TC7126CPL [TELCOM]

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS; 3-1 / 2位模拟 - 数字转换器
TC7126CPL
型号: TC7126CPL
厂家: TELCOM SEMICONDUCTOR, INC    TELCOM SEMICONDUCTOR, INC
描述:

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
3-1 / 2位模拟 - 数字转换器

转换器
文件: 总13页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3
TC7126  
TC7126A  
3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS  
GENERAL DESCRIPTION  
FEATURES  
The TC7126A is a 3-1/2 digit CMOS analog-to-digital  
converter (ADC) containing all the active components nec-  
essary to construct a 0.05% resolution measurement sys-  
tem. Seven-segment decoders, digit and polarity drivers,  
voltage reference, and clock circuit are integrated on-chip.  
The TC7126A directly drives a liquid crystal display (LCD),  
and includes a backplane driver.  
A low-cost, high-resolution indicating meter requires  
only a display, four resistors, and four capacitors. The  
TC7126A's extremely low power drain and 9V battery  
operation make it ideal for portable applications.  
The TC7126A reduces linearity error to less than 1  
count. Roll-over error (the difference in readings for equal  
magnitude but opposite polarity input signals) is below ±1  
count. High-impedance differential inputs offer 1 pA leak-  
age current and a 1012input impedance. The 15 µVP-P  
noise performance guarantees a "rock solid" reading, and  
the auto-zero cycle guarantees a zero display reading with  
a 0V input.  
Low Temperature Drift Internal Reference  
TC7126 ....................................... 80 ppm/°C Typ  
TC7126A ..................................... 35 ppm/°C Typ  
Guaranteed Zero Reading With Zero Input  
Low Noise.................................................... 15 µVP-P  
High Resolution ..............................................0.05%  
Low Input Leakage Current ...................... 1 pA Typ  
10 pA Max  
Precision Null Detectors With True Polarity at  
Zero  
High-Impedance Differential Input  
Convenient 9V Battery Operation With  
Low Power Dissipation ........................ 500 µW Typ  
900 µW Max  
TYPICAL APPLICATIONS  
Thermometry  
Bridge Readouts: Strain Gauges, Load Cells, Null  
Detectors  
Digital Meters and Panel Meters  
— Voltage/Current/Ohms/Power, pH  
Digital Scales, Process Monitors  
The TC7126A features a precision, low-drift internal  
voltagereferenceandisfunctionallyidenticaltotheTC7126.  
A low-drift external reference is not normally required with  
the TC7126A.  
TYPICAL OPERATING CIRCUIT  
ORDERING INFORMATION  
PART CODE  
TC7126X X XXX  
0.1 µF  
A or blank*  
33  
34  
C
R (reversed pins) or blank (CPL pkg only)  
* "A" parts have an improved reference TC  
Package Code (see below):  
LCD  
+
C
REF  
REF  
1 MΩ  
31  
SEGMENT  
DRIVE  
+
2–19  
+
V
IN  
22–25  
ANALOG  
INPUT  
0.01 µF  
20  
30  
32  
POL  
BP  
V
IN  
MINUS SIGN  
21  
1
BACKPLANE  
ANALOG  
COMMON  
Package  
Code  
Temperature  
+
V
Package  
Range  
28  
V
240 kΩ  
BUFF  
+
TC7126  
TC7126A  
CKW  
CLW  
CPL  
IPL  
44-Pin PQFP  
0°C to +70°C  
0°C to +70°C  
9V  
0.33  
µF  
180 kΩ  
36  
44-Pin PLCC  
+
V
29  
REF  
10 kΩ  
C
V
AZ  
40-Pin PDIP  
0°C to +70°C  
35  
26  
0.15 µF  
V
REF  
27  
40-Pin PDIP (non-A only)  
– 25°C to +85°C  
V
INT  
1 CONVERSION/SEC  
OSC OSC OSC  
2
3
1
AVAILABLE PACKAGES  
C
39  
38  
40  
OSC  
TO ANALOG COMMON  
(PIN 32)  
50 pF  
R
OSC  
NOTE: Pin numbers refer to 40-pin DIP.  
560 kΩ  
40-Pin Plastic DIP  
44-Pin Plastic Quad Flat  
Package Formed Leads  
44-Pin Plastic Chip  
Carrier PLCC  
TC7126/A-8 11/6/96  
TELCOM SEMICONDUCTOR, INC.  
3-217  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7126  
TC7126A  
ABSOLUTE MAXIMUM RATINGS*  
Supply Voltage (V+ to V)......................................... +15V  
Analog Input Voltage (Either Input) (Note 1) ........ V+ to V–  
Reference Input Voltage (Either Input)................. V+ to V–  
Clock Input ...................................................... TEST to V+  
Operating Temperature Range  
C Devices .............................................. 0°C to +70°C  
I Devices ........................................... – 25°C to +85°C  
Storage Temperature Range ................ – 65°C to +150°C  
Lead Temperature (Soldering, 10 sec) ................. +300°C  
Power Dissipation, (TA 70°C), (Note 2)  
44-Pin PQFP ....................................................1.00W  
44-Pin PLCC.....................................................1.23W  
40-Pin Plastic PDIP ..........................................1.23W  
