M1K-L67140L-45/883 [TEMIC]

Dual-Port SRAM, 1KX8, 45ns, CMOS, CDIP48, 0.600 INCH, CERAMIC, DIP-48;
M1K-L67140L-45/883
型号: M1K-L67140L-45/883
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

Dual-Port SRAM, 1KX8, 45ns, CMOS, CDIP48, 0.600 INCH, CERAMIC, DIP-48

CD 静态存储器
文件: 总16页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L67130/L67140  
1 K × 8 CMOS Dual Port RAM 3.3 Volt  
Introduction  
The L67130/67140 are very low power CMOS dual port Using an array of eight transistors (8T) memory cell and  
static RAMs organized as 1024 × 8. They are designed to fabricated with the state of the art 1.0 µm lithography  
be used as a stand-alone 8 bits dual port RAM or as a named SCMOS, the M67130/140 combine an extremely  
combination MASTER/SLAVE dual port for 16 bits or low standby supply current (typ = 1.0 µA) with a fast  
more width systems. The MHS MASTER/SLAVE dual access time at 45 ns over the full temperature range. All  
port approach in memory system applications results in versions offer battery backup data retention capability  
full speed, error free operation without the need for with a typical power consumption at less than 5 µW.  
additional discrete logic.  
For military/space applications that demand superior  
Master and slave devices provide two independent ports  
with separate control, address and I/O pins that permit  
independent, asynchronous access for reads and writes to  
any location in the memory. An automatic power down  
feature controlled by CS permits the onchip circuitry of  
each port in order to enter a very low stand by power  
mode.  
levels of performance and reliability the L67130/67140  
is processed according to the methods of the latest  
revision of the MIL STD 883 (class B or S) and/or ESA  
SCC 9000.  
Features  
D Single 3.3 V ± 0.3 volt power supply  
D Fast access time  
D On chip arbitration logic  
D BUSY output flag on master  
45 ns(*) to 70 ns  
D BUSY input flag on slave  
D 67130L/67140L low power  
D INT flag for port to port communication  
D Fully asynchronous operation from either port  
D Battery backup operation : 2 V data retention  
67130V/67140V very low power  
D Expandable data bus to 16 bits or more using master/slave  
devices when using more than one device.  
(*) Preliminary  
MATRA MHS  
1
Rev. D (19 Fev. 97)  
L67130/L67140  
Interface  
Pin Configuration  
52 PIN PLCC (top view)  
48 PIN PLCC (top view)  
48 PIN DIL (top view), ceramic,  
plastic 600 mils  
64 PIN VQFP  
(top view)  
Block Diagram  
Notes : 1. L 67130 (MASTER) : BUSY is open drain output and requires pullup resistor  
L 67140 (SLAVE) : BUSY in input  
2. Open drain output requires pull-up resistor.  
2
MATRA MHS  
Rev. D (19 Fev. 97)  
L67130/L67140  
Pin Names  
LEFT PORT  
RIGHT PORT  
NAMES  
CS  
L
CS  
R
Chip select  
R/W  
R/W  
Write Enable  
Output Enable  
Address  
L
R
OE  
OE  
R
L
A
A
0R – 9R  
0L – 9L  
I/O  
I/O  
Data Input/Output  
Busy Flag  
0L – 7L  
0R – 7R  
BUSY  
BUSY  
R
L
INT  
INT  
Interrupt Flag  
Power  
L
R
VCC  
GND  
Ground  
Functional Description  
The L 67130/L 67140 has two ports with separate control,  
address and I/0 pins that permit independent read/write  
access to any memory location. These devices have an  
automatic power-down feature controlled by CS. CS  
controls on-chip power-down circuitry which causes the  
port concerned to go into stand-by mode when not  
selected (CS high). When a port is selected access to the  
full memory array is permitted. Each port has its own  
Output Enable control (OE). In read mode, the port’s OE  
turns the Output drivers on when set LOW.  
