TC7136ACKW [TELCOM]

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS; 低功耗, 3-1 / 2位模拟数字转换器
TC7136ACKW
型号: TC7136ACKW
厂家: TELCOM SEMICONDUCTOR, INC    TELCOM SEMICONDUCTOR, INC
描述:

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
低功耗, 3-1 / 2位模拟数字转换器

转换器
文件: 总12页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3
TC7136  
TC7136A  
LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS  
FEATURES  
GENERAL DESCRIPTION  
Fast Overrange Recovery, Guaranteed First  
Reading Accuracy  
The TC7136 and TC7136A are low-power, 3-1/2 digit  
with liquid crystal display (LCD) drivers with analog-to-  
digital converters. These devices incorporate an "integra-  
tor output zero" phase which guarantees overrange  
recovery. The performance of existing TC7126, TC7126A  
and ICL7126-based systems may be upgraded with minor  
changes to external, passive components.  
The TC7136A has an improved internal zener refer-  
ence voltage circuit which maintains the analog common  
temperature drift to 35 ppm/°C (typical) and 75 ppm/°C  
(maximum). This represents an improvement of two to four  
times over similar 3-1/2 digit converters. The costly, space-  
consuming external reference source may be removed.  
The TC7136/A limits linearity error to less than 1 count  
on 200 mV or 2V full-scale ranges. Roll-over error — the  
difference in readings for equal magnitude but opposite  
polarity input signals — is below ±1 count. High-impedance  
differential inputs offer 1 pA leakage currents and a 1012Ω  
input impedance. The differential reference input allows  
ratiometric measurements for ohms or bridge transducer  
measurements. The 15 µVP-P noise performance guaran-  
tees a "rock solid" reading. The auto-zero cycle guarantees  
a zero display readout for a 0V input.  
Low Temperature Drift Internal Reference  
TC7136 ....................................... 70 ppm/°C Typ  
TC7136A ..................................... 35 ppm/°C Typ  
Guaranteed Zero Reading With Zero Input  
Low Noise.................................................... 15 µVP-P  
High Resolution .............................................. 0.05%  
Low Input Leakage Current ...................... 1 pA Typ  
10 pA Max  
Precision Null Detectors With True Polarity at  
Zero  
High-Impedance Differential Input  
Convenient 9V Battery Operation With  
Low Power Dissipation ........................ 500 µW Typ  
900 µW Max  
TYPICAL APPLICATIONS  
Thermometry  
Bridge Readouts: Strain Gauges, Load Cells, Null  
Detectors  
Digital Meters: Voltage/Current/Ohms/Power, pH  
Digital Scales, Process Monitors  
Portable Instrumentation  
TYPICAL OPERATING CIRCUIT  
ORDERING INFORMATION  
PART CODE  
TC7136X X XXX  
0.1 µF  
A or blank*  
33  
34  
C
LCD  
+
C
REF  
REF  
R (reversed pins) or blank (CPL pkg only)  
* "A" parts have an improved reference TC  
Package Code (see below):  
Package  
1 MΩ  
31  
SEGMENT  
DRIVE  
+
9–19  
+
V
IN  
22–25  
ANALOG  
INPUT  
0.01 µF  
20  
30  
32  
POL  
BP  
V
IN  
MINUS SIGN  
21  
1
BACKPLANE  
ANALOG  
COMMON  
Temperature  
Range  
+
V
Code  
Package  
Pin Layout  
28  
V
CKW  
CLW  
CPL  
44-Pin PQFP  
44-Pin PLCC  
40-Pin PDIP  
Formed Leads  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
240 kΩ  
BUFF  
+
TC7136  
TC7136A  
9V  
0.47  
µF  
180 kΩ  
36  
+
Normal  
V
29  
REF  
10 kΩ  
C
V
AZ  
35  
26  
0.15 µF  
V
AVAILABLE PACKAGES  
REF  
27  
V
INT  
1 CONVERSION/SEC  
OSC OSC OSC  
2
3
1
C
39  
38  
40  
OSC  
TO ANALOG COMMON  
(PIN 32)  
50 pF  
R
OSC  
44-Pin Plastic Quad Flat 44-Pin Plastic Chip  
Package Formed Leads Carrier PLCC  
40-Pin Plastic DIP  
560 kΩ  
TC7136-6 10/18/96  
TELCOM SEMICONDUCTOR, INC.  
3-247  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7136  
TC7136A  
Operating Temperature Range  
ABSOLUTE MAXIMUM RATINGS*  
C Devices ..............................................0°C to +70°C  
I Devices ............................................ –25°C to +85°C  
Storage Temperature Range ................. –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) ................. +300°C  
Supply Voltage (V+ to V)............................................15V  
Analog Input Voltage (Either Input) (Note 1) ........ V+ to V–  
Reference Input Voltage (Either Input)................. V+ to V–  
Clock Input ...................................................... TEST to V+  
Package Power Dissipation (TA 70°C) (Note 2)  
*Static-sensitive device. Unused devices must be stored in conductive  