*Static-sensitive device. Unused devices must be stored in conductive  
material. Protect devices from static discharge and static fields. Stresses  
above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. These are stress ratings only and functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating Conditions for extended periods  
may affect device reliability.  
ELECTRICAL CHARACTERISTICS: VS = +9V, fCLK = 16 kHz, and TA = +25°C, unless otherwise noted.  
Symbol  
Input  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Zero Input Reading  
VIN = 0V  
–000.0  
±000.0  
+000.0  
Digital  
Full Scale = 200 mV  
Reading  
Zero Reading Drift  
VIN = 0V, 0°C TA +70°C  
VIN = VREF, VREF = 100 mV  
0.2  
1
µV/°C  
Ratiometric Reading  
999  
999/1000  
1000  
Digital  
Reading  
NL  
Linearity Error  
Full Scale = 200 mV or 2V  
Max Deviation From Best Fit  
Straight Line  
– 1  
±0.2  
1
Count  
Roll-Over Error  
Noise  
–VIN = +VIN 200 mV  
VIN = 0V, Full Scale = 200 mV  
VIN = 0V  
– 1  
15  
1
±0.2  
1 Count  
µVP-P  
pA  
eN  
IL  
Input Leakage Current  
10  
CMRR  
Common-Mode Rejection  
Ratio  
VCM = ±1V, VIN = 0V,  
Full Scale = 200 mV  
50  
µV/V  
Scale Factor Temperature  
Coefficient  
VIN = 199 mV, 0°C TA +70°C  
Ext Ref Temp Coeff = 0 ppm/°C  
1
5
ppm/°C  
Analog Common  
VCTC Analog Common  
250 kBetween Common and V+  
0°C TA +70°C ("C" Devices):  
TC7126  
80  
35  
75  
ppm/°C  
ppm/°C  
Temperature Coefficient  
TC7126A  
– 25°C TA +85°C ("I" Device):  
TC7126A  
35  
100  
ppm/°C  
VC  
Analog Common Voltage  
250 kBetween Common and V+  
2.7  
3.05  
3.35  
V
LCD Drive  
VSD  
LCD Segment Drive Voltage  
LCD Backplane Drive Voltage  
V+ to V= 9V  
V+ to V= 9V  
4
4
5
5
6
6
VP-P  
VP-P  
VBD  
Power Supply  
IS  
Power Supply Current  
VIN = 0V, V+ to V= 9V (Note 6)  
55  
100  
µA  
NOTES: 1. Input voltage may exceed supply voltages when input current is limited to 100 µA.  
2. Dissipation rating assumes device is mounted with all leads soldered to PC board.  
3. Refer to "Differential Input" discussion.  
4. Backplane drive is in-phase with segment drive for "OFF" segment and 180° out-of-phase for "ON" segment. Frequency is 20 times  
conversion rate. Average DC component is less than 50 mV.  
5. See "Typical Operating Circuit."  
6. During auto-zero phase, current is 10–20 µA higher. A 48 kHz oscillator increases current by 8 µA (typical). Common current not  
included.  
3-218  
TELCOM SEMICONDUCTOR, INC.  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7126  
TC7126A  
PIN CONFIGURATIONS  
+
+
6
5
4
3
2
1
44 43 42 41 40  
44 43 42 41 40 39 38 37 36 35 34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
3
4
NC  
NC  
NC  
F
G
E
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
V
1
1
1
REF  
+
G
2
C
C
REF  
C
3
TEST  
9
REF  
A
3
OSC  
3
D
C
10  
COMMON  
+
IN  
2
2
G
3
NC  
5
6
V
11  
12  
13  
14  
15  
16  
17  
BP  
OSC  
2
NC  
IN  
NC  
TC7126CLW  
TC7126ACLW  
(PLCC)  
TC7126CKW  
TC7126ACKW  
(FLAT PACKAGE)  
POL  
7
OSC  
1
B
2
V
+
AB  
4
V
8
A
2
C
AZ  
D
1
E
3
9
F
2
V
BUFF  
F
3
10  
11  
C
1
E
2
V
INT  
B
3
B
1
D
3
V
25 26 27 28  
18 19 20 21 22 23 24  
19 20 21 22  
12 13 14 15 16 17 18  
+
+
OSC  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
OSC  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
D
C
V
D
C
1
2
1
2
3
NORMAL PIN  
CONFIGURATION  
REVERSE PIN  
CONFIGURATION  
OSC  
OSC  
OSC  
OSC  
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
TEST  
B
A
F
4
4
B
A
F
TEST  
+
+
V
5
5
1's  
V
1's  
REF  
REF  
V
6
6
V
REF  
REF  
+
+
C
G
G
E
C
7
7
1
REF  
REF  
C
E
C
8
8
1
REF  
REF  
ANALOG  
COMMON  
ANALOG  
9
9
D
C
B
A
F
D
C
B
A
F
2
2
2
2
2
2
2
2
2
2
2
2
COMMON  
+
+
V
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
IN  
IN  
TC7126CPL  
TC7126ACPL  
TC7126IPL  
TC7126RCPL  
TC7126ARCPL  
TC7126RIPL  
V
V
IN  
IN  
10's  
10's  
C
C
AZ  
AZ  
TC7126AIPL  
TC7126ARIPL  
V
V
BUFF  
BUFF  
V
E
E
V
INT  
INT  
D
B
V
V
D
B
3
3
3
3
G
2
G
2
100's  
100's  
C
3
F
E
F
E
C
3
3
3
4
3
3
100's  
100's  
A
A
3
3
3
3
G
AB  
AB  
1000's  
G
1000's  
4
BP  
POL  
(MINUS SIGN)  
POL  
(MINUS SIGN)  
BP  
(BACKPLANE)  
(BACKPLANE)  
NC = NO INTERNAL CONNECTION  
TELCOM SEMICONDUCTOR, INC.  
3-219  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7126  
TC7126A  
PIN DESCRIPTION  
40-Pin PDIP  
Pin Number  
Normal  
(Reverse)  
Name  
Description  
1
(40)  
(39)  
(38)  
(37)  
(36)  
(35)  
(34)  
(33)  
(32)  
(31)  
(30)  
(29)  
(28)  
(27)  
(26)  