Arbitration Logic  
The arbitration logic will resolve an address match or a  
chip select match down to a minimum of 5 ns and  
determine which port has access. In all cases, an active  
BUSY flag will be set for the inhibited port.  
The BUSY flags are required when both ports attempt to  
access the same location simultaneously.Should this  
conflict arise, on-chip arbitration logic will determine  
which port has access and set the BUSY flag for the  
inhibited port. BUSY is set at speeds that allow the  
processor to hold the operation with its associated address  
and data. It should be noted that the operation is invalid  
for the port for which BUSY is set LOW. The inhibited  
port will be given access when BUSY goes inactive.  
Non-conflicting  
READ/WRITE  
conditions  
are  
illustrated in table 1.  
Interrupt Logic  
The interrupt flag (INT) allows communication between  
ports or systems. If the user chooses to use the interrupt  
function, a memory location (mail box or message center)  
A conflict will occur when both left and right ports are  
active and the two addresses coincide. The on-chip  
arbitration determines access in these circumstances.  
Two modes of arbitration are provided : (1) if the  
addresses match and are valid before CS on-chip control  
is assigned to each port. The left port interrupt flag (INT )  
L
is set when the right port writes to memory location 3FE  
(HEX). The left port clears the interrupt by reading  
address location 3FE. Similarly, the right port interrupt  
logic arbitrates between CS and CS for access ; or (2)  
L
R
if the CSs are low before an address match, on-chip  
control logic arbitrates between the left and right  
addresses for access (refer to table 2). The inhibited port’s  
BUSY flag is set and will reset when the port granted  
access completes its operation in both arbitration modes.  
flag (INT ) is set when the left port writes to memory  
R
location 3FF (hex), and the right port must read memory  
location 3FF in order to clear the interrupt flag (INT ).  
R
The 8 bit message at 3FE or 3FF is user-defined. If the  
interrupt function is not used, address locations 3FE and  
3FF are not reserved for mail boxes but become part of the  
RAM. See table 3 for the interrupt function.  
MATRA MHS  
3
Rev. D (19 Fev. 97)  
L67130/L67140  
Data Bus Width Expansion  
Master/Slave Description  
Expanding the data bus width to 16 or more bits in a When dual-port RAMs are expanded in width, the  
dual-port RAM system means that several chips may be SLAVE RAMs must be prevented from writing until the  
active simultaneously. If every chip has a hardware BUSY input has been settled. Otherwise, the SLAVE chip  
arbitrator, and the addresses for each chip arrive at the may begin a write cycle during a conflict situation. On the  
same time one chip may activate its L BUSY signal while opposite, the write pulse must extend a hold time beyond  
another activates its R BUSY signal. Both sides are now BUSY to ensure that a write cycle occurs once the conflict  
busy and the CPUs will wait indefinitely for their port to is resolved. This timing is inherent in all dual-port  
become free.  
memory systems where more than one chip is active at the  
same time.  
To overcome this “Busy Lock-Out” problem, MHS has  
developed a MASTER/SLAVE system which uses a  
single hardware arbitrator located on the MASTER. The  
SLAVE has BUSY inputs which allow direct interface to  
the MASTER with no external components, giving a  
speed advantage over other systems.  
The write pulse to the SLAVE must be inhibited by the  
MASTER’s maximum arbitration time. If a conflict then  
occurs, the write to the SLAVE will be inhibited because  
of the MASTER’s BUSY signal.  
Truth Table  
(4)  
Table 1 : Non Contention Read/Write Control  
LEFT OR RIGHT PORT(1)  
FUNCTION  
R/W  
X
CS  
H
OE  
X
D0–7  
Z
Port Disabled and in Power Down Mode. ICCSB or ICCSB1  
(2)  
L
L
X
DATA  
Data on Port Written into memory  
IN  
(3)  
H
L
L
DATA  
Z
Data in Memory Output on Port  
OUT  
H
L
H
High Impedance Outputs  
Notes : 1. A – A  
A – A  
.
