TC4467 [TELCOM]

LOGIC-INPUT CMOS QUAD DRIVERS; 逻辑输入CMOS Quad驱动程序
TC4467
型号: TC4467
厂家: TELCOM SEMICONDUCTOR, INC    TELCOM SEMICONDUCTOR, INC
描述:

LOGIC-INPUT CMOS QUAD DRIVERS
逻辑输入CMOS Quad驱动程序

输入元件 驱动
文件: 总9页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4
TC4467  
TC4468  
TC4469  
LOGIC-INPUT CMOS QUAD DRIVERS  
GENERAL DESCRIPTION  
FEATURES  
The TC446X family of four-output CMOS buffer/drivers  
are an expansion from our earlier single- and dual-output  
drivers. Each driver has been equipped with a two-input  
logic gate for added flexibility.  
The TC446X drivers can source up to 250 mA into loads  
referenced to ground. Heavily loaded clock lines, coaxial  
cables, and piezoelectric transducers can all be easily  
driven with the 446X series drivers. The only limitation on  
loading is that total power dissipation in the IC must be kept  
within the power dissipation limits of the package.  
The TC446X series will not latch under any conditions  
within their power and voltage ratings. They are not subject  
to damage when up to 5V of noise spiking (either polarity)  
occursonthegroundline. Theycanacceptuptohalfanamp  
of inductive kickback current (either polarity) into their out-  
puts without damage or logic upset. In addition, all terminals  
are protected against ESD to at least 2000V.  
High Peak Output Current ............................... 1.2A  
Wide Operating Range ............................ 4.5 to 18V  
Symmetrical Rise and Fall Times................25nsec  
Short, Equal Delay Times ............................75nsec  
Latchproof! Withstands 500mA Inductive Kickback  
3 Input Logic Choices  
— AND / NAND / AND + Inv  
2kV ESD Protection on All Pins  
APPLICATIONS  
General-Purpose CMOS Logic Buffer  
Driving All Four MOSFETs in an H-Bridge  
Direct Small Motor Driver  
Relay or Peripheral Drivers  
CCD Driver  
Pin-Switching Network Driver  
ORDERING INFORMATION  
Part No.  
Package  
Temp. Range  
TC446xCOE  
TC446xCPD  
TC446xEJD  
TC446xMJD  
16-Pin SOIC (Wide)  
14-Pin Plastic DIP  
14-Pin CerDIP  
0° to +70°C  
0° to +70°C  
– 40° to +85°C  
– 55° to +125°C  
14-Pin CerDIP  
x indicates a digit must be added in this position to define the device  
input configuration: TC446x — 7  
NAND  
AND  
AND with INV  
8
9
LOGIC DIAGRAMS  
V
V
V
TC446X  
TC4468  
TC4469  
TC4467  
DD  
14  
DD  
14  
DD  
14  
V
DD  
1
1
1
1A  
2
1A  
13  
12  
11  
10  
13  
12  
11  
10  
1A  
2
13  
12  
11  
10  
1Y  
2Y  
3Y  
4Y  
1Y  
1Y  
2Y  
3Y  
4Y  
2
1B  
1B  
1B  
3
3
4
3
2A  
4
2A  
2B  
2A  
4
OUTPUT  
2Y  
3Y  
4Y  
2B  
2B  
5
5
6
5
3A  
6
3A  
3B  
3A  
6
3B  
3B  
8
8
9
8
4A  
9
4A  
4B  
4A  
9
4B  
4B  
7
7
7
GND  
GND  
GND  
TC4467/8/9-6 10/21/96  
TELCOM SEMICONDUCTOR, INC.  
4-261  
LOGIC-INPUT CMOS  
QUAD DRIVERS  
TC4467  
TC4468  
TC4469  
Package Thermal Resistance  
ABSOLUTE MAXIMUM RATINGS*  
14-Pin CerDIP  
RθJ-A ...................................... 100°C/W  
RθJ-C ......................................... 23°C/W  
Supply Voltage ......................................................... +20V  