material. Protect devices from static discharge and static fields. Stresses  
above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. These are stress ratings only and functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating Conditions for extended periods  
may affect device reliability.  
Plastic DIP ........................................................1.23W  
Plastic Quad Flat Package ...............................1.00W  
PLCC ................................................................1.23W  
ELECTRICAL CHARACTERISTICS: VS = 9V, fCLK = 16 kHz, and TA = +25°C, unless otherwise noted.  
Symbol  
Input  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Zero Input Reading  
VIN = 0V  
– 000.0  
±000.0  
+000.0  
Digital  
Full Scale = 200 mV  
Reading  
Zero Reading Drift  
VIN = 0V, 0°C TA +70°C  
0.2  
1
µV/°C  
Ratiometric Reading  
VIN = VREF, VREF = 100 mV  
999  
999/1000  
1000  
Digital  
Reading  
NL  
Nonlinearity Error  
Full Scale = 200 mV or 2V  
Max Deviation From Best  
Straight Line  
– 1  
±0.2  
1
Count  
Roll-Over Error  
Noise  
–VIN = +VIN 200 mV  
VIN = 0V, Full Scale = 200 mV  
VIN = 0V  
– 1  
15  
1
±0.2  
1 Count  
µVP-P  
pA  
eN  
IL  
Input Leakage Current  
10  
CMRR  
Common-Mode Rejection  
Ratio  
VCM = ±1V, VIN = 0V,  
Full Scale = 200 mV  
50  
µV/V  
Scale Factor Temperature  
Coefficient  
VIN = 199 mV, 0°C TA +70°C  
Ext Ref Temp Coeff = 0 ppm/°C  
1
5
ppm/°C  
Analog Common  
VCTC  
Analog Common  
250 kBetween Common and V+  
Temperature Coefficient  
0°C TA +70°C  
"C" Commercial Temp TC7136  
Range Devices  
TC7136A  
35  
70  
75  
150  
ppm/°C  
ppm/°C  
– 25°C TA +85°C  
"I" Industrial Temp  
Range Devices  
TC7136A  
TC7136  
35  
70  
100  
150  
ppm/°C  
ppm/°C  
VC  
Analog Common Voltage  
250 kW Between Common and V+  
2.7  
3.05  
3.35  
V
LCD Drive  
VSD  
LCD Segment Drive Voltage  
LCD Backplane Drive Voltage  
V+ to V= 9V  
V+ to V= 9V  
4
4
5
5
6
6
VP-P  
VP-P  
VBD  
Power Supply  
IS  
Power Supply Current  
VIN = 0V, V+ to V= 9V (Note 6)  
70  
100  
µA  
NOTES: 1. Input voltages may exceed supply voltages when input current is limited to 100 µA.  
2. Dissipation rating assumes device is mounted with all leads soldered to PC board.  
3. Refer to "Differential Input" discussion.  
4. Backplane drive is in-phase with segment drive for "OFF" segment and 180° out-of-phase for "ON" segment. Frequency is 20 times  
conversion rate. Average DC component is less than 50 mV.  
5. See "Typical Operating Circuit".  
6. A 48 kHz oscillator increases current by 20 µA (typical). Common current not included.  
3-248  
TELCOM SEMICONDUCTOR, INC.  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7136  
TC7136A  
PIN CONFIGURATIONS  
6
5
4
3
2
1
44 43 42 41 40  
44 43 42 41 40 39 38 37 36 35 34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
3
4
NC  
NC  
NC  
F
G
E
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
REF LO  
+
1
1
1
G
2
C
REF  
C
3
TEST  
C
9
REF  
A
3
OSC  
3
D
C
10  
COMMON  
IN HI  
NC  
2
2
G
3
NC  
5
6
11  
12  
13  
14  
15  
16  
17  
BP  
OSC  
2
NC  
TC7136CLW  
TC7136ACLW  
(PLCC)  
TC7136CKW  
TC7136ACKW  
(PQFP)  
POL  
7
OSC  
1
B
2
IN LO  
AZ  
+
AB  
4
V
8
A
2
D
1
E
3
9
F
2
BUFF  
INT  
F
3
10  
11  
C
1
E
2
B
3
B
1
D
3
V
25 26 27 28  
18 19 20 21 22 23 24  
19 20 21 22  
12 13 14 15 16 17 18  
+
+
OSC  
OSC  
OSC  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
OSC  
OSC  
OSC  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
D
C
V
D
C
1
2
1
2
3
NORMAL PIN  
CONFIGURATION  
REVERSE PIN  
CONFIGURATION  
1
1
1
1
1
1
1
1
1
1
3
3
3
TEST  
B
A
F
4
4
B
A
F
TEST  
+
+
V
5
5
1's  
V
1's  
REF  
REF  
V
6
6
V
REF  
REF  
+
+
C
G
G
1
C
7
7
1
REF  
REF  
C
E
E
C
8
8
1
1
REF  
REF  
ANALOG  
COMMON  
ANALOG  
9
9
D
C
B
A
F
D
C
B
A
F
2
2
2
2
2
2
2
2
2
2
2
2
COMMON  
+
V
+
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
IN  
IN  
TC7136CPL  
TC7136ACPL  
(PDIP)  
TC7136RCPL  
TC7136ARCPL  
(Reversed)  
PDIP  
V
V
IN  
IN  
10's  
10's  
C
C
AZ  
AZ  
V
V
BUFF  
BUFF  
V
E
E
V
INT  
INT  
D
B
V
V
D
B
3
3
3
3
G
2
G
2
100's  
100's  
C
3
F
E
F
E
C
3
3
3
4
3
3
100's  
100's  
A
A
3
3
3
3
G
AB  
AB  
1000's  
G
1000's  
4
BP  
(BACKPLANE)  
POL  
(MINUS SIGN)  
POL  
(MINUS SIGN)  
BP  
(BACKPLANE)  
NC = NO INTERNAL CONNECTION  
TELCOM SEMICONDUCTOR, INC.  
3-249  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7136  
TC7136A  
TC7136/A PIN DESCRIPTION  
Pin No.  
40-Pin PDIP  
Normal  
