and (-)IDRM parameter:  
1. Set Polarity to (–).  
2. Repeat Procedures 1 and 2. (Read measurements from  
upper right corner of screen).  
To begin testing, perform the following procedures.  
Procedure 4: VBO, IBO, VBO  
(Quadrac Trigger Diac or Discrete Diac)  
To connect the Quadrac:  
1. Connect MT1 to Emitter Terminal (E).  
2. Connect MT2 to Collector Terminal (C).  
Procedure 1: (+)VDRM, (+)IDRM, (-)VDRM, (-)IDRM  
Note: The (+) and (-) symbols are used to designate the polarity  
of MT2 with reference to MT1.  
To measure the (+)VDRM, (+)IDRM, (-)VDRM, and (-)IDRM parameter:  
1. Set Variable Collector Supply Voltage Range to appropri-  
ate Max Peak Volts for device under test. (Value selected  
should be equal to or greater than the device’s VDRM rating).  
3. Connect Trigger Terminal to MT2 Terminal through a 10 Ω  
resistor.  
To measure the VBO, IBO, and VBO parameter:  
1. Set Variable Collector Supply Voltage Range to 75 Max  
Peak Volts.(80 V on 370)  
2. Set Horizontal knob to 10 V/DIV.  
3. Set Vertical knob to 50 µA/DIV.  
4. Set Polarity to AC.  
2. Set Horizontal knob to sufficient scale to allow viewing of  
trace at the required voltage level. (The 100 V/DIV scale  
should be used for testing devices having a VDRM rating of  
600 V or greater; the 50 V/DIV scale for testing parts rated  
from 300 V to 500 V, and so on).  
3. Set Mode to Leakage.  
4. Set Polarity to (+).  
5. Set Mode to Norm.  
6. Set Power Dissipation to 0.5 W. (0.4 W on 370)  
5. Set Power Dissipation to 0.5 W. (0.4 W on 370)  
6. Set Terminal Selector to Emitter Grounded-Open Base.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 11  
http://www.teccor.com  
+1 972-580-7777  
AN1006  
Application Notes  
7. Set Terminal Selector to Emitter Grounded-Open Base.  
A Kelvin test fixture is required for this test. If a Kelvin fixture is  
not used, an error in measurement of VTM will result due to volt-  
age drop in fixture. If a Kelvin fixture is not available,  
Figure AN1006.3 shows necessary information to wire a test  
fixture with Kelvin connections.  
Procedure 5: VBO (Positive and Negative)  
To measure the VBO (Positive and Negative) parameter:  
1. Set Left-Right Terminal Jack Selector to correspond with  
To measure the VTM (Forward and Reverse) parameter:  
1. Set Terminal Selector to Emitter Grounded-Open Base.  
2. Set Max Peak Volts to 75 V. (80 V on 370)  
3. Set Mode to Norm.  
the location of the test fixture.  
2. Set Variable Collector Supply Voltage to 55 V (65 V on  
370) and apply voltage to the device under test (D.U.T.)  
using the Left Hand Selector Switch. The peak voltage at  
which current begins to flow is the VBO value.  
(Figure AN1006.19)  
4. Set Horizontal knob to 0.5 V/DIV.  
5. Set Power Dissipation to 220 watts (100 watts on a 577).  
PER  
V
6. Set Vertical knob to a sufficient setting to allow the viewing  
50  
E
R
A
T
of 1.4 times the IT(RMS) rating of the device IT(peak) on the CRT.  
DIV  
PER  
Procedure 9: VTM(Forward)  
To measure the VTM (Forward) parameter:  
V
H
+I  
BO  
BO  
O
R
I
10  
V
Z
DIV  
1. Set Polarity to (+).  
PER  
S
2. Set Left-Right Terminal Jack Selector to correspond with  
T
E
P
I
BO  
the location of the test fixture.  
+V  
BO  
3. Increase Variable Collector Supply Voltage until current  
reaches rated IT(peak), which is 1.4 times the IT(RMS) rating of  
the triac under test.  
()k  
DIV  
9m  
PER  
DIV  
Note: Model 370 current is limited to 10 A.  
Figure AN1006.19 (+)VBO = 35 V; (-)VBO = 36 V; (±)IBO < 10 A  
WARNING: Limit test time to 15 seconds maximum.  
Procedure 6: IBO (Positive and Negative)  
4. To measure VTM, follow along horizontal scale to the point  
where the trace crosses the IT(peak) value. This horizontal dis-  
tance is the VTM value. (Figure AN1006.20)  
To measure the IBO (Positive and Negative) parameter, at the VBO point,  
measure the amount of device current just before the device  
reaches the breakover point. The measured current at this point  
is the IBO value.  
Note: If IBO is less than 10 µA, the current cannot readily be seen  
on curve tracer.  
PER  
V
1
E
R
A
T
DIV  
PER  
H
V
TM  
O
R
I
Procedure 7: VBO (Voltage Breakover Symmetry)  
500  
mV  
Z
To measure the VBO (Voltage Breakover Symmetry) parameter:  
1. Measure positive and negative VBO values per Procedure 5.  
2. Subtract the absolute value of VBO (-) from VBO (+).  
The absolute value of the result is:  
DIV  
PER  
S
T
E
I
P
PK  
()k  
DIV  
9m  
PER  
DIV  
VBO = [ I+VBO I - I -VBO I ]  
Procedure 8: VTM (Forward and Reverse)  
Figure AN1006.20 VTM (Forward) = 1.1 V at IPK = 5.6 A  
To test VTM, the Quadrac must be connected the same as when  
Procedure 10: VTM(Reverse)  
To measure the VTM (Reverse) parameter:  
testing VBO, IBO, and VBO  
To connect the Quadrac:  
.
1. Set Polarity to (–).  
1. Connect MT1 to Emitter Terminal (E).  
2. Connect MT2 to Collector Terminal (C).  
2. Set Left-Right Terminal Jack Selector to correspond with  
the location of the test fixture.  
3. Connect Trigger Terminal to MT2 Terminal through a 10 Ω  
3. Increase Variable Collector Supply Voltage until current  
resistor.  
reaches rated IT(peak)  
.
Note the following:  
4. Measure VTM(Reverse) the same as in Procedure 8. (Read mea-  
surements from upper right corner of screen).  
Due to the excessive amount of power that can be generated in  
this test, only parts with an IT(RMS) rating of 8 A or less should be  
tested on standard curve tracer. If testing devices above 8 A, a  
Tektronix model 176 high-current module is required.  
http://www.teccor.com  
+1 972-580-7777  
AN1006 - 12  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1006  
Procedure 11: IH(Forward and Reverse)  
For these steps, it is again necessary to connect the Trigger to  
MT2 through a 10 resistor. The other connections remain the  
same.  
To measure the IH (Forward and Reverse) parameter:  
1. Set Power Dissipation to 50 W.  
2. Set Max Peak Volts to 75 V. (80 V on 370)  
3. Set Mode to DC.  
Sidacs  
The sidac is a bidirectional voltage-triggered switch. Upon appli-  
cation of a voltage exceeding the sidac breakover voltage point,  
the sidac switches on through a negative resistance region (simi-  
lar to a diac) to a low on-state voltage. Conduction continues until  
current is interrupted or drops below minimum required holding  
current.  
To connect the sidac:  
1. Connect MT1 to the Emitter Terminal (E).  
2. Connect MT2 to the Collector Terminal (C).  
4. Set Horizontal knob to 5 V/DIV.  
5. Set Vertical knob to approximately 10% of the maximum IH  
specified.  
To begin testing, perform the following procedures.  
Note: Due to large variations of holding current values, the  
scale may have to be adjusted to observe holding current.  
Procedure 1: (+) VDRM, (+)IDRM, (-)VDRM, (-)IDRM  
Note: The (+) and (-) symbols are used to designate the polarity  
of MT2 with reference to MT1.  
To measure the (+)VDRM, (+)IDRM, (-)VDRM, and (-)IDRM parameter:  
1. Set Variable Collector Supply Voltage Range to 1500 Max  
Peak Volts.  
6. Set Terminal Selector to Emitter Grounded-Open Base.  
Procedure 12: IH(Forward)  
To measure the IH (Forward) parameter:  
1. Set Polarity to (+).  
2. Set Left-Right Terminal Jack Selector to correspond with  
2. Set Horizontal knob to 50 V/DIV.  
3. Set Mode to Leakage.  
4. Set Polarity to (+).  
5. Set Power Dissipation to 2.2 W. (2 W on 370)  
6. Set Terminal Selector to Emitter Grounded-Open Base.  
the location of the test fixture.  
3. Increase Variable Collector Supply Voltage to maximum  
position (100).  
Note: Depending on the vertical scale being used, the dot  
may disappear completely from the screen.  
4. Decrease Variable Collector Supply Voltage to the point  
where the line on the CRT changes to a dot. The position of  
the beginning point of the line, just before the line changes to  
a dot, represents the IH value. (Figure AN1006.21)  
7. Set Vertical knob to 50 µA/DIV. (Due to leakage mode, the  
CRT readout will show 50 nA.)  
Procedure 2: (+)VDRM and (+)IDRM  
To measure the (+)VDRM and (+)IDRM parameter:  
PER  
V
1. Set Left-Right Terminal Jack Selector to correspond with  
5
mA  
E
R
the location of the test fixture.  
T
DIV  
2. Increase Variable Collector Supply Voltage to the rated  
PER  
H
V
DRM of the device and observe the dot on the CRT. Read  
O
5
R
I
V
across horizontally from the dot to the vertical current scale.  
This measured value is the leakage current.  
(Figure AN1006.22)  
Z
DIV  
PER  
S
T
E
P
PER  
V
50  
nA  
I
E
H
R
()k  
DIV  
9m  
T
DIV  
PER  
DIV  
PER  
H
O
50  
R
I
Figure AN1006.21 IH (Forward) = 18 mA  
V
Z
DIV  
Procedure 13: IH(Reverse)  
To measure the IH (Reverse) parameter:  
PER  
S
T
E
P
1. Set Polarity to (–).  
2. Continue testing per Procedure 12 for measuring IH (Reverse)  
V
()k  
DIV  
9m  
PER  
DRM  
.
I
DIV  
DRM  
Figure AN1006.22 IDRM = 50 nA at VDRM = 90 V  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 13  
http://www.teccor.com  
+1 972-580-7777  
AN1006  
Application Notes  
Procedure 3: (-) VDRM and (-) IDRM  
Procedure 7: IH(Forward and Reverse)  
To measure the IH (Forward and Reverse) parameter:  
To measure the (-)VDRM and (-)IDRM parameter:  
1. Set Variable Collector Supply Voltage Range to 1500 Max  
Peak Volts (400 V on 577; 2000 V on 370).  
1. Set Polarity to (–).  
2. Repeat Procedures 1 and 2. (Read measurements from  
2. Set Horizontal knob to a sufficient scale to allow viewing of  
trace at the required voltage level (50 V/DIV for devices with  
upper right corner of the screen).  
Procedure 4: VBO and IBO  
To measure the VBO and IBO parameter:  
1. Set Variable Collector Supply Voltage Range to 1500 Max  
Peak Volts. (2000 V on 370)  
VBO range from 95 V to 215 V and 100 V/DIV for devices  
having VBO 215 V).  
3. Set Vertical knob to 20% of maximum holding current speci-  
fied.  
4. Set Polarity to AC.  
5. Set Mode to Norm.  
6. Set Power Dissipation to 220 W (100 W on 577).  
7. Set Terminal Selector to Emitter Grounded-Open Base.  
2. Set Horizontal knob to a sufficient scale to allow viewing of  
trace at the required voltage level (50 V/DIV for 95 V to  
215 V VBO range devices and 100 V/DIV for devices having  
V
BO 15 V).  
3. Set Vertical knob to 50 µA/DIV.  
4. Set Polarity to AC.  
8. Set Left-Right Terminal Jack Selector to correspond with  
the location of the test fixture.  
5. Set Mode to Norm.  
6. Set Power Dissipation to 10 W.  
7. Set Terminal Selector to Emitter Grounded-Open Base.  
WARNING: Limit test time to 15 seconds maximum.  
9. Increase Variable Collector Supply Voltage until device  
breaks over and turns on. (Figure AN1006.24)  
8. Set Left-Right Terminal Jack Selector to correspond with  
PER  
V
location of test fixture.  
20  
mA  
E
R
T
DIV  
Procedure 5: VBO  
PER  
H
To measure the VBO parameter, increase Variable Collector  
Supply Voltage until breakover occurs. (Figure AN1006.23) The  
voltage at which current begins to flow and voltage on CRT does  
not increase is the VBO value.  
O
50  
V
R
I
H
I
Z
DIV  
PER  
S
I
H
T
E
P
PER  
V
50  
E
R
A
T
()k  
DIV  
9m  
DIV  
PER  
DIV  
PER  
H
+I  
BO  
O
R
I
50  
V
V
BO  
Figure AN1006.24 IH = 48 mA in both forward and reverse  
directions  
Z
DIV  
PER  
S
IH is the vertical distance between the center horizontal axis and  
the beginning of the line located on center vertical axis.  
+V  
BO  
T
I
E
P
BO  
()k  
DIV  
9m  
PER  
DIV  
Procedure 8: VTM(Forward and Reverse)  
To measure the VTM (Forward and Reverse) parameter:  
1. Set Variable Collector Supply Voltage Range to 350 Max  
Peak Volts. (400 V on 370)  
Figure AN1006.23 (+)VBO = 100 V; (-)VBO = 100 V; (±)IBO < 10 µA  
2. Set Horizontal knob to 0.5 V/DIV.  
3. Set Vertical knob to 0.5 A/DIV.  
4. Set Polarity to (+).  
Procedure 6: IBO  
To measure the IBO parameter, at the VBO point, measure the  
amount of device current just before the device reaches the  
breakover mode. The measured current at this point is the IBO  
value.  
Note: If IBO is less than 10 µA, the current cannot readily be seen  
on the curve tracer.  
5. Set Mode to Norm.  
6. Set Power Dissipation to 220 W (100 W on 577).  
7. Set Terminal Selector to Emitter Grounded-Open Base.  
Before continuing with testing, note the following:  
A Kelvin test fixture is required for this test. If a Kelvin fixture is  
not used, an error in measurement of VTM will result due to volt-  
age drop in fixture. If a Kelvin fixture is not available,  
Figure AN1006.3 shows necessary information to wire a test  
fixture with Kelvin Connections.  
http://www.teccor.com  
+1 972-580-7777  
AN1006 - 14  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1006  
To continue testing, perform the following procedures.  
3. Set Vertical knob to 50 µA/DIV.  
4. Set Polarity to AC.  
5. Set Mode to Norm.  
6. Set Power Dissipation to 0.5 W. (0.4 W on 370)  
7. Set Terminal Selector to Emitter Grounded-Open Base.  
Procedure 9: VTM(Forward)  
To measure the VTM (Forward) parameter:  
1. Set Left-Right Terminal Jack Selector to correspond with  
the location of the test fixture.  
2. Increase Variable Collector Supply Voltage until current  
reaches rated IT(peak), which is 1.4 times the IT(RMS) rating of  
the sidac.  
Note: Model 370 current is limited. Set to 400 mA. Check for  
1.1 V MAX.  
Procedure 2: VBO  
To measure the VBO parameter:  
1. Set Left-Right Terminal Jack Selector to correspond with  
the location of the test fixture.  
2. Set Variable Collector Supply Voltage to 55 V (65 V for  
370) and apply voltage to device under test (D.U.T.), using  
Left-Right-Selector Switch. The peak voltage at which cur-  
rent begins to flow is the VBO value. (Figure AN1006.26)  
WARNING: Limit test time to 15 seconds.  
3. To measure VTM, follow along horizontal scale to the point  
where the trace crosses the IT(peak) value. This horizontal dis-  
tance is the VTM value. (Figure AN1006.25)  
PER  
V
50  
E
PER  
V
R
A
T
500  
mA  
E
DIV  
R
T
PER  
H
DIV  
+I  
BO  
O
R
I
10  
V
PER  
H
O
Z
DIV  
500  
mV  
R
I
Z
DIV  
PER  
S
T
I
E
P
PER  
V
BO  
TM  
S
V
+V  
BO  
BO  
T
E
P
()k  
DIV  
9m  
PER  
DIV  
()k  
DIV  
9m  
PER  
DIV  
I
PK  
Figure AN1006.26 (+)VBO = 35 V; (-)VBO = 36 V; (±)IBO < 15 µA;  
(-)IBO < 10 µA and Cannot Be Read Easily  
Figure AN1006.25 VTM (Forward) = 950 mV at IPK = 1.4 A  
Procedure 3: IBO  
Procedure 10: VTM(Reverse)  
To measure the IBO parameter, at the VBO point, measure the  
amount of device current just before the device reaches the  
breakover mode. The measured current at this point is the IBO  
value.  
To measure the VTM (Reverse) parameter:  
1. Set Polarity to (–).  
2. Repeat Procedure 8 to measure VTM(Reverse)  
.
Note: If IBO is less than 10 µA, the current cannot readily be seen  
on the curve tracer.  
Diacs  
Procedure 4: VBO(Voltage Breakover Symmetry)  
To measure the VBO (Voltage Breakover Symmetry) parameter:  
1. Measure positive and negative values of VBO as shown in  
Figure AN1006.26.  
2. Subtract the absolute value of VBO(-) from VBO(+).  
The absolute value of the result is:  
Diacs are voltage breakdown switches used to trigger-on triacs  
and non-sensitive SCRs in phase control circuits.  
Note: Diacs are bi-directional devices and can be connected in  
either direction.  
To connect the diac:  
1. Connect one side of the diac to the Collector Terminal (C).  
2. Connect other side of the diac to the Emitter Terminal (E).  
V  
= [ I +VBO I - I -VBO I ]  
BO  
To begin testing, perform the following procedures.  
Procedure 1: Curve Tracer Setup  
To set the curve tracer and begin testing:  
1. Set Variable Collector Supply Voltage Range to 75 Max  
Peak Volts. (80 V on 370)  
2. Set Horizontal knob to sufficient scale to allow viewing of  
trace at the required voltage level (10 V to 20 V/DIV depend-  
ing on device being tested).  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 15  
http://www.teccor.com  
+1 972-580-7777  
AN1006  
Application Notes  
Model 370 Curve Tracer Procedure Notes  
Because the curve tracer procedures in this application note are  
written for the Tektronix model 576 curve tracer, certain settings  
must be adjusted when using model 370. Variable Collector Sup-  
ply Voltage Range and Power Dissipation controls have different  
scales than model 576. The following table shows the guidelines  
for setting Power Dissipation when using model 370.  
(Figure AN1006.27)  
Although the maximum power setting on the model 370 curve  
tracer is 200 W, the maximum collector voltage available is only  
400 V at 220 W. The following table shows the guidelines for  
adapting Collector Supply Voltage Range settings for model 370  
curve tracer procedures:  
Model 576  
If voltage range is 15 V,  
Model 370  
set at 16 V.  
Model 576  
If power dissipation is 0.1 W,  
If power dissipation is 0.5 W,  
If power dissipation is 2.2 W,  
If power dissipation is 10 W,  
If power dissipation is 50 W,  
If power dissipation is 220 W,  
Model 370  
set at 0.08 W.  
set at 0.4 W.  
If voltage range is 75 V,  
If voltage range is 350 V,  
If voltage range is 1500 V,  
set at 80 V.  
set at 400 V.  
set at 2000 V.  
set at 2 W.  
set at 10 W.  
set at 50 W.  
set at 220 W.  
The following table shows the guidelines for adapting terminal  
selector knob settings for model 370 curve tracer procedures:  
Model 576  
Model 370  
If Step generator (base) is emitter grounded, then Base Step generator is  
emitter common.  
If Emitter grounded is open base,  
then Base open is emitter  
common.  
http://www.teccor.com  
+1 972-580-7777  
AN1006 - 16  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1006  
HORIZONTAL  
PROGRAMMABLE  
CURVE TRACER  
VOLTAGE CONTROL  
Note: All Voltage  
DISPLAY  
SETUP  
MEMORY  
INTENSITY  
Settings Will Be  
Referenced to  
"Collector"  
STEP GENERATOR  
POLARITY  
VERTICAL  
CURRENT/DIV  
HORIZONTAL  
VOLTS/DIV  
VERT/DIV  
CURSOR  
STEP/OFFSET  
POLARITY  
STEP/OFFSET  
AMPLITUDE  
COLLECTOR  
STEP/OFFSET  
AMPLITUDE  
(AMPS/VOLTS)  
HORZ/DIV  
CURSOR  
CRT  
PER STEP  
OFFSET  
OFFSET  
OFFSET  
OR gm/DIV  
CURSOR  
POSITION  
AUX SUPPLY  
GPIB  
PLOTTER  
MEASUREMENT  
AUX SIPPLY  
STEP  
FAMILY  
COLLECTOR SUPPLY  
VARIABLE  
COLLECTOR  
SUPPLY VOLTAGE  
RANGE  
TERMINAL  
JACKS  
CONFIGURATION  
COLLECTOR SUPPLY  
MAX PEAK  
POWER  
(POWER DISSIPATION)  
MAX PEAK MAX PEAK POLARITY  
VOLTS  
POWER  
WATTS  
C
C
C
C
SENSE  
SENSE  
MT2/ANODE  
VARIABLE  
COLLECTOR  
SUPPLY  
VARIABLE  
GATE/TRIGGER  
B
B
B
B
VOLTAGE  
SENSE  
SENSE  
E
E
LEFT  
RIGHT  
SENSE  
SENSE  
E
E
BOTH  
POWER  
KELVIN TERMINALS  
USED WHEN  
MEASURING TM OR FM  
LEFT-RIGHT SELECTOR  
FOR TERMINAL JACKS  
MT1/CATHODE  
TERMINAL  
SELECTOR  
V
V
Figure AN1006.27 Tektronix Model 370 Curve Tracer  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 17  
http://www.teccor.com  
+1 972-580-7777  
AN1006  
Application Notes  
Model 577 Curve Tracer Procedure Notes  
Because the curve tracer procedures in this application note are written for the Tektronix model 576 curve tracer, certain settings must  
be adjusted when using model 577. Model 576 curve tracer has separate controls for polarity (AC,+,-) and mode (Norm, DC, Leakage),  
whereas Model 577 has only a polarity control. The following table shows the guidelines for setting Collector Supply Polarity when  
using model 577. (Figure AN1006.28)  
Model 576  
Model 577  
If using Leakage mode along with polarity setting of +(NPN) and -(PNP),  
set Collector Supply Polarity to either +DC or -DC, depending on polarity setting  
specified in the procedure. The vertical scale is read directly from the scale on the  
control knob.  
[vertical scale divided by 1,000],  
If using DC mode along with either +(NPN) or -(PNP) polarity,  
set Collector Supply Polarity to either +DC or -DC depending on polarity  
specified.  
If using Norm mode along with either +(NPN) or -(PNP) polarity,  
If using Norm mode with AC polarity,  
set Collector Supply Polarity to either +(NPN) or -(PNP) per specified procedure.  
set Collector Supply Polarity to AC.  
One difference between models 576 and 577 is the Step/Offset  
Polarity setting. The polarity is inverted when the button is  
depressed on the Model 576 curve tracer. The Model 577 is  
opposite the Step/Offset Polarity is “inverted” when the button  
is extended and “Normal” when the button is depressed. The  
Step/Offset Polarity is used only when measuring IGT and VGT of  
triacs and Quadracs in Quadrants l through lV.  
Also, the Variable Collector Supply Voltage Range and Power  
Dissipation controls have different scales than model 576. The  
following table shows the guidelines for setting Power Dissipation  
when using model 577.  
Model 576  
If power dissipation is 0.1 W,  
If power dissipation is 0.5 W,  
If power dissipation is 2.2 W,  
If power dissipation is 10 W,  
If power dissipation is 50 W,  
If power dissipation is 220 W,  
Model 577  
set at 0.15 W.  
set at 0.6 W.  
set at 2.3 W.  
set at 9 W.  
set at 30 W.  
set at 100 W.  
Although the maximum power setting on model 576 curve tracer  
is 220 W (compared to 100 W for model 577), the maximum col-  
lector current available is approximately the same. This is due to  
the minimum voltage range on model 577 curve tracer being  
6.5 V compared to 15 V for model 576. The following table shows  
the guidelines for adapting Collector Voltage Supply Range set-  
tings for model 577 curve tracer procedures:  
Model 576  
If voltage range is 15 V,  
Model 577  
set at either 6.5 V or 25 V, depending on parameter  
being tested. Set at 6.5 V when measuring VTM (to  
allow maximum collector current) and set at 25 V  
when measuring IGT and VGT  
.
If voltage range is 75 V,  
set at 100 V.  
If voltage range is 1500 V, set at 1600 V.  
http://www.teccor.com  
+1 972-580-7777  
AN1006 - 18  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1006  
BRIGHTNESS  
STORE  
INTENSITY  
CRT  
Avoid  
extremely  
bright display  
FOCUS  
Adjust for  
best focus  
BEAM  
FINDER  
VARIABLE COLLECTOR  
SUPPLY VOLTAGE RANGE  
POWER  
STEP  
FAMILY  
STEP  
GENERATOR  
SECTION  
VARIABLE COLLECTOR  
SUPPLY VOLTAGE  
STEP/OFFSET  
AMPLIFIER  
VARIABLE  
COLLECTOR%  
MAX PEAK  
VOLTS  
NUMBER OF STEPS  
MAX PEAK POWER  
(POWER DISSIPATION)  
OFFSET  
MULTI  
Watch high power  
settings. Can damage  
device under test  
STEP/OFFSET  
POLARITY  
POLARITY  
COLLECTOR SUPPLY  
POLARITY  
POSITION  
POSITION  
DISPLAY  
HORIZONTAL  
VOLTAGE CONTROL  
Note: All Voltage  
Settings Will Be  
Referenced to  
Indicates  
Collector  
Supply  
STEP  
RATE  
Disabled  
"Collector"  
COLLECTOR SUPPLY  
Terminal Selector  
TERMINAL  
JACKS  
C
C
C
B
E
C
MT2/ANODE  
GATE/TRIGGER  
MT1/CATHODE  
SENSE  
SENSE  
B
Indicates Dangerous  
Voltages on Test  
jacks  
E
SENSE  
E
E
SENSE  
VERTICAL  
KELVIN TERMINALS  
USED WHEN MEASURING TM OR FM  
(off)  
VERTICAL CURRENT  
SUPPLY  
LEFT-RIGHT  
SELECTOR FOR  
TERMINAL JACKS  
V
V
LEFT  
RIGHT  
VARIABLE  
STEP GEN  
VOLTAGE  
OUTPUT  
GROUND  
VARIABLE  
OUTPUT  
EXT BASE  
OR EMIT  
INPUT  
LOOPING  
COMPENSATION  
Figure AN1006.28 Tektronix Model 577 Curve Tracer  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1006 - 19  
http://www.teccor.com  
+1 972-580-7777  
Notes  
AN1007  
7
Thyristors Used as AC Static Switches and Relays  
would be 25 mA since Q1 has a 25 mA maximum IGT rating. Addi-  
tionally, no arcing of a current value greater than 25 mA when  
Introduction  
Since the SCR and the triac are bistable devices, one of their  
broad areas of application is in the realm of signal and power  
switching. This application note describes circuits in which these  
thyristors are used to perform simple switching functions of a  
general type that might also be performed non-statically by vari-  
ous mechanical and electromechanical switches. In these appli-  
cations, the thyristors are used to open or close a circuit  
completely, as opposed to applications in which they are used to  
control the magnitude of average voltage or energy being deliv-  
ered to a load. These latter types of applications are described in  
detail in “Phase Control Using Thyristors” (AN1003).  
opening S1 will occur when controlling an inductive load. It is  
important also to note that the triac Q1 is operating in Quadrants I  
and III, the more sensitive and most suitable gating modes for tri-  
acs. The voltage rating of S1 (mechanical switch or reed switch)  
must be equivalent to or greater than line voltage applied.  
Load  
RL  
R1  
100 Ω  
R2  
100 Ω  
VRMS  
Static AC Switches  
S1  
For  
Inductive  
Loads  
Triac  
Control  
Normally Open Circuit  
Device  
The circuit shown in Figure AN1007.1 provides random (any-  
where in half-cycle), fast turn-on (<10 µs) of AC power loads and  
is ideal for applications with a high-duty cycle. It eliminates com-  
pletely the contact sticking, bounce, and wear associated with  
conventional electromechanical relays, contactors, and so on. As  
a substitute for control relays, thyristors can overcome the differ-  
ential problem; that is, the spread in current or voltage between  
pickup and dropout because thyristors effectively drop out every  
half cycle. Also, providing resistor R1 is chosen correctly, the cir-  
cuits are operable over a much wider voltage range than is a  
comparable relay. Resistor R1 is provided to limit gate current  
(IGTM) peaks. Its resistance plus any contact resistance (RC) of the  
control device and load resistance (RL) should be just greater  
than the peak supply voltage divided by the peak gate current  
rating of the triac. If R1 is set too high, the triacs may not trigger  
at the beginning of each cycle, and phase control of the load will  
result with consequent loss of load voltage and waveform distor-  
tion. For inductive loads, an RC snubber circuit, as shown in Fig-  
ure AN1007.1, is required. However, a snubber circuit is not  
required when an alternistor is used.  
Reed  
Switch  
C1  
0.1 µF  
√2•V  
IGTM  
(RL + RC) Where IGTM is Peak Gate Current  
Rating of Triac  
R1  
Figure AN1007.1  
Basic Triac Static Switch  
Load  
RL  
MT2  
Q1  
Q2008L4  
S1  
AC Voltage Input  
120 V rms, 60 Hz  
Figure AN1007.2 illustrates an analysis to better understand a  
typical static switch circuit. The circuit operation occurs when  
switch S1 is closed, since the triac Q1 will initially be in the block-  
ing condition. Current flow will be through load RL, S1, R1, and  
gate to MT1 junction of the thyristor. When this current reaches  
the required value of IGT, the MT2 to MT1 junctions will switch to  
the conduction state and the voltage from MT2 to MT1 will be VT.  
As the current approaches the zero crossing, the load current will  
fall below holding current turning the triac Q1 device off until it is  
refired in the next half cycle. Figure AN1007.3 illustrates the volt-  
age waveform appearing across the MT2 to MT1 terminals of Q1.  
Note that the maximum peak value of current which S1 will carry  
I
I
+
GT  
GT  
G
VIN  
R1  
-
VGT  
MT1  
Figure AN1007.2  
Analysis of Static Switch  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1007 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1007  
Application Notes  
Normally Closed Circuit  
With a few additional components, the thyristor can provide a  
normally closed static switch function. The critical design portion  
of this static switch is a clamping device to turn off/eliminate gate  
drive and maintain very low power dissipation through the clamp-  
ing component plus have low by-pass leakage around the power  
thyristor device. In selecting the power thyristor for load require-  
ments, gate sensitivity becomes critical to maintain low power  
requirements. Either sensitive SCRs or sensitive logic triacs must  
be considered, which limits the load in current capacity and type.  
However, this can be broader if an extra stage of circuitry for gat-  
ing is permitted.  
120 V rms (170 V peak)  
VP+  
VT+  
1 V rms or 1.6 V peak MAX  
θ
VT  
-
Figure AN1007.4 illustrates an application using a normally  
closed circuit driving a sensitive SCR for a simple but precise  
temperature controller. The same basic principle could be applied  
to a water level controller for a motor or solenoid. Of course, SCR  
and diode selection would be changed depending on load current  
requirements.  
VP  
-
Figure AN1007.3  
Waveform Across Static Switch  
1000 W Heater Load  
A typical example would be in the application of this type circuit  
for the control of 5 A resistive load with 120 V rms input voltage.  
Choosing a value of 100 for R1 and assuming a typical value of  