(25)  
(24)  
(23)  
(22)  
(21)  
(20)  
(19)  
(18)  
(17)  
(16)  
(15)  
(14)  
V+  
D1  
C1  
B1  
Positive supply voltage.  
2
Activates the D section of the units display.  
Activates the C section of the units display.  
Activates the B section of the units display.  
Activates the A section of the units display.  
Activates the F section of the units display.  
Activates the G section of the units display.  
Activates the E section of the units display.  
Activates the D section of the tens display.  
Activates the C section of the tens display.  
Activates the B section of the tens display.  
Activates the A section of the tens display.  
Activates the F section of the tens display.  
Activates the E section of the tens display.  
Activates the D section of the hundreds display.  
Activates the B section of the hundreds display.  
Activates the F section of the hundreds display.  
Activates the E section of the hundreds display.  
Activates both halves of the 1 in the thousands display.  
Activates the negative polarity display.  
3
4
5
A1  
6
F1  
7
G1  
E1  
8
9
D2  
C2  
B2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
A2  
F2  
E2  
D3  
B3  
F3  
E3  
AB4  
POL  
BP  
G3  
A3  
Backplane drive output.  
Activates the G section of the hundreds display.  
Activates the A section of the hundreds display.  
Activates the C section of the hundreds display.  
Activates the G section of the tens display.  
Negative power supply voltage.  
C3  
G2  
V–  
VINT  
The integrating capacitor should be selected to give the maximum voltage swing  
that ensures component tolerance build-up will not allow the integrator output to  
saturate. When analog common is used as a reference and the conversion rate is  
3 readings per second, a 0.047 µF capacitor may be used. The capacitor must  
have a low dielectric constant to prevent roll-over errors. See "Integrating Capaci-  
tor" section for additional details.  
28  
29  
(13)  
(12)  
VBUFF  
CAZ  
Integration resistor connection. Use a 180 kresistor for a 200 mV full-scale  
range and a 1.8 Mresistor for a 2V full-scale range.  
The size of the auto-zero capacitor influences system noise. Use a 0.33 µF  
capacitor for 200 mV full scale, and a 0.033 µF capacitor for 2V full scale. See  
paragraph on auto-zero capacitor for more details.  
30  
31  
32  
(11)  
(10)  
(9)  
VIN  
The low input signal is connected to this pin.  
The high input signal is connected to this pin.  
+
VIN  
ANALOG  
COMMON  
This pin is primarily used to set the analog common-mode voltage for battery  
operation or in systems where the input signal is referenced to the power supply.  
See paragraph on analog common for more details. It also acts as a reference  
voltage source.  
33  
(8)  
CREF  
See pin 34.  
3-220  
TELCOM SEMICONDUCTOR, INC.  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7126  
TC7126A  
PIN DESCRIPTION (Cont.)  
40-Pin PDIP  
Pin Number  
Normal  
(Reverse)  
Name  
CR+EF  
Description  
34  
(7)  
A 0.1 µF capacitor is used in most applications. If a large common-mode voltage  
exists (for example, the VINpin is not at analog common), and a 200 mV scale is  
used, a 1 µF capacitor is recommended and will hold the roll-over error to 0.5  
count.  
35  
36  
(6)  
(5)  
VREF  
VR+EF  
See pin 36.  
The analog input required to generate a full-scale output (1999 counts). Place 100  
mV between pins 35 and 36 for 199.9 mV full scale. Place 1V between pins 35  
and 36 for 2V full scale. See paragraph on reference voltage.  
(4)  
TEST  
Lamp test. When pulled HIGH (to V+), all segments will be turned ON and the  
display should read –1888. It may also be used as a negative supply for exter-  
nally-generated decimal points. See paragraph under test for additional informa-  
tion.  
37  
38  
40  
(3)  
(2)  
(1)  
OSC3  
OSC2  
OSC1  
See pin 40.  
See pin 40.  
Pins 40, 39 and 38 make up the oscillator section. For a 48 kHz clock (3 readings  
39per second), connect pin 40 to the junction of a 180 kresistor and a 50 pF  
capacitor. The 180 kresistor is tied to pin 39 and the 50 pF capacitor is tied to  
pin 38.  
GENERAL THEORY OF OPERATION  
ANALOG  
(All Pin Designations Refer to the 40-Pin DIP)  
INPUT  
INTEGRATOR  
SIGNAL  
COMPARATOR  
Dual-Slope Conversion Principles  
+
The TC7126A is a dual-slope, integrating analog-to-  
digital converter. An understanding of the dual-slope con-  
version technique will aid in following detailed TC7126A  
operational theory.  