(Reverse)  
Name  
Description  
1
(40)  
(39)  
(38)  
(37)  
(36)  
(35)  
(34)  
(33)  
(32)  
(31)  
(30)  
(29)  
(28)  
(27)  
(26)  
(25)  
(24)  
(23)  
(22)  
(21)  
(20)  
(19)  
(18)  
(17)  
(16)  
(15)  
(14)  
V+  
D1  
C1  
B1  
Positive supply voltage.  
2
Activates the D section of the units display.  
Activates the C section of the units display.  
Activates the B section of the units display.  
Activates the A section of the units display.  
Activates the F section of the units display.  
Activates the G section of the units display.  
Activates the E section of the units display.  
Activates the D section of the tens display.  
Activates the C section of the tens display.  
Activates the B section of the tens display.  
Activates the A section of the tens display  
Activates the F section of the tens display.  
Activates the E section of the tens display.  
Activates the D section of the hundreds display.  
Activates the B section of the hundreds display.  
Activates the F section of the hundreds display.  
Activates the E section of the hundreds display.  
Activates both halves of the 1 in the thousands display.  
Activates the negative polarity display.  
3
4
5
A1  
6
F1  
7
G1  
E1  
8
9
D2  
C2  
B2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
A2  
F2  
E2  
D3  
B3  
F3  
E3  
AB4  
POL  
BP  
G3  
A3  
Backplane drive output.  
Activates the G section of the hundreds display.  
Activates the A section of the hundreds display.  
Activates the C section of the hundreds display.  
Activates the G section of the tens display.  
Negative power supply voltage.  
C3  
G2  
V–  
VINT  
The integrating capacitor should be selected to give the maximum voltage  
swing that ensures component tolerance build-up will not allow the integrator  
output to saturate. When analog common is used as a reference and the  
conversion rate is 3 readings per second, a 0.047 µF capacitor may be used.  
The capacitor must have a low dielectric constant to prevent roll-over errors.  
See Integrating Capacitor section for additional details.  
28  
29  
(13)  
(12)  
VBUFF  
CAZ  
Integration resistor connection. Use a 180 kfor a 200 mV full-scale range  
and a 1.8 Mfor 2V full-scale range.  
The size of the auto-zero capacitor influences the system noise. Use a 0.47 µF  
capacitor for a 200 mV full scale, and a 0.1 µF capacitor for a 2V full scale. See  
paragraph on Auto-Zero Capacitor for more details.  
30  
31  
32  
(11)  
(10)  
(9)  
VIN–  
VIN+  
The low input signal is connected to this pin.  
The high input signal is connected to this pin.  
ANALOG  
COMMON  
This pin is primarily used to set the analog common-mode voltage for battery  
operation or in systems where the input signal is referenced to the power  
supply. See paragraph on Analog Common for more details. It also acts as a  
reference voltage source.  
3-250  
TELCOM SEMICONDUCTOR, INC.  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7136  
TC7136A  
TC7136/A PIN DESCRIPTION (Cont.)  
Pin No.  
40-Pin PDIP  
Normal  
(Reverse)  
Name  
Description  
33  
34  
(8)  
(7)  
CREF  
C+REF  
See pin 34.  
A 0.1 µF capacitor is used in most applications. If a large common-mode  
voltage exists (for example, the VINpin is not at analog common), and a 200  
mV scale is used, a 1 µF capacitor is recommended and will hold the roll-over  
error to 0.5 count.  
35  
36  
(6)  
(5)  
VREF  
VREF  
See pin 36.  
The analog input required to generate a full-scale output (1999 counts). Place  
100 mV between pins 35 and 36 for 199.9 mV full scale. Place 1V between  
pins 35 and 36 for 2V full scale. See paragraph on Reference Voltage.  
Lamp test. When pulled HIGH (to V+) all segments will be turned ON and the  
display should read –1888. It may also be used as a negative supply for exter-  
nally-generated decimal points. See paragraph under Test for additional informa-  
tion.  
(4)  
TEST  
37  
38  
39  
(3)  
(2)  
(1)  
OSC3  
OSC2  
OSC1  
See pin 40.  
See pin 40.  
Pins 40, 39 and 38 make up the oscillator section. For a 48 kHz clock (3 readings per  
second) connect pin 40 to the junction of a 180 kresistor and a 50 pF capacitor. The  
180 kresistor is tied to pin 39 and the 50 pF capacitor is tied to pin 38.  
C
INT  
GENERAL THEORY OF OPERATION  
(All Pin designations refer to 40-Pin Dip)  
Dual-Slope Conversion Principles  
ANALOG  
INPUT  
INTEGRATOR  
SIGNAL  
COMPARATOR  
+
+
The TC7136/A is a dual-slope, integrating analog-to-  