0L  
10L  
0R  
10R  
2. If BUSY = L, data is not written.  
3. If BUSY = L, data may not be valid, see t  
and t  
DDD  
timing.  
WDD  
4. H = HIGH, L = LOW, X = DON’T CARE, Z = HIGH IMPEDANCE.  
4
MATRA MHS  
Rev. D (19 Fev. 97)  
L67130/L67140  
(5)  
Table 2 : Arbitration  
LEFT PORT  
RIGHT PORT  
FLAGS  
FUNCTION  
CSL  
H
A0L – A9L  
CSR  
A0L – A9R  
BUSYL  
BUSYR  
X
Any  
X
H
H
L
L
X
X
H
H
H
H
H
H
H
H
No Contention  
L
No Contention  
No Contention  
No Contention  
H
Any  
L
A – A  
A – A  
0L 9L  
0R  
9R  
ADDRESS ARBITRATION WITH CE LOW BEFORE ADDRESS MATCH  
L
L
L
L
LV5R  
RV5L  
Same  
Same  
L
L
L
L
LV5R  
RV5L  
Same  
Same  
H
L
H
L
L
H
L
L–Port Wins  
R–Port Wins  
Arbitration Resolved  
Arbitration Resolved  
H
CS ARBITRATION WITH ADDRESS MATCH BEFORE CS  
LL5R  
RL5L  
LW5R  
LW5R  
= A – A  
LL5R  
RL5L  
LW5R  
LW5R  
= A – A  
9L  
H
L
H
L
L
H
L
L–Port Wins  
0R  
9R  
9R  
0L  
= A – A  
= A  
A
R–Port Wins  
0R  
0L – 9L  
= A  
A
= A – A  
Arbitration Resolved  
Arbitration Resolved  
0R – 9R  
0L  
9L  
= A – A  
= A – A  
H
0R  
9R  
0L  
9L  
Notes : 5. INT Flags Don’t Care.  
6. X = DON’T CARE, L = LOW, H = HIGH.  
LV5R = Left Address Valid 5 ns before right address.  
RV5L = Right address Valid 5 ns before left address.  
Same = Left and Right Addresses match within 5 ns of each other.  
LL5R = Left CS = LOW 5 ns before Right CS.  
RL5L = Right CS = LOW 5 ns before left CS.  
LW5R = Left and Right CS = LOW within 5 ns of each other.  
(7, 10)  
Table 3 : Interrupt Flag  
LEFT PORT  
RIGHT PORT  
FUNCTION  
R/WL CSL  
OEL  
X
AOL–A9L  
INTL R/WR CSR  
OER  
X
AOR–A9R  
INTR  
(8)  
L
X
X
X
L
X
X
L
3FF  
X
X
X
X
X
L
X
L
L
X
X
L
Set Right INT Flag  
R
(9)  
X
L
3FF  
3FE  
X
H
Reset Right INT Flag  
R
(9)  
X
X
L
X
X
X
Set Left INT Flag  
L
(8)  
L
3FE  
H
X
X
Reset Left INT Flag  
L
Notes : 7. Assumes BUSY = BUSY = H.  
L
R
8. If BUSY = L, then NC.  
L
9. If BUSY = L, then NC.  
R
10. H = HIGH, L = LOW, X = DON’T CARE, NC = NO CHANGE.  
MATRA MHS  
Rev. D (19 Fev. 97)  
5
L67130/L67140  
Electrical Characteristics  
* Notice  
Absolute Maximum Ratings  
Stresses greater than those listed under ABSOLUTE MAXIMUM  
RATINGS may cause permanent damage to the device.This is a stress  
rating only and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating  
conditions for extented periods may affect reliability.  