The conventional dual-slope converter measurement  
cycle has two distinct phases:  
+
SWITCH  
DRIVER  
CLOCK  
PHASE  
CONTROL  
REF  
VOLTAGE  
CONTROL  
LOGIC  
POLARITY CONTROL  
(1) Input signal integration  
(2) Reference voltage integration (deintegration)  
COUNTER  
DISPLAY  
The input signal being converted is integrated for a  
fixed time period (tSI), measured by counting clock pulses.  
An opposite polarity constant reference voltage is then  
integrated until the integrator output voltage returns to  
zero. The reference integration time is directly proportional  
to the input signal (tRI).  
In a simple dual-slope converter, a complete conver-  
sion requires the integrator output to "ramp-up" and "ramp-  
down."  
V
V
INϷ V  
INϷ  
FULL SCALE  
1.2 V  
FULL SCALE  
FIXED VARIABLE  
SIGNAL REFERENCE  
INTEGRATE INTEGRATE  
TIME TIME  
Figure 1. Basic Dual-Slope Converter  
Asimplemathematicalequationrelatestheinputsignal,  
reference voltage, and integration time:  
where:  
VR = Reference voltage  
tSI = Signal integration time (fixed)  
tRI = Reference voltage integration time (variable).  
tSI  
1
VR tRI  
RC  
VIN(t) dt =  
,
RC  
0
TELCOM SEMICONDUCTOR, INC.  
3-221  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7126  
TC7126A  
analog gates close a feedback loop around the integrator  
and comparator. This loop permits comparator offset volt-  
age error compensation. The voltage level established on  
CAZ compensates for device offset voltages. The auto-zero  
phase residual is typically 10 µV to 15 µV.  
30  
20  
10  
The auto-zero cycle length is 1000 to 3000 clock  
periods.  
Signal Integration Phase  
The auto-zero loop is entered and the internal differen-  
+
tial inputs connect to VIN and VIN. The differential input  
t = MEASUREMENT PERIOD  
1/t  
signal is integrated for a fixed time period. The TC7126A  
signal integration period is 1000 clock periods, or counts.  
The externally-set clock frequency is Ϭ4 before clocking the  
internal counters. The integration time period is:  
0
0.1/t  
10/t  
INPUT FREQUENCY  
4
Figure 2. Normal-Mode Rejection of Dual-Slope Converter  
tSI  
=
ϫ 1000,  
fOSC  
For a constant VIN:  
where fOSC = external clock frequency.  
tRI  
tSI  
VIN = VR  
.
The differential input voltage must be within the device  
common-mode range when the converter and measured  
system share the same power supply common (ground). If  
the converter and measured system do not share the same  
power supply common, VINshould be tied to analog com-  
mon.  
Polarity is determined at the end of signal integrate  
phase. Thesignbitisatruepolarityindication, inthatsignals  
less than 1 LSB are correctly determined. This allows  
precision null detection limited only by device noise and  
auto-zero residual offsets.  
The dual-slope converter accuracy is unrelated to the  
integratingresistorandcapacitorvalues, aslongastheyare  
stable during a measurement cycle. Noise immunity is an  
inherent benefit. Noise spikes are integrated, or averaged,  
to zero during integration periods. Integrating ADCs are  
immune to the large conversion errors that plague succes-  
sive approximation converters in high-noise environments.  
Interfering signals with frequency components at multiples  
of the averaging period will be attenuated. Integrating ADCs  
commonly operate with the signal integration period set to a  
multiple of the 50 Hz/60 Hz power line period.  
Reference Integrate Phase  
The third phase is reference integrate, or deintegrate.  
VINis internally connected to analog common and VIN+ is  
connectedacrossthepreviously-chargedreferencecapaci-  
tor. Circuitrywithinthechipensuresthatthecapacitorwillbe  
connected with the correct polarity to cause the integrator  
output to return to zero. The time required for the output to  
return to zero is proportional to the input signal and is  
between 0 and 2000 internal clock periods. The digital  
reading displayed is:  
ANALOG SECTION  
In addition to the basic integrate and deintegrate dual-  
slope cycles discussed above, the TC7126A design incor-  
porates an auto-zero cycle. This cycle removes buffer  
amplifier, integrator, and comparator offset voltage error  
termsfromtheconversion. Atruedigitalzeroreadingresults  
without external adjusting potentiometers. A complete con-  
version consists of three phases:  
(1) Auto-zero phase  
VIN  
1000  
(2) Signal integrate phase  
(3) Reference integrate phase  
VREF  
DIGITAL SECTION  
Auto-Zero Phase  