digital converter. An understanding of the dual-slope con-  
version technique will aid in following detailed TC7136/A  
operational theory.  
The conventional dual-slope converter measurement  
cycle has two distinct phases:  
SWITCH  
DRIVER  
CLOCK  
PHASE  
CONTROL  
REF  
VOLTAGE  
CONTROL  
LOGIC  
POLARITY CONTROL  
(1) Input signal integration  
COUNTER  
DISPLAY  
(2) Reference voltage integration (deintegration)  
V
V
Ϸ V  
Ϸ
IN  
IN  
FULL SCALE  
1.2 V  
The input signal being converted is integrated for a fixed  
time period (tSI), measured by counting clock pulses. An  
opposite polarity constant reference voltage is then inte-  
grateduntiltheintegratoroutputvoltagereturnstozero. The  
referenceintegrationtimeisdirectlyproportionaltotheinput  
signal (tRI).  
Inasimpledual-slopeconverter,acompleteconversion  
requires the integrator output to "ramp-up" and "ramp-  
down."  
FULL SCALE  
FIXED VARIABLE  
SIGNAL REFERENCE  
INTEGRATE INTEGRATE  
TIME TIME  
Figure 1. Basic Dual-Slope Converter  
where:  
VR = Reference voltage  
tSI = Signal integration time (fixed)  
tRI = Reference voltage integration time (variable).  
Asimplemathematicalequationrelatestheinputsignal,  
reference voltage, and integration time:  
For a constant VIN:  
tRI  
tSI  
1
VR tRI  
RC  
VIN(t) dt =  
,
VIN = VR  
.
0
t
SI  
RC  
]
[
TELCOM SEMICONDUCTOR, INC.  
3-251  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7136  
TC7136A  
30  
20  
10  
Auto-Zero Phase  
During the auto-zero phase, the differential input signal  
is disconnected from the circuit by opening internal analog  
gates. The internal nodes are shorted to analog common  
(ground) to establish a zero input condition. Additional  
analog gates close a feedback loop around the integrator  
and comparator. This loop permits comparator offset volt-  
age error compensation. The voltage level established on  
CAZ compensates for device offset voltages. The auto-zero  
phase residual is typically 10 µV to 15 µV.  
t = MEASUREMENT PERIOD  
1/t  
0
0.1/t  
10/t  
The auto-zero duration is from 910 to 2900 counts for  
non-overrange conversions and from 300 to 910 counts for  
overrange conversions.  
INPUT FREQUENCY  
Figure 2. Normal-Mode Rejection of Dual-Slope Converter  
The dual-slope converter accuracy is unrelated to the  
integratingresistorandcapacitorvalues, aslongastheyare  
stable during a measurement cycle. Noise immunity is an  
inherent benefit. Noise spikes are integrated, or averaged,  
to zero during integration periods. Integrating ADCs are  
immune to the large conversion errors that plague succes-  
sive approximation converters in high-noise environments.  
Interfering signals with frequency components at multiples  
of the averaging period will be attenuated. Integrating ADCs  
commonly operate with the signal integration period set to a  
multiple of the 50 Hz/60 Hz power line period.  
Signal Integration Phase  
The auto-zero loop is entered and the internal differen-  
tialinputsconnecttoVI+N andV. Thedifferentialinputsignal  
IN  
is integrated for a fixed time period. The TC7136/A signal  
integration period is 1000 clock periods or counts. The  
externally-set clock frequency is divided by four before  
clockingtheinternalcounters.Theintegrationtimeperiodis:  
4
tSI  
=
ϫ 1000,  
fOSC  
where fOSC = external clock frequency.  
ANALOG SECTION  
The differential input voltage must be within the device  
common-mode range when the converter and measured  
system share the same power supply common (ground). If  
the converter and measured system do not share the same  
In addition to the basic integrate and deintegrate dual-  
slope cycles discussed above, the TC7136/A designs incor-  
porate an "integrator output-zero cycle" and an "auto-zero  
cycle." These additional cycles ensure the integrator starts  
at0V(evenafterasevereoverrangeconversion)andthatall  
offset voltage errors (buffer amplifier, integrator and com-  
parator)areremovedfromtheconversion.Atruedigitalzero  
reading is assured without any external adjustments.  
A complete conversion consists of four distinct phases:  
power supply common, Vshould be tied to analog com-  
IN  
mon.  
Polarity is determined at the end of signal integrate  
phase. Thesignbitisatruepolarityindication, inthatsignals  
less than 1 LSB are correctly determined. This allows  
precision null detection limited only by device noise and  
auto-zero residual offsets.  
(1) Integrator output-zero phase  
(2) Auto-zero phase  
(3) Signal integrate phase  
(4) Reference deintegrate phase  
Reference Integrate Phase  
Thethirdphaseisreferenceintegrateordeintegrate.VIN  
is internally connected to analog common and VI+N is con-  
nected across the previously-charged reference capacitor.  
Circuitry within the chip ensures that the capacitor will be  
connected with the correct polarity to cause the integrator  
output to return to zero. The time required for the output to  
return to zero is proportional to the input signal and is  
between 0 and 2000 internal clock periods. The digital  
reading displayed is:  
Integrator Output-Zero Phase  
This phase guarantees the integrator output is at 0V  
before the system-zero phase is entered. This ensures that  
true system offset voltages will be compensated for even  
after an overrange conversion. The count for this phase is a  
function of the number of counts required by the deintegrate  
phase.  
Thecountlastsfrom11to140countsfornon-overrange  
conversions and from 31 to 640 counts for overrange  
conversions.  
VIN  
1000  
VREF  
3-252  
TELCOM SEMICONDUCTOR, INC.  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7136  
TC7136A  
Figure 3. TC7136A Block Diagram  
TELCOM SEMICONDUCTOR, INC.  
3-253  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7136  
TC7136A  
System Timing  
1000  
The oscillator frequency is divided by 4 prior to clocking  
the internal decade counters. The four-phase measure-  
ment cycle takes a total of 4000 counts, or 16,000 clock  
INT  
1–2000  
DENT  
DISPLAY FONT  
11–140  
ZI  
AZ  
910–2900  
1000's  
100's  
10's  
1's  
4000  
Figure 4. Conversion Timing During Normal Operation  
Figure 6. Display FONT and Segment Assignment  
1000  
pulses. The 4000-count cycle is independent of input signal  
INT  
magnitude.  
2001–2090  
Each phase of the measurement cycle has the following  
length:  
DEINT  
31–640  
(1) Auto-zero phase: 3000 to 2900 counts  
(1200 to 11,600 clock pulses)  
ZI  
AZ  
300–910  
(2) Signal integrate: 1000 counts  
(4000 clock pulses)  
4000  
This time period is fixed. The integration period is:  
1
Figure 5. Conversion Timing During Overrange Operation  
tSI = 4000  
,
fOSC  
DIGITAL SECTION  
where fOSC is the externally-set clock frequency.  
The TC7136/A contains all the segment drivers neces-  
sary to directly drive a 3-1/2 digit LCD. An LCD backplane  
driver is included. The backplane frequency is the external  
clock frequency divided by 800. For three conversions per  
second the backplane frequency is 60 Hz with a 5V nominal  
amplitude. When a segment driver is in-phase with the  
backplane signal, the segment is OFF. An out-of-phase  
segment drive signal causes the segment to be ON, or  
visible. This AC drive configuration results in negligible DC  
voltage across each LCD segment, ensuring long LCD life.  
ThepolaritysegmentdriverisONfornegativeanaloginputs.  
If VI+N and VIN are reversed, this indicator would reverse.  
On the TC7136/A, when the TEST pin is pulled to V+, all  
segments are turned ON. The display reads –1888. During  
this mode the LCD segments have a constant DC voltage  
impressed. DO NOT LEAVE THE DISPLAY IN THIS MODE  
FOR MORE THAN SEVERAL MINUTES. LCDS MAY BE  
DESTROYED IF OPERATED WITH DC LEVELS FOR  
EXTENDED PERIODS.  
(3) Reference integrate: 0 to 2000 counts  
(4) Zero integrator: 11 to 640 counts  
The TC7136 is a drop-in replacement for the TC7126  
and ICL7126. The TC7136A offers a greatly-improved inter-  
nal reference temperature coefficient. Minor component  
value changes are required to upgrade existing designs and  
improve the noise performance.  
COMPONENT VALUE SELECTION  
Auto-Zero Capacitor (CAZ)  
The CAZ capacitor size has some influence on system  
noise. A 0.47 µF capacitor is recommended for 200 mV full-  
scaleapplicationswhere1LSBis100µV.A0.1µFcapacitor  
is adequate for 2V full-scale applications. A Mylar-type  
dielectric capacitor is adequate.  
Reference Voltage Capacitor (CREF  
)
The display font and segment drive assignment are  
shown in Figure 6.  
The reference voltage, used to ramp the integrator  
3-254  
TELCOM SEMICONDUCTOR, INC.  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7136  
TC7136A  
output voltage back to zero during the reference integrate  
phase, is stored on CREF. A 0.1 µF capacitor is acceptable  
when VREF is tied to analog common. If a large common-  
mode voltage exists (VREF analog common) and the  
application requires a 200 mV full scale, increase CREF to  
1 µF. Roll-over error will be held to less than 0.5 count. A  
Mylar-type dielectric capacitor is adequate.  
Oscillator Components  
COSC should be 50 pF. ROSC is selected from the  
equation:  
0.45  
RC  
fOSC  
=
.
Note that fOSC is Ϭ4 to generate the TC7136A's internal  
clock. The backplane drive signal is derived by dividing fOSC  
by 800.  
To achieve maximum rejection of 60Hz noise pickup,  
the signal integrate period should be a multiple of 60Hz.  
Oscillator frequencies of 240kHz, 120kHz, 80kHz, 60kHz,  
40kHz, etc. should be selected. For 50 Hz rejection, oscil-  
lator frequencies of 200kHz, 100kHz, 66-2/3 kHz, 50kHz,  
40kHz, etc. would be suitable. Note that 40kHz (2.5 read-  
ings per second) will reject both 50Hz and 60Hz.  
Integrating Capacitor (CINT  
)
CINT should be selected to maximize integrator output  
voltage swing without causing output saturation. Analog  
common will normally supply the differential voltage refer-  
ence this case, a ±2V full-scale integrator output swing is  
satisfactory. For 3 readings per second (fOSC = 48 kHz) a  
0.047 µF value is suggested. For one reading per second,  
0.15 µF is recommended. If a different oscillator frequency  
is used, CINT must be changed in inverse proportion to  
maintain the nominal ±2V integrator swing.  
Reference Voltage Selection  
An exact expression for CINT is:  
A full-scale reading (2000 counts) requires the input  
signal be twice the reference voltage.  
1
VFS  
(4000)  
(f )(R  
)
OSC  
INT  
CINT  
=
,
Required Full-Scale Voltage*  
VREF  
VINT  
200 mV  
2V  
100 mV  
1V  
where: fOSC = Clock frequency at pin 38  
VFS = Full-scale input voltage  
RINT = Integrating resistor  
*VFS = 2 VREF  
.
Insomeapplications, ascalefactorotherthanunitymay  
exist between a transducer output voltage and the required  
digitalreading. Assume, forexample, apressuretransducer  
output for 2000 lb/in.2 is 400 mV. Rather than dividing the  
input voltage by two, the reference voltage should be set to  
200 mV. This permits the transducer input to be used  
directly.  
VINT = Desired full-scale integrator output swing.  
CINT must have low dielectric absorption to minimize  
roll-over error. A polypropylene capacitor is recommended.  
Integrating Resistor (RINT  
)
The input buffer amplifier and integrator are designed  
with Class A output stages. The output stage idling current  
is 6 µA. The integrator and buffer can supply 1 µA drive  
currents with negligible linearity errors. RINT is chosen to  
remain in the output stage linear drive region, but not so  
large that PC board leakage currents induce errors. For a  
200 mV full scale, RINT is 180 k. A 2V full scale requires  
1.8 M.  
The differential reference can also be used when a  
digital zero reading is required when VIN is not equal to zero.  
This is common in temperature measuring instrumentation.  
A compensating offset voltage can be applied between  
analogcommonandVThetransduceroutputisconnected  
IN  
between V+IN and analog common.  
DEVICE PIN FUNCTIONAL DESCRIPTION  
Differential Signal Inputs  
Component  
VI+N (Pin 31), V(Pin 30)  
IN  
Value  
Nominal Full-Scale Voltage  
The TC7136/A is designed with true differential inputs  
and accepts input signals within the input stage common-  
mode voltage range (VCM). The typical range is V+ –1V to V–  
+1V.Common-modevoltagesareremovedfromthesystem  
whentheTC7136Aoperatesfromabatteryorfloatingpower  
source (isolated from measured system), and VIN is con-  
nected to analog common (VCOM). (See Figure 7.)  
200mV  
2V  
CAZ  
RINT  
CINT  
0.47 µF  
180 kΩ  
0.1 µF  
1.8 MΩ  
0.047 µF  
0.047 µF  
NOTE:fOSC = 48 kHz (3 readings per sec). ROSC = 180k, COSC = 50  
TELCOM SEMICONDUCTOR, INC.  
3-255  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7136  
TC7136A  
SEGMENT  
DRIVE  
LCD  
MEASURED  
SYSTEM  
V
+
C
V
INT  
POL BP  
BUF  
AZ  
OSC  
1
V
+
V
OSC  
OSC  
TC7136  
TC7136A  
3
2
V
V
GND  
ANALOG  
COMMON REF REF  
+
+
V
V
V
V
+
V
V
GND  
POWER  
SOURCE  
+
9V  
Figure 7. Common-Mode Voltage Removed in Battery Operation With VIN = Analog Common  
In systems where common-mode voltages exist, the  
The TC7136/A offers a significantly improved analog  
common temperature coefficient. This potential provides a  
very stable voltage, suitable for use as a voltage reference.  
The temperature coefficient of analog common is typically  