1 V for the gate to MT1 (VGT) voltage, we can solve for VP by the  
following:  
CR1  
CR2  
SCR1  
S2010LS2  
120 V ac  
60 CPS  
VP = IGT (RL + R1) + VGT  
Note: RC is not included since it is negligible.  
VP = 0.025 (24 + 100) + 1.0 = 4.1 V  
Additionally the turn-on angle is  
CR3  
D2015L  
CR1—CR4  
CR4  
R1  
0.1 µF  
510 k  
1  
θ = Sin ---------------------  
170V  
4.1  
[ θ = 1.4°]  
PK  
Twist Leads to Minimize  
Pickup  
The power lost by the turn-on angle is essentially zero. The  
power dissipation in the gate resistor is very minute. A 100 ,  
0.25 W rated resistor may safely be used. The small turn-on  
angle also ensures that no appreciable RFI is generated.  
Hg in Glass Thermostat  
Figure AN1007.4  
Normally Closed Temperature Controller  
A mercury-in-glass thermostat is an extremely sensitive measur-  
ing instrument, capable of sensing changes in temperature as  
small as 0.1 °C. Its major limitation lies in its very low current-  
handling capability for reliability and long life, and contact current  
should be held below 1 mA. In the circuit of Figure AN1007.4, the  
S2010LS2 SCR serves as both current amplifier for the Hg ther-  
mostat and as the main load switching element.  
With the thermostat open, the SCR will trigger each half cycle  
and deliver power to the heater load. When the thermostat  
closes, the SCR can no longer trigger and the heater shuts off.  
Maximum current through the thermostat in the closed position is  
less than 250 µA rms.  
Figure AN1007.5 shows an all solid state, optocoupled, normally  
closed switch circuit. By using a low voltage SBS triggering  
device, this circuit can turn on with only a small delay in each half  
cycle and also keep gating power low. When the optocoupled  
transistor is turned on, the gate drive is removed with only a few  
milliamps of bypass current around the triac power device. Also,  
by use of the BS08D and 0.1 µF, less sensitive triacs and alter-  
nistors can be used to control various types of high current loads.  
The relay circuit shown in Figure AN1007.1 and Figure AN1007.2  
has several advantages in that it eliminates contact bounce,  
noise, and additional power consumption by an energizing coil  
and can carry an in-rush current of many times its steady state  
rating.  
The control device S1 indicated can be either electrical or  
mechanical in nature. Light-dependent resistors and light- acti-  
vated semiconductors, optocoupler, magnetic cores, and mag-  
netic reed switches are all suitable control elements. Regardless  
of the switch type chosen, it must have a voltage rating equal to  
or greater than the peak line voltage applied. In particular, the  
use of hermetically sealed reed switches as control elements in  
combination with triacs offers many advantages. The reed switch  
can be actuated by passing DC current through a small coiled  
wire or by the proximity of a small magnet. In either case, com-  
plete electrical isolation exists between the control signal input,  
which may be derived from many sources, and the switched  
power output. Long life of the triac/reed switch combination is  
ensured by the minimal volt-ampere switching load placed on the  
reed switch by the triac triggering requirements. The thyristor rat-  
ings determine the amount of load power that can be switched.  
http://www.teccor.com  
+1 972-580-7777  
AN1007 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1007  
wave voltage as illustrated in Figure AN1007.2. The load resis-  
tance is also important, since it can also limit the amount of avail-  
able triac gate current. A 100 gate resistor would be a better  
choice in most 120 V applications with loads greater than 200 W  
and optocouplers from Quality Technologies or Vishay with opto-  
coupler output triacs that can handle 1.7 APK (ITSM rating) for a  
few microseconds at the peak of the line. For loads less than  
200 W, the resistor can be dropped to 22 . Remember that if the  
gate resistor is too large in value, the triac will not turn on at all or  
not turn on fully, which can cause excessive power dissipation in  
the gate resistor, causing it to burn out. Also, the voltage and dv/  
dt rating of the optocoupler's output device must be equal to or  
greater than the voltage and dv/dt rating of the triac or alternistor  
it is driving.  
Load  
Q2008L4  
Triac  
51 k  
120 V ac  
BS08D  
(4) IN4004  
0.02 µF  
+
Figure AN1007.7 illustrates a circuit with a dv/dt snubber network  
included. This is a typical circuit presented by optocoupler manu-  
facturers.  
PS2502  
Hot  
Figure AN1007.5  
Normally Closed Switch Circuit  
ZL  
Optocoupled Driver Circuits  
1
2
6
4
100  
100  
G
Rin  
120 V  
60 Hz  
VCC  
MT2  
MT1  
Random Turn-on, Normally Open  
0.1 µF  
C1  
Many applications use optocouplers to drive thyristors. The com-  
bination of a good optocoupler and a triac or alternistor makes an  
excellent, inexpensive solid state relay. Application information  
provided by the optocoupler manufacturers is not always best for  
application of the power thyristor. Figure AN1007.6 shows a stan-  
dard circuit for a resistive load.  
Neutral  
Figure AN1007.7  
Optocoupler Circuit for Inductive Loads (Triac or  
Alternistor)  
Hot  
This “T” circuit hinges around one capacitor to increase dv/dt  
capability to either the optocoupler output triac or the power triac.  
The sum of the two resistors then forms the triac gate resistor.  
R
L
1
2
Both resistors should then be standardized and lowered to  
100 . Again, this sum resistance needs to be low, allowing as  
much gate current as possible without exceeding the instanta-  
neous current rating of the opto output triac or triac gate junction.  
By having 100 for current limit in either direction from the  
capacitor, the optocoupler output triac and power triac can be  
protected against di/dt produced by the capacitor. Of course, it is  
most important that the capacitor be connected between proper  
terminals of triac. For example, if the capacitor and series resis-  
tor are accidentally connected between the gate and MT2, the  
triac will turn on from current produced by the capacitor, resulting  
in loss of control.  
120 V  
60 Hz  
R
in  
6
4
180  
V
CC  
MT2  
MT1  
G
Neutral  
Load Could Be  
in Either Leg  
Figure AN1007.6  
Optocoupled Circuit for Resistive Loads (Triac or  
Alternistor)  
For low current (mA) and/or highly inductive loads, it may be nec-  
essary to have a latching network (3.3 k+ 0.047 µF) connected  
directly across the power triac. The circuit shown in Figure  
AN1007.8 illustrates the additional latching network.  
A common mistake in this circuit is to make the series gate resis-  
tor too large in value. A value of 180 is shown in a typical appli-  
cation circuit by optocoupler manufacturers. The 180 is based  
on limiting the current to 1 A peak at the peak of a 120 V line  
input. This is good for protection of the optocoupler output triac,  
as well as the gate of the power triac on a 120 V line; however, it  
must be lowered if a 24 V line is being controlled, or if the RL  
(resistive load) is 200 W or less. This resistor limits current for  
worst case turn-on at the peak line voltage, but it also sets turn-  
on point (conduction angle) in the sine wave, since triac gate cur-  
rent is determined by this resistor and produced from the sine  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1007 - 3  
http://www.teccor.com  
+1 972-580-7777  
AN1007  
Application Notes  
Load could be here  
instead of lower location  
Rin  
1
6
180  
180  
G
180 for 120 V ac  
360 for 240 V ac  
Vcc  
R
in  
6
5
1
2
3.3 k  
MT2  
MT1  
240 V ac  
5
4
Hot  
2
3
MT2  
MT1  
Input  
0.1 µF  
100 Ω  
G
120/240 V ac  
4
0.047 µF  
Load  
3
Triac or  
Alternistor  
0.1µf  
Neutral  
Load  
Figure AN1007.8  
Optocoupler Circuit for Lower Current Inductive  
Loads (Triac or Alternistor)  
Figure AN1007.10 Random Turn-on Triac Driver  
Select the triac for the voltage of the line being used, the current  
through the load, and the type of load. Since the peak voltage of  
a 120 V ac line is 170 V, you would choose a 200 V (MIN) device.  
If the application is used in an electrically noisy industrial envi-  
ronment, a 400 V device should be used. If the line voltage to be  
controlled is 240 V ac with a peak voltage of 340 V, then use at  
least a 400 V rated part or 600 V for more design margin. Selec-  
tion of the voltage rating of the opto-driver must be the same or  
higher than the rating of the power triac. In electrically noisy  
industrial locations, the dv/dt rating of the opto-driver and the  
triac must be considered.  
In this circuit, the series gate resistors are increased to 180 Ω  
each, since a 240 V line is applied. Note that the load is placed  
on the MT1 side of the power triac to illustrate that load place-  
ment is not important for the circuit to function properly.  
Also note that with standard U.S. residential 240 V home wiring,  
both sides of the line are hot with respect to ground (no neutral).  
Therefore, for some 240 V line applications, it will be necessary  
to have a triac switch circuit in both sides of the 240 V line input.  
If an application requires back-to-back SCRs instead of a triac or  
alternistor, the circuit shown in Figure AN1007.9 may be used.  
The RMS current through the load and main terminals of the triac  
should be approximately 70% of the maximum rating of the  
device. However, a 40 A triac should not be chosen to control a  
1 A load due to low latching and holding current requirements.  
Remember that the case temperature of the triac must be main-  
tained at or below the current versus temperature curve specified  
on its data sheet. As with all semiconductors the lower the case  
temperature the better the reliability. Opto-driven gates normally  
do not use a sensitive gate triac. The opto-driver can supply up to  
1 A gate pulses and less sensitive gate triacs have better dv/dt  
capability. If the load is resistive, it is acceptable to use a stan-  
dard triac. However, if the load is a heavy inductive type, then an  
alternistor triac, or back-to-back SCRs as shown in Figure  
AN1007.9, is recommended. A series RC snubber network may  
or may not be necessary when using an alternistor triac. Nor-  
mally a snubber network is not needed when using an alternistor  
because of its high dv/dt and dv/dt(c) capabilities. However,  
latching network as described in Figure AN1007.8 may be  
needed for low current load variations.  
100  
120 V ac  
1
2
6
G
V
cc  
A
K
A
5
4
NS-  
SCR  
NS-SCR  
R
in  
G
K
100  
0.1µF  
3
Load  
Figure AN1007.9  
Optocoupled Circuit for Heavy-duty Inductive Loads  
All application comments and recommendations for optocoupled  
switches apply to this circuit. However, the snubber network can  
be applied only across the SCRs as shown in the illustration. The  
optocoupler should be chosen for best noise immunity. Also, the  
voltage rating of the optocoupler output triac must be equal to or  
greater than the voltage rating of SCRs.  
Zero Crossing Turn-on, Normally Open  
Relay Circuits  
Summary of Random Turn-on Relays  
When a power circuit is mechanically switched on and off  
mechanically, generated high-frequency components are gener-  
ated that can cause interference problems such as RFI. When  
power is initially applied, a step function of voltage is applied to  
the circuit which causes a shock excitation. Random switch  
opening stops current off, again generating high frequencies. In  
addition, abrupt current interruption in an inductive circuit can  
lead to high induced-voltage transients.  
The latching characteristics of thyristors are ideal for eliminating  
interference problems due to current interruption since these  
devices can only turn off when the on-state current approaches  
zero, regardless of load power factor.  
As shown in Figure AN1007.10, if the voltage across the load is  
to be phase controlled, the input control circuitry must be syn-  
chronized to the line frequency and the trigger pulses delayed  
from zero crossing every half cycle. If the series gate resistor is  
chosen to limit the peak current through the opto-driver to less  
than 1 A, then on a 120 V ac line the peak voltage is 170 V;  
therefore, the resistor is 180 . On a 240 V ac line the peak volt-  
age is 340 V; therefore, the resistor should be 360 . These gate  
pulses are only as long as the device takes to turn on (typically,  
5 µs to 6 µs); therefore, 0.25 W resistor is adequate.  
On the other hand, interference-free turn-on with thyristors  
requires special trigger circuits. It has been proven experimen-  
http://www.teccor.com  
+1 972-580-7777  
AN1007 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1007  
tally that general purpose AC circuits will generate minimum  
electromagnetic interference (EMI) if energized at zero voltage.  
The ideal AC circuit switch, therefore, consists of a contact which  
closes at the instant when voltage across it is zero and opens at  
the instant when current through it is zero. This has become  
known as “zero-voltage switching.”  
For applications that require synchronized zero-crossing turn-on,  
the illustration in Figure AN1007.11 shows a circuit which incor-  
porates an optocoupler with a built-in zero-crossing detector  
Load could be here  
instead of lower location  
22  
R
in  
6
5
1
2
Hot  
MT2  
MT1  
Input  
100 Ω  
G
120/240 V ac  
4
Zero  
Crossing  
Circuit  
3
Triac or  
0.1µf  
Alternistor  
Neutral  
Load  
R
22  
in  
1
6
5
V
cc  
Figure AN1007.12 Zero Crossing Turn-on Opto Triac Driver  
Hot  
MT2  
MT1  
100  
2
3
120 V ac  
Load  
4
G
Non-sensitive Gate SCRs  
Zero  
Crossing  
Circuit  
0.1 µF  
100  
R
in  
1
6
G
Neutral  
K
A
A
K
120/240 V ac  
Load  
Input  
5
4
G
2
3
Zero  
Crossing  
Circuit  
22  
Figure AN1007.11 Optocoupled Circuit with Zero-crossing Turn-on  
(Triac or Alternistor)  
0.1µF  
Also, this circuit includes a dv/dt snubber network connected  
across the power triac. This typical circuit illustrates switching the  
hot line; however, the load may be connected to either the hot or  
neutral line. Also, note that the series gate resistor is low in value  
(22 Ω), which is possible on a 120 V line and above, since zero-  
crossing turn-on is ensured in any initial half cycle.  
Load could be here  
instead of lower location  
Figure AN1007.13 Zero Crossing Turn-on Non-sensitive SCR Driver  
Load  
Sensitive Gate SCRs  
1 K  
Summary of Zero Crossing Turn-on Circuits  
100  
*
R
in  
1
6
G
Zero voltage crossing turn-on opto-drivers are designed to limit  
turn-on voltage to less than 20 V. This reduces the amount of RFI  
and EMI generated when the thyristor switches on. Because of  
this zero turn-on, these devices cannot be used to phase control  
loads. Therefore, speed control of a motor and dimming of a  
lamp cannot be accomplished with zero turn-on opto-couplers.  
Since the voltage is limited to 20 V or less, the series gate resis-  
tor that limits the gate drive current has to be much lower with a  
zero crossing opto-driver. With typical inhibit voltage of 5 V, an  
alternistor triac gate could require a 160 mA at -30 °C (5 V/  
0.16 A = 31 gate resistor). If the load has a high inrush current,  
then drive the gate of the triac with as much current as reliably  
possible but stay under the ITSM rating of the opto-driver. By using  
22 for the gate resistor, a current of at least 227 mA is supplied  
with only 5 V, but limited to 909 mA if the voltage goes to 20 V. As  
shown in Figure AN1007.12, Figure AN1007.13, and Figure  
AN1007.14, a 22 gate resistor is a good choice for various  
zero crossing controllers.  
K
A
A
K
120/240 V ac  
Input  
5
4
G
2
3
22  
1 K  
Zero  
Crossing  
Circuit  
*
0.1 µF  
Gate Diodes to Have  
Same PIV as SCRs  
Load could be here  
instead of lower location  
*
Figure AN1007.14 Zero Crossing Turn-on Opto-sensitive Gate SCR  
Driver  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1007 - 5  
http://www.teccor.com  
+1 972-580-7777  
AN1007  
Application Notes  
Time Delay Relay Circuit  
IR Motion Control  
An example of a more complex triac switch is an infrared (IR)  
motion detector controller circuit. Some applications for this cir-  
cuit are alarm systems, automatic lighting, and auto doorbells.  
By combining a 555 timer IC with a triac, various time delays of  
several seconds can be achieved for delayed activation of solid  
state relays or switches. Figure AN1007.15 shows a solid state  
timer delay relay using a sensitive gate triac and a 555 timer IC.  
The 555 timer precisely controls time delay of operation using an  
external resistor and capacitor, as illustrated by the resistor and  
capacitor combination curves. (Figure AN1007.16)  
Figure AN1007.17 shows an easy- to-implement automatic light-  
ing system using an infrared motion detector control circuit. A  
commercially available LSI circuit HT761XB, from Holtek, inte-  
grates most of the analog functions. This LSI chip, U2, contains  
the op amps, comparators, zero crossing detection, oscillators,  
and a triac output trigger. An external RC that is connected to the  
OSCD pin determines the output trigger pulse width. (Holtek  
Semiconductor Inc. is located at No.3, Creation Road II, Science-  
Based Industrial Park, Hsinchu, Taiwan, R.O.C.) Device U1 pro-  
vides the infrared sensing. Device R13 is a photo sensor that  
serves to prevent inadvertent triggering under daylight or other  
high light conditions.  
Choosing the right triac depends on the load characteristics. For  
example, an incandescent lamp operating at 110 V requires a  
200 V, 8 A triac. This gives sufficient margin to allow for the high  
current state during lamp burn out. U2 provides a minimum out-  
put triac negative gate trigger current of 40 mA, thus operating in  
QII & QIII. This meets the requirements of a 25 mA gate triac.  
Teccor also offers alternistor triacs for inductive load conditions.  
This circuit has three operating modes (ON, AUTO, OFF), which  
can be set through the mode pin. While the LSI chip is working in  
the auto mode, the user can override it and switch to the test  
mode, or manual on mode, or return to the auto mode by switch-  
ing the power switch. More information on this circuit, such as  
mask options for the infrared trigger pulse and flash options, are  
available in the Holtek HT761X General Purpose PIR Controller  
specifications.  
1 K  
LOAD  
MT2  
10 K  
3
8
MT1  
G
4
2
5
R
10 M  
6
7
120 V  
60 Hz  
555  
1
C
1 µF  
0.1 µF  
0.01 µF  
1N4003  
-10 V  
_
+
3.5 K  
250 V  
1N4740  
10 µF  
Figure AN1007.15 555 timer circuit with 10 second delay  
100  
10  
1.0  
0.1  
0.01  
0.001  
10ms  
100ms  
1ms  
10ms  
100ms  
1.0  
10  
100  
t
d
TIME DELAY (s)  
Figure AN1007.16 Resistor (R) and capacitor (C) combination curves  
C7  
3900pF  
R6  
1M  
C6  
22µF  
R5  
22K  
C3  
100pF  
U2  
1
2
C5  
0.02µF  
16  
15  
VSS  
OP20  
OP2N  
OP2P  
OP10  
OP1N  
OP1P  
RSTB  
VEE  
AC+  
110  
TRIAC  
OSCD  
OSCS  
ZC  
14  
13  
R7  
1M  
3
4
5
6
SW1  
ON/OFF  
OVERRIDE  
C8  
0.1µF  
12  
11  
R8 569K  
LP1  
Lamp  
60 to  
600  
R4  
1M  
R9  
1M  
D3  
1N4002  
CDS  
10  
9
C12  
22µF  
C2  
0.02µF  
7
8
R12  
22K  
MODE  
VDD  
Watt  
R2  
2.4M  
SW2  
Mode  
HT761XB  
-16 DIP/SOP  
C13  
0.02µF  
R9  
1M  
D5  
1N4002  
D4  
1N4002  
R14  
68W 2W  
R3  
C9  
10µF  
56K  
C4  
100µF  
C10  
0.33µF  
350V  
*R10  
3
2
U1  
PIR  
SD622  
(Nippon  
G
S
Q1  
TRIAC  
D
1
Q2008L4  
D2  
1N4002  
D1  
12V  
Ceramic)  
R13  
CDS  
C11  
330µF  
C1  
100µF  
AC  
Figure AN1007.17 I R motion control circuit  
http://www.teccor.com  
+1 972-580-7777  
AN1007 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1008  
8
Explanation of Maximum Ratings and  
Characteristics for Thyristors  
VDRM: Peak Repetitive Forward (Off-state) Voltage  
Introduction  
SCR  
Data sheets for SCRs and triacs give vital information regarding  
maximum ratings and characteristics of thyristors. If the maxi-  
mum ratings of the thyristors are surpassed, possible irrevers-  
ible damage may occur. The characteristics describe various  
pertinent device parameters which are guaranteed as either min-  
imums or maximums. Some of these characteristics relate to the  
ratings but are not ratings in themselves. The characteristic does  
not define what the circuit must provide or be restricted to, but  
defines the device characteristic. For example, a minimum value  
is indicated for the dv/dt because this value depicts the guaran-  
teed worst-case limit for all devices of the specific type. This min-  
imum dv/dt value represents the maximum limit that the circuit  
should allow.  
The peak repetitive forward (off-state) voltage rating (Figure  
AN1008.1) refers to the maximum peak forward voltage which  
may be applied continuously to the main terminals (anode, cath-  
ode) of an SCR. This rating represents the maximum voltage the  
SCR should be required to block in the forward direction. The  
SCR may or may not go into conduction at voltages above the  
V
DRM rating. This rating is specified for an open-gate condition  
and gate resistance termination. A positive gate bias should be  
avoided since it will reduce the forward-voltage blocking capabil-  
ity. The peak repetitive forward (off-state) voltage rating applies  
for case temperatures up to the maximum rated junction temper-  
ature.  
Triac  
Maximum Ratings  
The peak repetitive off-state voltage rating should not be sur-  
passed on a typical, non-transient, working basis. (Figure  
AN1008.2) VDRM should not be exceeded even instantaneously.  
This rating applies for either positive or negative bias on main  
terminal 2 at the rated junction temperature. This voltage is less  
than the minimum breakover voltage so that breakover will not  
occur during operation. Leakage current is controlled at this volt-  
age so that the temperature rise due to leakage power does not  
contribute significantly to the total temperature rise at rated cur-  
rent.  
VRRM: Peak Repetitive Reverse Voltage — SCR  
The peak repetitive reverse voltage rating is the maximum peak  
reverse voltage that may be continuously applied to the main ter-  
minals (anode, cathode) of an SCR. (Figure AN1008.1) An open-  
gate condition and gate resistance termination is designated for  
this rating. An increased reverse leakage can result due to a pos-  
itive gate bias during the reverse voltage exposure time of the  
SCR. The repetitive peak reverse voltage rating relates to case  
temperatures up to the maximum rated junction temperature.  
+I  
+I  
Voltage Drop (V ) at  
T
Specified Current (i )  
T
Voltage Drop (VT) at  
Specified Current (iT)  
Latching Current (I )  
L
Latching Current (IL)  
Off-state Leakage  
Current – (I  
Specified V  
) at  
DRM  
DRM  
Off - State Leakage  
Current - (IDRM) at  
Specified VDRM  
Minimum Holding  
Reverse Leakage  
Current - (IRRM) at  
Specified VRRM  
Current (I  
)
H
Minimum Holding  
Current (IH  
-V  
+V  
)
-V  
+V  
Specified Minimum  
Off-state  
Blocking  
Specified Minimum  
Off - State  
Specified Minimum  
Reverse Blocking  
Blocking  
Voltage (V  
)
DRM  
Voltage (VRRM  
)
Voltage (VDRM  
)
Breakover  
Voltage  
Reverse  
Breakdown  
Voltage  
Forward  
Breakover  
Voltage  
-I  
-I  
Figure AN1008.2  
V-I Characteristics of Triac Device  
Figure AN1008.1  
V-I Characteristics of SCR Device  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1008 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1008  
Application Notes  
IT: Current Rating  
SCR  
SUPPLY FREQUENCY: 60 Hz Sinusoidal  
LOAD: Resistive  
RMS ON-STATE CURRENT [ T(RMS)]:  
Maximum Rated Value at Specified  
Case Temperature  
Notes:  
1000  
400  
1) Gate control may be lost  
during and immediately  
following surge current interval.  
2) Overload may not be repeated  
until junction temperature has  
returned to steady-state  
rated value.  
I
For RMS and average currents, the restricting factor is usually  
confined so that the power dissipated during the on state and as  
a result of the junction-to-case thermal resistance will not pro-  
duce a junction temperature in excess of the maximum junction  
temperature rating. Power dissipation is changed to RMS and  
average current ratings for a 60 Hz sine wave with a 180° con-  
duction angle. The average current for conduction angles less  
than 180° is derated because of the higher RMS current con-  
nected with high peak currents. The DC current rating is higher  
than the average value for 180° conduction since no RMS com-  
ponent is present.  
300  
250  
150  
120  
100  
80  
60  
50  
40  
30  
20  
10  
The dissipation for non-sinusoidal waveshapes can be deter-  
mined in several ways. Graphically plotting instantaneous dissi-  
pation as a function of time is one method. The total maximum  
allowable power dissipation (PD) may be determined using the  
following equation for temperature rise:  
1
10  
100  
1000  
Surge Current Duration – Full Cycles  
Figure AN1008.3  
Peak Surge Current versus Surge Current Duration  
ITM: Peak Repetitive On-state Current — SCR and Triac  
T
T  
C
J(MAX)  
R
P
= -----------------------------------  
The ITM rating specifies the maximum peak current that may be  
applied to the device during brief pulses. When the device oper-  
ates under these circumstances, blocking capability is main-  
tained. The minimum pulse duration and shape are defined and  
control the applied di/dt. The operating voltage, the duty factor,  
the case temperature, and the gate waveform are also defined.  
This rating must be followed when high repetitive peak currents  
are employed, such as in pulse modulators, capacitive-discharge  
circuits, and other applications where snubbers are required.  
D
θJC  
where TJ(max) is the maximum rated junction temperature (at  
zero rated current), TC is the actual operating case temperature,  
and RθJC is the published junction-to-case thermal resistance.  
Transient thermal resistance curves are required for short inter-  
val pulses.  
Triac  
The limiting factor for RMS current is determined by multiplying  
power dissipation by thermal resistance. The resulting current  
value will ensure an operating junction temperature within maxi-  
mum value. For convenience, dissipation is converted to RMS  
current at a 360° conduction angle. The same RMS current can  
be used at a conduction angle of less than 360°. For information  
on non-sinusoidal waveshapes and a discussion of dissipation,  
refer to the preceding description of SCR current rating.  
di/dt: Rate-of-change of On-state Current — SCR and Triac  
The di/dt rating specifies the maximum rate-of-rise of current  
through a thyristor device during turn-on. The value of principal  
voltage prior to turn-on and the magnitude and rise time of the  
gate trigger waveform during turn-on are among the conditions  
under which the rating applies. If the rate-of-change of current  
(di/dt) exceeds this maximum value, or if turn-on with high di/dt  
during minimum gate drive occurs (such as dv/dt or overvoltage  
events), then localized heating may cause device degradation.  
During the first few microseconds of initial turn-on, the effect of  
di/dt is more pronounced. The di/dt capability of the thyristor is  
greatly increased as soon as the total area of the pellet is in full  
conduction.  
The di/dt effects that can occur as a result of voltage or transient  
turn-on (non-gated) is not related to this rating. The di/dt rating is  
specified for maximum junction temperature.  
As shown in Figure AN1008.4, the di/dt of a surge current can be  
calculated by means of the following equation.  
ITSM: Peak Surge (Non-repetitive) On-state  
Current — SCR and Triac  
The peak surge current is the maximum peak current that may be  
applied to the device for one full cycle of conduction without  
device degradation. The maximum peak current is usually speci-  
fied as sinusoidal at 50 Hz or 60 Hz. This rating applies when the  
device is conducting rated current before the surge and, thus,  
with the junction temperature at rated values before the surge.  
The junction temperature will surpass the rated operating tem-  
perature during the surge, and the blocking capacity may be  
decreased until the device reverts to thermal equilibrium.  
The surge-current curve in Figure AN1008.3 illustrates the peak  
current that may be applied as a function of surge duration. This  
surge curve is not intended to depict an exponential current  
decay as a function of applied overload. Instead, the peak current  