Supply voltage (VCC–GND) : . . . . . . . . . . . . . . . . . . –0.3 V to 7.0 V  
Input or output voltage applied : . . . (GND –0.3 V) to (VCC + 0.3 V)  
Storage temperature : . . . . . . . . . . . . . . . . . . . . . . . –65°C to + 150°C  
OPERATING RANGE  
Military  
OPERATING SUPPLY VOLTAGE  
OPERATING TEMPERATURE  
o
o
V
V
V
V
= 3.3 V ± 0.3 V  
= 3.3 V ± 0.3 V  
= 3.3 V ± 0.3 V  
= 3.3 V ± 0.3 V  
– 55 C to + 125 C  
CC  
CC  
CC  
CC  
o
o
Automotive  
– 40 C to + 125 C  
o
o
Industrial  
– 40 C to + 85 C  
o
o
Commercial  
0 C to + 70 C  
DC Parameters  
L 67130/ 140–45 L 67130/ 140–55 L 67130/ 140–70  
IND  
IND  
COM MIL  
AUTO  
IND  
COM MIL  
AUTO  
MIL  
AUTO  
COM  
Parameter  
Description  
Version  
Unit  
Value  
Preliminary  
I
Standby supply current (Both  
ports TTL level inputs)  
V
L
1
5
1
10  
1
5
1
10  
1
5
1
10  
mA  
mA  
Max  
Max  
CCSB (11)  
I
Standby supply current (Both  
ports CMOS level inputs)  
V
L
10  
100  
20  
200  
10  
100  
20  
200  
10  
100  
20  
200  
µΑ  
µΑ  
Max  
Max  
CCSB1 (12)  
I
Operating supply current (Both  
ports active)  
V
L
80  
80  
90  
100  
70  
70  
80  
90  
60  
60  
70  
80  
mA  
mA  
Max  
Max  
CCOP (13)  
I
Operating supply current (One  
port active – One port standby)  
V
L
50  
60  
55  
65  
40  
50  
45  
55  
35  
45  
40  
50  
mA  
mA  
Max  
Max  
CCOP 1 (14)  
Notes : 11. CS = CS 2.2 V.  
L
R
12. CS = CS VXX – 0.2 V.  
L
R
13. Both ports active – Maximum frequency – Outputs open – OE = VIH.  
14. One port active (f = MAX) – Output open – One port stand-by TTL or CMOS Level inputs – CS = CS 2.2 V.  
L
R
L 67130–45/55/70  
L 67140–45/55/70  
PARAMETER  
DESCRIPTION  
UNIT  
VALUE  
II/O  
VIL  
Input/Output leakage current  
Input low voltage  
± 10  
0.7  
µA  
V
Max  
Max  
Min  
Max  
(15)  
(16)  
VIH  
Input high voltage  
1.8  
V
(16)  
VOL  
VOL  
Output low voltage (I/O –I/O )  
0.5  
V
(17)  
0
7
Open drain output low voltage  
0.5  
V
Max  
(BUSY, INT) I = 16 mA  
OL  
VOH  
Output high voltage  
Input capacitance  
Output capacitance  
1.5  
5
V
Min  
Max  
Max  
(17)  
C IN  
pF  
pF  
(21)  
C OUT  
7
(21)  
Notes : 15. V = 5.5 V, Vin = Gnd to V , CS = VIH, Vout = 0 to V .  
CC  
CC  
CC  
16. VIH max = V + 0.3 V, VIL min – 0.3 V or –1 V pulse width 50 ns.  
CC  
17. V min, IOL = 4 mA, IOH = –4 mA.  
CC  
6
MATRA MHS  
Rev. D (19 Fev. 97)  
L67130/L67140  
Data-Retention Mode  
MHS CMOS RAMs are designed with battery backup in 2 – CS must be kept between V – 0.2 V and 70 % of Vcc  
CC  
mind. Data retention voltage and supply current are during the power up and power down transitions.  
guaranteed over temperature. The following rules insure  
data retention :  
3 – The RAM can begin operation > tRC after Vcc  
reaches the minimum operating voltage (3 volts).  