The TC7126A contains all the segment drivers neces-  
sary to directly drive a 3-1/2 digit LCD. An LCD backplane  
driver is included. The backplane frequency is the external  
clock frequency Ϭ800. For 3 conversions per second the  
backplane frequency is 60 Hz with a 5V nominal amplitude.  
During the auto-zero phase, the differential input signal  
is disconnected from the circuit by opening internal analog  
gates. The internal nodes are shorted to analog common  
(ground) to establish a zero input condition. Additional  
3-222  
TELCOM SEMICONDUCTOR, INC.  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7126  
TC7126A  
Figure 3. TC7126A Block Diagram  
TELCOM SEMICONDUCTOR, INC.  
3-223  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7126  
TC7126A  
The TC7126A is a drop-in replacement for the TC7126  
and ICL7126 that offers a greatly improved internal refer-  
ence temperature coefficient. No external component value  
changes are required to upgrade existing designs.  
When a segment driver is in-phase with the backplane  
signal, the segment is OFF. An out-of-phase segment drive  
signalcausesthesegmenttobeON,orvisible.ThisACdrive  
configuration results in negligible DC voltage across each  
LCD segment, ensuring long LCD life. The polarity segment  
driver is ON for negative analog inputs. If VIN+ and VINare  
reversed, this indicator would reverse.  
COMPONENT VALUE SELECTION  
Auto-Zero Capacitor (CAZ)  
On the TC7126A, when the TEST pin is pulled to V+, all  
segments are turned ON. The display reads –1888. During  
this mode, LCD segments have a constant DC voltage  
impressed. DO NOT LEAVE THE DISPLAY IN THIS MODE  
FOR MORE THAN SEVERAL MINUTES; LCDS MAY BE  
DESTROYED IF OPERATED WITH DC LEVELS FOR  
EXTENDED PERIODS.  
The CAZ size has some influence on system noise. A  
0.33 µF capacitor is recommended for 200 mV full-scale  
applications where 1 LSB is 100 µV. A 0.033 µF capacitor is  
adequate for 2V full-scale applications. A Mylar-type dielec-  
tric capacitor is adequate.  
Reference Voltage Capacitor (CREF  
)
The display font and segment drive assignment are  
shown in Figure 4.  
The reference voltage, used to ramp the integrator  
output voltage back to zero during the reference integrate  
phase, is stored on CREF. A 0.1 µF capacitor is acceptable  
when VREFis tied to analog common. If a large common-  
System Timing  
The oscillator frequency is Ϭ4 prior to clocking the  
internal decade counters. The three-phase measurement  
cycle takes a total of 4000 counts (16,000 clock pulses).  
The 4000-count cycle is independent of input signal magni-  
tude.  
mode voltage exists (VREF analog common) and the  
application requires a 200 mV full scale, increase CREF to  
1 µF. Roll-over error will be held to less than 0.5 count. A  
Mylar-type dielectric capacitor is adequate.  
Each phase of the measurement cycle has the following  
length:  
Integrating Capacitor (CINT  
)
(1) Auto-zero phase: 1000 to 3000 counts  
(4000 to 12,000 clock pulses)  
CINT should be selected to maximize integrator output  
voltage swing without causing output saturation. Due to  
the TC7126A's superior analog common temperature co-  
efficient specification, analog common will normally sup-  
ply the differential voltage reference. For this case, a ±2V  
full-scale integrator output swing is satisfactory. For 3  
readings per second (fOSC = 48 kHz), a 0.047 µF value is  
suggested. For 1 reading per second, 0.15 µF is recom-  
mended. If a different oscillator frequency is used, CINT  
must be changed in inverse proportion to maintain the  
nominal ±2V integrator swing.  
Forsignalslessthanfullscale, theauto-zerophase  
is assigned the unused reference integrate time  
period.  
(2) Signal integrate: 1000 counts  
(4000 clock pulses)  
This time period is fixed. The integration period is:  
1
tSI = 4000  
,
fOSC  
An exact expression for CINT is:  
where fOSC is the externally-set clock frequency.  
1
VFS  
(4000)  
(3) Reference integrate: 0 to 2000 counts  
(0 to 8000 clock pulses)  
( )(R  
)
fOSC  
INT  
CINT  
=
,
VINT  
DISPLAY FONT  
where: fOSC = Clock frequency at pin 38  
VFS = Full-scale input voltage  
RINT = Integrating resistor  
1000's  
100's  
10's  
1's  
VINT = Desired full-scale integrator output swing.  
At 3 readings per second, a 750resistor should be  
placed in series with CINT. This increases accuracy by  
compensating for comparator delay. CINT must have low  
dielectric absorption to minimize roll-over error. A polypro-  
pylene capacitor is recommended.  
Figure 4. Display Font and Segment Assignment  
3-224  
TELCOM SEMICONDUCTOR, INC.  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7126  
TC7126A  
Integrating Resistor (RINT  
)
input voltage by two, the reference voltage should be set to  
200 mV. This permits the transducer input to be used  
directly.  
The differential reference can also be used where a  
digital zero reading is required when VIN is not equal to zero.  
This is common in temperature-measuring instrumentation.  
A compensating offset voltage can be applied between  
analog common and VIN. The transducer output is con-  
nected between VIN+ and analog common.  
The input buffer amplifier and integrator are designed  
with Class A output stages. The output stage idling current  
is 6 µA. The integrator and buffer can supply 1 µA drive  
current with negligible linearity errors. RINT is chosen to  
remain in the output stage linear drive region, but not so  
large that PC board leakage currents induce errors. For a  
200 mV full scale, RINT is 180 k. A 2V full scale requires  
1.8 M.  
DEVICE PIN FUNCTIONAL DESCRIPTION  
Component  
Value  
Nominal Full-Scale Voltage  
(Pin Numbers Refer to 40-Pin DIP)  
200 mV  
2V  
Differential Signal Inputs  
VIN+ (Pin 31), VIN(Pin 30)  
CAZ  
RINT  
CINT  
0.33 µF  
180 kΩ  
0.033 µF  
1.8 MΩ  
The TC7126A is designed with true differential inputs  
and accepts input signals within the input stage common-  
mode voltage range (VCM). Typical range is V+ –1V to V–  
+1V.Common-modevoltagesareremovedfromthesystem  
whentheTC7126Aoperatesfromabatteryorfloatingpower  
source (isolated from measured system), and VINis con-  
nected to analog common (VCOM). (See Figure 5.)  
In systems where common-mode voltages exist, the  
TC7126A's 86 dB common-mode rejection ratio minimizes  
error. Common-mode voltages do, however, affect the inte-  
grator output level. A worst-case condition exists if a large  
positive VCM exists in conjunction with a full-scale negative  
differential signal. The negative signal drives the integrator  
output positive along with VCM (see Figure 6.) For such  
applications, the integrator output swing can be reduced  
below the recommended 2V full-scale swing. The integrator  
output will swing within 0.3V of V+ or Vwithout increased  
linearity error.  
0.047 µF  
0.047 µF  
NOTE: fOSC = 48 kHz (3 readings per sec).  
Oscillator Components  
COSC should be 50 pF; ROSC is selected from the  
equation:  
0.45  
RC  
fOSC  
=
.
For a 48 kHz clock (3 conversions per second), R = 180 k.  
Note that fOSC is Ϭ4 to generate the TC7126A's inter-  
nal clock. The backplane drive signal is derived by dividing  
fOSC by 800.  
To achieve maximum rejection of 60 Hz noise pickup,  
the signal integrate period should be a multiple of 60 Hz.  
Oscillator frequencies of 240 kHz, 120 kHz, 80 kHz, 60 kHz,  
40 kHz, etc. should be selected. For 50 Hz rejection,  
oscillator frequencies of 200 kHz, 100 kHz, 66-2/3 kHz, 50  
kHz, 40 kHz, etc. would be suitable. Note that 40 kHz (2.5  
readings per second) will reject both 50 Hz and 60 Hz.  
Differential Reference  
VREF+ (Pin 36), VREF(Pin 35)  
The reference voltage can be generated anywhere  
within the V+ to Vpower supply range.  
To prevent roll-over type errors being induced by large  
common-mode voltages, CREF should be large compared to  
stray node capacitance.  
The TC7126A offers a significantly improved analog  
common temperature coefficient. This potential provides a  
very stable voltage, suitable for use as a voltage reference.  
The temperature coefficient of analog common is typically  
35 ppm/°C for the TC7126A and 80 ppm/°C for the TC7126.  
Reference Voltage Selection  
A full-scale reading (2000 counts) requires the input  
signal be twice the reference voltage.  
Required Full-Scale Voltage*  
VREF  
200 mV  
2V  
100 mV  
1V  
*VFS = 2 VREF  
.
ANALOG COMMON (Pin 32)  
The analog common pin is set at a voltage potential  
approximately 3V below V+. The potential is guaranteed to  
be between 2.7V and 3.35V below V+. Analog common is  
tied internally to an N-channel FET capable of sinking  
Insomeapplications, ascalefactorotherthanunitymay  
exist between a transducer output voltage and the required  
digitalreading. Assume, forexample, apressuretransducer  
output for 2000 lb/in.2 is 400 mV. Rather than dividing the  
TELCOM SEMICONDUCTOR, INC.  
3-225  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7126  