shown for a given number of cycles is the maximum peak surge  
permitted for that time period. The current must be derated so  
that the peak junction temperature during the surge overload  
does not exceed maximum rated junction temperature if blocking  
is to be retained after a surge.  
π(I  
)
di  
TM  
t
---- = -----------------  
dt  
As an example, surge current of 400 A at 60 Hz has a di/dt of  
π400/8.3 or 151.4 A/ms.  
http://www.teccor.com  
+1 972-580-7777  
AN1008 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1008  
IDRM: Peak Repetitive Off-state (Blocking) Current  
SCR  
I
di/dt  
I
DRM is the maximum leakage current permitted through the SCR  
ITM  
when the device is forward biased with rated positive voltage on  
the anode (DC or instantaneous) at rated junction temperature  
and with the gate open or gate resistance termination. A 1000 Ω  
resistor connected between gate and cathode is required on all  
sensitive SCRs. Leakage current decreases with decreasing  
junction temperatures. Effects of the off-state leakage currents  
on the load and other circuitry must be considered for each cir-  
cuit application. Leakage currents can usually be ignored in  
applications that control high power.  
t = 8.3 ms for 60 Hz  
10 ms for 50 Hz  
(ITM  
t
)
di  
dt  
=
Time  
0
t
Relationship of Maximum Current Rating to Time  
Figure AN1008.4  
Triac  
I2t Rating — SCR and Triac  
The description of peak off-state (blocking/leakage) current for  
the triac is the same as for the SCR except that it applies with  
either positive or negative bias on main terminal 2.  
(Figure AN1008.2)  
The I2t rating gives an indication of the energy-absorbing capabil-  
ity of the thyristor device during surge-overload conditions. 2The  
rating is the product of the square of the RMS current (IRMS) that  
flows through the device and the time during which the current is  
present and is expressed in A2s. This rating is given for fuse  
selection purposes. It is important that the I2t rating of the fuse is  
less than that of the thyristor device. Without proper fuse or cur-  
rent limit, overload or surge current will permanently damage the  
device due to excessive junction heating.  
IRRM: Peak Repetitive Reverse Current — SCR  
This characteristic is essentially the same as the peak forward  
off-state (blocking/leakage) current except negative voltage  
is applied to the anode (reverse biased).  
VTM: Peak On-State Voltage — SCR and Triac  
PG: Gate Power Dissipation — SCR and Triac  
The instantaneous on-state voltage (forward drop) is the  
principal voltage at a specified instantaneous current and  
case temperature when the thyristor is in the conducting state.  
To prevent heating of the junction, this characteristic is mea-  
sured with a short current pulse. The current pulse should be  
at least 100 µs duration to ensure the device is in full conduc-  
tion. The forward-drop characteristic determines the on-state  
dissipation. See Figure AN1008.5, and refer to “IT: Current  
Rating” on page AN1008-2.  
Gate power dissipation ratings define both the peak power (PGM  
forward or reverse and the average power (PG(AV)) that may be  
)
applied to the gate. Damage to the gate can occur if these ratings  
are not observed. The width of the applied gate pulses must be  
considered in calculating the voltage and current allowed since  
the peak power allowed is a function of time. The peak power  
that results from a given signal source relies on the gate charac-  
teristics of the specific unit. The average power resulting from  
high peak powers must not exceed the average-power rating.  
TS, TJ: Temperature Range — SCR and Triac  
90  
80  
The maximum storage temperature (TS) is greater than the maxi-  
mum operating temperature (actually maximum junction temper-  
ature). Maximum storage temperature is restricted by material  
limits defined not so much by the silicon but by peripheral materi-  
als such as solders used on the chip/die and lead attachments as  
well as the encapsulating epoxy. The forward and off-state block-  
ing capability of the device determines the maximum junction (TJ)  
temperature. Maximum blocking voltage and leakage current rat-  
ings are established at elevated temperatures near maximum  
junction temperature; therefore, operation in excess of these lim-  
its may result in unreliable operation of the thyristor.  
=
T
C
25 ˚C  
70  
60  
50  
40  
30  
20  
10  
0
40 A TO-218  
15 and 25 A TO-220  
1.2 1.4 1.6 1.8  
Characteristics  
0
0.6  
0.8  
1.0  
Positive or Negative  
Instantaneous On-state Voltage (v ) – Volts  
VBO: Instantaneous Breakover Voltage — SCR and Triac  
T
Breakover voltage is the voltage at which a device turns on  
(switches to on state by voltage breakover). (Figure AN1008.1)  
This value applies for open-gate or gate-resistance termination.  
Positive gate bias lowers the breakover voltage. Breakover is  
temperature sensitive and will occur at a higher voltage if the  
Figure AN1008.5  
On-state Current versus On-state Voltage (Typical)  
junction temperature is kept below maximum T value. If SCRs  
J
and triacs are turned on as a result of an excess of breakover  
voltage, instantaneous power dissipations may be produced that  
can damage the chip or die.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1008 - 3  
http://www.teccor.com  
+1 972-580-7777  
AN1008  
Application Notes  
IGT: DC Gate Trigger Current  
SCR  
VGT: DC Gate Trigger Voltage  
SCR  
I
GT is the minimum DC gate current required to cause the thyris-  
VGT is the DC gate-cathode voltage that is present just prior to  
tor to switch from the non-conducting to the conducting state for  
a specified load voltage and current as well as case temperature.  
The characteristic curve illustrated in Figure AN1008.6 shows  
that trigger current is temperature dependent. The thyristor  
becomes less sensitive (requires more gate current) with  
decreasing junction temperatures. The gate current should be  
increased by a factor of two to five times the minimum threshold  
DC trigger current for best operation. Where fast turn-on is  
demanded and high di/dt is present or low temperatures are  
expected, the gate pulse may be 10 times the minimum IGT, plus  
it must be fast-rising and of sufficient duration in order to properly  
turn on the thyristor.  
triggering when the gate current equals the DC trigger current. As  
shown in the characteristic curve in Figure AN1008.8, the gate  
trigger voltage is higher at lower temperatures. The gate-cathode  
voltage drop can be higher than the DC trigger level if the gate is  
driven by a current higher than the trigger current.  
Triac  
The difference in VGT for the SCR and the triac is that the triac  
can be fired in four possible modes. The threshold trigger voltage  
can be slightly different, depending on which of the four operating  
modes is actually used.  
2.0  
1.5  
1.0  
.5  
4.0  
3.0  
2.0  
1.0  
0
0
-65  
-40  
-15  
+25  
+65  
+125  
-65  
-40  
-15  
+25  
+65  
+125  
Case Temperature (TC) – ˚C  
Case Temperature (T ) – ˚C  
C
Figure AN1008.6  
Normalized DC Gate Trigger Current for All  
Quadrants versus Case Temperature  
Figure AN1008.8  
Normalized DC Gate Trigger Voltage for All  
Quadrants versus Case Temperature  
Triac  
IL: Latching Current  
SCR  
Latching current is the DC anode current above which the gate  
signal can be withdrawn and the device stays on. It is related to,  
has the same temperature dependence as, and is somewhat  
greater than the DC gate trigger current. (Figure AN1008.1 and  
Figure AN1008.2) Latching current is at least equal to or much  
greater than the holding current, depending on the thyristor type.  
The description for the SCR applies as well to the triac with the  
addition that the triac can be fired in four possible modes (Figure  
AN1008.7):  
Quadrant I (main terminal 2 positive, gate positive)  
Quadrant II (main terminal 2 positive, gate negative)  
Quadrant III (main terminal 2 negative, gate negative)  
Quadrant IV (main terminal 2 negative, gate positive)  
ALL POLARITIES ARE REFERENCED TO MT1  
Latching current is greater for fast-rise-time anode currents since  
not all of the chip/die is in conduction. It is this dynamic latching  
current that determines whether a device will stay on when the  
gate signal is replaced with very short gate pulses. The dynamic  
latching current varies with the magnitude of the gate drive cur-  
rent and pulse duration. In some circuits, the anode current may  
oscillate and drop back below the holding level or may even go  
negative; hence, the unit may turn off and not latch if the gate sig-  
nal is removed too quickly.  
MT2 POSITIVE  
(Positive Half Cycle)  
MT2  
MT2  
+
(-)  
IGT  
GATE  
(+)  
IGT  
GATE  
MT1  
MT1  
REF  
MT2  
REF  
MT2  
QII QI  
QIII QIV  
IGT  
-
+ IGT  
(-)  
IGT  
GATE  
Triac  
(+)  
I
GT  
GATE  
The description of this characteristic for the triac is the same as  
for the SCR, with the addition that the triac can be latched on in  
four possible modes (quadrants). Also, the required latching is  
significantly different depending on which gating quadrants are  
used. Figure AN1008.9 illustrates typical latching current require-  
ments for the four possible quadrants of operation.  
MT1  
REF  
MT1  
REF  
-
MT2 NEGATIVE  
(Negative Half Cycle)  
NOTE: Alternistors will not operate in Q IV  
Figure AN1008.7  
Definition of Operating Quadrants  
http://www.teccor.com  
+1 972-580-7777  
AN1008 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1008  
dv/dt, Static: Critical Rate-of-rise of Off-state Voltage —  
SCR and Triac  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
Static dv/dt is the minimum rate-of-rise of off-state voltage that  
a device will hold off, with gate open, without turning on.  
Figure AN1008.11 illustrates the exponential definition. This  
value will be reduced by a positive gate signal. This charac-  
teristic is temperature-dependent and is lowest at the maxi-  
mum-rated junction temperature. Therefore, the characteristic  
is determined at rated junction temperature and at rated  
forward off-state voltage which is also a worst-case situation.  
Line or other transients which might be applied to the thyristor  
in the off state must be reduced, so that neither the rate-of-  
rise nor the peak voltage are above specifications if false firing  
is to be prevented. Turn-on as result of dv/dt is non-destructive  
as long as the follow current remains within current ratings of  
the device being used.  
II  
IV  
I
III  
1.0  
Critical dv/dt  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
IGT — mA  
Figure AN1008.9  
Typical Triac Latching (I ) Requirements for Four  
L
Quadrants versus Gate Current (I  
)
GT  
V
D
IH: Holding Current — SCR and Triac  
63% of V  
D
The holding current is the DC principal on-state current below  
which the device will not stay in regeneration/on state after latch-  
ing and gate signal is removed. This current is equal to or lower  
in value than the latching current (Figure AN1008.1 and Figure  
AN1008.2) and is related to and has the same temperature  
dependence as the DC gate trigger current shown in Figure  
AN1008.10. Both minimum and maximum holding current may be  
important. If the device is to stay in conduction at low-anode cur-  
rents, the maximum holding current of a device for a given circuit  
must be considered. The minimum holding current of a device  
must be considered if the device is expected to turn off at a low  
DC anode current. Note that the low DC principal current condi-  
tion is a DC turn-off mode, and that an initial on-state current  
(latching current) is required to ensure that the thyristor has been  
fully turned on prior to a holding current measurement.  
0
t
V
dv  
dt  
D
= 0.63  
t = RC  
t
Figure AN1008.11 Exponential Rate-of-rise of Off-state Voltage  
Defining dv/dt  
dv/dt, Commutating: Critical Rate-of-rise of  
Commutation Voltage — Triac  
Commutating dv/dt is the rate-of-rise of voltage across the main  
terminals that a triac can support (block without switching back  
on) when commutating from the on state in one half cycle to the  
off state in the opposite half cycle. This parameter is specified at  
maximum rated case temperature (equal to TJ) since it is temper-  
ature-dependent. It is also dependent on current (commutating  
di/dt) and peak reapplied voltage (line voltage) and is specified at  
rated current and voltage. All devices are guaranteed to commu-  
tate rated current with a resistive load at 50 Hz to 60 Hz. Com-  
mutation of rated current is not guaranteed at higher frequencies,  
and no direct relationship can be made with regard to current/  
temperature derating for higher-frequency operation. With induc-  
tive loading, when the voltage is out of phase with the load cur-  
rent, a voltage stress (dv/dt) occurs across the main terminals of  
the triac during the zero-current crossing. (Figure AN1008.12) A  
snubber (series RC across the triac) should be used with induc-  
tive loads to decrease the applied dv/dt to an amount below the  
minimum value which the triac can be guaranteed to commutate  
off each half cycle.  
4.0  
-
INITIAL ON STATE CURRENT  
= 400 mA dc  
3.0  
2.0  
1.0  
0
-65  
-40  
-15  
+25  
+65  
+125  
Case Temperature (T ) – ˚C  
C
Figure AN1008.10 Normalized DC Holding Current versus  
Case Temperature  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1008 - 5  
http://www.teccor.com  
+1 972-580-7777  
AN1008  
Application Notes  
Commutating dv/dt is specified for a half sinewave current at  
60 Hz which fixes the di/dt of the commutating current. The com-  
mutating di/dt for 50 Hz is approximately 20% lower while IRMS  
rating remains the same. (Figure AN1008.4)  
tq: Circuit-commutated Turn-off Time — SCR  
The circuit-commutated turn-off time of the device is the time dur-  
ing which the circuit provides reverse bias to the device (negative  
anode) to commutate it off. The turn-off time occurs between the  
time when the anode current goes negative and when the anode  
positive voltage may be reapplied. (Figure AN1008.14) Turn-off  
time is a function of many parameters and very dependent on  
temperature and gate bias during the turn-off interval. Turn-off  
time is lengthened for higher temperature so a high junction tem-  
perature is specified. The gate is open during the turn-off interval.  
Positive bias on the gate will lengthen the turn-off time; negative  
bias on the gate will shorten it.  
E
M
E
SOURCE  
TIME  
IG  
IT  
di/dt  
ITRM  
I
di/dt  
TM  
(di/dt)  
C
50%  
I
Off-State Leakage  
Off-State Voltage  
TM  
I
I
D
50%  
i
Reverse Current  
RM  
R
t
rr  
Voltage across Triac  
V
D
t
10%  
63%  
DRM  
q
V
dv/dt  
T
V
(dv/dt)  
C
t
1
Figure AN1008.12 Waveshapes of Commutating dv/dt and  
Associated Conditions  
tgt: Gate-controlled Turn-on Time — SCR and Triac  
Figure AN1008.14 Waveshapes of t Rating Test and  
q
Associated Conditions  
The tgt is the time interval between the application of a gate pulse  
and the on-state current reaching 90% of its steady-state value.  
(Figure AN1008.13) As would be expected, turn-on time is a  
function of gate drive. Shorter turn-on times occur for increased  
gate drives. This turn-on time is actually only valid for resistive  
loading. For example, inductive loading would restrict the rate-of-  
rise of anode current. For this reason, this parameter does not  
indicate the time that must be allowed for the device to stay on if  
the gate signal is removed. (Refer to the description of “IL: Latch-  
ing Current” on page AN1008-4.) However, if the load was resis-  
tive and equal to the rated load current value, the device  
R
θJC, RθJA: Thermal Resistance (Junction-to-case,  
Junction-to-ambient) — SCR and Triac  
The thermal-resistance characteristic defines the steady-state  
temperature difference between two points at a given rate of  
heat-energy transfer (dissipation) between the points. The ther-  
mal-resistance system is an analog to an electrical circuit where  
thermal resistance is equivalent to electrical resistance, tempera-  
ture difference is equivalent to voltage difference, and rate of  
heat-energy transfer (dissipation) is equivalent to current. Dissi-  
pation is represented by a constant current generator since gen-  
erated heat must flow (steady-state) no matter what the  
resistance in its path. Junction-to-case thermal resistance estab-  
lishes the maximum case temperature at maximum rated steady-  
state current. The case temperature must be held to the maxi-  
mum at maximum ambient temperature when the device is oper-  
ating at rated current. Junction-to-ambient thermal resistance is  
established at a lower steady-state current, where the device is in  
free air with only the external heat sinking offered by the device  
package itself. For RθJA, power dissipation is limited by what the  
device package can dissipate in free air without any additional  
heat sink:  
definitely would be operating at a current above the dynamic  
latching current in the turn-on time interval since current through  
the device is at 90% of its peak value during this interval.  
90%  
Off-state Voltage  
10%  
90%  
On-state Current  
10%  
Delay  
Time  
Rise  
Time  
T
P
T
C
J
RθJC = ---------------------  
Gate  
Turn-on  
(AV)  
Trigger  
Pulse  
Time  
T
P
T
J
A
50%  
50%  
RθJA = --------------------  
10%  
(AV)  
Gate Pulse Width  
Figure AN1008.13 Waveshapes for Turn-on Time and  
Associated Conditions  
http://www.teccor.com  
+1 972-580-7777  
AN1008 - 6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1009  
9
Miscellaneous Design Tips and Facts  
Introduction  
dv/dt Definitions  
The rate-of-rise of voltage (dv/dt) of an exponential waveform is  
63% of peak voltage (excluding any overshoots) divided by the  
time at 63% minus 10% peak voltage. (Figure AN1009.2)  
This application note presents design tips and facts on the follow-  
ing topics:  
Relationship of IAV, IRMS, and IPK  
dv/dt Definitions  
Examples of gate terminations  
Curves for Average Current at Various Conduction Angles  
Double-exponential Impulse Waveform  
Failure Modes of Thyristor  
Exponential dv/dt = 0.63 [V ] = (t t )  
PK  
2
1
Resistor Capacitor circuit t = RC = (t t )  
2
1
Resistor Capacitor circuit 4 RC = (t t )  
3
2
Characteristics Formulas for Phase Control Circuits  
(Peak Value)  
100%  
63%  
Relationship of IAV, IRMS, and IPK  
Since a single rectifier or SCR passes current in one direction  
only, it conducts for only half of each cycle of an AC sinewave.  
The average current (IAV) then becomes half of the value deter-  
mined for full-cycle conduction, and the RMS current (IRMS) is  
equal to the square root of half the mean-square value for full-  
cycle conduction or half the peak current (IPK). In terms of half-  
cycle sinewave conduction (as in a single-phase half-wave cir-  
cuit), the relationships of the rectifier currents can be shown as  
follows:  
Numerical dv/dt  
10%  
0%  
t
t
Time  
t
0
2
t
3
1
I
I
I
I
I
I
PK = π IAV = 3.14 IAV  
AV = (1) IPK = 0.32 IPK  
PK = 2 IRMS  
Figure AN1009.2  
Exponential dv/dt Waveform  
The rate-of-rise of voltage (dv/dt) of a linear waveform is 80% of  
peak voltage (excluding any overshoots) divided by the time at  
90% minus 10% peak voltage. (Figure AN1009.3)  
RMS = 0.5 IPK  
AV = (2) IRMS = 0.64 IRMS  
RMS = /2) IAV = 1.57 IAV  
Linear dv/dt = 0.8 [V ] = (t t )  
PK  
2
1
When two identically rated SCRs are connected inverse parallel  
for full-wave operation, as shown in Figure AN1009.1, they can  
handle 1.41 times the RMS current rating of either single SCR.  
Therefore, the RMS value of two half sinewave current pulses in  
one cycle is 2 times the RMS value of one such pulse per cycle.  
Linear dv/dt = [0.9 V 0.1 V ] = (t t )  
PK  
PK  
2
1
90%  
10%  
0%  
t
Time  
t
t
0
2
1
Figure AN1009.1  
SCR Anti-parallel Circuit  
Figure AN1009.3  
Linear dv/dt Waveform  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1009 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1009  
Application Notes  
Primary Purpose — Decrease threshold  
Examples of Gate Terminations  
sensitivity  
Primary Purpose  
(1) Increase dv/dt capability  
(2) Keep gate clamped to ensure VDRM  
capability  
Related Effects  
(1) Affects gate signal rise time and di/dt  
Zener  
optional  
rating  
(2) Isolates the gate  
(3) Lower tq time  
Related Effect — Raises the device latching  
Primary Purpose — Isolate gate circuit DC  
and holding current  
component  
Related Effects — In narrow gate pulses  
and low impedance sources, Igt followed by  
reverse gate signals which may inhibit con-  
duction  
Primary Purpose  
(1) Increase dv/dt capability  
(2) Remove high frequency noise  
Related Effects  
(1) Increases delay time  
(2) Increases turn-on interval  
(3) Lowers gate signal rise time  
(4) Lowers di/dt capability  
(5) Increases tq time  
Curves for Average Current at Various  
Conduction Angles  
SCR maximum average current curves for various conduction  
angles can be established using the factors for maximum aver-  
age current at conduction angle of:  
30° = 0.40 x Avg 180°  
60° = 0.56 x Avg 180°  
90° = 0.70 x Avg 180°  
120° = 0.84 x Avg 180°  
Primary Purpose  
(1) Decrease DC gate sensitivity  
(2) Decrease tq time  
The reason for different ratings is that the average current for  
conduction angles less than 180° is derated because of the  
higher RMS current connected with high peak currents.  
Note that maximum allowable case temperature (TC) remains the  
same for each conduction angle curve but is established from  
average current rating at 180° conduction as given in the data  
sheet for any particular device type. The maximum TC curve is  
then derated down to the maximum junction (TJ). The curves  
illustrated in Figure AN1009.4 are derated to 125 °C since the  
maximum TJ for the non-sensitive SCR series is 125 °C.  
Related Effects  
(1) Negative gate current increases holding  
current and causes gate area to drop out of  
conduction  
(2) In pulse gating gate signal tail may  
cause device to drop out of conduction  
Primary Purpose — Select frequency  
Related Effects — Unless circuit is  
“damped,” positive and negative gate current  
may inhibit conduction or bring about spo-  
radic anode current  
125  
Current: Halfwave Sinusoidal  
Load: Resistive or Inductive  
Conduction Angle: As Given Below  
Case Temperature: Measured as  
Shown on Dimensional Drawings  
120  
115  
110  
105  
Primary Purpose  
Conduction Angle  
(1) Supply reverse bias in off period  
100  
(2) Protect gate and gate supply for reverse  
95  
90  
85  
80  
transients  
(3) Lower tq time  
Related Effects — Isolates the gate if high  
impedance signal source is used without  
sustained diode current in the negative cycle  
5.1  
7.2  
10.8 12.8  
10 12  
0
2
4
6
8
14  
16  
Average On-state Current [IT(AV)] – Amps  
Figure AN1009.4  
Typical Curves for Average On-state Current at  
Various Conduction Angles versus TC for a  
SXX20L SCR  
http://www.teccor.com  
+1 972-580-7777  
AN1009 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1009  
Degradation Failures  
Double-exponential Impulse Waveform  
A significant change of on-state, gate, or switching characteris-  
tics is quite rare. The most vulnerable characteristic is blocking  
voltage. This type of degradation increases with rising operating  
voltage and temperature levels.  
A double-exponential impulse waveform or waveshape of current  
or voltage is designated by a combination of two numbers (tr/td or  
tr x td µs). The first number is an exponential rise time (tr) or wave  
front and the second number is an exponential decay time (td) or  
wave tail. The rise time (tr) is the maximum rise time permitted.  
The decay time (td) is the minimum time permitted. Both the tr and  
the td are in the same units of time, typically microseconds, des-  
ignated at the end of the waveform description as defined by  
ANSI/IEEE C62.1-1989.  
Catastrophic Failures  
A catastrophic failure can occur whenever the thyristor is oper-  
ated beyond its published ratings. The most common failure  
mode is an electrical short between the main terminals, although  
a triac can fail in a half-wave condition. It is possible, but not  
probable, that the resulting short-circuit current could melt the  
internal parts of the device which could result in an open circuit.  
The rise time (tr) of a current waveform is 1.25 times the time for  
the current to increase from 10% to 90% of peak value. See Fig-  
ure AN1009.5.  
tr = Rise Time = 1.25 [tc – ta]  
tr = 1.25 [t(0.9 IPK) – t(0.1 IPK)] = T1 – T0  
Failure Causes  
Most thyristor failures occur due to exceeding the maximum  
operating ratings of the device. Overvoltage or overcurrent oper-  
ations are the most probable cause for failure. Overvoltage fail-  
ures may be due to excessive voltage transients or may also  
occur if inadequate cooling allows the operating temperature to  
rise above the maximum allowable junction temperature. Over-  
current failures are generally caused by improper fusing or circuit  
protection, surge current from load initiation, load abuse, or load  
failure. Another common cause of device failure is incorrect han-  
dling procedures used in the manufacturing process. Mechanical  
damage in the form of excessive mounting torque and/or force  
applied to the terminals or leads can transmit stresses to the  
internal thyristor chip and cause cracks in the chip which may not  
show up until the device is thermally cycled.  
The rise time (tr) of a voltage waveform is 1.67 times the time for  
the voltage to increase from 30% to 90% of peak value. (Figure  
AN1009.5)  
t = Rise Time = 1.67 [tc – t ]  
t = 1.67 [t(0.9 VPK) – t(0.3bVPK)] = T1 – T0  
r
r
The decay time (td) of a waveform is the time from virtual zero  
(10% of peak for current or 30% of peak for voltage) to the time  
at which one-half (50%) of the peak value is reached on the wave  
tail. (Figure AN1009.5)  
Current Waveform td = Decay Time  
= [t(0.5 IPK) – t(0.1 IPK)] = T2 – T0  
Voltage Waveform td = Decay Time  
= [t(0.5 VPK) – t(0.3 VPK)] = T2 – T0  
Prevention of Failures  
Careful selection of the correct device for the application’s oper-  
ating parameters and environment will go a long way toward  
extending the operating life of the thyristor. Good design practice  
should also limit the maximum current through the main terminals  
to 75% of the device rating. Correct mounting and forming of the  
leads also help ensure against infant mortality and latent failures.  
The two best ways to ensure long life of a thyristor is by proper  
heat sink methods and correct voltage rating selection for worst  
case conditions. Overheating, overvoltage, and surge currents  
are the main killers of semiconductors.  
t
-
Decay = e  
Virtual Start of Wavefront  
1.44 T  
2
(Peak Value)  
100%  
90%  
50%  
30%  
Most Common Thyristor Failure Mode  
When a thyristor is electrically or physically abused and fails either  
by degradation or a catastrophic means, it will short (full-wave or  
half-wave) as its normal failure mode. Rarely does it fail open  
circuit. The circuit designer should add line breaks, fuses, over-  
temperature interrupters or whatever is necessary to protect the  
end user and property if a shorted or partially shorted thyristor  
offers a safety hazard.  
10%  
0%  
T
t
t
t
T
T
2
0
a
b
c
1
Time  
Figure AN1009.5  
Double-exponential Impulse Waveform  
Failure Modes of Thyristor  
Thyristor failures may be broadly classified as either degrading  
or catastrophic. A degrading type of failure is defined as a  
change in some characteristic which may or may not cause a cat-  
astrophic failure, but could show up as a latent failure. Cata-  
strophic failure is when a device exhibits a sudden change in  
characteristic that renders it inoperable. To minimize degrading  
and catastrophic failures, devices must be operated within maxi-  
mum ratings at all times.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1009 - 3  
http://www.teccor.com  
+1 972-580-7777  
AN1009  
Application Notes  
Characteristics Formulas for Phase Control Circuits  
Max. Load  
Max. Average Thyristor  
or Rectifier Current  
PRV  
Voltage  
E =Avg.  
d
Circuit  
Name  
Half-wave  
Resistive  
Load  
Max Thyristor  
Voltage  
Load Voltage  
E =RMS  
SCR  
EP  
with Delayed Firing  
Avg. Amps  
Cond. Period  
a
1.4 ERMS  
180  
E
π
E
E
P
P
P
E
E
= -------  
E
= ------- (1 + cosα)  
2π  
-------  
d
a
d
πR  
E
E
1
P
P
π
.
= -------  
E
E
= ---------- π α + -- sin2α  
a
a
 