1 – Chip select (CS) must be held high during data  
retention ; within Vcc to VCC  
.
DR  
Timing  
MAX  
MIL  
IND  
PARAMETER  
TEST CONDITIONS (18)  
UNIT  
COM  
AUTO  
ICC  
@ VCC = 2 V  
10  
20  
µA  
DR1  
DR  
Notes : 18. CS = Vcc, Vin = Gnd to Vcc.  
19. = Read cycle time.  
t
RC  
AC Test Conditions  
Input Pulse Levels : GND to 3.0 V  
Input Rise/Fall Times : 5 ns  
Output Reference Levels : 1.5 V  
Output Load : see figures 1, 2  
Input Timing Reference Levels : 1.5 V  
Figure 1. Output Load.  
Figure 2. Output load.  
(For t , t , t , and t  
)
HZ LZ WZ  
OW  
MATRA MHS  
7
Rev. D (19 Fev. 97)  
L67130/L67140  
AC Parameters  
L67130–45  
L67140–45  
L67130–55  
L67140–55  
L67130–70  
L67140–70  
READ CYCLE  
PARAMETER  
UNIT  
MIN.  
MAX.  
MIN.  
MAX. MIN. MAX.  
SYMBOL  
(23)  
SYMBOL  
(24)  
PRELIMINARY  
TAVAVR  
TAVQV  
TELQV  
TGLQV  
TAVQX  
TELQZ  
TEHQZ  
TPU  
t
t
t
t
t
t
t
t
t
Read cycle time  
45  
45  
45  
30  
55  
55  
55  
35  
70  
70  
70  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
Address access time  
AA  
ACS  
AOE  
OH  
LZ  
Chip Select access time (22)  
Output enable access time  
Output hold from address change  
Output low Z time (20, 21)  
Output high Z time (20, 21)  
Chip Select to power up time (21)  
Chip disable to power down time (21)  
0
0
0
5
5
5
20  
30  
35  
HZ  
0
0
0
PU  
TPD  
50  
50  
50  
PD  
Notes : 20. Transition is measured ± 500 mV from low or high impedance voltage with load (figures 1 and 2).  
21. This parameter is guaranteed but not tested.  
22. To access RAM CS = VIL.  
23. STD symbol.  
24. ALT symbol.  
Timing Waveform of Read Cycle no 1, Either Side (25, 26, 28)  
Timing Waveform of Read Cycle no 2, Either Side (25, 27, 29)  
Notes : 25. R/W is high for read cycles.  
26. Device is continuously enabled, CS = VIL.  
27. Addresses valid prior to or coincident with CS transition low.  
28. OE = VIL.  
29. To access RAM, CS = VIL.  
8
MATRA MHS  
Rev. D (19 Fev. 97)  
L67130/L67140  
AC Parameters  
L67130–45  
L67140–45  
L67130–55  
L67140–55  
L67130–70  
L67140–70  
WRITE CYCLE  
PARAMETER  
UNIT  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
SYMBOL SYMBOL  
(34)  
(35)  
PRELIMINARY  
TAVAVW  
TELWH  
TAVWH  
TAVWL  
TWLWH  
TWHAX  
TDVWH  
TGHQZ  
TWHDX  
TWLQZ  
TWHQX  
t
Write cycle time  
45  
35  
35  
0
55  
40  
40  
0
70  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
t
Chip select to end of write (32)  
Address valid to end of write  
Address Set–up Time  
SW  
AW  
t
t
AS  
WP  
WR  
DW  
t
Write Pulse Width  
35  
0
40  
0
45  
0
t
Write Recovery Time  
t
Data Valid to end of write  
Output high Z time (30, 31)  
Data hold time (33)  
25  
25  
30  
t
20  
30  
40  
HZ  
DH  
WZ  
OW  
t
0
0
0
t
Write enable to output in high Z (30, 31)  
Output active from end of write (30, 31, 33)  
20  
30  
40  
t
0
0
0
Notes : 30. Transition is measured ± 500 mV from low or high impedance voltage with load (figures 1 and 2).  