Input Voltage ......................... (GND – 5V) to (VDD + 0.3V)  
Maximum Chip Temperature  
Operating ........................................................ +150°C  
Storage ............................................. – 65° to +150°C  
Maximum Lead Temperature  
14-Pin Plastic DIP RθJ-A ......................................... 80°C/W  
RθJ-C ......................................... 35°C/W  
16-Pin Wide SOIC RθJ-A ......................................... 95°C/W  
RθJ-C ......................................... 28°C/W  
*Static-sensitive device. Unused devices must be stored in conductive  
material. Protect devices from static discharge and static fields. Stresses  
above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. These are stress ratings only and functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating Conditions for extended periods  
may affect device reliability.  
(Soldering, 10 sec) ......................................... +300°C  
Operating Ambient Temperature Range  
C Device .................................................. 0° to +70°C  
E Device ............................................. – 40° to +85°C  
M Device........................................... – 55° to +125°C  
Package Power Dissipation (TA 70°C)  
14-Pin CerDIP ................................................840mW  
14-Pin Plastic DIP...........................................800mW  
16-Pin Wide SOIC ..........................................760mW  
ELECTRICAL CHARACTERISTICS: Measured at TA = +25°C with 4.5V VDD 18V, unless otherwise specified.  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input  
VIH  
Logic 1, High Input Voltage  
Logic 0, Low Input Voltage  
Input Current  
Note 3  
2.4  
0
VDD  
0.8  
1
V
VIL  
Note 3  
V
IIN  
0V VIN VDD  
– 1  
µA  
Output  
VOH  
VOL  
RO  
High Output Voltage  
Low Output Voltage  
Output Resistance  
ILOAD = 100µA (Note 1)  
ILOAD = 10mA (Note 1)  
IOUT = 10mA, VDD = 18V  
VDD – 0.025  
0.15  
15  
V
V
10  
1.2  
IPK  
Peak Output Current  
Continuous Output Current  
A
IDC  
Single Output  
Total Package  
300  
500  
mA  
I
Latch-Up Protection  
4.5V VDD 16V  
500  
mA  
Withstand Reverse Current  
Switching Time  
tR  
Rise Time  
Figure 1  
Figure 1  
Figure 1  
Figure 1  
15  
15  
40  
40  
25  
25  
75  
75  
nsec  
nsec  
nsec  
nsec  
tF  
Fall Time  
tD1  
Delay Time  
Delay Time  
tD2  
Power Supply  
IS  
Power Supply Current  
Power Supply Voltage  
1.5  
4
mA  
V
VDD  
Note 2  
4.5  
18  
TRUTH TABLE  
Part No.  
TC4467 NAND  
TC4468 AND  
TC4469 AND/INV  
INPUTS A  
INPUTS B  
H
H
H
L
L
H
L
L
H
H
H
L
L
H
L
L
H
H
H
L
L
H
L
L
OUTPUTS TC446X  
L
H
H
H
H
L
L
L
L
H
L
L
H = High L = Low  
4-262  
TELCOM SEMICONDUCTOR, INC.  
LOGIC-INPUT CMOS  
QUAD DRIVERS  
4
TC4467  
TC4468  
TC4469  
ELECTRICAL CHARACTERISTICS: Measured throughout operating temperature range with 4.5V VDD 18V,  
unless otherwise specified.  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input  
VIH  
Logic 1, High Input Voltage  
Logic 0, Low Input Voltage  
Input Current  
(Note 3)  
2.4  
0.8  
10  
V
VIL  
(Note 3)  
V
IIN  
0V VIN VDD  
– 10  