0
2
2
2
Full-wave  
Bridge  
1.4 ERMS  
1.4 ERMS  
EP  
EP  
180  
180  
2E  
π
E
E
πR  
P
P
π
P
E
= ----------  
E
= ----------(1 + cosα)  
-------  
d
d
2
Full-wave  
AC Switch  
Resistive  
Load  
E
P
E
E
1
P
P
.
E
= -------  
= ---------- π α + -- sin2α  
-------  
a
 
0
1.4  
2
πR  
2π  
NOTE: Angle alpha (α) is in radians.  
EP  
0
R
Load  
E
RMS  
α
Half-wave Resistive Load – Schematic  
Half-wave Resistive Load – Waveform  
L
EP  
Load  
0
E
R
α
Full-wave Bridge – Schematic  
Full-wave Bridge – Waveform  
EP  
0
R
Load  
E
RMS  
α
Full-wave AC Switch Resistive Load – Schematic  
Full-wave AC Switch Resistive Load – Waveform  
http://www.teccor.com  
+1 972-580-7777  
AN1009 - 4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1010  
10  
Thyristors for Ignition of Fluorescent Lamps  
Since thyristors (solid state switches) do not mechanically open  
and close, the conventional fluorescent lighting circuit concept  
Introduction  
One of the many applications for Teccor thyristors is in fluores-  
cent lighting. Standard conventional and circular fluorescent  
lamps with filaments can be ignited easily and much more quickly  
by using thyristors instead of the mechanical starter switch, and  
solid state thyristors are more reliable. Thyristors produce a pure  
solid state igniting circuit with no mechanical parts in the fluores-  
cent lamp fixture. Also, because the lamp ignites much faster, the  
life of the fluorescent lamp can be increased since the filaments  
are activated for less time during the ignition. The thyristor igni-  
tion eliminates any audible noise or flashing off and on which  
most mechanical starters possess.  
must be changed in order to use thyristors. In order to ignite  
(strike) a fluorescent lamp, a high voltage spike must be pro-  
duced. The spike needs to be several hundred volts to quickly ini-  
tiate ionization in the fluorescent lamp. A series ballast can only  
produce high voltage if a mechanical switch is used in conjunc-  
tion with it. Therefore, with a thyristor a standard series ballast  
(inductor) is only useful as a current limiter.  
Methods for Producing High Voltage  
The circuits illustrated in Figure AN1010.2 through Figure  
AN1010.5 show various methods for producing high voltage to  
ignite fluorescent lamps using thyristors (solid state switches).  
Note: Due to many considerations in designing a fluorescent fix-  
ture, the illustrated circuits are not necessarily the optimum  
design.  
Standard Fluorescent Circuit  
The standard starter assembly is a glow switch mechanism with  
option small capacitor in parallel. (Figure AN1010.1)  
One 120 V ac circuit consists of triac and diac thyristors with a  
capacitor to ignite the fluorescent lamp. (Figure AN1010.2)  
Starter Assembly  
This circuit allows the 5 µF ac capacitor to be charged and added  
to the peak line voltage, developing close to 300 V peak or 600 V  
peak to peak. This is accomplished by using a triac and diac  
phase control network set to fire near the 90° point of the input  
line. A capacitor-charging network is added to ensure that the  
capacitor is charged immediately, letting tolerances of compo-  
nents or temperature changes in the triac and diac circuit to be  
less critical. By setting the triac and diac phase control to fire at  
near the 90° point of the sinewave, maximum line voltages  
appear across the lamp for ignition. As the triac turns on during  
each half cycle, the filaments are pre-heated and in less than a  
second the lamp is lit. Once the lamp is lit the voltage is clamped  
to approximately 60 V peak across the 15 W to 20 W lamp, and  
the triac and diac circuit no longer functions until the lamp is  
required to be ignited again.  
Line  
Input  
Ballast  
Lamp  
Figure AN1010.1  
Typical Standard Fluorescent Circuit  
The glow switch is made in a small glass bulb containing neon or  
argon gas. Inside the bulb is a U-shaped bimetallic strip and a  
fixed post. When the line input current is applied, the voltage  
between the bimetallic strip and the fixed post is high enough to  
ionize and produce a glow similar to a standard neon lamp. The  
heat from the ionization causes the bimetallic strip to move and  
make contact to the fixed post. At this time the ionization ceases  
and current can flow through and pre-heat the filaments of the  
fluorescent lamp.  
Since ionization (glowing) has ceased, the bimetallic strip begins  
to cool down and in a few seconds opens to start ionization  
(glowing) again. The instant the bimetallic ceases to make con-  
tact (opens), an inductive kick from the ballast produces some  
high voltage spikes 400 V to 600 V, which can ignite (strike) the  
fluorescent lamp. If the lamp fails to ignite or start, the glow  
switch mechanically repeats its igniting cycle over and over until  
the lamp ignites, usually within a few seconds.  
In this concept the ballast (inductor) is able to produce high volt-  
age spikes using a mechanical switch opening and closing, which  
is fairly slow.  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1010 - 1  
http://www.teccor.com  
+1 972-580-7777  
AN1010  
Application Notes  
Ballast  
14 W - 22 W  
5 µF  
400 V  
MT2  
47 k  
220 k  
120 V ac  
Line  
Q401E4  
MT1  
Input  
G
0.047 µF  
50 V  
1N4004  
HT-32  
Lamp  
Optional  
15 W - 20 W  
Charging  
Network  
Figure AN1010.2  
120 V ac Triac/Diac Circuit  
Figure AN1010.3 illustrates a circuit using a sidac (a simpler thy-  
ristor) phase control network to ignite a 120 V ac fluorescent  
lamp. As in the triac/diac circuit, the 5 µF ac capacitor is charged  
and added to the peak line voltage, developing greater than  
200 V peak or 400 V peak to peak. Since the sidac is a voltage  
breakover (VBO) activated device with no gate, a charging net-  
work is essential in this circuit to charge the capacitor above the  
peak of the line in order to break over (turn on) the sidac with a  
BO of 220 V to 250 V.  
As the sidac turns on each half cycle, the filaments are pre-  
heated and in less than 1.5 seconds the lamp is lit. Once the  
lamp is lit, the voltage across it clamps to approximately 60 V  
peak (for a 15 W to 20 W lamp), and the sidac ceases to function  
until the lamp is required to be ignited again.  
V
Ballast  
14 W - 22W  
5 µF  
400 V  
47 k  
120 V ac  
Line  
K2400E  
Sidac  
Input  
1N4004  
Lamp  
15 W - 20W  
Optional  
Charging  
Network  
Figure AN1010.3  
120 V ac Sidac Circuit  
The circuits illustrated in Figure AN1010.2 and Figure AN1010.3  
use 15 W to 20 W lamps. The same basic circuits can be applied  
to higher wattage lamps. However, with higher wattage lamps the  
voltage developed to fire (light) the lamp will need to be some-  
what higher. For instance, a 40 W lamp is critical on line input  
voltage to ignite, and after it is lit the voltage across the lamp will  
clamp to approximately 130 V peak. For a given type of lamp, the  
current must be limited to constant current regardless of the watt-  
age of the lamp.  
Figure AN1010.4 shows a circuit for igniting a fluorescent lamp  
with 240 V line voltage input using triac and diac networks.  
http://www.teccor.com  
+1 972-580-7777  
AN1010 - 2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Application Notes  
AN1010  
Ballast  
3.3 µF  
MT2  
MT1  
470 k  
47 k  
240 V ac  
Line  
Input  
Q601E4  
G
0.047 µF  
50 V  
1N4004  
HT-32  
Lamp  
40 W  
Optional  
Charging  
Network  
Figure AN1010.4  
240 V ac Triac/Diac Circuit  
Figure AN1010.5 illustrates a circuit using a sidac phase control  
network to ignite a 240 V ac fluorescent lamp. This circuit works  
basically the same as the 120 V circuit shown in Figure  
pensate for higher voltage. The one major change is that two  
K2400E devices in series are used to accomplish high firing volt-  
age for a fluorescent lamp.  
AN1010.3, except that component values are changed to com-  
Ballast  
3.3 µF  
K2400E  
Sidac  
47 k  
240 V ac  
Line  
Input  
K2400E  
Sidac  
1N4004  
Lamp  
40 W  
Optional  
Charging  
Network  
Figure AN1010.5  
240 V ac Sidac Circuit  
©2002 Teccor Electronics  
Thyristor Product Catalog  
AN1010 - 3  
http://www.teccor.com  
+1 972-580-7777  
Notes  
Cross Reference Guide  
Triacs, SCRs, Diacs, Sidacs, and Rectifiers  
(Suggested Teccor Replacements for JEDEC and  
Industry House Numbers)  
1
are exact; only that the replacements will meet the terms of  
How To Use This Guide  
This Cross Reference Guide will help you determine the compet-  
itive products that Teccor supplies on either a DIRECT  
REPLACEMENT or SUGGESTED REPLACEMENT basis.  
Teccor offers replacements for most competitive devices. If you  
do not find a desired competitive product type listed, please con-  
tact the factory for information on recent additions to this list.  
its applicable published written specifications. The pertinent  
Teccor specification sheet should be used as the principle  
tool for actual replacements.)  
Teccor package type  
For additional assistance, contact your nearest Teccor distributor,  
sales representative, or the factory.  
On the following pages, listed in alphanumeric order, you will  
find:  
Competitive product number  
Teccor device part number  
“D” indicating the Direct replacement (Teccor device meets or  
exceeds the electrical and mechanical specifications of the  
competitive device); “S” indicates a Suggested replacement  
(The suggested replacements in this guide represent the  
nearest Teccor equivalent for the product listed and in most  
instances are replacements. However, Teccor assumes no  
responsibility and does not guarantee that the replacements  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-1  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
2N6237  
2N6238  
2N6239  
2N6240  
2N6241  
2N6342  
2N6342A  
2N6343  
2N6343A  
2N6344  
2N6344A  
2N6345  
2N6345A  
2N6346A  
2N6347A  
2N6348A  
2N6349  
2N6349A  
2N6394  
2N6395  
2N6396  
2N6397  
2N6398  
2N6399  
2N6400  
2N6401  
2N6402  
2N6403  
2N6404  
2N6405  
2N6504  
2N6505  
2N6506  
2N6507  
2N6508  
2N6509  
2N6564  
2N6564  
2N6565  
2N6565  
2N877  
T106B1  
T106B1  
T106B1  
T106D1  
T106M1  
Q2008R4  
Q2012RH5  
Q4008R4  
Q4012RH5  
Q6008R5  
Q6012RH5  
Q8008R5  
Q8012RH5  
Q2015R5  
Q4015R5  
Q6015R5  
Q8010R5  
Q8015R5  
S2012R  
S2012R  
S2012R  
S4012R  
S6012R  
S8012R  
S2016R  
S2016R  
S2016R  
S4016R  
S6016R  
S8016R  
S2025R  
S2025R  
S2025R  
S4025R  
S6025R  
S8025R  
2N6565  
EC103D  
2N6565  
EC103D  
EC103B  
EC103B  
EC103B  
EC103B  
EC103B  
2N5064  
2N5064  
2N5064  
2N5064  
2N5064  
T106B1  
T106B1  
T106B1  
T106D1  
T106M1  
T106M1  
S8035K  
T106D2  
S8035K  
S2008R  
S2008R  
S2008R  
S4008R  
S6008R  
S6008R  
Q2004F41  
L2004F81  
Q2004F41  
L2004F81  
Q2004F41  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
D
S
S
S
S
S
S
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
S
D
S
D
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
40431  
03P05M  
03P1M  
Q2006LT  
EC103B  
EC103B  
EC103B  
EC103D  
EC103D  
EC103M  
S8012D  
S
S
S
S
S
S
S
S
D
S
D
D
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-220 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
03P2M  
TO-92 (ISOL)  
03P3M  
TO-92 (ISOL)  
03P4M  
TO-92 (ISOL)  
03P5M  
TO-92 (ISOL)  
10TTS08S  
16TTS08  
16TTS08S  
25TTS08  
25TTS08FP  
25TTS08S  
2N1595  
2N1596  
2N1597  
2N1598  
2N1599  
2N2323  
2N3001  
2N3002  
2N3003  
2N3004  
2N3005  
2N3006  
2N3007  
2N3008  
2N3228  
2N3525  
2N3528  
2N3529  
2N4101  
2N4102  
2N4441  
2N4442  
2N4443  
2N4444  
2N5060  
2N5061  
2N5062  
2N5063  
2N5064  
2N5754  
2N5755  
2N5756  
2N6068  
2N6068A  
2N6068B  
2N6069  
2N6069A  
2N6069B  
2N6070  
2N6070A  
2N6070B  
2N6071  
2N6071A  
2N6071B  
2N6072  
2N6072A  
2N6072B  
2N6073  
2N6073A  
2N6073B  
2N6074  
2N6074A  
2N6074B  
2N6075  
2N6075A  
2N6075B  
2N6236  
TO-252 (SMDT)  
TO-220 (N.ISOL)  
TO-263 (SMT)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-263 (SMT)  
TO-92 (ISOL)  
S8016R  
S8016N  
S8025R  
S8025L  
S8025N  
S201E  
S201E  
TO-92 (ISOL)  
S201E  
TO-92 (ISOL)  
S401E  
TO-92 (ISOL)  
S401E  
TO-92 (ISOL)  
TCR22-4 75  
EC103B  
EC103B  
EC103B  
EC103B  
EC103B  
EC103B  
EC103B  
EC103B  
S2006R  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
S4006R  
S2006F1  
S4006F1  
S6006L  
S6006F1  
S2008R  
S2008R  
S4008R  
S6008R  
TO-92 (ISOL)  
2N5064  
TO-92 (ISOL)  
2N5064  
TO-92 (ISOL)  
TO-92 (ISOL)  
2N5064  
TO-92 (ISOL)  
TO-92 (ISOL)  
2N5064  
TO-92 (ISOL)  
2N878  
TO-92 (ISOL)  
2N5064  
TO-92 (ISOL)  
2N879  
TO-92 (ISOL)  
Q2004F41  
Q2004F41  
Q4004F41  
Q2004F41  
L2004F51  
L2004F31  
Q2004F41  
L2004F51  
L2004F31  
Q2004F41  
L2004F51  
L2004F31  
Q2004F41  
L2004F51  
L2004F31  
Q4004F41  
L4004F51  
L4004F31  
Q4004F41  
L4004F51  
L4004F31  
Q6004F41  
L6004F51  
L6004F31  
Q6004F41  
L6004F51  
L6004F31  
T106B1  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
2N880  
TO-92 (ISOL)  
2N881  
TO-92 (ISOL)  
2N885  
TO-92 (ISOL)  
2N886  
TO-92 (ISOL)  
2N887  
TO-92 (ISOL)  
2N888  
TO-92 (ISOL)  
2N889  
TO-92 (ISOL)  
2P05M  
2P1M  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-218AC (ISOL) "K"  
TO-202 (N.ISOL)  
TO-218AC (ISOL) "K"  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
2P2M  
2P4M  
2P5M  
2P6M  
30TPS08  
3P4J  
40TPS08  
5P05M  
5P1M  
5P2M  
5P4M  
5P5M  
5P6M  
8T04HA  
8T04SH  
8T14HA  
8T14SH  
8T24HA  
http://www.teccor.com  
+1 972-580-7777  
A-2  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
8T24SH  
L2004F81  
Q4004F41  
L4004F81  
Q4004F41  
L4004F81  
Q6004F41  
Q6004F41  
L6004F81  
Q2004F41  
Q4004F41  
Q5004F41  
Q6004F41  
Q2008R5  
Q2008LH4  
Q4008R4  
Q4008LH4  
Q6008R4  
Q6008LH4  
Q6008R5  
Q6008LH4  
Q2010RH5  
Q2010LH5  
Q4010RH5  
Q4010LH5  
Q6010RH5  
Q6010LH5  
Q6010RH5  
Q6010LH5  
Q2012RH5  
Q2012LH5  
Q4012RH5  
Q4012LH5  
Q6012RH5  
Q6012LH5  
Q6012RH5  
Q6012LH5  
Q2015R5  
Q2015L5  
S
D
S
D
S
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-252 (SMT)  
BT136F-600D  
BT136F-600E  
BT136F-600F  
BT136F-600G  
BT136F-800  
BT136F-800F  
BT136F-800G  
BT136S-600D  
BT136S-600E  
BT136S-600F  
BT136X-500  
BT136X-500D  
BT136X-500E  
BT136X-500F  
BT136X-500G  
BT136X-600  
BT136X-600D  
BT136X-600E  
BT136X-600F  
BT136X-600G  
BT136X-800  
BT136X-800F  
BT136X-800G  
BT137-500  
BT137-500D  
BT137-500E  
BT137-500F  
BT137-500G  
BT137-600D  
BT137-600E  
BT137-600G  
BT137-800G  
BT137B-600  
BT137B-600F  
BT137F-500  
BT137F-500D  
BT137F-500E  
BT137F-500F  
BT137F-500G  
BT137F-600D  
BT137F-600E  
BT137F-600G  
BT137F-800G  
BT137S-600E  
BT137X-500  
BT137X-500D  
BT137X-500E  
BT137X-500F  
BT137X-500G  
BT137X-600D  
BT137X-600E  
BT137X-600G  
BT137X-800G  
BT138-500G  
BT138-600G  
BT138-800G  
BT138F-500G  
BT138F-600G  
BT138F-800G  
BT138X-500G  
BT138X-600G  
BT138X-800G  
BT139-500G  
BT139-600G  
BT139-800G  
BT139F-500G  
BT139F-600G  
BT139F-800G  
BT139X-500G  
BT139X-500H  
L6004L6  
L6004L8  
Q6004L4  
Q6004L4  
Q8004L4  
Q8004L4  
Q8004L4  
L6004D5  
L6004D6  
L6004D8  
Q6004L4  
L6004L6  
L6004L8  
Q6004L4  
Q6004L4  
Q6004L4  
L6004L6  
L6004L8  
Q6004L4  
Q6004L4  
Q8004L4  
Q8004L4  
Q8004L4  
Q6008R4  
L6008L6  
L6008L8  
Q6008R4  
Q6008R4  
L6008L6  
L6008L8  
Q6008R5  
Q8008R5  
Q6010N4  
Q6010N4  
Q6008L4  
L6008L6  
L6008L8  
Q6008L4  
Q6008L4  
L6008L6  
L6008L8  
Q6008L5  
Q8008L5  
L6008D8  
Q6008L4  
L6008L6  
L6008L8  
Q6008L4  
Q6008L4  
L6008L6  
L6008L8  
Q6008L5  
Q8008L5  
Q6015R5  
Q6015R5  
Q8015R5  
Q6015L5  
Q6015L5  
Q8015L5  
Q6015L5  
Q6015L5  
Q8015L5  
Q6015R5  
Q6015R5  
Q8015R5  
Q6015L5  
Q6015L5  
Q8015L5  
Q6015L5  
Q6015L6  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-252 (SMT)  
TO-252 (SMT)  
TO-252 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-263 (SMT)  
TO-263 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-252 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
8T34HA  
8T34SH  
8T44HA  
8T44SH  
8T54HA  
8T64HA  
8T64SH  
AC03BGM  
AC03DGM  
AC03EGM  
AC03FGM  
AC08BGM  
AC08BSM  
AC08DGM  
AC08DSM  
AC08EGM  
AC08ESM  
AC08FGM  
AC08FSM  
AC10BGML  
AC10BSM  
AC10DGML  
AC10DSM  
AC10EGML  
AC10ESM  
AC10FGML  
AC10FSM  
AC12BGML  
AC12BSM  
AC12DGML  
AC12DSM  
AC12EGML  
AC12ESM  
AC12FGML  
AC12FSM  
AC16BGM  
AC16BSM  
AC16DGM  
AC16DSM  
AC16EGM  
AC16ESM  
AC16FGM  
AC16FSM  
AC25B1FL  
AC25D1FL  
AC25E1FL  
AC25F1FL  
BCR3AS-12  
BCR3AS-8  
BT131W-600  
BT136-500  
BT136-500D  
BT136-500E  
BT136-500F  
BT136-500G  
BT136-600  
BT136-600D  
BT136-600E  
BT136-600F  
BT136-600G  
BT136-800  
BT136-800F  
BT136-800G  
BT136F-500  
BT136F-500D  
BT136F-500E  
BT136F-500F  
BT136F-500G  
BT136F-600  
Q4015R5  
Q4015L5  
Q6015R5  
Q6015L5  
Q6015R5  
Q6015L5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6006DH3  
Q4006DH3  
L6N3  
TO-252 (SMT)  
SOT223 / COMPAK  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
Q6004F41  
L6004F61  
L6004F81  
Q6004F41  
Q6004F41  
Q6004F41  
L6004F61  
L6004F81  
Q6004F41  
Q6004F41  
Q8004L4  
Q8004L4  
Q8004L4  
Q6004L4  
L6004L6  
L6004L8  
Q6004L4  
Q6004L4  
Q6004L4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-3  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
BT139X-600G  
BT139X-600H  
BT139X-800G  
BT139X-800H  
BT145-500R  
BT145-600R  
BT145-800R  
BT149B  
Q6015L5  
Q6015L6  
Q8015L5  
Q8015L6  
Q6025R  
Q6025R  
Q8025R  
EC103B  
EC103D  
EC103M  
EC103M  
T106M1  
T106M1  
S6004DS2  
S6010R  
S8010R  
S8010R  
S6012D  
S8012D  
S6010L  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
S
S
S
D
D
D
S
D
D
D
D
S
D
D
D
D
S
D
D
D
S
S
D
S
D
D
S
D
D
S
S
S
D
D
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
BTA06-400GP  
BTA06-400S  
BTA06-400SW  
BTA06-400T  
BTA06-400TW  
BTA06-600A  
BTA06-600B  
BTA06-600BW  
BTA06-600C  
BTA06-600CW  
BTA06-600D  
BTA06-600GP  
BTA06-600S  
BTA06-600SW  
BTA06-600T  
BTA06-600TW  
BTA06-700B  
BTA06-700BW  
BTA06-700C  
BTA06-700CW  
BTA06-800B  
BTA06-800BW  
BTA06-800C  
BTA06-800CW  
BTA08-200A  
BTA08-200B  
BTA08-200C  
BTA08-200S  
BTA08-200SW  
BTA08-200TW  
BTA08-400A  
BTA08-400B  
BTA08-400BW  
BTA08-400C  
BTA08-400CW  
BTA08-400S  
BTA08-400SW  
BTA08-400TW  
BTA08-600A  
BTA08-600B  
BTA08-600BW  
BTA08-600C  
BTA08-600CW  
BTA08-600S  
BTA08-600SW  
BTA08-600TW  
BTA08-700B  
BTA08-700BW  
BTA08-700C  
BTA08-700CW  
BTA08-800B  
BTA08-800BW  
BTA08-800C  
BTA08-800CW  
BTA10-200AW  
BTA10-200B  
BTA10-200BW  
BTA10-200C  
BTA10-200CW  
BTA10-400AW  
BTA10-400B  
BTA10-400BW  
BTA10-400C  
BTA10-400CW  
BTA10-400GP  
BTA10-600AW  
BTA10-600B  
BTA10-600BW  
BTA10-600C  
BTA10-600CW  
L4006L6  
L4006L6  
L4006L8  
L4006L5  
L4006L6  
L6006L8  
Q6006L5  
Q6006LH4  
Q6006L5  
Q6006LH4  
L6006L6  
L6006L6  
L6006L6  
L6006L8  
L6006L5  
L6006L6  
Q8006L5  
Q8006LH4  
Q8006L5  
Q7006LH4  
Q8006L5  
Q8006LH4  
Q8006L5  
Q8006LH4  
L2008L8  
Q2008L4  
Q2008L4  
L2008L6  
L2008L8  
L2008L6  
L4008L8  
Q4008L4  
Q4008LH4  
Q4008L4  
Q4008LH4  
L4008L6  
L4008L8  
L4008L6  
L6008L8  
Q6008L5  
Q6008LH4  
Q6008L5  
Q6008LH4  
L6008L6  
L6008L8  
L6008L6  
Q8008L5  
Q8008LH4  
Q8008L5  
Q8008LH4  
Q8008L5  
Q8008LH4  
Q8008L5  
Q8008LH4  
Q2010L5  
Q2010L5  
Q2010LH5  
Q2010L5  
Q2010LH5  
Q4010L5  
Q4010L5  
Q4010LH5  
Q4010L5  
Q4010LH5  
Q4010L4  
Q6010L5  
Q6010L5  
Q6010LH5  
Q6010L5  
Q6010LH5  
S
D
D
S
D
D
S
S
S
S
D
S
D
D
S
D
S
S
D
D
S
S
S
D
D
S
S
D
D
D
D
S
S
S
D
D
D
D
D
S
S
S
D
D
D
D
S
S
S
D
S
S
S
D
S
S
D
S
S
S
S
D
S
S
S
S
S
D
S
S
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
BT149D  
TO-92 (ISOL)  
BT149E  
TO-92 (ISOL)  
TO-92 (ISOL)  
BT149G  
BT150-500R  
BT150-600R  
BT150S-600R  
BT151-500R  
BT151-650R  
BT151-800R  
BT151S-500R  
BT151S-650R  
BT151X-500  
BT151X-650  
BT151X-800  
BT152-400R  
BT152-600R  
BT152-800R  
BT152B-400R  
BT152B-600R  
BT152B-800R  
BT168B  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-252 (SMT)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-252 (SMT)  
TO-252 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-263 (SMT)  
TO-263 (SMT)  
TO-263 (SMT)  
TO-92 (ISOL)  
S8010L  
S8010L  
S4020L  
S6020L  
S8020L  
S4025N  
S6025N  
S8025N  
EC103B  
EC103D  
EC103M  
EC103M  
EC103B  
EC103D  
EC103M  
EC103M  
S6008R  
S6008R  
S8008R  
S6008D  
L2004L8  
L2004L6  
L2004L6  
L2004L6  
L2004L5  
L4004L8  
L4004L6  
L4004L6  
L4004L6  
L4004L5  
L6004L8  
L6004L6  
L6004L6  
L6004L6  
L6004L5  
L2006L8  
Q2006L4  
Q2006L4  
L2006L6  
L2006L6  
L2006L6  
L2006L8  
L2006L5  
L2006L6  
L4006L8  
Q4006L4  
Q4006LH4  
Q4006L4  
Q4006LH4  
L4006L6  
BT168D  
TO-92 (ISOL)  
BT168E  
TO-92 (ISOL)  
BT168G  
TO-92 (ISOL)  
BT169B  
TO-92 (ISOL)  
BT169D  
TO-92 (ISOL)  
BT169E  
TO-92 (ISOL)  
BT169G  
TO-92 (ISOL)  
BT300-500R  
BT300-600R  
BT300-800R  
BT300S-600R  
BTA04-200A  
BTA04-200D  
BTA04-200GP  
BTA04-200S  
BTA04-200T  
BTA04-400A  
BTA04-400D  
BTA04-400GP  
BTA04-400S  
BTA04-400T  
BTA04-600A  
BTA04-600D  
BTA04-600GP  
BTA04-600S  
BTA04-600T  
BTA06-200A  
BTA06-200B  
BTA06-200C  
BTA06-200D  
BTA06-200GP  
BTA06-200S  
BTA06-200SW  
BTA06-200T  
BTA06-200TW  
BTA06-400A  
BTA06-400B  
BTA06-400BW  
BTA06-400C  
BTA06-400CW  
BTA06-400D  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-252 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
http://www.teccor.com  
+1 972-580-7777  
A-4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
BTA10-600GP  
BTA10-700AW  
BTA10-700B  
BTA10-700BW  
BTA10-700C  
BTA10-700CW  
BTA10-800B  
BTA10-800BW  
BTA10-800C  
BTA10-800CW  
BTA12-200AW  
BTA12-200B  
BTA12-200BW  
BTA12-200C  
BTA12-400AW  
BTA12-400B  
BTA12-400BW  
BTA12-400C  
BTA12-400CW  
BTA12-600AW  
BTA12-600B  
BTA12-600BW  
BTA12-600C  
BTA12-600CW  
BTA12-700AW  
BTA12-700B  
BTA12-700BW  
BTA12-700C  
BTA12-700CW  
BTA12-800B  
Q6010L4  
Q8010L5  
Q8010L5  
Q8010LH5  
Q8010L5  
Q8010LH5  