TC7126A  
SEGMENT  
DRIVE  
LCD  
MEASURED  
SYSTEM  
V
C
V
POL BP  
BUFF  
AZ  
INT  
OSC  
+
1
V
IN  
+
V
OSC  
OSC  
3
2
V
TC7126A  
IN  
V
GND  
ANALOG  
COMMON REF REF  
+
+
V
V
V
V
+
V
V
GND  
POWER  
SOURCE  
+
9V  
Figure 5. Common-Mode Voltage Removed in Battery Operation With VIN = Analog Common  
100 µA. This FET will hold the common line at 3V should an  
external load attempt to pull the common line toward V+.  
Analogcommonsourcecurrentislimitedto1 µA.Therefore,  
analog common is easily pulled to a more negative voltage  
(i.e., below V+ – 3V).  
with respect to the TC7126A's power source. The analog  
common potential of V+ –3V gives a 7V end of battery life  
voltage. The common potential has a 0.001%/% voltage  
coefficient and a 15output impedance.  
With sufficiently high total supply voltage (V+–V>7V),  
analog common is a very stable potential with excellent  
temperature stability (typically 35 ppm/°c). This potential  
can be used to generate the TC7126A's reference voltage.  
An external voltage reference will be unnecessary in most  
cases because of the 35 ppm/°C temperature coefficient.  
See "TC7126A Internal Voltage Reference" discussion.  
The TC7126A connects the internal V+IN and VIN in-  
puts to analog common during the auto-zero phase. During  
the reference-integrate phase, VIN is connected to analog  
common. If V+IN is not externally connected to analog com-  
mon, a common-mode voltage exists, but is rejected by the  
converter's 86 dB common-mode rejection ratio. In battery  
operation, analog common and VIN are usually connected,  
removingcommon-modevoltageconcerns.Insystemswhere  
VIN is connected to power supply ground or to a given  
voltage, analog common should be connected to VIN.  
The analog common pin serves to set the analog sec-  
tion reference, or common point. The TC7126A is specifi-  
cally designed to operate from a battery or in any measure-  
ment system where input signals are not referenced (float)  
TEST (Pin 37)  
The TEST pin potential is 5V less than V+. TEST may be  
used as the negative power supply connection for external  
CMOSlogic.TheTESTpinistiedtotheinternally-generated  
negativelogicsupplythrougha500resistor.TheTESTpin  
load should not be more than 1 mA. See "Digital Section" for  
additional information on using TEST as a negative digital  
logic supply.  
If TEST is pulled HIGH (to V+), all segments plus the  
minus sign will be activated. DO NOT OPERATE IN THIS  
MODE FOR MORE THAN SEVERAL MINUTES. With  
TEST= V+, the LCD segments are impressed with a DC  
voltage which will destroy the LCD.  
C
INPUT  
BUFFER  
I
R
+
V
+
I
+
V
I
IN  
INTEGRATOR  
TC7126A Internal Voltage Reference  
T
The TC7126A's analog common voltage temperature  
stability has been significantly improved (Figure 7). The "A"  
version of the industry-standard TC7126 device allows  
users to upgrade old systems and design new systems  
without external voltage references. External R and C val-  
ues do not need to be changed. Figure 10 shows analog  
common supplying the necessary voltage reference for the  
TC7126A.  
I
C
V =  
V
V
IN  
I
[
CM  
[
R
V
I
I
CM  
Where:  
4000  
T
Integration time  
=
=
=
I
f
OSC  
C
R
Integration capacitor  
= Integration resistor  
I
I
Figure 6. Common-Mode Voltage Reduces Available Integrator  
Swing (VCOM VIN)  
3-226  
TELCOM SEMICONDUCTOR, INC.  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7126  
TC7126A  
9V  
200  
+
180  
NO  
MAXIMUM  
SPECIFIED  
160  
140  
120  
100  
26  
1
+
240 kΩ  
V
V
TYPICAL  
TC7126A  
NO  
MAXIMUM  
SPECIFIED  
36  
+
GUARANTEED  
MAXIMUM  
V
10 kΩ  
REF  
80  
60  
40  
20  
V
TYPICAL  
REF  
35  
V
REF  
TYPICAL  
TC7126A  
32  
ANALOG  
COMMON  
ICL7126  
ICL7136  
SET V  
= 1/2 V  
REF  
FULL SCALE  
0
Figure 8. TC7126A Internal Voltage Reference Connection  
Figure 7. Analog Common Temperature Coefficient  
Flat Package  
APPLICATIONS INFORMATION  
Liquid Crystal Display Sources  
The TC7126A is available in an epoxy 64-pin formed-  
leadflatpackage.AtestsocketfortheTC7126ACBQdevice  
is available:  
Several manufacturers supply standard LCDs to inter-  
face with the TC7126A 3-1/2 digit analog-to-digital con-  
verter.  
Part No.  
IC 51-42  
Manufacturer: Yamaichi  
Distribution: Nepenthe Distribution  
2471 East Bayshore  
Suite 520  
Representative  
Manufacturer Address/Phone  
Part Numbers*  
Crystaloid  
Electronics  
5282 Hudson Dr.,  
Hudson, OH 44236  
216-655-2429  
C5335, H5535,  
T5135, SX440  
Palo Alto, CA 94043  
(415) 856-9332  
AND  
720 Palomar Avenue  
Sunnyvale, CA 94086  
408-523-8200  
FE 0801,  
FE 0203  
Ratiometric Resistance Measurements  
The TC7126A's true differential input and differential  
reference make ratiometric readings possible. In ratiometric  
operation, an unknown resistance is measured with respect  
to a known standard resistance. No accurately-defined  
reference voltage is needed.  
The unknown resistance is put in series with a known  
standard and a current passed through the pair. The voltage  
developed across the unknown is applied to the input and  
the voltage across the known resistor applied to the refer-  
ence input. If the unknown equals the standard, the display  
will read 1000. The displayed reading can be determined  
from the following expression:  
VGI, Inc.  
Hamlin, Inc.  
1800 Vernon St., Ste. 2 I1048, I1126  
Roseville, CA 95678  
916-783-7878  
612 E. Lake St.,  
Lake Mills, WI 53551  
414-648-2361  
3902, 3933, 3903  
*NOTE: Contact LCD manufacturer for full product listing/specifications.  
Decimal Point and Annunciator Drive  
The TEST pin is connected to the internally-generated  
digital logic supply ground through a 500resistor. The  
TEST pin may be used as the negative supply for external  
CMOS gate segment drivers. LCD annunciators for decimal  
points, low battery indication, or function indication may be  
added without adding an additional supply. No more than 1  
mA should be supplied by the TEST pin: its potential is  
approximately 5V below V+.  
RUNKNOWN  
Displayed reading =  
ϫ 1000.  
RSTANDARD  
The display will overrange for RUNKNOWN  
2ϫRSTANDARD  
.
TELCOM SEMICONDUCTOR, INC.  
3-227  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7126  
TC7126A  
Simple Inverter for Fixed Decimal Point  
or Display Annunciator  
+
+
V
V
REF  
+
V
V
R
REF  
STANDARD  
+
V
LCD  
+
4049  
V
IN  
TC7126A  
BP  
R
TO LCD  
DECIMAL  
POINT  
UNKNOWN  
TC7126A  
21  
37  
V
IN  
GND  
TEST  
ANALOG  
COMMON  
TO  
BACKPLANE  
Multiple Decimal Point or  
Annunciator Driver  
Figure 10. Low Parts Count Ratiometric Resistance Measurement  
+
V
+
V
BP  
TO LCD  
DECIMAL  
POINTS  
DECIMAL  
POINT  
SELECT  
TC7126A  
TEST  
4030  
GND  
Figure 9. Decimal Point and Annunciator Drives  
9V  
+
26  
1N4148  
1 µF  
200 mV  
27  
29  
1
+
V
1 MΩ  
10 MΩ  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
V
IN  
9 MΩ  
240 kΩ  
10 kΩ  
0.02  
µF  
C1  
TC7126A  
2V  
36  
35  
+
AD636  
V
V
REF  
28  
40  
47 kΩ  
1W  
10%  
6.8 µF  
REF  
C2  
900 kΩ  
90 kΩ  
10 kΩ  
+
32  
31  
ANALOG  
COMMON  
20V  
1 M10%  
+
IN  
8
V
0.01  
µF  
2.2  
µF  
30  
26  
20 kΩ  
10%  
38  
39  
+
V
200V  
OUT  
V
BP  
SEGMENT  
DRIVE  
C1 = 3 pF TO 10 pF, VARIABLE  
C2 = 132 pF, VARIABLE  
COM  
LCD  
Figure 11. 3-1/2 Digit True RMS AC DMM  
3-228  
TELCOM SEMICONDUCTOR, INC.  
3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7126  
TC7126A  
9V  
+
+
9V  
5.6 kΩ  
160 kΩ  
160 kΩ  
300 kΩ  
300 kΩ  
+
+
V
V
V
V
V
V
R
V
V
1N4148  
IN  
1
IN  
20 kΩ  
+
R
+
1N4148  
SENSOR  
1
IN  
IN  
50 kΩ  
0.7%/°C  
PTC  
TC7126A  
R
2
20 kΩ  
+
+
TC7126A  
R
3
R
V
V
2
V
V
REF  
REF  
50 kΩ  
REF  
REF  
COMMON  
COMMON  
Figure 12. Temperature Sensor  
Figure 13. Positive Temperature Coefficient Resistor  
Temperature Sensor  
9V  
2
+
CONSTANT 5V  
+
V
V
+
V
REF  
51 kΩ  
51 kΩ  
6
5
3
V
50 kΩ  
OUT  
ADJ  
R
4
R
5
R
R
V
2
REF  
8
2
3
NC  
1
1/2  
LM358  
+
V
V
IN  
REF02  
TC7126A  
TEMP  
+
4
TEMPERATURE  
DEPENDENT OUTPUT  
IN  
V
=
OUT  
50 kΩ  
1.86V @  
+25°C  
COMMON  
V
1
GND  
4
Figure 14. Integrated Circuit Temperature Sensor  
TELCOM SEMICONDUCTOR, INC.  
3-229  

相关型号:

TC7126IPL

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126IPL

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
TELCOM

TC7126RCPL

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126RIPL

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126_06

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126_13

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7129

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers
MICROCHIP

TC7129

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS
TELCOM

TC7129CJL

1-CH DUAL-SLOPE ADC, CDIP40, CERAMIC, DIP-40
MICROCHIP

TC7129CJL713

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers
MICROCHIP

TC7129CKW

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers
MICROCHIP

TC7129CKW

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS
TELCOM