35 ppm/°C.  
86 dB common-mode rejection ratio minimizes error. Com-  
mon-mode voltages do, however, affect the integrator out-  
put level. A worst-case condition exists if a large positive  
VCM exists in conjunction with a full-scale negative differ-  
ential signal. The negative signal drives the integrator  
output positive along with VCM (see Figure 8.) For such  
applications, the integrator output swing can be reduced  
below the recommended 2V full-scale swing. The integra-  
tor output will swing within 0.3V of V+ or Vwithout in-  
creased linearity error.  
ANALOG COMMON (Pin 32)  
The analog common pin is set at a voltage potential  
approximately 3V below V+. The potential is guaranteed to  
be between 2.7V and 3.35V below V+. Analog common is  
tied internally to an N-channel FET capable of sinking  
100µA. This FET will hold the common line at 3V below V+  
if an external load attempts to pull the common line toward  
V+.Analogcommonsourcecurrentislimitedto1 µA.Analog  
common is therefore easily pulled to a more negative  
voltage (i.e., below V+ – 3V).  
Differential Reference  
VR+EF (Pin 36), VREF (Pin 35)  
The reference voltage can be generated anywhere  
within the V+ to Vpower supply range.  
To prevent roll-over type errors being induced by large  
common-mode voltages, CREF should be large compared to  
stray node capacitance.  
The TC7136/A connects the internal VIN+ and VIN in-  
puts to analog common during the auto-zero phase. During  
the reference-integrate phase, VIN is connected to analog  
common. If VIN is not externally connected to analog com-  
mon, a common-mode voltage exists, but is rejected by the  
converter's 86 dB common-mode rejection ratio. In battery  
operation, analog common and VIN are usually connected,  
removingcommon-modevoltageconcerns.Insystemswhere  
VIN is connected to the power supply ground or to a given  
C
INPUT  
BUFFER  
I
R
+
V
+
I
+
V
I
IN  
voltage, analog common should be connected to V–  
IN  
INTEGRATOR  
The analog common pin serves to set the analog sec-  
tion reference, or common point. The TC7136A is specifi-  
cally designed to operate from a battery or in any measure-  
ment system where input signals are not referenced (float)  
with respect to the TC7136A power source. The analog  
common potential of V+ –3V gives a 7V end of battery life  
voltage. The common potential has a 0.001%/% voltage  
coefficient.  
T
I
C
V
=
V
V
IN  
I
I
[
CM  
[
R
V
I
I
CM  
Where:  
4000  
T
Integration time  
=
=
=
f
OSC  
C
R
Integration capacitor  
= Integration resistor  
I
I
With sufficiently high total supply voltage (V+–V>7V),  
Figure 8. Common-Mode Voltage Reduces Available Integrator  
Swing (VCOM VIN)  
3-256  
TELCOM SEMICONDUCTOR, INC.  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
3
TC7136  
TC7136A  
analog common is a very stable potential with excellent  
temperature stability (typically 35 ppm/°c). for TC7136A  
This potential can be used to generate the TC7136A's  
reference voltage. An external voltage reference will be  
unnecessary in most cases because of the 35 ppm/°C  
temperature coefficient. See TC7136A Internal Voltage  
Reference discussion.  
9V  
+
26  
1
+
240 kΩ  
V
V
TC7136  
TC7136A  
TEST (Pin 37)  
36  
+
V
10 kΩ  
The TEST pin potential is 5V less than V+. TEST may be  
used as the negative power supply connection for external  
CMOSlogic.TheTESTpinistiedtotheinternally-generated  
negativelogicsupplythrougha500resistor.TheTESTpin  
load should not be more than 1 mA. See the Applications  
Section for additional information on using TEST as a  
negative digital logic supply.  
REF  
V
REF  
35  
V
REF  
32  
ANALOG  
COMMON  
SET V  
= 1/2 V  
REF  
FULL SCALE  
If TEST is pulled high (to V+), all segments plus the  
minus sign will be activated. DO NOT OPERATE IN THIS  
MODEFORMORETHANSEVERALMINUTES.WithTEST  
= V+, the LCD segments are impressed with a DC voltage  
which will destroy the LCD.  
Figure 10. TC7136A Internal Voltage Reference Connection  
APPLICATIONS INFORMATION  
Liquid Crystal Display Sources  
Several manufacturers supply standard LCDs to inter-  
face with the TC7136A 3-1/2 digit analog-to-digital con-  
verter.  
TC7136A Internal Voltage Reference  
The TC7136 analog common voltage temperature sta-  
bility has been significantly improved (Figure 9). The "A"  
version of the industry-standard TC7136 device allows  
users to upgrade old systems and design new systems  