Q8010L5  
Q8010LH5  
Q8010L5  
Q8010LH5  
Q2012LH5  
Q2015L5  
Q4012LH5  
Q2015L5  
Q4012LH5  
Q4015L5  
Q4012LH5  
Q4015L5  
Q4012LH5  
Q6012LH5  
Q6015L5  
Q6012LH5  
Q6015L5  
Q6012LH5  
Q8012LH5  
Q8015L5  
Q8012LH5  
Q8015L5  
Q8012LH5  
Q8015L5  
Q8012LH5  
Q8015L5  
Q8012LH5  
Q2015L5  
Q4015L5  
Q6015L5  
Q8015L5  
Q8015L5  
Q6025R5  
Q6025R5  
Q8025R5  
Q2016LH6  
Q2015L5  
Q2016LH4  
Q2016LH6  
Q2015L5  
Q2016LH4  
Q4016LH4  
Q6016LH6  
Q6015L5  
Q6016LH4  
Q6016LH4  
Q8016LH6  
Q8015L5  
Q8016LH4  
Q8016LH4  
Q8016LH6  
Q8015L5  
Q8016LH4  
Q8016LH4  
Q4025L6  
Q4025L6  
Q6006DH4  
Q6006DH3  
Q6025L6  
Q6025L6  
Q8025L6  
Q8025L6  
Q8025L6  
Q8025L6  
S
S
S
D
S
S
S
D
S
S
D
S
D
S
D
S
D
S
S
D
S
D
S
S
D
S
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
S
S
S
S
S
S
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-252 (SMT)  
TO-252 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
BTA208-600B  
BTA208-800B  
BTA208S-600E  
BTA208S-800C  
BTA208X-600B  
BTA208X-800B  
BTA20C  
Q6008RH4  
Q8008RH4  
Q6008DH3  
Q8008DH4  
Q6008LH4  
Q8008LH4  
Q4006R4  
Q4006R4  
Q6006R4  
Q6006R5  
Q8006R5  
Q6012RH5  
Q8012RH5  
Q6012NH5  
Q8012NH5  
Q6012LH5  
Q8012LH5  
Q6015R6  
Q8015R6  
Q6016NH4  
Q6015L6  
Q8015L6  
Q4008R4  
Q4008R4  
Q6008R4  
Q6008R5  
Q8008R5  
Q6025R6  
Q8025R6  
Q6025NH6  
Q8025NH6  
Q2010R5  
Q4010R5  
Q4010R5  
Q5010R5  
Q6010R5  
Q2015R5  
Q4015R5  
Q4015R5  
Q5015R5  
Q6015R5  
Q6025L6  
Q6025L6  
Q8025L6  
Q8025L6  
Q8025L6  
Q8025L6  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q8025P5  
Q8025P5  
Q8025P5  
Q8025P5  
Q8025P5  
Q8025P5  
Q2025K6  
Q2025K6  
Q4025K6  
Q4025K6  
Q4025K6  
Q4025K6  
Q6025K6  
Q6025K6  
Q6025K6  
S
S
D
D
S
S
D
D
D
D
D
S
S
D
D
S
S
S
S
S
S
S
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-220 (N.ISOL  
TO-220 (N.ISOL  
TO-252 (SMT)  
TO-252 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-263 (SMT)  
BTA20D  
BTA20E  
BTA20M  
BTA20N  
BTA212-600B  
BTA212-800B  
BTA212B-600B  
BTA212B-800B  
BTA212X-600B  
BTA212X-800B  
BTA216-600B  
BTA216-800B  
BTA216B-600  
BTA216X-600B  
BTA216X-800B  
BTA21C  
TO-263 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-263 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-263 (SMT)  
BTA21D  
BTA21E  
BTA21M  
BTA21N  
BTA225-600B  
BTA225-800B  
BTA225B-600B  
BTA225B-800B  
BTA22B  
BTA12-800BW  
BTA12-800C  
BTA12-800CW  
BTA13-200B  
TO-263 (SMT)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
BTA22C  
BTA22D  
BTA13-400B  
BTA22E  
BTA13-600B  
BTA22M  
BTA13-700B  
BTA23B  
BTA13-800B  
BTA23C  
BTA140-500  
BTA23D  
BTA140-600  
BTA23E  
BTA140-800  
BTA23M  
BTA16-200AW  
BTA16-200B  
BTA24-600BW  
BTA24-600CW  
BTA24-700BW  
BTA24-700CW  
BTA24-800BW  
BTA24-800CW  
BTA25-200A  
BTA25-200B  
BTA25-400A  
BTA25-400B  
BTA25-600A  
BTA25-600B  
BTA25-600BW  
BTA25-600CW  
BTA25-700A  
BTA25-700B  
BTA25-800A  
BTA25-800B  
BTA25-800BW  
BTA25-800CW  
BTA26-200A  
BTA26-200B  
BTA26-400A  
BTA26-400B  
BTA26-400BW  
BTA26-400CW  
BTA26-600A  
BTA26-600B  
BTA26-600BW  
BTA16-200BW  
BTA16-400AW  
BTA16-400B  
BTA16-400BW  
BTA16-400CW  
BTA16-600AW  
BTA16-600B  
BTA16-600BW  
BTA16-600CW  
BTA16-700AW  
BTA16-700B  
BTA16-700BW  
BTA16-700CW  
BTA16-800AW  
BTA16-800B  
BTA16-800BW  
BTA16-800CW  
BTA20-400BW  
BTA20-400CW  
BTA204S-600C  
BTA204S-600E  
BTA20-600BW  
BTA20-600CW  
BTA20-700BW  
BTA20-700CW  
BTA20-800BW  
BTA20-800CW  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-5  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
BTA26-600CW  
BTA26-700A  
BTA26-700B  
BTA26-700BW  
BTA26-700CW  
BTA26-800A  
BTA26-800B  
BTA26-800BW  
BTA26-800CW  
BTA40-200A  
BTA40-200B  
BTA40-400A  
BTA40-400B  
BTA40-600A  
BTA40-600B  
BTA40-700A  
BTA40-700B  
BTA41-200A  
BTA41-200B  
BTA41-400A  
BTA41-400B  
BTA41-600A  
BTA41-600B  
BTA41-700A  
BTA41-700B  
BTA41-800A  
BTA41-800B  
BTB04-200A  
BTB04-200D  
BTB04-200S  
BTB04-200T  
BTB04-400A  
BTB04-400D  
BTB04-400S  
BTB04-400T  
BTB04-600A  
BTB04-600D  
BTB04-600S  
BTB04-600T  
BTB06-200A  
BTB06-200B  
BTB06-200C  
BTB06-200D  
BTB06-200S  
BTB06-200T  
BTB06-400A  
BTB06-400B  
BTB06-400BW  
BTB06-400C  
BTB06-400CW  
BTB06-400D  
BTB06-400S  
BTB06-400T  
BTB06-600A  
BTB06-600B  
BTB06-600BW  
BTB06-600C  
BTB06-600CW  
BTB06-600D  
BTB06-600S  
BTB06-600T  
BTB06-700B  
BTB06-700BW  
BTB06-700C  
BTB06-700CW  
BTB06-800B  
BTB06-800BW  
BTB06-800C  
BTB06-800CW  
BTB08-200A  
Q6025K6  
Q8025K6  
Q8025K6  
Q8025K6  
Q8025K6  
Q8025K6  
Q8025K6  
Q8025K6  
Q8025K6  
Q6035P5  
Q6035P5  
Q6035P5  
Q6035P5  
Q6035P5  
Q6035P5  
Q8035P5  
Q8035P5  
Q2040K7  
Q2040K7  
Q4040K7  
Q4040K7  
Q6040K7  
Q6040K7  
Q8040K7  
Q8040K7  
Q8040K7  
Q8040K7  
L2004F81  
L2004F61  
L2004F61  
L2004F51  
L4004F81  
L4004F61  
L4004F61  
L4004F51  
L6004F61  
L6004F61  
L6004F81  
L6004F51  
L2006L8  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
BTB08-200B  
BTB08-200C  
BTB08-200S  
BTB08-400A  
BTB08-400B  
BTB08-400BW  
BTB08-400C  
BTB08-400CW  
BTB08-400S  
BTB08-600A  
BTB08-600B  
BTB08-600BW  
BTB08-600C  
BTB08-600CW  
BTB08-600S  
BTB08-700B  
BTB08-700BW  
BTB08-700C  
BTB08-700CW  
BTB08-800B  
BTB08-800BW  
BTB08-800C  
BTB08-800CW  
BTB10-200B  
BTB10-200C  
BTB10-400B  
BTB10-400BW  
BTB10-400C  
BTB10-400CW  
BTB10-600B  
BTB10-600BW  
BTB10-600C  
BTB10-600CW  
BTB10-700B  
BTB10-700BW  
BTB10-700C  
BTB10-700CW  
BTB10-800B  
BTB10-800BW  
BTB10-800C  
BTB10-800CW  
BTB12-200B  
BTB12-200C  
BTB12-400B  
BTB12-400BW  
BTB12-400C  
BTB12-400CW  
BTB12-400SW  
BTB12-600B  
BTB12-600BW  
BTB12-600C  
BTB12-600CW  
BTB12-600SW  
BTB12-700B  
BTB12-700BW  
BTB12-700C  
BTB12-700CW  
BTB12-700SW  
BTB12-800B  
BTB12-800BW  
BTB12-800C  
BTB12-800CW  
BTB13-200B  
BTB13-400B  
BTB13-600B  
BTB13-700B  
BTB13-800B  
BTB15-200B  
BTB15-400B  
BTB15-600B  
Q2008R4  
Q2008R4  
L2008L6  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
L4008L8  
TO-220 (ISOL)  
Q4008R4  
Q4008RH4  
Q4008R4  
Q4008RH4  
L4008L6  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
L6008L8  
TO-220 (ISOL)  
Q6008R5  
Q6008RH4  
Q6008R5  
Q6008RH4  
L6008L6  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
Q8008R5  
Q8008RH4  
Q8008R5  
Q8008RH4  
Q8008R5  
Q8008RH4  
Q8008R5  
Q8008RH4  
Q2010R5  
Q2010R5  
Q4010R5  
Q4010RH5  
Q4010R5  
Q4010RH5  
Q6010R5  
Q6010RH5  
Q6010R5  
Q6010RH5  
Q8010R5  
Q8010RH5  
Q8010R5  
Q8010RH5  
Q8010R5  
Q8010RH5  
Q8010R5  
Q8010RH5  
Q2015R5  
Q2015R5  
Q4015R5  
Q4012RH5  
Q4015R5  
Q4012RH5  
Q4016RH3  
Q6015R5  
Q6012RH5  
Q6015R5  
Q6012RH5  
Q6016RH3  
Q8015R5  
Q8012RH5  
Q8015R5  
Q8012RH5  
Q8016RH3  
Q8015R5  
Q8012RH5  
Q8015R5  
Q8012RH5  
Q2015R5  
Q4015R5  
Q6015R5  
Q8015R5  
Q8015R5  
Q2015R5  
Q4015R5  
Q6015R5  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
Q2006R4  
Q2006R4  
L2006L6  
L2006L6  
L2006L5  
L4006L8  
Q4006R4  
Q4006RH4  
Q4006R4  
Q4006RH4  
L4006L6  
L4006L6  
L4006L5  
L6006L8  
Q6006R5  
Q6006RH4  
Q6006R5  
Q6006RH4  
L6006L6  
L6006L6  
L6006L5  
Q8006R5  
Q8006RH4  
Q8006R5  
Q8006RH4  
Q8006R5  
Q8006RH4  
Q8006R5  
Q8006RH4  
L2008L8  
http://www.teccor.com  
+1 972-580-7777  
A-6  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
BTB15-700B  
BTB16-200B  
BTB16-400B  
BTB16-400CW  
BTB16-600B  
BTB16-600CW  
BTB16-700B  
BTB16-700CW  
BTB16-800B  
BTB16-800CW  
BTB19-200B  
BTB19-400B  
BTB19-600B  
BTB19-700B  
BTB20-400BW  
BTB20-400CW  
BTB20-600BW  
BTB20-600CW  
BTB20-700BW  
BTB20-700CW  
BTB20-800BW  
BTB20-800CW  
BTB24-200B  
BTB24-400B  
BTB24-600B  
BTB24-600BW  
BTB24-700B  
BTB24-800B  
BTB26-200A  
BTB26-200B  
BTB26-400A  
BTB26-400B  
BTB26-600A  
BTB26-600B  
BTB26-700A  
BTB26-700B  
BTB26-800B  
BTB41-200A  
BTB41-200B  
BTB41-400A  
BTB41-400B  
BTB41-600A  
BTB41-600B  
BTB41-700A  
BTB41-700B  
BTB41-800A  
BTB41-800B  
BTW41-500G  
BTW41-600G  
BTW66-200  
Q8015R5  
Q2015R5  
Q4015R5  
Q4016RH4  
Q6015R5  
Q6016RH4  
Q8015R5  
Q8016RH4  
Q8015R5  
Q8016RH4  
Q2025R5  
Q4025R5  
Q6025R5  
Q8025R5  
Q4025R6  
Q4025R6  
Q6025R6  
Q6025R6  
Q8025R6  
Q8025R6  
Q8025R6  
Q8025R6  
Q2025R5  
Q4025R5  
Q6025R5  
Q6025R6  
Q8025R5  
Q8025R5  
Q2025K6  
Q2025K6  
Q4025K6  
Q4025K6  
Q6025K6  
Q6025K6  
Q8025K6  
Q8025K6  
Q8025K6  
Q2040K7  
Q2040K7  
Q4040K7  
Q4040K7  
Q6040K7  
Q6040K7  
Q8040K7  
Q8040K7  
Q8040K7  
Q8040K7  
Q6035P5  
Q6035P5  
S2035J  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
S
D
S
D
S
D
S
D
D
D
D
D
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (N.ISOL)  
TO-218 (ISOL)  
TO-218 (N.ISOL)  
TO-218 (ISOL)  
BTW69-600N  
BTW69-800  
BTW69-800N  
BTW70-200N  
BTW70-400N  
BTW70-600N  
BYW80-100  
BYW80-150  
BYW80-200  
BYW80-50  
C103A  
S6055M  
S8065K  
S8055M  
S2070W  
S4070W  
S6070W  
D2020L  
D2020L  
D2020L  
D2020L  
EC103B  
EC103B  
EC103D  
EC103M  
EC103M  
EC103B  
EC103B  
T106B1  
T106B1  
T106B11  
T106B12  
T106B2  
T106B21  
T106B3  
T106B32  
T106B4  
T106B41  
T106B1  
T106B1  
T106B11  
T106B12  
T106B2  
T106B21  
T106B3  
T106B32  
T106B4  
T106B41  
T106D  
T106D1  
T106D11  
T106D12  
T106D2  
T106D1  
T106D3  
T106D32  
T106D4  
T106D41  
T106D1  
T106D1  
T106D11  
T106D12  
T106D2  
T106D21  
T106D3  
T106D32  
T106D4  
T106D41  
T106M1  
T106M1  
T106M11  
T106M12  
T106M2  
T106M21  
T106M3  
T106M32  
T106M4  
T106M41  
T106B1  
T106B1  
T106B11  
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-218 (N.ISOL)  
TO-218 (ISOL)  
TO-218 (N.ISOL)  
TO-218 (N.ISOL)  
TO-218 (N.ISOL)  
TO-218 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-92 (ISOL)  
C103B  
TO-92 (ISOL)  
C103D  
TO-92 (ISOL)  
C103E  
TO-92 (ISOL)  
C103M  
TO-92 (ISOL)  
C103Y  
TO-92 (ISOL)  
C103YY  
C106A  
TO-92 (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
C106A1  
C106A11  
C106A12  
C106A2  
C106A21  
C106A3  
C106A32  
C106A4  
C106A41  
C106B  
C106B1  
C106B11  
C106B12  
C106B2  
C106B21  
C106B3  
C106B32  
C106B4  
C106B41  
C106C  
C106C1  
C106C11  
C106C12  
C106C2  
C106C21  
C106C3  
C106C32  
C106C4  
C106C41  
C106D  
C106D1  
C106D11  
C106D12  
C106D2  
C106D21  
C106D3  
C106D32  
C106D4  
C106D41  
C106E  
BTW66-400  
S4035J  
BTW66-600  
S6035J  
BTW66-800  
S8035J  
BTW67-200  
S2065J  
BTW67-400  
S4065J  
BTW67-600  
S6065J  
BTW67-800  
S8065J  
BTW68-200  
S2035K  
BTW68-200N  
BTW68-400  
S2035K  
C106E1  
S4035K  
C106E11  
C106E12  
C106E2  
BTW68-400N  
BTW68-600  
S4035K  
S6035K  
BTW68-600N  
BTW68-800  
S6035K  
C106E21  
C106E3  
S8035K  
BTW68-800N  
BTW69-200  
S8035K  
C106E32  
C106E4  
S2065K  
BTW69-200N  
BTW69-400  
S2055M  
S4065K  
C106E41  
C106F  
BTW69-400N  
BTW69-600  
S4055M  
S6065K  
C106F1  
C106F11  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-7  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
C106F12  
C106F2  
C106F21  
C106F3  
C106F32  
C106F4  
C106F41  
C106M  
C106M1  
C106M11  
C106M12  
C106M2  
C106M21  
C106M3  
C106M32  
C106M4  
C106M41  
C106Q  
C106Q1  
C106Q11  
C106Q12  
C106Q2  
C106Q21  
C106Q3  
C106Q32  
C106Q4  
C106Q41  
C106Y  
C106Y1  
C106Y11  
C106Y12  
C106Y2  
C106Y21  
C106Y3  
C106Y32  
C106Y4  
C106Y41  
C107A  
C107A1  
C107A11  
C107A12  
C107A2  
C107A21  
C107A3  
C107A32  
C107A4  
C107A41  
C107B  
C107B1  
C107B11  
C107B12  
C107B2  
C107B21  
C107B3  
C107B32  
C107B4  
C107B41  
C107C  
T106B12  
T106B2  
T106B21  
T106B3  
T106B32  
T106B4  
T106B41  
T106M1  
T106M1  
T106M11  
T106M12  
T106M2  
T106M21  
T106M3  
T106M32  
T106M4  
T106M41  
T106B1  
T106B1  
T106B11  
T106B12  
T106B2  
T106B21  
T106B3  
T106B32  
T106B4  
T106B41  
T106B1  
T106B1  
T106B11  
T106B12  
T106B2  
T106B21  
T106B3  
T106B32  
T106B4  
T106B41  
T107B1  
T107B1  
T107B11  
T107B12  
T107B2  
T107B21  
T107B3  
T107B32  
T107B4  
T107B41  
T107B1  
T107B1  
T107B11  
T107B12  
T107B2  
T107B21  
T107B3  
T107B32  
T107B4  
T107B41  
T107D1  
T107D1  
T107D11  
T107D12  
T107D2  
T107D21  
T107D3  
T107D32  
T107D4  
T107D41  
T107D1  
T107D1  
T107D11  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
C107D12  
C107D2  
C107D21  
C107D3  
C107D32  
C107D4  
C107D41  
C107E  
C107E1  
C107E11  
C107E12  
C107E2  
C107E21  
C107E3  
C107E32  
C107E4  
C107E41  
C107F  
C107F1  
C107F11  
C107F12  
C107F2  
C107F21  
C107F3  
C107F32  
C107F4  
C107F41  
C107M  
C107M1  
C107M11  
C107M12  
C107M2  
C107M21  
C107M3  
C107M32  
C107M41  
C107Q  
C107Q1  
C107Q11  
C107Q12  
C107Q2  
C107Q21  
C107Q3  
C107Q32  
C107Q4  
C107Q41  
C107Y  
C107Y1  
C107Y11  
C107Y12  
C107Y2  
C107Y21  
C107Y3  
C107Y32  
C107Y4  
C107Y41  
C108A  
C108A1  
C108A11  
C108A12  
C108A2  
C108A21  
C108A3  
C108A32  
C108A4  
C108A41  
C108B  
T107D12  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
T107D2  
T107D21  
T107D3  
T107D32  
T107D4  
T107D41  
T107M1  
T107M1  
T107M11  
T107M12  
T107M2  
T107M21  
T107M3  
T107M32  
T107M4  
T107M41  
T107B1  
T107B1  
T107B11  
T107B12  
T107B2  
T107B21  
T107B3  
T107B32  
T107B4  
T107B41  
T107M1  
T107M1  
T107M11  
T107M12  
T107M2  
T107M21  
T107M3  
T107M32  
T107M41  
T107B1  
T107B1  
T107B11  
T107B12  
T107B2  
T107B21  
T107B3  
T107B32  
T107B4  
T107B41  
T107B1  
T107B1  
T107B11  
T107B12  
T107B2  
T107B21  
T107B3  
T107B32  
T107B4  
T107B41  
S2006FS21  
S2006FS21  
S2006FS211  
S2006FS212  
S2006FS22  
S2006FS221  
S2006FS23  
S2006FS232  
S2006FS24  
S2006FS241  
S2006FS21  
S2006FS21  
S2006FS211  
S2006FS212  
C107C1  
C107C11  
C107C12  
C107C2  
C107C21  
C107C3  
C107C32  
C107C4  
C107C41  
C107D  
C108B1  
C108B11  
C108B12  
C107D1  
C107D11  
http://www.teccor.com  
+1 972-580-7777  
A-8  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
C108B2  
C108B21  
C108B3  
C108B32  
C108B4  
C108B41  
C108C  
C108C1  
C108C11  
C108C12  
C108C2  
C108C21  
C108C3  
C108C32  
C108C4  
C108C41  
C108D  
C108D1  
C108D11  
C108D12  
C108D2  
C108D21  
C108D3  
C108D32  
C108D4  
C108D41  
C108E  
C108E1  
C108E11  
C108E12  
C108E2  
C108E21  
C108E3  
C108E32  
C108E4  
C108E41  
C108F  
C108F1  
C108F11  
C108F12  
C108F2  
C108F21  
C108F3  
C108F32  
C108F4  
C108F41  
C108M  
C108M1  
C108M11  
C108M12  
C108M2  
C108M21  
C108M3  
C108M32  
C108M4  
C108M41  
C108Q  
C108Q1  
C108Q11  
C108Q12  
C108Q2  
C108Q21  
C108Q3  
C108Q32  
C108Q4  
C108Q41  
C108Y  
S2006FS22  
S2006FS221  
S2006FS23  
S2006FS232  
S2006FS24  
S2006FS241  
S4006FS21  
S4006FS21  
S4006FS211  
S4006FS212  
S4006FS22  
S4006FS221  
S4006FS23  
S4006FS232  
S4006FS24  
S4006FS241  
S4006FS21  
S4006FS21  
S4006FS211  
S4006FS212  
S4006FS22  
S4006FS221  
S4006FS23  
S4006FS232  
S4006FS24  
S4006FS241  
S6006FS21  
S6006FS21  
S6006FS211  
S6006FS212  
S6006FS22  
S6006FS221  
S6006FS23  
S6006FS232  
S6006FS24  
S6006FS241  
S2006FS21  
S2006FS21  
S2006FS211  
S2006FS212  
S2006FS22  
S2006FS221  
S2006FS23  
S2006FS232  
S2006FS24  
S2006FS241  
S6006FS21  
S6006FS21  
S6006FS211  
S6006FS212  
S6006FS22  
S6006FS221  
S6006FS23  
S6006FS232  
S6006FS24  
S6006FS241  
S2006FS21  
S2006FS21  
S2006FS211  
S2006FS212  
S2006FS22  
S2006FS221  
S2006FS23  
S2006FS232  
S2006FS24  
S2006FS241  
S2006FS21  
S2006FS21  
S2006FS211  
S2006FS212  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
C108Y2  
C108Y21  
C108Y3  
C108Y32  
C108Y4  
C108Y41  
C116A1  
C116B1  
C116C1  
C116D1  
C116E1  
C116F1  
C116M1  
C122A  
C122B  
C122C  
C122D  
C122E  
C122F  
C122M  
C122N  
C122S  
C123A  
C123B  
C123C  
C123D  
C123E  
C123F  
C123M  
C126A  
C126B  
C126C  
C126D  
C126E  
C126F  
C126M  
C127A  
C127B  
C127D  
C127E  
C127F  
C127M  
C203A  
C203B  
C203C  
C203D  
C203Y  
C203YY  
C205A  
C205B  
C205C  
C205D  
C205Y  
C205YY  
D30  
S2006FS22  
S2006FS221  
S2006FS23  
S2006FS232  
S2006FS24  
S2006FS241  
S2008F1  
S2008F1  
S4008F1  
S4008F1  
S6008F1  
S2008F1  
S6008F1  
S2008R  
S2008R  
S4008R  
S4008R  
S6008R  
S2008R  
S6008R  
S8008R  
S8008R  
S2008L  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
S
S
S
S
S
S
D
D
D
D
D
D
D
D
S
D
S
S
S
D
S
S
S
S
S
S
S
S
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
S2008L  
S4008L  
S4008L  
S6008L  
S2008L  
S6008L  
S2012R  
S2012R  
S4012R  
S4012R  
S6012R  
S2012R  
S6012R  
S2016R  
S2016R  
S4016R  
S6016R  
S2016R  
S6016R  
EC103B  
EC103B  
EC103D  
EC103D  
EC103B  
EC103B  
EC103B  
EC103B  
EC103D  
EC103D  
EC103B  
EC103B  
HT32  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
DO-35 (ISOL)  
D40  
HT40  
DO-35 (ISOL)  
DB3  
HT32  
DO-35 (ISOL)  
DB4  
HT40  
DO-35 (ISOL)  
DC34  
HT32  
DO-35 (ISOL)  
DC38  
HT40  
DO-35 (ISOL)  
DC42  
HT40  
DO-35 (ISOL)  
DO201YR  
HI03SC  
HI03SD  
HI03SG  
HI03SH  
HI03SS  
HI13SC  
HI13SD  
HI13SG  
HT5761  
L2004F31  
L2004F51  
L2004F61  
L2004F81  
L2004F31  
L2004F31  
L2004F51  
L2004F61  
DO-35 (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
C108Y1  
C108Y11  
C108Y12  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-9  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
HI13SH  
HI13SS  
HI23SC  
HI23SD  
HI23SG  
HI23SH  
HI23SS  
HI33SC  
HI33SD  
HI33SG  
HI33SH  
HI33SS  
HI43SC  
HI43SD  
HI43SG  
HI43SH  
HI43SS  
HI63SC  
HI63SD  
HI63SG  
HI63SH  
HI63SS  
HT06  
L2004F81  
L2004F31  
L2004F31  
L2004F51  
L2004F61  
L2004F81  
L2004F31  
L4004F31  
L4004F51  
L4004F61  
L4004F81  
L4004F31  
L4004F31  
L4004F51  
L4004F61  
L4004F81  
L4004F31  
L6004F31  
L6004F51  
L6004F61  
L6004F81  
L6004F31  
Q2006F41  
Q2006F41  
Q2006F41  
Q4006F41  
Q4006F41  
Q6006F41  
EC103B  
EC103B  
EC103B  
EC103B  
EC103B  
EC103D  
EC103D  
2N5064  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
S
D
D
D
D
D
S
D
D
D
D
D
S
D
D
D
D
D
S
D
D
D
D
D
S
D
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-92 (ISOL)  
IS48  
S4008L  
D
D
D
D
S
D
D
D
D
D
S
D
D
D
D
D
D
S
S
D
D
D
S
S
D
D
D
D
D
S
D
D
D
S
S
D
D
D
S
S
D
D
D
D
D
S
D
D
D
S
S
D
D
D
S
S
D
D
D
D
D
S
D
D
D
S
S
D
D
D
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
IS48X  
S4008L  
IS510  
S6010L  
IS510X  
IS520  
S6010L  
S6020L  
IS520X  
IS58  
S6020L  
S6008L  
IS58X  
S6008L  
IS610  
S6010L  
IS610X  
IS620  
S6010L  
S6020L  
IS620X  
IS68  
S6020L  
S6008L  
IS68X  
S6008L  
IT010  
Q2010L5  
Q2010L5  
Q2010L5  
Q2010L5  
Q2010L5  
Q2015L5  
Q2015L5  
Q2015L5  
Q2015L5  
Q2015L5  
Q2006L4  
Q2008L4  
Q2008L4  
Q2008L4  
Q2008L4  
Q2008L4  
Q2010L5  
Q2010L5  
Q2010L5  
Q2010L5  
Q2010L5  
Q2015L5  
Q2015L5  
Q2015L5  
Q2015L5  
Q2015L5  
Q2006L4  
Q2008L4  
Q2008L4  
Q2008L4  
Q2008L4  
Q2008L4  
Q2010L5  
Q2010L5  
Q2010L5  
Q2010L5  
Q2010L5  
Q2015L5  
Q2015L5  
Q2015L5  
Q2015L5  
Q2015L5  
Q2006L4  
Q2008L4  
Q2008L4  
Q2008L4  
Q2008L4  
Q2008L4  
Q4010L5  
Q4010L5  
Q4010L5  
Q4010L5  
Q4010L5  
Q4015L5  
Q4015L5  
Q4015L5  
IT010A  
IT010B  
IT010HA  
IT010HX  
IT015  
IT015A  
IT015B  
IT015HA  
IT015HX  
IT06  
HT16  
HT26  
HT36  
IT08  
HT46  
IT08A  
HT66  
IT08B  
ID100  
IT08HA  
IT08HX  
IT110  
ID101  
TO-92 (ISOL)  
ID102  
TO-92 (ISOL)  
ID103  
TO-92 (ISOL)  
IT110A  
IT110B  
IT110HA  
IT110HX  
IT115  
ID104  
TO-92 (ISOL)  
ID105  
TO-92 (ISOL)  
ID106  
TO-92 (ISOL)  
IP100  
TO-92 (ISOL)  
IP101  
2N5064  
TO-92 (ISOL)  
IT115A  
IT115B  
IT115HA  
IT115HX  
IT16  
IP102  
2N5064  
TO-92 (ISOL)  
IP103  
2N5064  
TO-92 (ISOL)  
IP104  
2N5064  
TO-92 (ISOL)  
IP105  
EC103D  
EC103D  
S2010L  
TO-92 (ISOL)  
IP106  
TO-92 (ISOL)  
IT18  
IS010  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
IT18A  
IS010X  
IS020  
S2010L  
IT18B  
S2020L  
IT18HA  
IT18HX  
IT210  
IS020X  
IS08  
S2020L  
S2008L  
IS08X  
IS110  
S2008L  
IT210A  
IT210B  
IT210HA  
IT210HX  
IT215  
S2010L  
IS110X  
IS120  
S2010L  
S2020L  
IS120X  
IS18  
S2020L  
S2008L  
IT215A  
IT215B  
IT215HA  
IT215HX  
IT26  
IS18X  
IS210  
S2008L  
S2010L  
IS210X  
IS220  
S2010L  
S2020L  
IS220X  
IS28  
S2020L  
IT28  
S2008L  
IT28A  
IS28X  
IS310  
S2008L  
IT28B  
S4010L  
IT28HA  
IT28HX  
IT310  
IS310X  
IS320  
S4010L  
S4020L  
IS320X  
IS38  
S4020L  
IT310A  
IT310B  
IT310HA  
IT310HX  
IT315  
IT315A  
IT315B  
S4008L  
IS38X  
IS410  
S4008L  
S4010L  
IS410X  
IS420  
S4010L  
S4020L  
IS420X  
S4020L  
http://www.teccor.com  
+1 972-580-7777  
A-10  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
IT315HA  
IT315HX  
IT36  
Q4015L5  
Q4015L5  
Q4006L4  
Q4008L4  
Q4008L4  
Q4008L4  
Q4008L4  
Q4008L4  
Q4010L5  
Q4010L5  
Q4010L5  
Q4010L5  
Q4010L5  
Q4015L5  
Q4015L5  
Q4015L5  
Q4015L5  
Q4015L5  
Q4006L4  
Q4008L4  
Q4008L4  
Q4008L4  
Q4008L4  
Q4008L4  
Q6010L5  
Q6010L5  
Q6010L5  
Q6010L5  
Q6010L5  
Q6015L5  
Q6015L5  
Q6015L5  
Q6015L5  
Q6015L5  
Q6006L4  
Q6008L4  
Q6008L4  
Q6008L4  
Q6008L4  
Q6008L4  
Q6010L5  
Q6010L5  
Q6010L5  
Q6010L5  
Q6010L5  
Q6015L5  
Q6015L5  
Q6015L5  
Q6015L5  
Q6015L5  
Q6006L5  
Q6008L5  
Q6008L5  
Q6008L5  
Q6008L5  
Q6008L5  
K1050G  
S
S
D
D
D
D
D
S
D
D
D
S
S
D
D
D
S
S
D
D
D
D
D
S
D
D
D
S
S
D
D
D
S
S
D
D
D
D
D
S
D
D
D
S
S
D
D
D
S
S
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
DO-15X  
L2004L7  
L2004L6  
L2004L8  
L2006L6  
L2006L8  
L2008L6  
L2008L8  
L201E6  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
S
S
S
S
S
S
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-92 (ISOL)  
L2004L9  
L2006L7  
IT38  
L2006L9  
IT38A  
IT38B  
IT38HA  
IT38HX  
IT410  
IT410A  
IT410B  
IT410HA  
IT410HX  
IT415  
L2008L7  
L2008L9  
L201E7  
L201E9  
L201E8  
TO-92 (ISOL)  
L4004L7  
L4004L6  
L4004L8  
L4006L6  
L4006L8  
L4008L6  
L4008L8  
L401E6  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-92 (ISOL)  
L4004L9  
L4006L7  
L4006L9  
L4008L7  
L4008L9  
IT415A  
IT415B  
IT415HA  
IT415HX  
IT46  
L401E7  
L401E9  
L401E8  
TO-92 (ISOL)  
L6004L7  
L6004L6  
L6004L8  
L6006L6  
L6006L8  
L6008L6  
L6008L8  
L601E6  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-92 (ISOL)  
L6004L9  
L6006L7  
IT48  
L6006L9  
IT48A  
L6008L7  
IT48B  
L6008L9  
IT48HA  
IT48HX  
IT510  
L601E7  
L601E9  
L601E8  
TO-92 (ISOL)  
MAC08BT1  
MAC08DT1  
MAC08MT1  
MAC12D  
L2X5  
SOT-223/COMPAK  
SOT-223/COMPAK  
SOT-223/COMPAK  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
IT510A  
IT510B  
IT510HA  
IT510HX  
IT515  
L4X5  
L6X5  
Q4015R5  
Q4012RH5  
Q6012RH5  
Q8012RH5  
Q6015R5  
Q8015R5  
Q8015R5  
Q8015L5  
Q2015R5  
Q2015L5  
Q4015R5  
Q4015R5  
Q4015L5  
Q6015R5  
Q6015R5  
Q6015L5  
Q8015R5  
Q8015R5  
Q8015L5  
Q2015R5  
Q2015L5  
Q4015R5  
Q4015L5  
Q4015R5  
Q4015L5  
Q6015R5  
Q6015L5  
Q6015R5  
Q6015L5  
Q8015R5  
Q8015L5  
Q6015R5  
Q8015R5  
Q8015R6  
Q2015R6  
Q4015R6  
Q6015R6  
Q4015R6  
Q6015R6  
Q8015R6  
Q4015R6  
Q6015R6  
Q8015R6  
MAC12HCD  
MAC12HCM  
MAC12HCN  
MAC12M  
MAC12N  
IT515A  
IT515B  
IT515HA  
IT515HX  
IT56  
MAC15-10  
MAC15-10FP  
MAC15-4  
MAC15-4FP  
MAC15-5  
MAC15-6  
MAC15-6FP  
MAC15-7  
MAC15-8  
MAC15-8FP  
MAC15-9  
MAC15A10  
MAC15A10FP  
MAC15A4  
MAC15A4FP  
MAC15A5  
MAC15A5FP  
MAC15A6  
MAC15A6FP  
MAC15A7  
MAC15A7FP  
MAC15A8  
MAC15A8FP  
MAC15A9  
MAC15A9FP  
MAC15M  
MAC15N  
IT58  
IT58A  
IT58B  
IT58HA  
IT58HX  
IT610  
IT610A  
IT610B  
IT610HA  
IT610HX  
IT615  
IT615A  
IT615B  
IT615HA  
IT615HX  
IT66  
IT68  
IT68A  
IT68B  
IT68HA  
IT68HX  
K1V10  
K1V11  
K1V12  
K1V14  
K1V16  
K1V18  
K1V22  
K1V24  
K1V26  
K1VA10  
K1VA11  
K1VA12  
K1VA14  
K1VA16  
K1100G  
DO-15X  
K1200G  
DO-15X  
K1300G  
DO-15X  
K1500G  
DO-15X  
MAC16-10  
MAC16-4  
MAC16-6  
MAC16-8  
MAC16CD  
MAC16CM  
MAC16CN  
MAC16D  
K1500G  
DO-15X  
K2200G  
DO-15X  
K2400G  
DO-15X  
K2500G  
DO-15X  
K1050E70  
K1100E70  
K1200E70  
K1300E70  
K1500E70  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
MAC16M  
MAC16N  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-11  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC20-10  
Q8025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q8025P5  
Q8025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q8025P5  
Q8010R5  
Q8010L5  
Q2010R5  
Q2010L5  
Q4010R5  
Q4010R5  
Q4010L5  
Q6010R5  
Q6010R5  
Q6010L5  
Q8010R5  
Q8010L5  
Q2010R5  
Q2010L5  
Q4010R5  
Q4010L5  
Q4010R5  
Q4010L5  
Q6010R5  
Q6010L5  
Q6010R5  
Q6010L5  
Q8010R5  
Q8010L5  
Q8012RH5  
Q8012LH5  
Q2012RH5  
Q2012LH5  
Q4012RH5  
Q4012LH5  
Q6012RH5  
Q6012LH5  
Q8012RH5  
Q8012LH5  
Q2015RH5  
Q2012LH5  
Q4012RH5  
Q4012LH5  
Q6012RH5  
Q6012LH5  
Q8012RH5  
Q2012RH5  
Q4012RH5  
Q6012RH5  
Q8008R5  
Q8008L5  
Q2008R5  
Q2008R5  
Q2008R5  
Q2008L5  
Q4008R4  
Q4008R4  
Q4008L5  
Q4008R4  
Q6008R5  
Q6008L5  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC218-A10  
MAC218-A10FP  
MAC218-A2  
MAC218-A3  
MAC218-A4  
MAC218-A4FP  
MAC218-A5  
MAC218-A6  
MAC218-A6FP  
MAC218-A7  
MAC218-A8  
MAC218-A8FP  
MAC219-10  
MAC219-4  
Q8008R5  
Q8008L5  
Q2008R4  
Q2008R4  
Q2008R4  
Q2008L4  
Q4008R4  
Q4008R4  
Q4008L4  
Q5008R4  
Q6008R5  
Q6008L5  
Q8008R5  
Q2008R4  
Q4008R4  
Q6008R5  
Q2008R4  
Q2008R4  
Q4008R4  
Q6008R4  
Q8008R5  
Q2008R4  
Q2008R4  
Q4008R4  
Q6008R4  
Q8008R5  
Q2008R4  
Q8008R5  
Q2008R4  
Q2008R4  
Q2008R4  
Q4008R4  
Q4008R4  
Q6008R4  
Q6008R5  
Q8008R5  
Q2008R4  
Q8008R5  
Q2008R4  
Q2008R4  
Q2008R4  
Q4008R4  
Q4008R4  
Q6008R4  
Q6008R5  
Q8008R5  
Q8025R5  
Q8025L6  
Q2025R5  
Q2025R5  
Q2025L6  
Q4025R5  
Q4025R5  
Q4025L6  
Q6025R5  
Q6025R5  
Q6025L6  
Q8025R5  
Q8025R5  
Q8025L6  
Q4025R5  
Q2025R5  
Q2025L6  
Q4025R5  
Q4025L6  
Q4025R5  
Q4025L6  
Q6025R5  
Q6025L6  
Q6025R5  
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
MAC20-4  
MAC20-5  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC20-6  
MAC20-7  
MAC20-8  
MAC20-9  
MAC20A10  
MAC20A4  
MAC20A5  
MAC20A6  
MAC20A7  
MAC20A8  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC20A9  
MAC210-10  
MAC210-10FP  
MAC210-4  
MAC219-6  
MAC219-8  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC220-2  
MAC210-4FP  
MAC210-5  
MAC220-3  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC220-5  
MAC210-6  
MAC220-7  
MAC210-6FP  
MAC210-7  
MAC220-9  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC221-2  
MAC210-8  
MAC221-3  
MAC210-8FP  
MAC210A10  
MAC210A10F  
MAC210A4  
MAC210A4FP  
MAC210A5  
MAC210A5FP  
MAC210A6  
MAC210A6FP  
MAC210A7  
MAC210A7FP  
MAC210A8  
MAC210A8FP  
MAC210A9  
MAC210A9FP  
MAC212-10  
MAC212-10FP  
MAC212-4  
MAC221-5  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC221-7  
MAC221-9  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC222-1  
MAC222-10  
MAC222-2  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC222-3  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC222-4  
MAC222-5  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC222-6  
MAC222-7  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC222-8  
MAC222-9  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC222A1  
MAC222A10  
MAC222A2  
MAC222A3  
MAC222A4  
MAC222A5  
MAC222A6  
MAC222A7  
MAC222A8  
MAC222A9  
MAC223-10  
MAC223-10FP  
MAC223-3  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC212-4FP  
MAC212-6  
MAC212-6FP  
MAC212-8  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC212-8FP  
MAC212A10  
MAC212A10FP  
MAC212A4  
MAC212A4FP  
MAC212A6  
MAC212A6FP  
MAC212A8  
MAC212A8FP  
MAC213-10  
MAC213-4  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC223-4  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC223-4FP  
MAC223-5  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC223-6  
MAC223-6FP  
MAC223-7  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC223-8  
MAC213-6  
MAC213-8  
MAC223-8FP  
MAC223-9  
MAC218-10  
MAC218-10FP  
MAC218-2  
MAC223A10  
MAC223A10FP  
MAC223A3  
MAC223A4  
MAC223A4FP  
MAC223A5  
MAC223A5FP  
MAC223A6  
MAC223A6FP  
MAC223A7  
MAC223A7FP  
MAC223A8  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC218-3  
MAC218-4  
MAC218-4FP  
MAC218-5  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC218-6  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC218-6FP  
MAC218-7  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
MAC218-8  
MAC218-8FP  
TO-220 (N.ISOL)  
http://www.teccor.com  
+1 972-580-7777  
A-12  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
MAC223A8FP  
MAC223A9  
MAC223A9FP  
MAC224-10  
MAC224-4  
MAC224-5  
MAC224-6  
MAC224-7  
MAC224-8  
MAC224A10  
MAC224A4  
MAC224A5  
MAC224A6  
MAC224A7  
MAC224A8  
MAC224A9  
MAC228-2  
MAC228-3  
MAC228-4  
MAC228-4FP  
MAC228-5  
MAC228-6  
MAC228-6FP  
MAC228-7  
MAC228-8  
MAC228-8FP  
MAC228A2  
MAC228A3  
MAC228A4  
MAC228A4FP  
MAC228A5  
MAC228A6  
MAC228A6FP  
MAC228A7  
MAC228A8  
MAC228A8FP  
MAC229-4  
MAC229-4FP  
MAC229-6  
MAC229-6FP  
MAC229-8  
MAC229-8FP  
MAC229A4  
MAC229A4FP  
MAC229A6  
MAC229A6FP  
MAC229A8  
MAC229A8FP  
MAC229A8FP  
MAC25-10  
MAC25-4  
Q6025L6  
Q8025R5  
Q8025L6  
Q8040K7  
Q2040K7  
Q4040K7  
Q4040K7  
Q6040K7  
Q6040K7  
Q8040K7  
Q2040K7  
Q4040K7  
Q4040K7  
Q6040K7  
Q6040K7  
Q8040K7  
L2008L6  
L2008L6  
L2008L6  
L2008L6  
L4008L6  
L4008L6  
L4008L6  
L6008L6  
L6008L6  
L6008L6  
L2008L6  
L2008L6  
L2008L6  
L2008L6  
L4008L6  
L4008L6  
L4008L6  
L6008L6  
L6008L6  
L6008L6  
L2008L6  
L2008L6  
L4008L6  
L4008L6  
L6008L6  
L6008L6  
L2008L6  
L2008L6  
L4008L6  
L4008L6  
L6008L6  
L6008L6  
L6008L6  
Q8025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q8025P5  
Q8025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q8025P5  
Q2015R5  
Q2025R5  
L2004F31  
Q2008R4  
Q4015R5  
Q4025R5  
L4004F31  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
S
S
D
S
S
D
S
S
S
S
S
S
S
S
S
S
S
D
S
D
S
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
S
S
S
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
MAC3020-8  
MAC3030-15  
MAC3030-25  
MAC3030-4  
MAC3030-8  
MAC3040-15  
MAC3040-25  
MAC3040-4  
MAC3040-8  
MAC320-10  
MAC320-10FP  
MAC320-4  
MAC320-4FP  
MAC320-6  
MAC320-6FP  
MAC320-8  
MAC320-8FP  
MAC320A10  
MAC320A4  
MAC320A6  
MAC320A8  
MAC321-10  
MAC321-4  
MAC321-6  
MAC321-8  
MAC4DCM  
MAC4DCM1  
MAC4DCN  
MAC4DCN1  
MAC4DHM  
MAC4DHM1  
MAC4DLM  
MAC4DLM1  
MAC4DSM  
MAC4DSM1  
MAC4DSN  
MAC4DSN1  
MAC50-4  
Q4008R4  
Q2015R5  
Q2025R5  
L4004F41  
Q2008R4  
Q4015R5  
Q4025R5  
L4004F41  
Q4008R4  
Q8025R5  
Q8025L6  
Q2025R5  
Q2025L6  
Q4025R5  
Q4025L6  
Q6025R5  
Q6025L6  
Q8025R5  
Q2025R5  
Q4025R5  
Q6025R5  
Q8025R5  
Q2025R5  
Q4025R5  
Q6025R5  
Q6006DH4  
Q6006VH4  
Q8006DH4  
Q8006VH4  
L6004D6  
L6004V6  
L6004D5  
L6004V5  
Q6006DH3  
Q6006VH3  
Q8006DH3  
Q8006VH3  
Q6035P5  
Q6035P5  
Q6035P5  
Q6035P5  
Q6035P5  
Q8035P5  
Q6035P5  
Q6035P5  
Q6035P5  
Q6035P5  
Q6035P5  
Q8035P5  
Q8025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q8025P5  
Q8025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q8025P5  
Q8025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q8025P5  
D
S
S
S
D
S
S
S
D
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
MAC50-5  
MAC50-6  
MAC50-7  
MAC50-8  
MAC50-9  
MAC50A4  
MAC50A5  
MAC50A6  
MAC50A7  
MAC50A8  
MAC50A9  
MAC515-10  
MAC515-4  
MAC515-5  
MAC515-6  
MAC515-7  
MAC515-8  
MAC515-9  
MAC515A10  
MAC515A4  
MAC515A5  
MAC515A6  
MAC515A7  
MAC515A8  
MAC515A9  
MAC525-10  
MAC525-4  
MAC525-5  
MAC525-6  
MAC525-7  
MAC525-8  
MAC525-9  
MAC25-5  
MAC25-6  
MAC25-7  
MAC25-8  
MAC25-9  
MAC25A10  
MAC25A4  
MAC25A5  
MAC25A6  
MAC25A7  
MAC25A8  
MAC25A9  
MAC3010-15  
MAC3010-25  
MAC3010-4  
MAC3010-8  
MAC3020-15  
MAC3020-25  
MAC3020-4  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-13  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
MAC525A10  
MAC525A4  
MAC525A5  
MAC525A6  
MAC525A7  
MAC525A8  
MAC525A9  
MAC625-4  
MAC625-6  
MAC625-8  
MAC635-4  
MAC635-6  
MAC635-8  
MAC8D  
Q8025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q8025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6035P5  
Q6035P5  
Q6035P5  
Q4008RH4  
Q6008RH4  
Q8008RH4  
Q2X8E3  
Q2X8E3  
Q2X8E3  
Q2X8E3  
Q4X8E3  
Q4X8E3  
Q5X8E3  
Q6X8E3  
L2X8E6  
L2X8E6  
L2X8E6  
L2X8E6  
L4X8E6  
L4X8E6  
L6X8E6  
L6X8E6  
L2X8E5  
L2X8E5  
L2X8E5  
L2X8E5  
L4X8E5  
L4X8E5  
L6X8E5  
L6X8E5  
L2X8E5  
L2X8E5  
L2X8E5  
L2X8E5  
L4X8E5  
L4X8E5  
L6X8E5  
L6X8E5  
L2X8E3  
L2X8E3  
L2X8E3  
L2X8E3  
L4X8E3  
L4X8E3  
L6X8E3  
L6X8E3  
Q2X8E3  
Q2X8E3  
Q2X8E3  
Q2X8E3  
L4X8E3  
L4X8E3  
L6X8E3  
L6X8E3  
Q2X8E3  
Q2X8E3  
Q2X8E3  
Q2X8E3  
Q4X8E3  
Q4X8E3  
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
MAC94-7  
MAC94-8  
MAC94A1  
MAC94A2  
MAC94A3  
MAC94A4  
MAC94A5  
MAC94A6  
MAC94A7  
MAC94A8  
MAC95-1  
MAC95-2  
MAC95-3  
MAC95-4  
MAC95-5  
MAC95-6  
MAC95-7  
MAC95-8  
MAC95A1  
MAC95A2  
MAC95A3  
MAC95A4  
MAC95A5  
MAC95A6  
MAC95A7  
MAC95A8  
MAC96-1  
MAC96-2  
MAC96-3  
MAC96-4  
MAC96-5  
MAC96-6  
MAC96-7  
MAC96-8  
MAC96A1  
MAC96A2  
MAC96A3  
MAC96A4  
MAC96A5  
MAC96A6  
MAC96A7  
MAC96A8  
MAC97-2  
MAC97-3  
MAC97-4  
MAC97-5  
MAC97-6  
MAC97-7  
MAC97-8  
MAC97A2  
MAC97A3  
MAC97A4  
MAC97A5  
MAC97A6  
MAC97A7  
MAC97A8  
MAC97B2  
MAC97B3  
MAC97B4  
MAC97B5  
MAC97B6  
MAC97B7  
MAC97B8  
MAC9D  
Q6X8E3  
Q6X8E3  
L2X8E6  
L2X8E6  
L2X8E6  
L2X8E6  
L4X8E6  
L4X8E6  
L6X8E6  
L6X8E6  
L2X8E5  
L2X8E5  
L2X8E5  
L2X8E5  
L4X8E5  
L4X8E5  
L6X8E5  
L6X8E5  
L2X8E5  
L2X8E5  
L2X8E5  
L2X8E5  
L4X8E5  
L4X8E5  
L6X8E5  
L6X8E5  
L2X8E3  
L2X8E3  
L2X8E3  
L2X8E3  
L4X8E3  
L4X8E3  
L6X8E3  
L6X8E3  
L2X8E3  
L2X8E3  
L2X8E3  
L2X8E3  
L4X8E3  
L4X8E3  
L6X8E3  
L6X8E3  
L2X8E6  
L2X8E6  
L2X8E6  
L4X8E6  
L4X8E6  
L6X8E6  
L6X8E6  
L2X8E5  
L2X8E5  
L2X8E5  
L4X8E5  
L4X8E5  
L6X8E5  
L6X8E5  
L2X8E3  
L2X8E3  
L2X8E3  
L4X8E3  
L4X8E3  
L6X8E3  
L6X8E3  
Q4008RH4  
Q6008RH4  
Q8008RH4  
S2S  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
D
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
SOT-223 / COMPAK  
SOT-223 / COMPAK  
SOT-223 / COMPAK  
TO-92 (ISOL)  
MAC8M  
MAC8N  
MAC91-1  
MAC91-2  
MAC91-3  
MAC91-4  
MAC91-5  
MAC91-6  
MAC91-7  
MAC91-8  
MAC91A1  
MAC91A2  
MAC91A3  
MAC91A4  
MAC91A5  
MAC91A6  
MAC91A7  
MAC91A8  
MAC92-1  
MAC92-2  
MAC92-3  
MAC92-4  
MAC92-5  
MAC92-6  
MAC92-7  
MAC92-8  
MAC92A1  
MAC92A2  
MAC92A3  
MAC92A4  
MAC92A5  
MAC92A6  
MAC92A7  
MAC92A8  
MAC93-1  
MAC93-2  
MAC93-3  
MAC93-4  
MAC93-5  
MAC93-6  
MAC93-7  
MAC93-8  
MAC93A1  
MAC93A2  
MAC93A3  
MAC93A4  
MAC93A5  
MAC93A6  
MAC93A7  
MAC93A8  
MAC94-1  
MAC94-2  
MAC94-3  
MAC94-4  
MAC94-5  
MAC94-6  
MAC9M  
MAC9N  
MCR08BT1  
MCR08DT1  
MCR08MT1  
MCR100-3  
S4S  
S6S  
EC103B  
http://www.teccor.com  
+1 972-580-7777  
A-14  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
MCR100-4  
MCR100-5  
MCR100-6  
MCR100-7  
MCR100-8  
MCR101  
EC103B  
EC103D  
EC103D  
EC103M  
EC103M  
EC103B  
EC103B  
EC103B  
T106B1  
T106B1  
T106B1  
T106B1  
T106D1  
T106D1  
T106M1  
T106M1  
EC103B  
S6010DS2  
S6010VS2  
Q6015R  
Q8015R  
Q4015R  
Q6015R  
Q8015R  
EC103B  
EC103B  
EC103B  
EC103B  
S8008L  
S2008R  
S2008L  
S2008R  
S2008L  
S2008R  
S2008L  
S4008R  
S4008R  
S4008L  
S6008R  
S6008R  
S6008L  
S4012R  
S6012R  
S8012R  
TCR22-4  
S4016R  
S6016R  
S8016R  
TCR22-4  
TCR22-4  
TCR22-4  
S8025L  
S2025L  
S2025L  
S4025R  
S4025L  
S6025R  
S6025L  
S8025R  
TCR22-6  
TCR22-8  
TCR22-8  
S4025R  
S6025R  
S8025R  
S8040R  
S2040R  
S2040R  
S2040R  
S4040R  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
D
D
D
D
D
D
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
TO-92 (ISOL)  
MCR264-8  
MCR265-10  
MCR265-2  
MCR265-3  
MCR265-4  
MCR265-6  
MCR265-8  
MCR3000-1  
MCR3000-10  
MCR3000-2  
MCR3000-3  
MCR3000-4  
MCR3000-5  
MCR3000-6  
MCR3000-7  
MCR3000-8  
MCR3000-9  
MCR310-1  
MCR310-2  
MCR310-3  
MCR310-4  
MCR310-5  
MCR310-6  
MCR310-7  
MCR310-8  
MCR506-1  
MCR506-2  
MCR506-3  
MCR506-4  
MCR506-6  
MCR506-8  
MCR525-1  
MCR525-2  
MCR525-3  
MCR525-6  
MCR68-1  
S6040R  
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
S
S
S
S
S
S
D
D
S
S
S
S
S
S
S
S
D
D
D
D
D
D
S
S
S
S
S
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-252 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
DO-15X  
TO-92 (ISOL)  
S8055R  
TO-92 (ISOL)  
S2055R  
TO-92 (ISOL)  
S2055R  
TO-92 (ISOL)  
S2055R  
TO-92 (ISOL)  
S4055R  
MCR102  
TO-92 (ISOL)  
S6055R  
MCR103  
TO-92 (ISOL)  
S2008R  
MCR106-1  
MCR106-2  
MCR106-3  
MCR106-4  
MCR106-5  
MCR106-6  
MCR106-7  
MCR106-8  
MCR120  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-92 (ISOL)  
S8008R  
S2008R  
S2008R  
S2008R  
S4008R  
S4008R  
S6008R  
S6008R  
S8008R  
MCR12DSM  
MCR12DSM1  
MCR12M  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
S2010LS2  
S2010LS2  
S2010LS2  
S2010LS2  
S4010LS2  
S4010LS2  
S6010LS2  
S6010LS2  
S2006FS21  
S2006FS21  
S2006FS21  
S2006FS21  
S4006FS21  
S6006FS21  
S2035J  
MCR12N  
MCR16D  
MCR16M  
MCR16N  
MCR202  
MCR203  
TO-92 (ISOL)  
MCR204  
TO-92 (ISOL)  
MCR206  
TO-92 (ISOL)  
MCR218-10FP  
MCR218-2  
MCR218-2FP  
MCR218-3  
MCR218-3FP  
MCR218-4  
MCR218-4FP  
MCR218-5  
MCR218-6  
MCR218-6FP  
MCR218-7  
MCR218-8  
MCR218-8FP  
MCR220-5  
MCR220-7  
MCR220-9  
MCR22-1  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
S2035J  
S2035J  
S4035J  
S2012R  
MCR68-2  
S2012R  
MCR68-3  
S2012R  
MCR68-6  
S4012R  
MCR69-1  
S2025R  
MCR69-2  
S2025R  
MCR69-3  
S2025R  
MCR69-6  
S4025R  
MCR704A  
MCR704A1  
MCR706A  
MCR706A1  
MCR708A  
MCR708A1  
MCR716  
S2004DS2  
S2004VS2  
S4004DS2  
S4004VS2  
S6004DS2  
S6004VS2  
S4004DS2  
S6004DS2  
S2008LS2  
S2008LS2  
S2008LS2  
S2008LS2  
S4008LS2  
S4008LS2  
S6008LS2  
S6008LS2  
S6008D  
MCR221-5  
MCR221-7  
MCR221-9  
MCR22-2  
MCR22-3  
MCR22-4  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
MCR718  
MCR225-10FP  
MCR225-2FP  
MCR225-4FP  
MCR225-5  
MCR225-6FP  
MCR225-7  
MCR225-8FP  
MCR225-9  
MCR22-6  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
MCR72-1  
MCR72-2  
MCR72-3  
MCR72-4  
MCR72-5  
MCR72-6  
MCR72-7  
MCR72-8  
MCR8DCM  
MCR8DCM1  
MCR8DCN  
MCR8DCN1  
MCR8DSM  
MCR8DSM1  
MCR8SD  
MCR22-7  
TO-92 (ISOL)  
TO-92 (ISOL)  
S6008V  
MCR22-8  
S8008D  
MCR25D  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
S8008V  
MCR25M  
S6008DS2  
S6008VS2  
S4008FS21  
S6008FS21  
K1100G  
MCR25N  
MCR264-10  
MCR264-2  
MCR264-3  
MCR264-4  
MCR264-6  
MCR8SM  
MK1V115  
MK1V125  
MK1V135  
K1200G  
K1300G  
DO-15X  
DO-15X  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-15  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
MK1V240  
MK1V260  
MK1V270  
MK1V280  
MKP1V120  
MKP1V130  
MKP1V240  
MKP3V110  
MKP3V120  
MKP3V130  
MKP9V120  
MKP9V130  
MKP9V240  
MKP9V260  
MKP9V270  
MN611A  
K2400G  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
S
D
S
D
S
D
S
D
S
D
S
D
S
D
S
D
S
S
S
D
S
S
S
D
S
S
S
D
S
S
S
D
S
D
S
D
S
D
S
D
S
D
S
D
S
D
S
S
S
S
D
S
S
DO-15X  
P0105DA  
P0105DB  
P0110AA  
P0110AB  
P0110BA  
P0110BB  
P0110CA  
P0110CB  
P0110DA  
P0110DB  
P0111AN  
P0111BN  
P0111CN  
P0111DN  
PT20  
EC103D2  
EC103D2  
EC103B1  
EC103B1  
EC103B1  
EC103B2  
EC103D2  
EC103D1  
EC103D1  
EC103D1  
S2S1  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
S
S
D
D
D
D
S
S
D
D
D
D
S
S
D
D
D
D
S
S
D
D
D
D
S
S
D
D
D
D
S
S
D
D
S
S
S
D
D
S
S
S
S
S
S
S
S
S
S
S
S
TO-92 (ISOL)  
K2500G  
DO-15X  
TO-92 (ISOL)  
K2500G  
K2500G  
DO-15X  
DO-15X  
TO-92 (ISOL)  
TO-92 (ISOL)  
K1200E70  
K1300E70  
K2400E70  
K1100G  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
DO-15X  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
K1200G  
K1300G  
DO-15X  
DO-15X  
TO-92 (ISOL)  
TO-92 (ISOL)  
K1200E70  
K1300E70  
K2400E70  
K2500E70  
K2500E70  
K1050E70  
EC103B1  
EC103B1  
EC103B1  
EC103B1  
EC103D1  
EC103D1  
EC103D1  
EC103D1  
EC103B1  
EC103B1  
EC103B1  
EC103B1  
EC103D1  
EC103D1  
EC103D1  
EC103D1  
EC103B  
EC103B  
EC103B78  
S2S  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
SOT223/COMPAK  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
SOT223/COMPAK  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
SOT223/COMPAK  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
SOT223/COMPAK  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
SOT223/COMPAK  
SOT223/COMPAK  
SOT223/COMPAK  
SOT223/COMPAK  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-218X (ISOL)  
TO-218AC (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-218X (ISOL)  
TO-218AC (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-218X (ISOL)  
TO-218AC (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-218X (ISOL)  
TO-218AC (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-218X (ISOL)  
TO-218AC (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-218X (ISOL)  
TO-218AC (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
S2S1  
S4S1  
S4S1  
D2015L  
PT40  
D4015L  
P0100AA  
P0100AB  
P0100BA  
P0100BB  
P0100CA  
P0100CB  
P0100DA  
P0100DB  
P0101AA  
P0101AB  
P0101BA  
P0101BB  
P0101CA  
P0101CB  
P0101DA  
P0101DB  
P0102AA  
P0102AB  
P0102AD  
P0102AN  
P0102BA  
P0102BB  
P0102BD  
P0102BN  
P0102CA  
P0102CB  
P0102CD  
P0102CN  
P0102DA  
P0102DB  
P0102DD  
P0102DN  
P0103AA  
P0103AB  
P0103BA  
P0103BB  
P0103CA  
P0103CB  
P0103DA  
P0103DB  
P0104AA  
P0104AB  
P0104BA  
P0104BB  
P0104CA  
P0104CB  
P0104DA  
P0104DB  
P0105AA  
P0105AB  
P0105BA  
P0105BB  
P0105CA  
P0105CB  
PT60  
D6015L  
Q2015L9  
Q2015R9  
Q2025L9  
Q2025R9  
Q2040J9  
Q2040K9  
Q4015L9  
Q4015R9  
Q4025L9  
Q4025R9  
Q4040J9  
Q4040K9  
Q5015L9  
Q5015R9  
Q5025L9  
Q5025R9  
Q5040J9  
Q5040K9  
Q6015L9  
Q6015R9  
Q6025L9  
Q6025R9  
Q6040J9  
Q6040K9  
Q7015L9  
Q7015R9  
Q7025L9  
Q7025R9  
Q7040J9  
Q7040K9  
Q8015L9  
Q8015R9  
Q8025L9  
Q8025R9  
Q8040J9  
Q8040K9  
S0402BH  
S0402DH  
S0402MH  
S0405BH  
S0405DH  
S0405MH  
S0406BH  
S0406DH  
S0406MH  
S0406NH  
S0407BH  
S0407DH  
S0407MH  
S0410BH  
S0410DH  
S0410MH  
S0410NH  
Q2016LH6  
Q2016RH6  
Q2025L6  
Q2025R6  
Q2040J7  
Q2040K7  
Q4016LH6  
Q4016RH6  
Q4025L6  
Q4025R6  
Q4040J7  
Q4040K7  
Q6016LH6  
Q6016RH6  
Q6025L6  
Q6025R6  
Q6040J7  
Q6040K7  
Q6016LH6  
Q6016RH6  
Q6025L6  
Q6025R6  
Q6040J7  
Q6040K7  
Q8016LH6  
Q8016RH6  
Q8025L6  
Q8025R6  
Q8040J7  
Q8040K7  
Q8016LH6  
Q8016RH6  
Q8025L6  
Q8025R6  
Q8040J7  
Q8040K7  
T106B1  
EC103B  
EC103B  
EC103B78  
S2S  
EC103D  
EC103D  
EC103D78  
S4S  
EC103D  
EC103D  
EC103D78  
S4S  
EC103B  
EC103B  
EC103B  
EC103B  
EC103D  
EC103D  
EC103D  
EC103D  
EC103B2  
EC103B2  
EC103B2  
EC103B2  
EC103D2  
EC103D2  
EC103D2  
EC103D2  
EC103B2  
EC103B2  
EC103B2  
EC103B2  
EC103D2  
EC103D2  
T106D1  
T106M1  
S2006L  
S4006L  
S6006L  
S2006L  
S4006L  
S6006L  
S8006L  
S2006L  
S4006L  
S6006L  
S2006L  
S4006L  
S6006L  
S8006L  
http://www.teccor.com  
+1 972-580-7777  
A-16  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
S0417BH  
S0417DH  
S0417MH  
S0417NH  
S0602BH  
S0602DH  
S0602MH  
S0605BH  
S0605DH  
S0605MH  
S0606BH  
S0606DH  
S0606MH  
S0606NH  
S0607BH  
S0607DH  
S0607MH  
S0610BH  
S0610DH  
S0610MH  
S0610NH  
S0617BH  
S0617DH  
S0617MH  
S0617NH  
S0802BH  
S0802DH  
S0802MH  
S0805BH  
S0805DH  
S0805MH  
S0806BH  
S0806DH  
S0806MH  
S0806NH  
S0807BH  
S0807DH  
S0807MH  
S0807NH  
S0810BH  
S0810DH  
S0810MH  
S0810NH  
S0817BH  
S0817DH  
S0817MH  
S0817NH  
S1005BH  
S1005DH  
S1005MH  
S1006BH  
S1006DH  
S1006MH  
S1006NH  
S1007BH  
S1007DH  
S1007MH  
S1010BH  
S1010DH  
S1010MH  
S1010NH  
S1017BH  
S1017DH  
S1017MH  
S1017NH  
S106A1  
S2006L  
S4006L  
S6006L  
S8006L  
S2006LS2  
S4006LS2  
S6006LS2  
S2006L  
S4006L  
S6006L  
S2006L  
S4006L  
S6006L  
S8006L  
S2006L  
S4006L  
S6006L  
S2006L  
S4006L  
S6006L  
S8006L  
S2006L  
S4006L  
S6006L  
S8006L  
S2008LS2  
S4008LS2  
S6008LS2  
S2006R  
S4006R  
S6008R  
S2008R  
S4008R  
S6008R  
S8008R  
S2008R  
S4008R  
S6008R  
S8008R  
S2008R  
S4008R  
S6008R  
S8008R  
S2008R  
S4008R  
S6008R  
S8008R  
S2010R  
S4010R  
S6010R  
S2010R  
S4010R  
S6010R  
S8010R  
S2010R  
S4010R  
S6010R  
S2010R  
S4010R  
S6010R  
S8010R  
S2010R  
S4010R  
S6010R  
S8010R  
T106B1  
T106B1  
T106D1  
T106D1  
T106M1  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
S106F1  
S106M1  
S106Y1  
S107A1  
S107B1  
S107C1  
S107D1  
S107E1  
S107F1  
S107M1  
S107Q1  
S107Y1  
S1205BH  
S1205DH  
S1205MH  
S1206BH  
S1206DH  
S1206MH  
S1206NH  
S1207BH  
S1207DH  
S1207MH  
S1210BH  
S1210DH  
S1210MH  
S1210NH  
S1217BH  
S1217DH  
S1217MH  
S1217NH  
S1610BH  
S1610DH  
S1610MH  
S1610NH  
S1612BH  
S1612DH  
S1612MH  
S1612NH  
S1616BH  
S1616DH  
S1616MH  
S1616NH  
S1A  
T106B1  
T106M1  
T106B1  
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
S
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
T107B1  
T107B1  
T107D1  
T107D1  
T107M1  
T107B1  
T107M1  
T107B1  
T107B1  
S2012R  
S4012R  
S6012R  
S2012R  
S4012R  
S6012R  
S8012R  
S2012R  
S4012R  
S6012R  
S2012R  
S4012R  
S6012R  
S8012R  
S2012R  
S4012R  
S6012R  
S8012R  
S2016R  
S4016R  
S6016R  
S8016R  
S2016R  
S4016R  
S6016R  
S8016R  
S2016R  
S4016R  
S6016R  
S8016R  
EC103B  
EC103B  
EC103D  
EC103M  
EC103B  
EC103B  
S2006LS2  
S2006LS2  
S4006LS2  
S4006LS2  
S6006LS2  
S2006LS2  
S6006LS2  
S2006LS2  
S2006LS3  
S2006LS3  
S4006LS3  
S4006LS3  
S6006LS3  
S2006LS3  
S2006LS3  
S2006LS3  
S2006LS3  
S2006LS3  
S4006LS3  
S4006LS3  
S6006LS3  
S2006LS3  
S1B  
TO-92 (ISOL)  
S1D  
TO-92 (ISOL)  
S1M  
TO-92 (ISOL)  
S1Y  
TO-92 (ISOL)  
S1YY  
TO-92 (ISOL)  
S2060A  
S2060B  
S2060C  
S2060D  
S2060E  
S2060F  
S2060M  
S2060Y  
S2061A  
S2061B  
S2061C  
S2061D  
S2061E  
S2061F  
S2061Q  
S2061Y  
S2062A  
S2062B  
S2062C  
S2062D  
S2062E  
S2062F  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
S106B1  
S106C1  
S106D1  
S106E1  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-17  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
S2062M  
S6006LS3  
S2006LS3  
S2006LS3  
S2025R  
S2035J  
S4025R  
S4035J  
S6025R  
S6035J  
S8025R  
S8035J  
S2025R  
S2035J  
S4025R  
S4035J  
S6025R  
S6035J  
S8025R  
S8035J  
S2025R  
S4025R  
S6025R  
S8025R  
S2006L  
S4006L  
S6006L  
S2010R  
S2010R  
S4010R  
S4010R  
S6010R  
S2010R  
S6010R  
S8010R  
S8040R  
S8040R  
S2040R  
S2035J  
S4040R  
S4035J  
S6040R  
S6035J  
S8040R  
S8035J  
S2040R  
S2035J  
S4040R  
S4035J  
S6040R  
S6035J  
S8040R  
S8065J  
S2040R  
S4040R  
S6040R  
S8040R  
S2010LS2  
S2010LS2  
S4010LS2  
S4010LS2  
S2010LS2  
S2010LS2  
S2008R  
S4008R  
S4008R  
S6008R  
S6008R  
Q2025R5  
Q4025R5  
Q6025R5  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
S
D
S
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-218 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
SC129M  
SC136A  
SC136B  
SC136C  
SC136D  
SC136E  
SC136M  
SC140B  
SC140D  
SC140E  
SC140M  
SC141A  
SC141B  
SC141C  
SC141D  
SC141E  
SC141M  
SC141N  
SC142B  
SC142D  
SC142E  
SC142M  
SC143B  
SC143D  
SC143E  
SC143M  
SC146B  
SC146D  
SC146E  
SC146M  
SC146N  
SC147B  
SC147D  
SC147E  
SC147M  
SC148B  
SC148D  
SC148E  
SC148M  
SC149B  
SC149D  
SC149E  
SC149M  
SC150B  
SC150D  
SC150E  
SC150M  
SC151B  
SC151D  
SC151E  
SC151M  
SC160B  
SC160D  
SC160E  
SC160M  
SC92A  
Q6025R5  
Q2004F41  
Q2004F41  
Q4004F41  
Q4004F41  
Q5004F41  
Q6004F41  
Q2006L4  
Q4006L4  
Q6006L4  
Q6006L5  
Q2006R4  
Q2006R4  
Q4006R4  
Q4006R4  
Q6006R4  
Q6006R5  
Q8006R5  
Q2008L4  
Q4008L4  
Q6008L4  
Q6008L5  
Q2008R4  
Q4008R4  
Q6008R4  
Q6008R5  
Q2010R5  
Q4010R5  
Q6010R5  
Q6010R5  
Q8010R5  
Q2010L5  
Q4010L5  
Q6010L5  
Q6010L5  
Q2010L5  
Q4010L5  
Q6010L5  
Q6010L5  
Q2015R5  
Q4015R5  
Q6015R5  
Q6015R5  
Q2015L5  
Q4015L5  
Q6015L5  
Q6015L5  
Q2015R5  
Q4015R5  
Q6015R5  
Q6015R5  
Q6025P5  
Q6025P5  
Q6025P5  
Q6025P5  
Q201E3  
D
S
S
S
S
S
S
D
D
D
D
S
D
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-92 (ISOL)  
S2062Q  
S2062Y  
S2512BH  
S2512BK  
S2512DH  
S2512DK  
S2512MH  
S2512MK  
S2512NH  
S2512NK  
S2514BH  
S2514BK  
S2514DH  
S2514DK  
S2514MH  
S2514MK  
S2514NH  
S2514NK  
S2516BH  
S2516DH  
S2516MH  
S2516NH  
S2600B  
S2600D  
S2600M  
S2800A  
S2800B  
S2800C  
S2800D  
S2800E  
S2800F  
S2800M  
S2800N  
S3014NH  
S3016NH  
S4012BH  
S4012BK  
S4012DH  
S4012DK  
S4012MH  
S4012MK  
S4012NH  
S4012NK  
S4014BH  
S4014BK  
S4014DH  
S4014DK  
S4014MH  
S4014MK  
S4014NH  
S4014NK  
S4016BH  
S4016DH  
S4016MH  
S4016NH  
S4060A  
SC92B  
Q201E3  
TO-92 (ISOL)  
S4060B  
SC92D  
SC92F  
Q401E3  
TO-92 (ISOL)  
S4060C  
Q201E3  
TO-92 (ISOL)  
S4060D  
SF0R1A42  
SF0R1B42  
SF0R1D42  
SF0R1G42  
SF0R3B42  
SF0R3D42  
SF0R3G42  
SF0R3J42  
SF0R5B43  
SF0R5D43  
SF0R5G43  
EC103B  
TO-92 (ISOL)  
S4060F  
EC103B  
TO-92 (ISOL)  
S4060U  
EC103B  
TO-92 (ISOL)  
S5800B  
EC103D  
EC103B  
TO-92 (ISOL)  
S5800C  
TO-92 (ISOL)  
S5800D  
EC103B  
TO-92 (ISOL)  
S5800E  
EC103D  
EC103M  
EC103B  
TO-92 (ISOL)  
S5800M  
SC129B  
SC129D  
SC129E  
TO-92 (ISOL)  
TO-92 (ISOL)  
EC103B  
EC103D  
TO-92 (ISOL)  
TO-92 (ISOL)  
http://www.teccor.com  
+1 972-580-7777  
A-18  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
SF0R5H43  
SF0R5J43  
SF10D41A  
SF10G41A  
SF10J41A  
SF1B12  
EC103M  
EC103M  
S2016R  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
S
S
D
S
TO-92 (ISOL)  
SM6D45  
SM6D45A  
SM6DZ46  
SM6DZ46A  
SM6G45  
SM6G45A  
SM6GZ46  
SM6GZ46A  
SM6GZ47  
SM6GZ47A  
SM6J45  
Q2006R4  
Q2006R4  
Q2006L4  
Q2006L4  
Q4006R4  
Q4006R4  
Q4006L4  
Q4006L4  
Q4006L4  
Q4006L4  
Q6006R4  
Q6006R4  
Q6006L4  
Q6006L4  
Q6006L4  
Q6006L4  
Q2008R4  
Q2010R4  
L2008L8  
Q2010L4  
L2008L8  
Q4008R4  
Q4010R4  
L4008L8  
Q4010L4  
L4008L8  
Q4008LH4  
Q4008LH4  
Q6008R5  
Q6010R4  
L6008L8  
Q6010L4  
L6008L8  
Q6008LH4  
Q6008LH4  
HT32  
L6006L5  
L6006L6  
L4006L8  
L6006L8  
L4006L5  
L6006L5  
L4006L6  
L6006L6  
Q2004R4  
Q4006R4  
Q6006R5  
L4008L6  
L6008L6  
L4008L8  
L6008L8  
Q4008R4  
Q6008R5  
Q8008R5  
Q8008R5  
Q4008R4  
Q6008R5  
Q8008R5  
Q8008R5  
Q2010R5  
Q2010L5  
Q4010R5  
Q4010L5  
Q6010R5  
Q6010L5  
Q8010R5  
Q8010L5  
Q2010R5  
Q2010L5  
Q4010R5  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
S
S
S
S
D
S
S
S
S
S
S
D
S
S
S
S
S
S
D
S
S
S
S
S
S
S
S
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
D
S
D
S
D
S
D
D
D
D
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
DO-35 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-39/TO-92(ISOL)  
TO-39/TO-92(ISOL)  
TO-39/TO-92(ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92 (ISOL)  
S4016R  
S6016R  
TR22-4  
SF1D12  
TR22-4  
SF1G12  
TR22-6  
SF3B41  
S2006F1  
T106B1  
SF3B42  
SF3D41  
S2006F1  
T106B1  
SF3D42  
SM6J45A  
SM6JZ46  
SM6JZ46A  
SM6JZ47  
SM6JZ47A  
SM8D41  
SF3D42C  
SF3G41  
T106B1  
S4006F1  
T106D1  
SF3G42  
SF3G42C  
SF3H42LC2  
SF3J41  
T106D1  
T106M2  
S6006F1  
T106M1  
SM8D45  
SF3J42  
SM8D45A  
SM8DZ46  
SM8DZ46A  
SM8G41  
SF5B41  
S2008R  
SF5B42  
S2008FS21  
S2008R  
SF5D41  
SF5D41A  
SF5D42  
S2012R  
SM8G45  
S2008FS21  
S4008R  
SM8G45A  
SM8GZ46  
SM8GZ46A  
SM8GZ47  
SM8GZ47A  
SM8J41  
SF5G41  
SF5G41A  
SF5G42  
S6012R  
S4008FS21  
S6008R  
SF5J41  
SF5J41A  
SF5J42  
S6012R  
S6008FS21  
S2012R  
SM8J45  
SF8B41  
SM8J45A  
SM8JZ46  
SM8JZ46A  
SM8JZ47  
SM8JZ47A  
ST2  
SF8D41  
S2012R  
SF8D41A  
SF8G41  
S2012R  
S4012R  
SF8G41A  
SF8J41  
S4012R  
S6012R  
SF8J41A  
SM0R5B42  
SM0R5D42  
SM0R5G42  
SM12D41  
SM12G41  
SM12J41  
SM16DZ41  
SM16G45  
SM16G45A  
SM16GZ41  
SM16GZ47  
SM16GZ47A  
SM16J45  
SM16J45A  
SM16JZ41  
SM16JZ47  
SM16JZ47A  
SM1D43  
SM1G43  
SM25DZ41  
SM25GZ41  
SM25JZ41  
SM2B41  
S6012R  
T0505MH  
T0509MH  
T0510DH  
T0510MH  
T0605DH  
T0605MH  
T0609DH  
T0609MH  
T0612BH  
T0612DH  
T0612MH  
T0805DH  
T0805MH  
T0809DH  
T0809MH  
T0810DH  
T0810MH  
T0810NH  
T0810SH  
T0812DH  
T0812MH  
T0812NH  
T0812SH  
T1010BH  
T1010BJ  
T1010DH  
T1010DJ  
T1010MH  
T1010MJ  
T1010NH  
T1010NJ  
T1012BH  
T1012BJ  
T1012DH  
Q2X8E3  
Q2X8E3  
Q4X8E3  
Q2012RH5  
Q4012RH5  
Q6012RH5  
Q2025P5  
Q4016RH4  
Q4016RH3  
Q4025P5  
Q4016LH4  
Q4016LH3  
Q6016RH4  
Q6016RH3  
Q6025P5  
Q6016LH4  
Q6016LH3  
L201E6  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-92 (ISOL)  
L401E6  
TO-92 (ISOL)  
Q2025P5  
Q4025P5  
Q6025P5  
Q2004F31  
Q2004F31  
Q4004F31  
Q2004F41  
Q2004F41  
Q4004F41  
Q4004L3  
Q4004L3  
Q6004F41  
Q6004L3  
Q6004L3  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
SM2D41  
SM2G41  
SM3B41  
SM3D41  
SM3G41  
SM3G45  
SM3GZ46  
SM3J41  
SM3J45  
SM3JZ46  
TO-220 (ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-19  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
T1012DJ  
Q4010L5  
Q6010R5  
Q6010L5  
Q8010R5  
Q8010L5  
Q2010R5  
Q2010L5  
Q4010R5  
Q4010L5  
Q6010R5  
Q6010L5  
Q8010R5  
Q8010L5  
L2004F31  
L2004F51  
L2004F61  
L2004F81  
Q2004F41  
L2004F31  
L2004F32  
L2004F31  
L2004F51  
L2004F61  
Q2004F31  
L2004F81  
Q2004F41  
L2004F31  
L2004F52  
L2004F62  
Q2004F32  
L2004F82  
Q2004F42  
L2004F32  
L4004F31  
L4004F51  
L4004F61  
Q4004F31  
L4004F81  
Q4004F41  
L4004F31  
L4004F52  
L4004F62  
Q4004F32  
L4004F82  
Q4004F42  
L4004F32  
L4004F31  
L4004F51  
L4004F61  
Q4004F31  
L4004F81  
Q4004F41  
L4004F31  
L4004F52  
L4004F62  
Q4004F32  
L4004F82  
Q4004F42  
L4004F32  
L6004F31  
L6004F51  
L6004F61  
Q6004F31  
L6004F81  
Q6004F41  
L6004F31  
L6004F52  
L6004F62  
Q6004F32  
L6004F82  
D
D
D
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T106E2SHA  
T106E2SS  
T106F1SC  
T106F1SD  
T106F1SG  
T106F1SGA  
T106F1SH  
T106F1SHA  
T106F1SS  
T106F2SC  
T106F2SD  
T106F2SG  
T106F2SGA  
T106F2SH  
T106F2SHA  
T106F2SS  
T106M1SD  
T106M1SG  
T106M1SGA  
T106M1SH  
T106M1SHA  
T106M1SS  
T106M2SD  
T106M2SG  
T106M2SGA  
T106M2SH  
T106M2SHA  
T106M2SS  
T1210BH  
Q6004F42  
L4004F32  
L2004F31  
L2004F51  
L2004F61  
Q2004F31  
L2004F81  
Q2004F41  
L2004F31  
L2004F32  
L2004F52  
L2004F62  
Q2004F32  
L2004F82  
Q2004F42  
L2004F32  
L6004F51  
L6004F61  
Q6004F31  
L6004F81  
Q6004F41  
L6004F31  
L6004F52  
L6004F62  
Q6004F32  
L6004F82  
Q6004F42  
L6004F32  
Q2015R5  
Q4015R5  
Q6015R5  
Q8015R5  
Q2015R5  
Q4015L5  
Q4015R5  
Q4015L5  
Q6015R5  
Q6015L5  
Q8015R5  
Q8015L5  
Q2015R5  
Q4015L5  
Q4015R5  
Q4015L5  
Q6015R5  
Q6015L5  
Q8015R5  
Q8015L5  
Q6012NH5  
Q8012NH5  
Q2015L5  
Q4015L5  
Q6015L5  
Q8015L5  
Q2015L5  
Q4015L5  
Q6015L5  
Q8015L5  
Q2015R5  
Q4015R5  
Q6015R5  
Q8015R5  
Q8015L5  
Q2015R5  
Q4015R5  
Q6015R5  
Q8015R  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
D
D
S
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1012MH  
T1012MJ  
T1012NH  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1012NJ  
T1013BH  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1013BJ  
T1013DH  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1013DJ  
T1013MH  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1013MJ  
T1013NH  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1013NJ  
T106A1SC  
T106A1SD  
T106A1SG  
T106A1SH  
T106A1SHA  
T106A1SS  
T106A2SS  
T106B1SC  
T106B1SD  
T106B1SG  
T106B1SGA  
T106B1SH  
T106B1SHA  
T106B1SS  
T106B2SD  
T106B2SG  
T106B2SGA  
T106B2SH  
T106B2SHA  
T106B2SS  
T106C1SC  
T106C1SD  
T106C1SG  
T106C1SGA  
T106C1SH  
T106C1SHA  
T106C1SS  
T106C2SD  
T106C2SG  
T106C2SGA  
T106C2SH  
T106C2SHA  
T106C2SS  
T106D1SC  
T106D1SD  
T106D1SG  
T106D1SGA  
T106D1SH  
T106D1SHA  
T106D1SS  
T106D2SD  
T106D2SG  
T106D2SGA  
T106D2SH  
T106D2SHA  
T106D2SS  
T106E1SC  
T106E1SD  
T106E1SG  
T106E1SGA  
T106E1SH  
T106E1SHA  
T106E1SS  
T106E2SD  
T106E2SG  
T106E2SGA  
T106E2SH  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
T1210DH  
T1210MH  
T1210NH  
T1212BH  
T1212BJ  
T1212DH  
T1212DJ  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1212MH  
T1212MJ  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1212NH  
T1212NJ  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1213BH  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1213BJ  
T1213DH  
T1213DJ  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1213MH  
T1213MJ  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1213NH  
T1213NJ  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1235-600G  
T1235-800G  
T1512BJ  
TO-263 (SMT)  
TO-263 (SMT)  
TO-220 (ISOL)  
T1512DJ  
TO-220 (ISOL)  
T1512MJ  
TO-220 (ISOL)  
T1512NJ  
TO-220 (ISOL)  
T1513BJ  
TO-220 (ISOL)  
T1513DJ  
TO-220 (ISOL)  
T1513MJ  
TO-220 (ISOL)  
T1513NJ  
TO-220 (ISOL)  
T1612BH  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T1612DH  
T1612MH  
T1612NH  
T1612NJ  
T1613BH  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-263 (SMT)  
TO-263 (SMT)  
TO-202 (N.ISOL)  
T1613DH  
T1613MH  
T1613NH  
T1635-600G  
T1635-800G  
T2300A  
Q6016NH4  
Q8016NH4  
L2004F321  
http://www.teccor.com  
+1 972-580-7777  
A-20  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
T2300B  
T2300D  
T2300F  
T2300PA  
T2300PB  
T2300PC  
T2300PD  
T2300PE  
T2300PF  
T2300PM  
T2301A  
T2301B  
T2301D  
T2301F  
T2301PA  
T2301PB  
T2301PC  
T2301PD  
T2301PE  
T2301PF  
T2301PM  
T2302A  
T2302B  
T2302D  
T2302F  
T2302PA  
T2302PB  
T2302PC  
T2302PD  
T2302PE  
T2302PF  
T2302PM  
T2303F  
T2306A  
T2306B  
T2306D  
T2310A  
T2310B  
T2310D  
T2310F  
T2311A  
T2311B  
T2311D  
T2311F  
T2312A  
T2312B  
T2312D  
T2312F  
T2313A  
T2313B  
T2313D  
T2313F  
T2316A  
T2316B  
T2316D  
T2320A  
T2320B  
T2320C  
T2320D  
T2320E  
T2320F  
T2320M  
T2322A  
T2322B  
T2322C  
T2322D  
T2322E  
T2322F  
T2322M  
T2323A  
L2004F321  
L4004F321  
L2004F321  
L2004F31  
L2004F31  
L4004F31  
L4004F31  
L6004F31  
L2004F31  
L6004F31  
L2004F321  
L2004F321  
L4004F321  
L2004F321  
L2004F31  
L2004F31  
L4004F31  
L4004F31  
L6004F31  
L2004F31  
L6004F31  
L2004F621  
L2004F621  
L4004F621  
L2004F621  
L2004F61  
L2004F61  
L4004F61  
L4004F61  
L6004F61  
L2004F61  
L6004F61  
Q2004F421  
Q2004F421  
Q2004F421  
Q4004F421  
L2004F321  
L2004F321  
L4004F321  
L2004F321  
L2004F321  
L2004F321  
L4004F321  
L2004F321  
L2004F621  
L2004F621  
L4004F621  
L2004F621  
Q2004F421  
Q2004F421  
Q4004F421  
Q2004F421  
Q2004F421  
Q2004F421  
Q4004F421  
L2004F31  
L2004F31  
L4004F31  
L4004F31  
L6004F31  
L2004F31  
L6004F31  
L2004F61  
L2004F61  
L4004F61  
L4004F61  
L6004F61  
L2004F61  
L6004F61  
L2004F81  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
T2323B  
L2004F81  
L4004F81  
L4004F81  
L6004F81  
L2004F81  
L6004F81  
L2004F51  
L2004F51  
L4004F51  
L4004F51  
L6004F51  
L2004F51  
L6004F51  
Q2006R4  
Q2006L4  
Q2006R4  
Q2006L4  
Q4006R4  
Q4006L4  
Q4006R4  
Q4006L4  
Q6006R4  
Q6006L4  
Q6006R5  
Q6006L5  
Q8006R5  
Q8006L5  
Q8006R5  
Q8006L5  
Q2006R4  
Q4006R4  
Q2025R5  
Q6025P5  
Q4025R5  
Q6025P5  
Q6025R5  
Q6025P5  
Q8025R5  
Q8025P5  
Q2025R5  
Q6025P5  
Q4025R5  
Q6025P5  
Q6025R5  
Q6025P5  
Q8025R5  
Q8025P5  
Q6025NH6  
Q8025NH6  
Q2006R4  
Q4006R4  
Q2008R4  
Q2008R4  
Q4008R4  
Q4008R4  
Q6008R4  
Q6008R5  
Q2006R4  
Q2006R4  
Q4006R4  
Q4006R4  
Q6006R4  
Q6006R5  
Q8006R5  
Q8006R5  
Q2008R4  
Q2008R4  
Q4008R4  
Q4008R4  
Q6008R4  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
S
S
S
S
S
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T2323C  
T2323D  
T2323E  
T2323F  
T2323M  
T2327A  
T2327B  
T2327C  
T2327D  
T2327E  
T2327F  
T2327M  
T2500A  
T2500AFP  
T2500B  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T2500BFP  
T2500C  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T2500CFP  
T2500D  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T2500DFP  
T2500E  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T2500EFP  
T2500M  
T2500MFP  
T2500N  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T2500NFP  
T2500S  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
T2500SFP  
T2506B  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-220 (N.ISOL)  
FASTPAK (ISOL)  
TO-263 (SMT)  
T2506D  
T2512BH  
T2512BK  
T2512DH  
T2512DK  
T2512MH  
T2512MK  
T2512NH  
T2512NK  
T2513BH  
T2513BK  
T2513DH  
T2513DK  
T2513MH  
T2513MK  
T2513NH  
T2513NK  
T2535-600G  
T2535-800G  
T2700B  
TO-263 (SMT)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
T2700D  
T2800A  
T2800B  
T2800C  
T2800D  
T2800E  
T2800M  
T2801A  
T2801B  
T2801C  
T2801D  
T2801E  
T2801M  
T2801N  
T2801S  
T2802A  
T2802B  
T2802C  
T2802D  
T2802E  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-21  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
T2802M  
Q6008R5  
Q2008R4  
Q4008R4  
Q6008R5  
Q2008L4  
Q2008L4  
Q4008L4  
Q6008L4  
Q2008L4  
Q2008L4  
Q4008L4  
Q6035P5  
Q6035P5  
Q8035P5  
Q8035P5  
Q6035P5  
Q6035P5  
Q8035P5  
Q8035P5  
L4004L6  
S
D
D
S
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
D
S
S
S
D
S
D
S
S
S
D
D
D
S
S
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
D
D
S
S
S
S
S
S
D
D
D
S
S
S
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
FASTPAK (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-252 (SMT)  
TO-252 (SMT)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-252 (SMT)  
TO-263 (SMT)  
TO-263 (SMT)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TIC108M  
TIC116D  
TIC116M  
TIC116N  
TIC116S  
TIC126D  
TIC126M  
TIC126N  
TIC126S  
TIC201D  
TIC201M  
TIC206D  
TIC206M  
TIC216D  
TIC216M  
TIC225D  
TIC225M  
TIC226D  
TIC226M  
TIC226N  
TIC226S  
TIC236D  
TIC236M  
TIC236N  
TIC236S  
TIC246D  
TIC246M  
TIC246N  
TIC246S  
TIC256D  
TIC256D  
TIC256M  
TIC256N  
TIC256S  
TICP106D  
TICP106M  
TL1003  
T107M1  
S
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-92  
T2806B  
S4008R  
T2806D  
S6008R  
T2806M  
S8008R  
T2850A  
S8008R  
T2850B  
S4012R  
T2850D  
S6012R  
T2850E  
S8012R  
T2850F  
S8012R  
T2856B  
L4004F61  
L6004F61  
L4004F61  
L6004F61  
L4006F61  
L6006F61  
L4008F61  
L6008F61  
Q4008R4  
Q6008R5  
Q8008R5  
Q8008R5  
Q4015R5  
Q6015R5  
Q8015R5  
Q8015R5  
Q4015R5  
Q6015R5  
Q8015R5  
Q8015R5  
Q4025R5  
Q4025R5  
Q6025R5  
Q8025R5  
Q7025R5  
TCR22-4  
TCR22-8  
S2006F2  
S2006F2  
T106B2  
T2856D  
T4012DKS  
T4012MKS  
T4012NKS  
T4012SKS  
T4013DKS  
T4013MKS  
T4013NKS  
T4013SKS  
T405-400T  
T405-400W  
T405-600B  
T405-600H  
T405-600T  
T405-600W  
T410-400T  
T410-400W  
T410-600B  
T410-600H  
T410-600T  
T410-600W  
T435-400T  
T435-400W  
T435-600B  
T435-600H  
T435-600T  
T435-600W  
T435-700T  
T435-700W  
T435-800T  
T435-800W  
T6000B  
L4004L6  
L6004D6  
L6004V6  
L6004L6  
L6004L6  
L4004L8  
L4004L8  
L6006DH3  
L6006VH3  
L6004L8  
L6004L8  
Q4006RH4  
Q4006LH4  
Q6006DH4  
Q6006VH4  
Q6006RH4  
Q6006LH4  
Q8006RH4  
Q8006LH4  
Q8006RH4  
Q8006LH4  
Q2015R5  
Q4015R5  
Q6015R5  
Q2015R5  
Q4015R5  
Q6015R5  
Q2015R5  
Q4015R5  
Q6015R5  
Q4006LH4  
Q6006LH4  
Q8006LH4  
Q4006LH4  
Q6006LH4  
Q8006LH4  
Q4008DH3  
Q6008DH3  
Q4008LH4  
Q6008LH4  
Q8008LH4  
Q4008LH4  
Q6008LH4  
Q8008LH4  
Q6008DH4  
Q6008NH4  
Q6010NH5  
T106D1  
TO-92  
TO-202 (N.ISOL) ?  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TL1006  
TL106-05  
TL106-1  
TL106-2  
TL106-4  
TL106-6  
TL107-05  
TL107-1  
TL107-2  
TL107-4  
TL107-6  
TL2003  
T106B2  
T106B2  
T106D2  
T6000D  
T106M2  
T6000M  
T107B2  
T6001B  
T107B2  
T6001D  
T107B2  
T6001M  
T107D2  
T6006B  
T107M2  
T6006D  
S2006F2  
S2006F2  
S4006F2  
S4006F2  
S6006F2  
S6006F2  
L2004F62  
Q2004F42  
L2004F52  
L2004F62  
L2004F52  
Q2004F42  
L2004F62  
L2004F62  
Q2004F42  
L2004F52  
L2004F52  
L4004F62  
Q4004F42  
L4004F52  
L4004F62  
L4004F52  
T6006M  
TL2006  
T620-400W  
T620-600W  
T620-700W  
T630-400W  
T630-600W  
T630-700W  
T810-400B  
T810-600B  
T820-400W  
T820-600W  
T820-700W  
T830-400W  
T830-600W  
T830-700W  
T835-600B  
T835-600G  
T850-600G  
TIC106D  
TL4003  
TL4006  
TL6003  
TL6006  
TLC111A  
TLC111B  
TLC111D  
TLC111S  
TLC111T  
TLC113B  
TLC1165  
TLC116A  
TLC116B  
TLC116D  
TLC116T  
TLC221A  
TLC221B  
TLC221D  
TLC221S  
TLC221T  
TIC106M  
TIC108D  
T106M1  
T107D1  
http://www.teccor.com  
+1 972-580-7777  
A-22  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
TLC223A  
L4004F62  
Q4004F42  
L4004F52  
L4004F62  
Q4004F42  
L4004F52  
L4004F62  
L4004F52  
L6004F62  
Q6004F42  
L6004F52  
L6004F62  
L6004F52  
L6004F62  
Q6004F42  
L6004F52  
L6004F62  
Q6004F42  
L6004F52  
L6004F62  
L6004F52  
Q7004F42  
T106B2  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
S
S
S
S
S
D
D
S
S
S
S
S
D
S
D
S
D
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-252 (SMT)  
TO610BH  
TO610BJ  
TO610DH  
TO610DJ  
TO610MH  
TO610MJ  
TO612BJ  
TO612DJ  
TO612MJ  
TO805BH  
TO805DH  
TO805MH  
TO809BH  
TO809DH  
TO809MH  
TO810BH  
TO810BJ  
TO810DH  
TO810DJ  
TO810MH  
TO810MJ  
TO812BH  
TO812BJ  
TO812DH  
TO812DJ  
TO812MH  
TO812MJ  
TO812NH  
TO813BJ  
TO813DJ  
TO813MJ  
TO813NJ  
TPDV125  
TPDV140  
TPDV225  
TPDV240  
TPDV425  
TPDV-440  
TPDV625  
TPDV-640  
TPDV825  
TPDV-840  
TS420-400T  
TS420-600B  
TS420-600H  
TS420-600T  
TS820-400T  
TS820-600B  
TS820-600H  
TS820-600T  
TXDV-212  
TXDV-412  
TXDV612  
TXDV812  
TXN0510  
TXN0512  
TXN056  
L2006L8  
L2006L8  
L4006L8  
L4006L8  
L6006L8  
L6006L8  
Q2006L4  
Q4006L4  
Q6006L5  
L2008L6  
L4008L6  
L6008L6  
L2008L6  
L4008L6  
L6008L6  
L2008L8  
L2008L8  
L4008L8  
L4008L8  
L6008L8  
L6008L8  
Q2008R4  
Q2008L4  
Q4008R4  
Q4008L4  
Q6008R5  
Q6008L5  
Q8008L5  
Q2008L4  
Q4008L4  
Q6008L5  
Q8008L5  
Q2025L6  
Q2040K7  
Q2025L6  
Q2040K7  
Q4025L6  
Q4040J7  
Q6025L6  
Q6040K7  
Q8025L6  
Q8040K7  
T106D1  
S
D
S
D
S
D
S
S
S
S
S
S
S
S
S
S
D
S
D
S
D
S
S
S
S
S
S
S
S
S
S
S
S
D
S
D
S
D
S
D
S
D
S
S
S
S
S
S
S
S
D
D
D
D
D
S
D
D
D
D
S
D
D
S
S
D
D
D
D
S
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-218 (ISOL)  
TO-220 (ISOL)  
TO-218 (ISOL)  
TO-220 (ISOL)  
TO-218 (ISOL)  
TO-220 (ISOL)  
TO-218 (ISOL)  
TO-220 (ISOL)  
TO-218 (ISOL)  
TO-202 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-252 (SMT)  
TO-251 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TLC223B  