31. This parameter is guaranteed but not tested.  
32. To access RAM CS = VIL.  
This condition must be valid for entire t time.  
SW  
33. The specification for t must be met by the device supplying write data to the RAM under all operating conditions.  
DH  
Although t and t  
values vary over voltage and temperature, the actual t will always be smaller than the actual t  
.
DH  
OW  
DH  
OW  
34. STD symbol.  
35. ALT symbol.  
MATRA MHS  
Rev. D (19 Fev. 97)  
9
L67130/L67140  
Timing Waveform of Write Cycle no 1, R/W Controlled Timing (36, 37, 38, 42)  
Timing Waveform of Write Cycle no 2, CS Controlled Timing (36, 37, 38, 40)  
Notes : 36. R/W must be high during all address transitions.  
37. A write occurs during the overlap (t or t ) of a low CS and a low R/W.  
SW  
WP  
38.  
t
is measured from the earlier of CS or R/W going high to the end of write cycle.  
WR  
39. During this period, the I/O pins are in the output state, and input signals must not be applied.  
40. If the CS low transition occurs simultaneously with or after the R/W low transition, the outputs remain in the high  
impedance state.  
41. Transition is measured ± 500 mV from steady state with a 5 pF load (including scope and jig). This parameter is sampled  
and not 100 % tested.  
42. If OE is low during a R/W controlled write cycle, the write pulse width must be the larger of t or (t  
+ t  
DW  
)
WP  
WZ  
to allow the I/O drivers to turn off and data to be placed on the bus for the required t . If OE is high during an R/W  
DW  
controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified t  
43. To access RAM, CS = VIL.  
.
WP  
10  
MATRA MHS  
Rev. D (19 Fev. 97)  
L67130/L67140  
AC Parameters  
L67130–45  
L67140–45  
L67130–55  
L67140–55  
L67130–70  
L67140–70  
SYMBOL  
PARAMETER  
UNIT  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
BUSY TIMING (For L 67130 only)  
t
t
BUSY Access time to address  
BUSY Disable time to address  
BUSY Access time to Chip Select  
BUSY Disable time to Chip Select  
Write Pulse to data delay (44)  
Write data valid to read data delay (44)  
Arbitration priority set–up time (45)  
BUSY disable to valid data  
35  
45  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BAA  
BDA  
5
35  
30  
5
40  
35  
5
40  
50  
t
BAC  
BDC  
t
25  
30  
40  
t
70  
80  
90  
WDD  
t
45  
55  
70  
DDD  
t
APS  
t
Note 46  
Note 46  
Note 46  
BDD  
BUSY TIMING (For L 67140 only)  
t
Write to BUSY input (47)  
0
30  
0
30  
0
30  
ns  
ns  
ns  
ns  
WB  
WH  
t
Write hold after BUSY (48)  
Write pulse to data delay (49)  
Write data valid to read data delay (49)  
t
70  
45  
80  
55  
90  
70  
WDD  
t
DDD  
Notes : 44. Port-to-port delay through RAM cells from writing port to reading port, refer to “Timing Waveform of Read with  
BUSY (For L67130 only)”.  
45. To ensure that the earlier of the two ports wins.  
46.  
t
is a calculated parameter and is the greater of 0, t  
– t (actual) or t  
WP  
– t  
DW  
(actual).  
BDD  
WDD  
DDD  
47. To ensure that the write cycle is inhibited during contention.  
48. To ensure that a write cycle is completed after contention.  
49. Port-to-port delay through RAM cells from writing port to reading port, refer to “Timing Waveforms of Read  
with Port to port delay (For L67140 only)”.  