µA  
Output  
VOH  
VOL  
RO  
High Output Voltage  
Low Output Voltage  
Output Resistance  
Peak Output Current  
ILOAD = 100 µA (Note 1)  
ILOAD = 10 mA (Note 1)  
IOUT = 10 mA, VDD = 18V  
VDD – 0.025  
0.30  
30  
V
V
20  
1.2  
IPK  
A
I
Latch-Up Protection  
4.5V VDD 16V  
500  
mA  
Withstand Reverse Current  
Switching Time  
tR  
Rise Time  
Figure 1  
Figure 1  
Figure 1  
Figure 1  
50  
50  
nsec  
nsec  
nsec  
nsec  
tF  
Fall Time  
tD1  
Delay Time  
Delay Time  
100  
100  
tD2  
Power Supply  
IS  
IS  
Power Supply Current  
Power Supply Voltage  
8
mA  
V
Note 2  
4.5  
18  
NOTES: 1. Totem-pole outputs should not be paralleled because the propagation delay differences from one to the other could cause one driver to  
drive high a few nanoseconds before another. The resulting current spike, although short, may decrease the life of the device.  
2. When driving all four outputs simultaneously in the same direction, VDD shall be limited to 16V. This reduces the chance that internal  
dv/dt will cause high-power dissipation in the device.  
3. The input threshold has about 50 mV of hysteresis centered at approximately 1.5V. Slow moving inputs will force the device to  
dissipate high peak currents as the input transitions through this band. Input rise times should be kept below 5 µs to avoid high internal  
peak currents during input transitions. Static input levels should also be maintained above the maximum or below the minimum input  
levels specified in the "Electrical Characteristics" to avoid increased power dissipation in the device.  
PIN CONFIGURATIONS  
16-Pin SOIC (Wide)  
14-Pin Plastic DIP/CerDIP  
1A  
1B  
V
DD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1A 1  
1B 2  
2A 3  
2B 4  
14 V  
DD  
V
DD  
13 1Y  
2A  
1Y  
2Y  
3Y  
4Y  
4B  
4A  
12 2Y  
11 3Y  
10 4Y  
2B  
TC4467/8/9  
TC4467/8/9  
3A  
3B  
3A 5  
3B 6  
GND  
GND  
9
8
4B  
4A  
GND 7  
TELCOM SEMICONDUCTOR, INC.  
4-263  
LOGIC-INPUT CMOS  
QUAD DRIVERS  
TC4467  
TC4468  
TC4469  
Supply Bypassing  
Three components make up total package power  
dissipation:  
Large currents are required to charge and discharge  
large capacitive loads quickly. For example, charging a  
1000 pF load to 18V in 25nsec requires 0.72A from the  
device's power supply.  
(1) Load-caused dissipation (PL)  
(2) Quiescent power (PQ)  
(3) Transition power (PT).  
To guarantee low supply impedance over a wide fre-  
quencyrange,a1µFfilmcapacitorinparallelwithoneortwo  
low-inductance 0.1 µF ceramic disk capacitors with short  
lead lengths (<0.5 in.) normally provide adequate bypass-  
ing.  
A capacitive-load-caused dissipation (driving MOSFET  
gates), is a direct function of frequency, capacitive load, and  
supply voltage. The power dissipation is:  
2
PL = f C VS ,  
Grounding  
where: f = Switching frequency  
C = Capacitive load  
The TC4467 and TC4469 contain inverting drivers.  
Potential drops developed in common ground impedances  
from input to output will appear as negative feedback and  
degradeswitchingspeedcharacteristics.Instead,individual  
ground returns for input and output circuits, or a ground  
plane, should be used.  
VS = Supply voltage.  
A resistive-load-caused dissipation for ground-refer-  
enced loads is a function of duty cycle, load current, and  
load voltage. The power dissipation is:  
Input Stage  
PL = D (VS – VL) IL,  
The input voltage level changes the no-load or quies-  
cent supply current. The N-channel MOSFET input stage  
transistor drives a 2.5 mA current source load. With logic "0"  
outputs, maximum quiescent supply current is 4 mA. Logic  
"1" output level signals reduce quiescent current to 1.4 mA  
maximum. Unused driver inputs must be connected to VDD  
or VSS. Minimum power dissipation occurs for logic "1"  
outputs.  
The drivers are designed with 50 mV of hysteresis. This  
provides clean transitions and minimizes output stage cur-  
rent spiking when changing states. Input voltage thresholds  
are approximately 1.5V, making any voltage greater than  
1.5V up to VDD a logic 1 input . Input current is less than 1 µA  
over this range.  
where: D = Duty cycle  
VS = Supply voltage  
VL = Load voltage  
IL = Load current.  
A resistive-load-caused dissipation for supply-refer-  
enced loads is a function of duty cycle, load current, and  
output voltage. The power dissipation is:  
PL = D VO IL,  
where: f = Switching frequency  
VO = Device output voltage  
IL = Load current.  
Power Dissipation  
Thesupplycurrentversusfrequencyandsupplycurrent  
versus capacitive load characteristic curves will aid in deter-  
mining power dissipation calculations. TelCom Semicon-  
ductor's CMOS drivers have greatly reduced quiescent DC  
power consumption.  
Input signal duty cycle, power supply voltage and load  
type, influence package power dissipation. Given power  
dissipation and package thermal resistance, the maximum  
ambient operating temperature is easily calculated. The 14-  
pin plastic package junction-to-ambient thermal resistance  
is 83.3°C/W. At +70°C, the package is rated at 800mW  
maximum dissipation. Maximum allowable chip tempera-  
ture is +150°C.  
Quiescent power dissipation depends on input signal  
duty cycle. Logic HIGH outputs result in a lower power  
dissipation mode, with only 0.6 mA total current drain (all  
devicesdriven).LogicLOWoutputsraisethecurrentto4mA  
maximum. The quiescent power dissipation is:  
PQ = VS (D (IH) + (1–D)IL),  
where: IH = Quiescent current with all outputs LOW  
(4 mA max)  
IL = Quiescent current with all outputs HIGH  
(0.6 mA max)  
D = Duty cycle  
VS =Supply voltage.  
4-264  
TELCOM SEMICONDUCTOR, INC.  
LOGIC-INPUT CMOS  
QUAD DRIVERS  
4
TC4467  
TC4468  
TC4469  
Transition power dissipation arises in the  
complementary configuration (TC446X) because the  
output stage N-channel and P-channel MOS transistors  
are ON simultaneously for a very short period when the  
output changes. The transition power dissipation is  
approximately:  
Maximum operating temperature:  
TJ θJA (PD) = 141°C,  
where: TJ = Maximum allowable junction temperature  
(+150°C)  
θJA = Junction-to-ambient thermal resistance  
(83.3°C/W) 14-pin plastic package.  
PT = f VS (10 ϫ 10–9).  
NOTE: Ambient operating temperature should not exceed +85°C for  
"EJD" device or +125°C for "MJD" device.  
Package power dissipation is the sum of load, quies-  
cent and transition power dissipations. An example shows  
the relative magnitude for each term:  
C = 1000 pF capacitive load  
VS = 15V  
D = 50%  
f
= 200 kHz  
PD = Package Power Dissipation = PL + PQ + PT  
= 45 mW + 35 mW + 30 mW = 110 mW.  
V
DD  
1 µF FILM  
0.1 µF CERAMIC  
V
+5V  
14  
90%  
1
1A  
13  
12  
11  
10  
OUT  
2
INPUT  
(A, B)  
470 pF  
1B  
3
2A  
10%  
0V  
4
2B  
V
DD  
90%  
90%  
5
3A  
t
t
D1  
D2  
6
t
t
F
R
OUTPUT  
0V  
3B  
8
4A  
10%  
10%  
9
4B  
Input: 100 kHz, square wave,  
RISE = tFALL 10nsec  
7
t
Figure 1. Switching Time Test Circuit  
TELCOM SEMICONDUCTOR, INC.  
4-265  
LOGIC-INPUT CMOS  
QUAD DRIVERS  
TC4467  
TC4468  
TC4469  
TYPICAL CHARACTERISTICS  
Fall Time vs. Supply Voltage  
Rise Time vs. Supply Voltage  
140  
140  
120  
100  
80  
2200 pF  
120  
2200 pF  
1500 pF  
100  
1600 pF  
80  
1000 pF  
1000 pF  
60  
60  
40  
40  
20  
0
470 pF  
100 pF  
470 pF  
100 pF  
20  
0
19  
3
5
7
9
11  
13  
(V)  
15  
17  
19  
10,000  
18  
3
5
7
9
11  
13  
(V)  
15  
17  
V
V
SUPPLY  
SUPPLY  
Rise Time vs. Capacitive Load  
Fall Time vs. Capacitive Load  
140  
120  
100  
140  
120  
5V  
5V  
100  
80  
80  
60  
40  
10V  
15V  
10V  
15V  
60  
40  
20  
0
20  
0
10,000  
100  
1000  
100  
1000  
C
(pF)  
C
(pF)  
LOAD  
LOAD  
Rise/Fall Times vs. Temperature  
Propagation Delay Time vs. Supply Voltage  
80  
60  
40  
20  
0
25  
20  
V
C
= 17.5V  
= 470 pF  
SUPPLY  
LOAD  
C
= 470 pF  
LOAD  
t
t
(FALL)  
t
D1  
15  
10  
5
(RISE)  
t
D2  
0
4
6
8
10  
V
12  
(V)  
14  
16  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
SUPPLY  
4-266  
TELCOM SEMICONDUCTOR, INC.  
LOGIC-INPUT CMOS  
QUAD DRIVERS  
4
TC4467  
TC4468  
TC4469  
TYPICAL CHARACTERISTICS (Cont.)  
Input Amplitude vs. Delay Times  
Propagation Delay Times vs. Temperature  
140  
70  
60  
50  
40  
30  
20  
V
DD  
= 12V  
V
= 17.5V  
DD  
120  
100  
80  
60  
40  
20  
0
C
V
= 470 pF  
INPUT RISING  
LOAD  
t
D1  
t
= 0, 5V  
IN  
t
D2  
D2  
t
D1  
7
INPUT FALLING  
10  
1
2
3
4
5
6
8
9
120  
–60 –40 –20  
0
20  
40  
60  
80  
100  
V
(V)  
TEMPERATURE (°C)  
DRIVE  
Quiescent Supply Current vs. Temperature  
Quiescent Supply Current vs. Supply Voltage  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
V
= 17.5V  
DD  
2.0  
1.5  
1.0  
OUTPUTS = 0  
OUTPUTS LOW  
OUTPUTS HIGH  
OUTPUTS = 1  
0.5  
0
120  
–60 –40 –20  
0
20  
40  
(°C)  
60  
80  
100  
4
6
8
10  
12  
(V)  
14  
16  
18  
T
V
JUNCTION  
SUPPLY  
Low-State Output Resistance  
High-State Output Resistance  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
T = +150°C  
J
20  
15  
10  
5
T = +150°C  
J
T = +25°C  
J
T = +25°C  
J
0
0
4
6
8
10  
12  
(V)  
14  
16  
18  
4
6
8
10  
12  
(V)  
14  
16  
18  
V
V
SUPPLY  
SUPPLY  
TELCOM SEMICONDUCTOR, INC.  
4-267  
LOGIC-INPUT CMOS  
QUAD DRIVERS  
TC4467  
TC4468  
TC4469  
SUPPLY CURRENT CHARACTERISTICS (Load on Single Output Only)  
Supply Current vs. Capacitive Load  
Supply Current vs. Frequency  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= 18V  
V
= 18V  
DD  
DD  
2200 pF  
1000 pF  
2 MHz  
1 MHz  
500 kHz  
200 kHz  
100 pF  
20 kHz  
1000  
10  
100  
1000  
10,000  
10,000  
10,000  
10,000  
100  
FREQUENCY (kHz)  
C
(pF)  
LOAD  
Supply Current vs. Capacitive Load  
Supply Current vs. Frequency  
60  
50  
60  
50  
40  
30  
20  
10  
V
= 12V  
DD  
2 MHz  
V
= 12V  
2200 pF  
DD  
40  
30  
20  
10  
0
1 MHz  
1000 pF  
100 pF  
500 kHz  
200 kHz  
20 kHz  
0
100  
1000  
1000  
10,000  
10  
100  
C
(pF)  
FREQUENCY (kHz)  
LOAD  
Supply Current vs. Capacitive Load  
Supply Current vs. Frequency  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
V
= 6V  
V
DD  
= 6V  
DD  
2200 pF  
2 MHz  
30  
20  
10  
1000 pF  
100 pF  
1 MHz  
500 kHz  
200 kHz  
20 kHz  
0
100  
1000  
100  
10  
1000  
10,000  
C
(pF)  
FREQUENCY (kHz)  
LOAD  
4-268  
TELCOM SEMICONDUCTOR, INC.  
LOGIC-INPUT CMOS  
QUAD DRIVERS  
4
TC4467  
TC4468  
TC4469  
TYPICAL APPLICATIONS  
Stepper Motor Drive  
Quad Driver for H-Bridge Motor Control  
+12V  
+5V TO +15V  
14  
14  
AIRPAX  
#M82102-P2  
7.5°/STEP  
18V  
TC4469  
1
TC4469  
1
13  
12  
11  
10  
RED  
13  
2
2
DIRECTION  
3
MOTOR  
12  
REV  
3
4
4
FWD  
GRAY  
YEL  
A
B
5
PWM SPEED  
11  
10  
M
MOTOR  
6
5
6
8
9
8
9
7
BLK  
7
48-Volt, 3-Phase Brushless Output Stage  
48V  
R4  
3.3  
k  
R2  
3.3  
kΩ  
R3  
C1  
1 µF  
14  
3.3  
V
kΩ  
DD  
1
D1  
1N4744  
15V  
1A  
1B  
2A  
2B  
3A  
13  
12  
11  
10  
2
3
4
5
1Y  
2Y  
R1  
3.3  
kΩ  
5W  
U1  
6
8
9
3Y  
4Y  
3B  
4A  
4B  
D2  
D3  
D4  
TC4469  
GND  
R5  
7
MOTOR  
PHASE A  
MOTOR  
MOTOR  
R9  
(FLOAT AT 33V)  
PHASE C  
PHASE B  
Q1  
A+  
B+  
C+  
A–  
B–  
15V  
14  
R6  
4.7 kΩ  
2N5550  
R10  
R7  
V
DD  
Q2  
1
1A  
13  
4.7 kΩ  
2
3
4
5
2N5550  
1Y  
2Y  
1B  
2A  
2B  
3A  
R11  
Q3  
12  
11  
10  
4.7 kΩ  
U2  
2N5550  
6
8
9
3Y  
4Y  
3B  
4A  
4B  
TC4469  
GND  
7
C–  
TELCOM SEMICONDUCTOR, INC.  
4-269  

相关型号:

TC4467CJD

1.2 A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, CDIP14, 0.300 INCH, CERDIP-14
MICROCHIP

TC4467COE

LOGIC-INPUT CMOS QUAD DRIVERS
TELCOM

TC4467COE

1.2 A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDSO16, SO-16
MICROCHIP

TC4467COE713

Logic-Input CMOS Quad Drivers
MICROCHIP

TC4467COE713G

1.2 A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDSO16, 0.300 INCH, SOIC-16
MICROCHIP

TC4467COE723

1.2 A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDSO16, SOIC-16
MICROCHIP

TC4467COEG

1.2 A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDSO16, SOIC-16
MICROCHIP

TC4467COERT

NAND Gate Based MOSFET Driver, 1.2A, CMOS, PDSO16, SOIC-16
MICROCHIP

TC4467COETR

1.2 A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDSO16, SOIC-16
MICROCHIP

TC4467CPD

LOGIC-INPUT CMOS QUAD DRIVERS
TELCOM

TC4467CPD

1.2 A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDIP14, PLASTIC, DIP-14
MICROCHIP

TC4467CPDG

1.2 A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDIP14, PLASTIC, DIP-14
MICROCHIP