without external voltage references. External R and C val-  
ues do not need to be changed; however, noise perfor-  
mance will be improved by increasing CAZ. (See Auto-Zero  
Capacitor section.) Figure 10 shows analog common sup-  
plying the necessary voltage reference for the TC7136/A.  
Representative  
Manufacturer Address/Phone  
Part Numbers*  
Crystaloid  
Electronics  
5282 Hudson Dr.  
Hudson, OH 44236  
216-655-2429  
C5335, H5535,  
T5135, SX440  
AND  
720 Palomar Ave.  
FE 0201, 0501  
Sunnyvale, CA 94086 FE 0203, 0701  
408-523-8200 FE 2201  
200  
VGI, Inc.  
Hamlin, Inc.  
1800 Vernon St. Ste. 2 I1048, I1126  
Roseville, CA 95678  
180  
916-783-7878  
GUARANTEED  
MAXIMUM  
NO MAXIMUM  
SPECIFIED  
160  
140  
120  
100  
612 E. Lake St.  
Lake Mills, WI 53551  
414-648-2361  
3902, 3933, 3903  
TYPICAL  
*NOTE: Contact LCD manufacturer for full product listing/specifications.  
GUARANTEED  
MAXIMUM  
Decimal Point and Annunciator Drive  
80  
60  
40  
20  
TYPICAL  
TC7136  
The TEST pin is connected to the internally-generated  
digital logic supply ground through a 500resistor. The  
TEST pin may be used as the negative supply for external  
CMOS gate segment drivers. LCD annunciators for decimal  
points, low battery indication, or function indication may be  
added without adding an additional supply. No more than 1  
mA should be supplied by the TEST pin: its potential is  
approximately 5V below V+.  
TYPICAL  
TC7136A  
ICL7136  
0
Figure 9. Analog Common Temperature Coefficient  
TELCOM SEMICONDUCTOR, INC.  
3-257  
LOW POWER, 3-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTERS  
TC7136  
TC7136A  
Ratiometric Resistance Measurements  
+
+
The TC7136A's true differential input and differential  
reference make ratiometric readings possible. In ratiometric  
operation, an unknown resistance is measured with respect  
to a known standard resistance. No accurately-defined  
reference voltage is needed.  
The unknown resistance is put in series with a known  
standard and a current passed through the pair. The voltage  
developed across the unknown is applied to the input and  
the voltage across the known resistor applied to the refer-  
ence input. If the unknown equals the standard, the display  
will read 1000. The displayed reading can be determined  
from the following expression:  
V
V
REF  
V
R
REF  
STANDARD  
LCD  
+
V
IN  
R
UNKNOWN  
TC7136  
TC7136A  
V
IN  
ANALOG  
COMMON  
Figure 12. Low Parts Count Ratiometric Resistance  
Measurement  
RUNKNOWN  
Displayed reading =  
× 1000.  
RSTANDARD  
The display will overrange for RUNKNOWN  
2×RSTANDARD  
+
9V  
.
160 kΩ  
300 kΩ  
300 kΩ  
+
V
V
V
V
IN  
Simple Inverter for Fixed Decimal Point  
or Display Annunciator  
+
R
1N4148  
SENSOR  
1
IN  
TC7136  
TC7136A  
50 kΩ  
+
V
+
V
+
R
2
V
V
REF  
50 kΩ  
4049  
REF  
TC7136  
TC7136A  
TO LCD  
DECIMAL  
POINT  
21  
COMMON  
BP  
GND  
37  
TEST  
Figure 13. Temperature Sensor  
TO LCD  
BLACK  
PLANE  
9V  
+
Multiple Decimal Point or  
Annunciator Driver  
5.6 kΩ  
160 kΩ  
+
+
V
V
V
+
R
V
V
V
1N4148  
1
BP  
IN  
20 kΩ  
+
TC7136  
TC7136A  
IN  
TO LCD  
DECIMAL  
POINTS  
DECIMAL  
POINT  
SELECT  
0.7%/°C  
PTC  
R
2
20 kΩ  
+
R
V
V
3
TC7136  
TC7136A  
REF  
REF  
4030  
TEST  
COMMON  
GND  
Figure 14. Positive Temperature Coefficient Resistor  
Temperature Sensor  
Figure 11. Decimal Point and Annunciator Drives  
3-258  
TELCOM SEMICONDUCTOR, INC.  

相关型号:

TC7136ACKW713

1-CH DUAL-SLOPE ADC, PQFP44, PLASTIC, QFP-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7136ACKWTR

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7136ACLW

Low Power 3-1/2 Digit Analog-to-Digital Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7136ACLW

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TELCOM

TC7136ACLW713

1-CH DUAL-SLOPE ADC, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7136ACLWTR

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7136ACPI

Low Power 3-1/2 Digit Analog-to-Digital Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7136ACPL

1-CH DUAL-SLOPE ADC, PDIP40, PLASTIC, DIP-40

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7136ACPL

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TELCOM

TC7136ARCLW

1-CH DUAL-SLOPE ADC, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7136CKW

Low Power 3-1/2 Digit Analog-to-Digital Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7136CKW

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TELCOM