TLC223D  
TLC226A  
TLC226B  
TLC226D  
TLC226S  
TLC226T  
TLC331A  
TLC331B  
TLC331D  
TLC331S  
TLC331T  
TLC333A  
TLC333B  
TLC333D  
TLC336A  
TLC336B  
TLC336D  
TLC336S  
TLC336T  
TLC386B  
TLS106-05  
TLS106-1  
TLS106-2  
TLS106-4  
TLS106-6  
TLS107-05  
TLS107-1  
TLS107-2  
TLS107-4  
TLS107-6  
TN1215-600B  
TN1215-600H  
TN1215-800B  
TN1215-800H  
TN1625-1000G  
TN1625-600G  
TN1625-800G  
TN815-600B  
TN815-600H  
TN815-800B  
TN815-800H  
TO1013BJ  
TO1013DJ  
TO1013MJ  
TO1013NJ  
TO409BJ  
T106B2  
T106B2  
T106D2  
T106M2  
T107B2  
T107B2  
T107B2  
T107D2  
T107M2  
S6012D  
S6012V  
TO-251 (N.ISOL)  
TO-252 (SMT)  
S8012D  
S8012V  
TO-251 (N.ISOL)  
TO-263 (SMT)  
SK016N  
S6016N  
TO-263 (SMT)  
S8016N  
TO-263 (SMT)  
S6008D  
TO-252 (SMT)  
S6008V  
TO-251 (N.ISOL)  
TO-252 (SMT)  
S8008D  
S8008V  
TO-251 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
Q2010L5  
Q4010L5  
Q6010L5  
Q8010L5  
L2004L6  
L4004L6  
L6004L6  
L2004L8  
L4004L8  
L6004L8  
L2006L5  
L4006L5  
L2006L6  
L2006L6  
L2006L8  
Q2006R4  
Q4006R4  
Q6006R5  
L2006L5  
L4006L5  
L6006L5  
L2006L6  
L2006L6  
L4006L6  
L4006L6  
L6006L6  
L6006L6  
S6004DS2  
S6004VS2  
T106M1  
S4008FS21  
S6008DS2  
S6008VS2  
S6008FS21  
Q2015L6  
Q4015L6  
Q6015L6  
Q8015L6  
S2010L  
TO409DJ  
TO409MJ  
TO410BJ  
TO410DJ  
TO410MJ  
TO505BH  
TO505DH  
TO509BH  
TO509DH  
TO510BH  
TO512BH  
TO512DH  
TO512MH  
TO605BH  
TO605DH  
TO605MH  
TO609BH  
TO609BJ  
S2015L  
S2006L  
TXN058  
S2008L  
TXN058G  
TXN106  
S2008L  
S2006L  
TXN108  
S2008L  
TXN108G  
TXN110  
S2008L  
S2010L  
TXN112  
S2015L  
TXN204  
S2006L  
TXN206  
S2006L  
TO609DH  
TO609DJ  
TO609MH  
TO609MJ  
TXN208  
S2008L  
TXN208G  
TXN210  
S2008L  
S2010L  
TXN212  
S2015L  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-23  
http://www.teccor.com  
+1 972-580-7777  
Cross Reference Guide  
Appendix  
Direct or  
Direct or  
Suggested  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
Part Number  
Teccor Device Replacement  
Teccor Package  
TXN404  
TXN406  
TXN408  
TXN408G  
TXN410  
TXN412  
TXN604  
TXN606  
TXN608  
TXN608G  
TXN610  
TXN612  
TXN812  
TYN0510  
TYN0512  
TYN0516  
TYN054  
TYN056  
TYN058  
TYN058G  
TYN058K  
TYN104  
TYN106  
TYN108  
TYN108G  
TYN110  
S4006L  
S4006L  
S4008L  
S4008L  
S4010L  
S4015L  
S6006L  
S6006L  
S6008L  
S6008L  
S6010L  
S6015L  
S8015L  
S2010R  
S2012R  
S2016R  
S2006F1  
S2006F1  
S2008R  
S2008R  
S2008R  
S2006F1  
S2006F1  
S2008R  
S2008R  
S2010R  
S2012R  
S2016R  
S2006F1  
S2006F1  
S2008R  
S2008R  
S2008R  
S2010R  
S2012R  
S2016R  
S4006F1  
S4006F1  
S4008R  
S4008R  
S4008R  
S4010R  
S4012R  
S4016R  
S6006F1  
S6006F1  
S6008R  
S6008R  
S6008R  
S6010R  
S6012R  
S6016R  
S2025R  
S2025R  
S2025R  
S4025R  
S6025R  
S8008R  
S8008R  
S8008R  
S8010R  
S8012R  
S8016R  
S2010LS2  
S2010LS2  
S2010LS2  
S4010LS2  
S2010LS3  
S2010LS2  
S2010LS2  
S
D
D
D
D
S
S
D
D
D
D
S
S
D
D
D
S
S
D
S
S
S
S
D
S
D
D
D
S
S
D
S
S
D
D
D
S
S
D
S
S
D
S
D
S
S
D
S
S
D
D
D
D
D
D
D
D
D
S
S
S
D
D
S
S
S
S
S
S
S
TO-220 (ISOL)  
TYS1007-4  
TYS406-05  
TYS406-1  
TYS406-2  
TYS406-4  
TYS406-6  
TYS407-05  
TYS407-1  
TYS407-2  
TYS407-4  
TYS407-6  
TYS606-05  
TYS606-1  
TYS606-2  
TYS606-4  
TYS606-6  
TYS607-05  
TYS607-1  
TYS607-2  
TYS607-4  
TYS607-6  
TYS806-05  
TYS806-1  
TYS806-2  
TYS806-4  
TYS806-6  
TYS807-05  
TYS807-1  
TYS807-2  
TYS807-4  
TYS807-6  
X0101BA  
X0101DA  
X0101MA  
X0102BA  
X0102DA  
X0102MA  
X0103BA  
X0103DA  
X0103MA  
X0104BA  
X0104DA  
X0104MA  
X0105BA  
X0105DA  
X0105MA  
X0106BA  
X0106DA  
X0106MA  
X0110BA  
X0110DA  
X0110MA  
X0202BA  
X0202DA  
X0202MA  
X0203BA  
X0203DA  
X0203MA  
X0204BA  
X0204DA  
X0204MA  
X0205BA  
X0205DA  
X0205MA  
X0206BA  
X0206DA  
X0402BE  
X0402BF  
X0402DE  
X0402DF  
S4010LS2  
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
S
D
D
D
D
S
D
D
D
D
S
D
D
D
D
S
S
S
S
S
S
S
S
S
S
D
D
D
S
S
S
S
S
S
S
S
S
D
D
D
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
TO-220 (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-92 (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
T106B1  
TO-220 (ISOL)  
T106B1  
TO-220 (ISOL)  
T106B1  
TO-220 (ISOL)  
T106D1  
TO-220 (ISOL)  
T106M1  
TO-220 (ISOL)  
T107B1  
TO-220 (ISOL)  
T107B1  
TO-220 (ISOL)  
T107B1  
TO-220 (ISOL)  
T107D1  
TO-220 (ISOL)  
T107M1  
TO-220 (ISOL)  
S2006LS2  
S2006LS2  
S2006LS2  
S4006LS2  
S6006LS2  
S2006LS3  
S2006LS3  
S2006LS3  
S4006LS3  
S6006LS3  
S2008LS2  
S2008LS2  
S2008LS2  
S4008LS2  
S6008LS2  
S2008LS3  
S2008LS3  
S2008LS3  
S4008LS3  
S6008LS3  
EC103B1  
EC103D1  
EC103M1  
EC103B  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (N.ISOL)  
TO-220 (ISOL)  
TYN112  
TYN116  
TYN204  
TYN206  
TYN208  
TYN208G  
TYN208K  
TYN210  
TYN212  
TYN216  
TYN404  
TYN406  
TYN408  
TYN408G  
TYN408K  
TYN410  
TYN412  
TYN416  
TYN604  
TYN606  
TYN608  
TYN608G  
TYN608K  
TYN610  
TYN612  
TYN616  
TYN682  
TYN683  
TYN685  
TYN688  
TYN690  
TYN808  
TYN808G  
TYN808K  
TYN810  
TYN812  
TYN816  
TYS1006-05  
TYS1006-1  
TYS1006-2  
TYS1006-4  
TYS1007-05  
TYS1007-1  
TYS1007-2  
EC103D  
EC103M  
EC103B  
EC103D  
EC103M  
EC103B2  
EC103D2  
EC103M2  
EC103B2  
EC103D2  
EC103M2  
EC103B  
EC103D  
EC103M  
EC103B1  
EC103D1  
EC103M1  
TCR22-4  
TCR22-6  
TCR22-8  
TCR22-4  
TCR22-6  
TCR22-8  
TCR22-4  
TCR22-6  
TCR22-8  
EC103B2  
EC103D2  
EC103M2  
TCR22-4  
TCR22-6  
T106B1  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
TO-220 (ISOL)  
T106B2  
TO-220 (ISOL)  
T106D1  
TO-220 (ISOL)  
T106D2  
http://www.teccor.com  
+1 972-580-7777  
A-24  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Appendix  
Cross Reference Guide  
Direct or  
Suggested  
Part Number  
Teccor Device Replacement  
Teccor Package  
X0402DG  
X0402ME  
X0402MF  
X0403BE  
X0403BF  
X0403DE  
X0403DF  
X0403ME  
X0403MF  
X0405BE  
X0405BF  
X0405DE  
X0405DF  
X0405ME  
X0405MF  
Z00607DA  
Z00607MA  
Z0102BA  
Z0102DA  
Z0102MA  
Z0103DN  
Z0103MN  
Z0105BA  
Z0105DA  
Z0105MA  
Z0107DN  
Z0107MN  
Z0109BA  
Z0109DA  
Z0109MA  
Z0110DA  
Z0110MA  
Z0302BG  
Z0302DG  
Z0302MG  
Z0305BG  
Z0305DG  
Z0309BG  
Z0309DG  
Z0310BG  
Z0310DG  
Z0310MG  
Z0405BE  
Z0405BF  
Z0405DE  
Z0405DF  
Z0405ME  
Z0405MF  
Z0409BE  
Z0409BF  
Z0409DE  
Z0409DF  
Z0409ME  
Z0409MF  
Z0410BE  
Z0410BE  
Z0410BF  
Z0410BF  
Z0410DE  
Z0410DE  
Z0410DF  
Z0410ME  
Z0410MF  
T106D1  
T106M1  
T106M2  
T106B1  
S
D
D
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
S
S
D
D
D
S
S
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-92 (ISOL)  
T106B2  
T106D1  
T106D2  
T106M1  
T106M2  
T106B1  
T106B2  
T106D1  
T106D2  
T106M1  
T106M2  
L4X8E5  
L6X8E5  
TO-92 (ISOL)  
L201E3  
TO-92 (ISOL)  
L401E3  
TO-92 (ISOL)  
L601E3  
TO-92 (ISOL)  
L4N3  
SOT223/COMPAK  
SOT223/COMPAK  
TO-92 (ISOL)  
L6N3  
L201E5  
L401E5  
TO-92 (ISOL)  
TO-92 (ISOL)  
L601E5  
L4N5  
SOT223/COMPAK  
SOT223/COMPAK  
TO-92 (ISOL)  
L6N5  
L201E6  
L401E6  
TO-92 (ISOL)  
L601E6  
TO-92 (ISOL)  
L401E8  
TO-92 (ISOL)  
L601E8  
TO-92 (ISOL)  
L2004F321  
L4004F321  
L6004L3  
L2004F521  
L4004F521  
L2004F621  
L4004F621  
L2004F821  
L4004F821  
L6004L8  
L2004F51  
L2004F52  
L4004F51  
L4004F52  
L6004F51  
L6004F52  
L2004F61  
L2004F62  
L4004F61  
L4004F62  
L6004F61  
L6004F62  
L2004F81  
L2004F81  
L2004F82  
L2004F82  
L4004F81  
L4004F81  
L4004F82  
L6004F81  
L6004F82  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-220 (ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
TO-202 (N.ISOL)  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-25  
http://www.teccor.com  
+1 972-580-7777  
Notes  
Part Number Index  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-27  
http://www.teccor.com  
+1 972-580-7777  
Part Number Index  
TECCOR  
PAGE  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
PART NO.  
NO.  
PART NO.  
PART NO.  
PART NO.  
PART NO.  
K1100E70  
K1100G  
K1100S  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
L2004V6  
L2004V8  
L2006D5  
L2006D6  
L2006D8  
L2006L5  
L2006L6  
L2006L8  
L2006V5  
L2006V6  
L2006V8  
L2008D6  
L2008D8  
L2008L6  
L2008L8  
L2008V6  
L2008V8  
L201E3  
E1-2  
E1-2  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-4  
L4006D6  
L4006D8  
L4006L5  
L4006L6  
L4006L8  
L4006V5  
L4006V6  
L4006V8  
L4008D6  
L4008D8  
L4008L6  
L4008L8  
L4008V6  
L4008V8  
L401E3  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-4  
E1-4  
E1-4  
E1-4  
L6006L6  
L6006L8  
L6006V5  
L6006V6  
L6006V8  
L6008D6  
L6008D8  
L6008L6  
L6008L8  
L6008V6  
L6008V8  
L601E3  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-4  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E1-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E3-2  
E2-2  
E2-2  
E4-2  
E4-2  
E2-2  
E2-2  
E4-2  
E3-2  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E4-2  
E4-2  
2N5064  
2N6565  
D2015L  
D2020L  
D2025L  
D4015L  
D4020L  
D4025L  
D6015L  
D6020L  
D6025L  
D8015L  
D8020L  
D8025L  
DK015L  
DK020L  
DK025L  
EC103B  
EC103B1  
EC103B2  
EC103B3  
EC103D  
EC103D1  
EC103D2  
EC103D3  
EC103M  
EC103M1  
EC103M2  
EC103M3  
HT-32  
E5-2  
E5-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E7-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
E9-2  
K1200E70  
K1200G  
K1200S  
K1300E70  
K1300G  
K1300S  
K1400E70  
K1400G  
K1400S  
K1500E70  
K1500G  
K1500S  
L601E5  
L601E6  
L601E8  
K2000E70  
K2000F1  
K2000G  
K2000S  
L401E5  
L6N3  
L401E6  
L6N5  
L401E8  
L6X3  
L201E5  
L4N3  
L6X5  
K2200E70  
K2200F1  
K2200G  
K2200S  
L201E6  
L4N5  
L6X8E3  
L201E8  
L4X3  
L6X8E5  
L2N3  
L4X5  
L6X8E6  
L2N5  
L4X8E3  
L4X8E5  
L4X8E6  
L4X8E8  
L6004D3  
L6004D5  
L6004D6  
L6004D8  
L6004F31  
L6004F51  
L6004F61  
L6004F81  
L6004L3  
L6004L5  
L6004L6  
L6004L8  
L6004V3  
L6004V5  
L6004V6  
L6004V8  
L6006D5  
L6006D6  
L6006D8  
L6006L5  
L6X8E8  
K2400E70  
K2400F1  
K2400G  
K2400S  
L2X3  
Q2004D3  
Q2004D4  
Q2004F31  
Q2004F41  
Q2004L3  
Q2004L4  
Q2004LT  
Q2004V3  
Q2004V4  
Q2006DH3  
Q2006DH4  
Q2006F41  
Q2006L4  
Q2006LH4  
Q2006LT  
Q2006N4  
Q2006NH4  
Q2006R4  
Q2006RH4  
Q2006VH3  
Q2006VH4  
Q2008DH3  
Q2008DH4  
L2X5  
L2X8E3  
L2X8E5  
L2X8E6  
L2X8E8  
L4004D3  
L4004D5  
L4004D6  
L4004D8  
L4004F31  
L4004F51  
L4004F61  
L4004F81  
L4004L3  
L4004L5  
L4004L6  
L4004L8  
L4004V3  
L4004V5  
L4004V6  
L4004V8  
L4006D5  
K2500E70  
K2500F1  
K2500G  
K2500S  
HT-32A  
K3000F1  
L2004D3  
L2004D5  
L2004D6  
L2004D8  
L2004F31  
L2004F51  
L2004F61  
L2004F81  
L2004L3  
L2004L5  
L2004L6  
L2004L8  
L2004V3  
L2004V5  
HT-32B  
HT-34B  
HT-35  
HT-36A  
HT-36B  
HT-40  
HT-5761  
HT-5761A  
HT-5762  
K0900E70  
K0900G  
K0900S  
K1050E70  
K1050G  
K1050S  
http://www.teccor.com  
+1 972-580-7777  
A-28  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Part Number Index  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
TECCOR  
PAGE  
PART NO.  
PART NO.  
PART NO.  
PART NO.  
NO.  
PART NO.  
NO.  
Q2008F41  
Q2008L4  
Q2008LH4  
Q2008LT  
E2-2  
E2-2  
E4-2  
E3-2  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E2-4  
E2-4  
E2-4  
E4-2  
E3-2  
E2-4  
E2-4  
E4-2  
E2-4  
E2-4  
E4-2  
E4-2  
E4-2  
E4-2  
E2-4  
E3-2  
E2-4  
E2-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E2-2  
E2-2  
E4-4  
E4-4  
E4-4  
E2-4  
E2-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
Q2040K7  
Q2N3  
E4-4  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E3-2  
E2-2  
E2-2  
E4-2  
E4-2  
E2-2  
E2-2  
E4-2  
E3-2  
E3-2  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E4-2  
E4-2  
E2-2  
E2-2  
E4-2  
E3-2  
E3-2  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E2-4  
E2-4  
E2-4  
E4-2  
Q4010LT  
Q4010LTH  
Q4010N4  
Q4010N5  
Q4010NH5  
Q4010R4  
Q4010R5  
Q4010RH5  
Q4012LH5  
Q4012NH5  
Q4012RH5  
Q4015L5  
Q4015LT  
Q4015LTH  
Q4015N5  
Q4015R5  
Q4016LH3  
Q4016LH4  
Q4016LH6  
Q4016RH3  
Q4016RH4  
Q4016RH6  
Q401E3  
E3-2  
E3-2  
E2-4  
E2-4  
E4-2  
E2-4  
E2-4  
E4-2  
E4-2  
E4-2  
E4-2  
E2-4  
E3-2  
E3-2  
E2-4  
E2-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E2-2  
E2-2  
E4-4  
E4-4  
E4-4  
E2-4  
E2-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
Q6004L4  
E2-2  
E3-2  
E2-2  
E2-2  
E4-2  
E4-2  
E2-2  
E2-2  
E4-2  
E3-2  
E3-2  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E4-2  
E4-2  
E2-2  
E2-2  
E4-2  
E3-2  
E3-2  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E2-4  
E2-4  
E2-4  
E4-2  
E3-2  
E3-2  
E2-4  
E2-4  
E4-2  
E2-4  
E2-4  
E4-2  
E4-2  
E4-2  
E4-2  
E2-4  
Q6015LT  
Q6015LTH  
Q6015N5  
Q6015R5  
Q6016LH3  
Q6016LH4  
Q6016LH6  
Q6016RH3  
Q6016RH4  
Q6016RH6  
Q601E3  
E3-2  
E3-2  
E2-4  
E2-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E2-2  
E2-2  
E4-4  
E4-4  
E4-4  
E2-4  
E2-4  
E2-4  
E4-4  
E4-4  
E4-4  
E2-4  
E4-4  
E4-4  
E4-4  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E2-2  
E4-2  
E4-2  
E2-2  
E4-2  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E4-2  
E4-2  
Q6004LT  
Q2N4  
Q6004V3  
Q6004V4  
Q6006DH3  
Q6006DH4  
Q6006F51  
Q6006L5  
Q2X3  
Q2008N4  
Q2008NH4  
Q2008R4  
Q2008RH4  
Q2008VH3  
Q2008VH4  
Q2010F51  
Q2010L4  
Q2010L5  
Q2010LH5  
Q2010LT  
Q2X4  
Q2X8E3  
Q2X8E4  
Q4004D3  
Q4004D4  
Q4004F31  
Q4004F41  
Q4004L3  
Q4004L4  
Q4004LT  
Q4004V3  
Q4004V4  
Q4006DH3  
Q4006DH4  
Q4006F41  
Q4006L4  
Q4006LH4  
Q4006LT  
Q4006LTH  
Q4006N4  
Q4006NH4  
Q4006R4  
Q4006RH4  
Q4006VH3  
Q4006VH4  
Q4008DH3  
Q4008DH4  
Q4008F41  
Q4008L4  
Q4008LH4  
Q4008LT  
Q4008LTH  
Q4008N4  
Q4008NH4  
Q4008R4  
Q4008RH4  
Q4008VH3  
Q4008VH4  
Q4010F51  
Q4010L4  
Q4010L5  
Q4010LH5  
Q6006LH4  
Q6006LT  
Q6006LTH  
Q6006N5  
Q6006NH4  
Q6006R5  
Q6006RH4  
Q6006VH3  
Q6006VH4  
Q6008DH3  
Q6008DH4  
Q6008F51  
Q6008L5  
Q601E4  
Q6025J6  
Q6025K6  
Q6025L6  
Q6025N5  
Q6025P5  
Q6025R5  
Q6025R6  
Q6030LH5  
Q6035NH5  
Q6035P5  
Q6035RH5  
Q6040J7  
Q6040K7  
Q6N3  
Q2010N4  
Q2010N5  
Q2010NH5  
Q2010R4  
Q2010R5  
Q2010RH5  
Q2012LH5  
Q2012NH5  
Q2012RH5  
Q2015L5  
Q2015LT  
Q6008LH4  
Q6008LT  
Q401E4  
Q6008LTH  
Q6008N5  
Q6008NH4  
Q6008R5  
Q6008RH4  
Q6008VH3  
Q6008VH4  
Q6010F51  
Q6010L4  
Q4025J6  
Q4025K6  
Q4025L6  
Q4025N5  
Q4025R5  
Q4025R6  
Q4030LH5  
Q4035NH5  
Q4035RH5  
Q4040J7  
Q4040K7  
Q4N3  
Q2015N5  
Q2015R5  
Q2016LH3  
Q2016LH4  
Q2016LH6  
Q2016RH3  
Q2016RH4  
Q2016RH6  
Q201E3  
Q6N4  
Q6X3  
Q6X4  
Q6X8E3  
Q6X8E4  
Q8004D4  
Q8004L4  
Q8004V4  
Q8006DH3  
Q8006DH4  
Q8006L5  
Q8006LH4  
Q8006N5  
Q8006NH4  
Q8006R5  
Q8006RH4  
Q8006VH3  
Q8006VH4  
Q8008DH3  
Q8008DH4  
Q6010L5  
Q6010LH5  
Q6010LT  
Q201E4  
Q6010LTH  
Q6010N4  
Q6010N5  
Q6010NH5  
Q6010R4  
Q6010R5  
Q6010RH5  
Q6012LH5  
Q6012NH5  
Q6012RH5  
Q6015L5  
Q2025J6  
Q4N4  
Q2025K6  
Q2025L6  
Q2025N5  
Q2025R5  
Q2025R6  
Q2030LH5  
Q2035NH5  
Q2035RH5  
Q2040J7  
Q4X3  
Q4X4  
Q4X8E3  
Q4X8E4  
Q6004D3  
Q6004D4  
Q6004F31  
Q6004F41  
Q6004L3  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-29  
http://www.teccor.com  
+1 972-580-7777  
Part Number Index  
TECCOR  
PAGE  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
PART NO.  
NO.  
PART NO.  
PART NO.  
PART NO.  
PART NO.  
Q8008L5  
E2-2  
E4-2  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E2-4  
E2-4  
E4-2  
E2-4  
E2-4  
E4-2  
E2-4  
E2-4  
E4-2  
E4-2  
E4-2  
E4-2  
E2-4  
E2-4  
E2-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E2-4  
E2-4  
E2-4  
E4-4  
E2-4  
E4-4  
E4-4  
E2-2  
E2-2  
E2-2  
E4-2  
E4-2  
E2-2  
E4-2  
QK006N5  
QK006NH4  
QK006R5  
QK006RH4  
QK006VH3  
QK006VH4  
QK008DH3  
QK008DH4  
QK008L5  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E4-2  
E4-2  
E2-2  
E4-2  
E2-2  
E4-2  
E2-2  
E4-2  
E4-2  
E4-2  
E2-4  
E2-4  
E4-2  
E2-4  
E2-4  
E4-2  
E2-4  
E2-4  
E4-2  
E4-2  
E4-2  
E4-2  
E2-4  
E2-4  
E2-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E4-4  
E2-4  
E4-4  
E2-4  
E4-4  
QK040K7  
S2004DS1  
S2004DS2  
S2004VS1  
S2004VS2  
S2006D  
E4-4  
E5-2  
E5-2  
E5-2  
E5-2  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E6-2  
E5-4  
E5-4  
E6-2  
E6-2  
E6-2  
S2015L  
E6-4  
E6-4  
E6-4  
E6-2  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
S4008L  
E6-2  
E5-4  
E5-4  
E6-2  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E6-2  
E5-4  
E5-4  
E6-2  
E6-2  
E6-2  
E6-4  
E6-4  
E6-4  
E6-2  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-2  
E5-2  
E5-2  
E5-2  
Q8008LH4  
Q8008N5  
Q8008NH4  
Q8008R5  
Q8008RH4  
Q8008VH3  
Q8008VH4  
Q8010L4  
S2016N  
S2016R  
S201E  
S4008LS2  
S4008LS3  
S4008R  
S4008V  
S4008VS2  
S4008VS3  
S4010D  
S4010DS2  
S4010DS3  
S4010F1  
S4010FS21  
S4010FS31  
S4010L  
S2020L  
S2025L  
S2006DS2  
S2006DS3  
S2006F1  
S2006FS21  
S2006FS31  
S2006L  
S2025N  
S2025R  
S2035J  
Q8010L5  
QK008LH4  
QK008N5  
QK008NH4  
QK008R5  
QK008RH4  
QK008VH3  
QK008VH4  
QK010L4  
S2035K  
Q8010LH5  
Q8010N4  
Q8010N5  
Q8010NH5  
Q8010R4  
Q8010R5  
Q8010RH5  
Q8012LH5  
Q8012NH5  
Q8012RH5  
Q8015L5  
S2040N  
S2040R  
S2055M  
S2055N  
S2055R  
S2055W  
S2065J  
S2006LS2  
S2006LS3  
S2006V  
S4010LS2  
S4010LS3  
S4010R  
S4010V  
S4010VS2  
S4010VS3  
S4012D  
S4012R  
S4012V  
S4015L  
S2006VS2  
S2006VS3  
S2008D  
QK010L5  
S2065K  
QK010LH5  
QK010N4  
QK010N5  
QK010NH5  
QK010R4  
QK010R5  
QK010RH5  
QK012LH5  
QK012NH5  
QK012RH5  
QK015L5  
S2008DS2  
S2008DS3  
S2008F1  
S2008FS21  
S2008FS31  
S2008L  
S2070W  
S2N1  
S2S  
Q8015N5  
Q8015R5  
Q8016LH3  
Q8016LH4  
Q8016LH6  
Q8016RH3  
Q8016RH4  
Q8016RH6  
Q8025J6  
S2S1  
S2S2  
S2S3  
S2008LS2  
S2008LS3  
S2008R  
S4004DS1  
S4004DS2  
S4004VS1  
S4004VS2  
S4006D  
S4006DS2  
S4006DS3  
S4006F1  
S4006FS21  
S4006FS31  
S4006L  
S4016N  
S4016R  
S401E  
S2008V  
S4020L  
S2008VS2  
S2008VS3  
S2010D  
S4025L  
QK015N5  
QK015R5  
QK016LH3  
QK016LH4  
QK016LH6  
QK016NH3  
QK016NH4  
QK016NH6  
QK016RH3  
QK016RH4  
QK016RH6  
QK025K6  
QK025L6  
S4025N  
S4025R  
S4035J  
Q8025K6  
Q8025L6  
S2010DS2  
S2010DS3  
S2010F1  
S2010FS21  
S2010FS31  
S2010L  
Q8025N5  
Q8025P5  
Q8025R5  
Q8025R6  
Q8035P5  
Q8040J7  
S4035K  
S4040N  
S4040R  
S4055M  
S4055N  
S4055R  
S4055W  
S4065J  
S4006LS2  
S4006LS3  
S4006V  
S2010LS2  
S2010LS3  
S2010R  
Q8040K7  
QK004D4  
QK004L4  
QK004V4  
QK006DH3  
QK006DH4  
QK006L5  
QK006LH4  
S4006VS2  
S4006VS3  
S4008D  
S4008DS2  
S4008DS3  
S4008F1  
S4008FS21  
S4008FS31  
S2010V  
S4065K  
S4070W  
S4N1  
S2010VS2  
S2010VS3  
S2012D  
QK025N5  
QK025N6  
QK025R5  
QK025R6  
S4S  
S2012R  
S4S1  
S2012V  
S4S2  
http://www.teccor.com  
+1 972-580-7777  
A-30  
©2002 Teccor Electronics  
Thyristor Product Catalog  
Part Number Index  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
NO.  
TECCOR  
PAGE  
TECCOR  
PAGE  
PART NO.  
PART NO.  
PART NO.  
PART NO.  
NO.  
PART NO.  
NO.  
S4S3  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E5-4  
E5-4  
E6-2  
E6-2  
E5-4  
E5-4  
E6-2  
E6-2  
E6-2  
S6015L  
S6016N  
S6016R  
S601E  
E6-4  
E6-4  
E6-4  
E6-2  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-2  
E5-2  
E5-2  
E5-2  
E5-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
S8035K  
S8040N  
S8040R  
S8055M  
S8055N  
S8055R  
S8055W  
S8065J  
S8065K  
S8070W  
SK006D  
SK006L  
SK006V  
SK008D  
SK008L  
SK008R  
SK008V  
SK010D  
SK010L  
SK010R  
SK010V  
SK012D  
SK012R  
SK012V  
SK015L  
SK016N  
SK016R  
SK020L  
SK025L  
SK025N  
SK025R  
SK035K  
SK040N  
SK040R  
SK055M  
SK055N  
SK055R  
SK065K  
ST-32  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-2  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E6-4  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E8-2  
E5-2  
T106D1  
T106M1  
T107B1  
T107D1  
T107M1  
TCR22-4  
TCR22-6  
TCR22-8  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
E5-2  
S6004DS1  
S6004DS2  
S6004VS1  
S6004VS2  
S6006D  
S6020L  
S6025L  
S6025N  
S6025R  
S6035J  
S6035K  
S6040N  
S6040R  
S6055M  
S6055N  
S6055R  
S6055W  
S6065J  
S6065K  
S6070W  
S6N1  
S6006DS2  
S6006DS3  
S6006F1  
S6006FS21  
S6006FS31  
S6006L  
S6006LS2  
S6006LS3  
S6006V  
S6006VS2  
S6006VS3  
S6008D  
S6008DS2  
S6008DS3  
S6008F1  
S6008FS21  
S6008FS31  
S6008L  
S6S  
S6S1  
S6S2  
S6S3  
S6008LS2  
S6008LS3  
S6008R  
S8006D  
S8006L  
S8006V  
S8008D  
S8008L  
S8008R  
S8008V  
S8010D  
S8010L  
S8010R  
S8010V  
S8012D  
S8012R  
S8012V  
S8015L  
S8016N  
S8016R  
S8020L  
S8025L  
S8025N  
S8025R  
S8035J  
S6008V  
S6008VS2  
S6008VS3  
S6010D  
S6010DS2  
S6010DS3  
S6010F1  
S6010FS21  
S6010FS31  
S6010L  
S6010LS2  
S6010LS3  
S6010R  
ST-32B  
ST-34B  
ST-35  
S6010V  
S6010VS2  
S6010VS3  
S6012D  
ST-36A  
ST-36B  
ST-40  
S6012R  
S6012V  
T106B1  
©2002 Teccor Electronics  
Thyristor Product Catalog  
A-31  
http://www.teccor.com  
+1 972-580-7777  

相关型号:

S2008R51

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220, 3 PIN
TECCOR

S2008R51V

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220AB, 3 PIN
LITTELFUSE

S2008R52

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220, 3 PIN
TECCOR

S2008R52V

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220AB, 3 PIN
LITTELFUSE

S2008R53

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220, 3 PIN
TECCOR

S2008R53V

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220AB, 3 PIN
LITTELFUSE

S2008R55

SCR NON-SENS 200V 8A TO-220
LITTELFUSE

S2008R56

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220, 3 PIN
TECCOR

S2008R56V

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220AB, 3 PIN
LITTELFUSE

S2008R57

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220, 3 PIN
TECCOR

S2008R57V

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220AB, 3 PIN
LITTELFUSE

S2008R59

Silicon Controlled Rectifier, 8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-220AB, TO-220, 3 PIN
TECCOR