MATRA MHS  
Rev. D (19 Fev. 97)  
11  
L67130/L67140  
Timing Waveform of Read with BUSY (50, 51, 52) (For L 67130)  
Notes : 50. To ensure that the earlier of the two port wins.  
51. Write cycle parameters should be adhered to, to ensure proper writing.  
52. Device is continuously enabled for both ports.  
53. OE at L for the reading port.  
Timing Waveform of Write with Port-to-port (54, 55, 56) (For L 67140 only)  
Notes : 54. Assume BUSY = H for the writing port, and OE = L for the reading port.  
55. Write cycle parameters should be adhered to, to ensure proper writing.  
56. Device is continuously enabled for both ports.  
12  
MATRA MHS  
Rev. D (19 Fev. 97)  
L67130/L67140  
Timing Waveform of Write with BUSY (For L 67140)  
Timing Waveform of Contention Cycle no 1, CS Arbitration (For L 67130 only)  
MATRA MHS  
13  
Rev. D (19 Fev. 97)  
L67130/L67140  
Timing Waveform of Contention Cycle no 2, Address Valid Abritration  
(For L 67130 only) (57)  
Left Address Valid First :  
Right Address Valid First :  
Note :  
57. CS = CS = V  
L R IL  
16 Bit Master/Slave Dual-port Memory Systems  
Note :  
58. No arbitration in L 67140 (SLAVE). BUSY IN inhibits write in L 67140 (SLAVE).  
14  
MATRA MHS  
Rev. D (19 Fev. 97)  
L67130/L67140  
Waveform of Interrupt Timing (59)  
Notes : 59. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
60. See interrupt truth table.  
61. Timing depends on which enable signal is asserted last.  
52. Timing depends on which enable signal is de-asserted first.  
AC Electrical Characteristics over the Full  
Operating Temperature and Supply Voltage Range  
INTERRUPT  
TIMING  
L 67130/140–45  
L 6 7130/140–55  
L 6 7130/140–70  
PARAMETER  
UNIT  
SYMBOL  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
t
AS  
Address set–up time  
0
0
0
0
0
0
ns  
ns  
ns  
ns  
t
Write recovery time  
Interrupt set time  
Interrupt reset time  
WR  
INS  
INR  
t
40  
45  
60  
t
40  
45  
60  
MATRA MHS  
Rev. D (19 Fev. 97)  
15  
L67130/L67140  
Ordering Information  
TEMPERATURE RANGE PACKAGE  
DEVICE SPEED  
FLOW  
C
L
S3  
67130V  
55  
3.3 V ± 0.3 Volt  
blank  
/883  
P883  
SB/SC  
= MHS standards  
45 ns  
55 ns  
70 ns  
= MIL-STD 883 Class B or S  
= MIL-STD 883 + PIND TEST  
= SCC9000 level B/C  
1K = 48 pin DIL ceramic 600 mils  
CK = 48 pin DIL side-brazed 600 mils  
4K = 48 pin LCC  
S3 = 52 pin PLCC  
3K = 48 pin DIL plastic 600 mils  
RD = 64 pin VQFP  
SHXXX = Special customer  
request  
FHXXX = Flight models (space)  
MHXXX = Mechanical parts  
(space)  
67130 = 8K (1K × 8) Master  
67140 = 8K (1K × 8) Slave  
C = Commercial  
I = Industrial  
A = Automotive  
M = Military  
S = Space  
0° to +70°C  
–40° to +85°C  
–40° to +125°C  
–55° to +125°C  
–55° to +125°C  
L
V
EL  
EV  
= Low power  
= Very low power  
LHXXX = Life test parts (space)  
= Low power and rad tolerant  
= Very low power and rad tolerant  
The information contained herein is subject to change without notice. No responsibility is assumed by MATRA MHS SA for using this publication  
and/or circuits described herein : nor for any possible infringements of patents or other rights of third parties which may result from its use.  
16  
MATRA MHS  
Rev. D (19 Fev. 97)  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY