TS80C31X2-MCEB [TEMIC]

8-bit CMOS Microcontroller 0-60 MHz; 8位CMOS微控制器0-60兆赫
TS80C31X2-MCEB
型号: TS80C31X2-MCEB
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

8-bit CMOS Microcontroller 0-60 MHz
8位CMOS微控制器0-60兆赫

微控制器和处理器 外围集成电路 时钟
文件: 总40页 (文件大小:452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS80C31X2  
8-bit CMOS Microcontroller 0-60 MHz  
1. Description  
TEMIC TS80C31X2 is high performance CMOS and The fully static design of the TS80C31X2 allows to  
reduce system power consumption by bringing the clock  
frequency down to any value, even DC, without loss of  
data.  
ROMless versions of the 80C51 CMOS single chip 8-  
bit microcontroller.  
The TS80C31X2 retains all features of the TEMIC  
TSC80C31 with 128 bytes of internal RAM, a 5-source,  
4 priority level interrupt system, an on-chip oscilator  
and two timer/counters.  
The TS80C31X2 has 2 software-selectable modes of  
reduced activity for further reduction in power  
consumption. In the idle mode the CPU is frozen while  
the timers, the serial port and the interrupt system are still  
operating. In the power-down mode the RAM is saved  
and all other functions are inoperative.  
In addition, the TS80C31X2 has a dual data pointer, a  
more versatile serial channel that facilitates  
multiprocessor communication (EUART) and a X2 speed  
improvement mechanism.  
2. Features  
80C31 Compatible  
Interrupt Structure with  
8031 pin and instruction compatible  
Four 8-bit I/O ports  
5 Interrupt sources,  
4 priority level interrupt system  
Two 16-bit timer/counters  
128 bytes scratchpad RAM  
Full duplex Enhanced UART  
Framing error detection  
Automatic address recognition  
High-Speed Architecture  
40 MHz @ 5V, 30MHz @ 3V  
Power Control modes  
Idle mode  
X2 Speed Improvement capability (6 clocks/  
machine cycle)  
Power-down mode  
Power-off Flag  
30 MHz @ 5V, 20 MHz @ 3V (Equivalent to  
60 MHz @ 5V, 40 MHz @ 3V)  
Once mode (On-chip Emulation)  
Power supply: 4.5-5.5V, 2.7-5.5V  
Dual Data Pointer  
Asynchronous port reset  
Temperature ranges: Commercial (0 to 70oC) and  
Industrial (-40 to 85oC)  
Packages: PDIL40, PLCC44, VQFP44 1.4, PQFP F1  
(13.9 footprint)  
Rev. A - Mar. 19, 1999  
1
Preliminary  
TS80C31X2  
3. Block Diagram  
(1) (1)  
XTAL1  
XTAL2  
RAM  
128x8  
EUART  
ALE/PROG  
PSEN  
C51  
CORE  
IB-bus  
CPU  
EA  
(1)  
Timer 0  
Timer 1  
INT  
Ctrl  
Parallel I/O Ports & Ext. Bus  
RD  
(1)  
Port 0 Port 1  
Port 3  
Port 2  
WR  
(1) (1)  
(1) (1)  
(1): Alternate function of Port 3  
2
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
4. SFR Mapping  
The Special Function Registers (SFRs) of the TS80C31X2 fall into the following categories:  
C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1  
I/O port registers: P0, P1, P2, P3  
Timer registers: TCON, TH0, TH1, TMOD, TL0, TL1  
Serial I/O port registers: SADDR, SADEN, SBUF, SCON  
Power and clock control registers: PCON  
Interrupt system registers: IE, IP, IPH  
Others: CKCON  
Table 1. All SFRs with their address and their reset value  
Bit  
address-  
able  
Non Bit addressable  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
F8h  
F0h  
FFh  
F7h  
B
0000 0000  
E8h  
E0h  
EFh  
E7h  
ACC  
0000 0000  
D8h  
D0h  
DFh  
D7h  
PSW  
0000 0000  
C8h  
C0h  
CFh  
C7h  
IP  
SADEN  
0000 0000  
B8h  
B0h  
A8h  
A0h  
98h  
90h  
88h  
80h  
BFh  
B7h  
AFh  
A7h  
9Fh  
97h  
8Fh  
87h  
XXX0 0000  
P3  
IPH  
XXX0 0000  
1111 1111  
IE  
SADDR  
0000 0000  
0XX0 0000  
P2  
AUXR1  
XXXX 0XX0  
1111 1111  
SCON  
0000 0000  
SBUF  
XXXX XXXX  
P1  
1111 1111  
TCON  
0000 0000  
TMOD  
0000 0000  
TL0  
0000 0000  
TL1  
0000 0000  
TH0  
0000 0000  
TH1  
0000 0000  
CKCON  
XXXX XXX0  
P0  
SP  
0000 0111  
DPL  
0000 0000  
DPH  
0000 0000  
PCON  
00X1 0000  
1111 1111  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
reserved  
Rev. A - Mar. 19, 1999  
3
Preliminary  
TS80C31X2  
5. Pin Configuration  
P1.0  
40  
39  
38  
1
2
VCC  
P0.0  
P0.1  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
3
4
37 P0.2  
P0.3  
P0.4  
36  
35  
34  
33  
32  
31  
30  
5
6
P0.5  
P0.6  
P0.7  
7
8
P1.6  
P1.7  
RST  
6
5
4
3
2
1
44 43 42 41 40  
P1.5  
P1.6  
39  
38  
7
8
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA  
9
EA  
P3.0/RxD 10  
P1.7  
37  
9
PDIL40  
ALE  
PSEN  
P3.1/TxD  
11  
12  
13  
RST  
10  
11  
12  
13  
36  
35  
34  
33  
P3.2/INT0  
P3.3/INT1  
29  
28  
27  
26  
P3.0/RxD  
NIC*  
P2.7  
P2.6  
NIC*  
PLCC44  
P3.4/T0 14  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P2.5  
ALE  
15  
16  
17  
18  
19  
20  
P3.5/T1  
P3.6/WR  
14  
15  
16  
17  
32  
31  
30  
29  
P2.4  
P2.3  
PSEN  
25  
24  
23  
22  
21  
P2.7/A15  
P2.6/A14  
P2.5/A13  
P3.7/RD  
XTAL2  
P2.2  
P2.1  
P2.0  
XTAL1  
VSS  
18 19 20 21 22 23 24 25 26 27 28  
44 43 42 41 40 39 38 37 36 35 34  
P1.5  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA  
33  
32  
1
2
P1.6  
P1.7  
31  
3
4
30  
29  
28  
27  
RST  
P3.0/RxD  
5
6
PQFP44  
VQFP44  
NIC*  
NIC*  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
ALE  
7
8
26  
25  
24  
23  
PSEN  
P2.7/A15  
P2.6/A14  
P2.5/A13  
9
10  
11  
P3.5/T1  
12 13 14 15 16 17 18 19 20 21 22  
*NIC: No Internal Connection  
4
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
Table 2. Pin Description for 40/44 pin packages  
PIN NUMBER  
MNEMONIC  
NAME AND FUNCTION  
TYPE  
DIL LCC VQFP 1.4  
V
20  
22  
1
16  
39  
I
I
Ground: 0V reference  
SS  
Vss1  
Optional Ground: Contact the Sales Office for ground connection.  
Power Supply: This is the power supply voltage for normal, idle and power-  
down operation  
V
40  
44  
38  
I
CC  
P0.0-P0.7  
39-32 43-36  
37-30  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s  
written to them float and can be used as high impedance inputs. Port 0 is also  
the multiplexed low-order address and data bus during access to external program  
and data memory. In this application, it uses strong internal pull-up when emitting  
1s.  
P1.0-P1.7  
P2.0-P2.7  
1-8  
2-9  
40-44  
1-3  
I/O  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1  
pins that have 1s written to them are pulled high by the internal pull-ups and  
can be used as inputs. As inputs, Port 1 pins that are externally pulled low will  
source current because of the internal pull-ups.  
21-28 24-31  
18-25  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2  
pins that have 1s written to them are pulled high by the internal pull-ups and  
can be used as inputs. As inputs, Port 2 pins that are externally pulled low will  
source current because of the internal pull-ups. Port 2 emits the high-order address  
byte during fetches from external program memory and during accesses to external  
data memory that use 16-bit addresses (MOVX @DPTR).In this application, it  
uses strong internal pull-ups emitting 1s. During accesses to external data memory  
that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR.  
P3.0-P3.7  
10-17  
11,  
13-19  
5,  
7-13  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3  
pins that have 1s written to them are pulled high by the internal pull-ups and  
can be used as inputs. As inputs, Port 3 pins that are externally pulled low will  
source current because of the internal pull-ups. Port 3 also serves the special  
features of the 80C51 family, as listed below.  
10  
11  
12  
13  
14  
15  
16  
17  
9
11  
13  
14  
15  
16  
17  
18  
19  
10  
5
7
I
O
I
RXD (P3.0): Serial input port  
TXD (P3.1): Serial output port  
8
INT0 (P3.2): External interrupt 0  
9
I
INT1 (P3.3): External interrupt 1  
10  
11  
12  
13  
4
I
T0 (P3.4): Timer 0 external input  
I
T1 (P3.5): Timer 1 external input  
O
O
I
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
Reset: A high on this pin for two machine cycles while the oscillator is running,  
resets the device. An internal diffused resistor to V permits a power-on reset  
using only an external capacitor to V  
Reset  
ALE  
SS  
CC.  
30  
29  
33  
32  
27  
26  
O (I) Address Latch Enable: Output pulse for latching the low byte of the address  
during an access to external memory. In normal operation, ALE is emitted at a  
constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used  
for external timing or clocking. Note that one ALE pulse is skipped during each  
access to external data memory.  
PSEN  
O
Program Store ENable: The read strobe to external program memory. When  
executing code from the external program memory, PSEN is activated twice each  
machine cycle, except that two PSEN activations are skipped during each access  
to external data memory. PSEN is not activated during fetches from internal  
program memory.  
EA  
31  
19  
18  
35  
21  
20  
29  
15  
14  
I
I
External Access Enable: EA must be externally held low to enable the device  
to fetch code from external program memory locations.  
XTAL1  
XTAL2  
Crystal 1: Input to the inverting oscillator amplifier and input to the internal  
clock generator circuits.  
O
Crystal 2: Output from the inverting oscillator amplifier  
Rev. A - Mar. 19, 1999  
5
Preliminary  
TS80C31X2  
6. TS80C31X2 Enhanced Features  
In comparison to the original 80C31, the TS80C31X2 implements some new features, which are:  
The X2 option.  
The Dual Data Pointer.  
The 4 level interrupt priority system.  
The power-off flag.  
The ONCE mode.  
Enhanced UART  
6.1 X2 Feature  
The TS80C31X2 core needs only 6 clock periods per machine cycle. This feature called ”X2” provides the following  
advantages:  
Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.  
Save power consumption while keeping same CPU power (oscillator power saving).  
Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.  
Increase CPU power by 2 while keeping same crystal frequency.  
In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main  
clock input of the core (phase generator). This divider may be disabled by software.  
6.1.1 Description  
The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and  
peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed,  
the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block  
diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode.  
Figure 2. shows the mode switching waveforms.  
XTAL1:2  
2
state machine: 6 clock cycles.  
CPU control  
XTAL1  
0
1
FXTAL  
FOSC  
X2  
CKCON reg  
Figure 1. Clock Generation Diagram  
6
Rev. A - Mar. 19, 1999  
Preliminary  
 
TS80C31X2  
XTAL1  
XTAL1:2  
X2 bit  
CPU clock  
STD Mode  
X2 Mode  
STD Mode  
Figure 2. Mode Switching Waveforms  
The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock  
cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature  
(X2 mode).  
CAUTION  
In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals  
using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example  
a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with  
4800 baud rate will have 9600 baud rate.  
Rev. A - Mar. 19, 1999  
7
Preliminary  
TS80C31X2  
Table 3. CKCON Register  
CKCON - Clock Control Register (8Fh)  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
X2  
Bit  
Number  
Bit  
Mnemonic  
Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
5
4
3
2
1
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
-
-
-
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
CPU and peripheral clock bit  
Clear to select 12 clock periods per machine cycle (STD mode, F  
=FXTAL/2).  
0
X2  
OSC  
Set to select 6 clock periods per machine cycle (X2 mode, F  
=F  
).  
OSC XTAL  
Reset Value = XXXX XXX0b  
Not bit addressable  
8
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
6.2 Dual Data Pointer Register Ddptr  
The additional data pointer can be used to speed up code execution and reduce code size in a number of  
ways.  
The dual DPTR structure is a way by which the chip will specify the address of an external data memory  
location. There are two 16-bit DPTR registers that address the external memory, and a single bit called  
DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).  
External Data Memory  
7
0
DPS  
DPTR1  
DPTR0  
AUXR1(A2H)  
DPH(83H) DPL(82H)  
Figure 3. Use of Dual Pointer  
Rev. A - Mar. 19, 1999  
9
Preliminary  
 
TS80C31X2  
Table 4. AUXR1: Auxiliary Register 1  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
DPS  
Bit  
Number  
Bit  
Mnemonic  
Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
5
4
3
2
1
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
-
-
-
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Data Pointer Selection  
Clear to select DPTR0.  
Set to select DPTR1.  
0
DPS  
Reset Value = XXXX XXX0  
Not bit addressable  
Application  
Software can take advantage of the additional data pointers to both increase speed and reduce code size, for  
example, block operations (copy, compare, search ...) are well served by using one data pointer as a ’source’  
pointer and the other one as a "destination" pointer.  
10  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
ASSEMBLY LANGUAGE  
; Block move using dual data pointers  
; Destroys DPTR0, DPTR1, A and PSW  
; note: DPS exits opposite of entry state  
; unless an extra INC AUXR1 is added  
;
00A2  
;
AUXR1 EQU 0A2H  
0000 909000MOV DPTR,#SOURCE  
0003 05A2 INC AUXR1  
0005 90A000 MOV DPTR,#DEST  
; address of SOURCE  
; switch data pointers  
; address of DEST  
0008  
LOOP:  
0008 05A2 INC AUXR1  
; switch data pointers  
000A E0  
000B A3  
000C 05A2 INC AUXR1  
MOVX A,@DPTR  
INC DPTR  
; get a byte from SOURCE  
; increment SOURCE address  
; switch data pointers  
000E F0  
000F A3  
0010 70F6 JNZ LOOP  
0012 05A2 INC AUXR1  
MOVX @DPTR,A  
INC DPTR  
; write the byte to DEST  
; increment DEST address  
; check for 0 terminator  
; (optional) restore DPS  
INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However,  
note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it.  
In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence  
matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1'  
on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the  
opposite state.  
Rev. A - Mar. 19, 1999  
11  
Preliminary  
TS80C31X2  
6.3 TS80C31X2 Serial I/O Port  
The serial I/O port in the TS80C31X2 is compatible with the serial I/O port in the 80C31.  
It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous  
Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and  
reception can occur simultaneously and at different baud rates  
Serial I/O port includes the following enhancements:  
Framing error detection  
Automatic address recognition  
6.3.1 Framing Error Detection  
Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing  
bit error detection feature, set SMOD0 bit in PCON register (See Figure 4).  
SM0/FE SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
SCON (98h)  
Set FE bit if stop bit is 0 (framing error) (SMOD = 1)  
SM0 to UART mode control (SMOD = 0)  
PCON (87h)  
SMOD1SMOD0  
-
POF  
GF1  
GF0  
PD  
IDL  
To UART framing error control  
Figure 4. Framing Error Block Diagram  
When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop  
bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit  
is not found, the Framing Error bit (FE) in SCON register (See Table 5.) bit is set.  
12  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can  
clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled,  
RI rises on stop bit instead of the last data bit (See Figure 5. and Figure 6.).  
RXD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Start  
bit  
Data byte  
Stop  
bit  
RI  
SMOD0=X  
FE  
SMOD0=1  
Figure 5. UART Timings in Mode 1  
RXD  
RI  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Start  
bit  
Data byte  
Ninth Stop  
bit bit  
SMOD0=0  
RI  
SMOD0=1  
FE  
SMOD0=1  
Figure 6. UART Timings in Modes 2 and 3  
6.3.2 Automatic Address Recognition  
The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled  
(SM2 bit in SCON register is set).  
Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by  
allowing the serial port to examine the address of each incoming command frame. Only when the serial port  
recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that  
the CPU is not interrupted by command frames addressed to other devices.  
If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit  
takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the  
device’s address and is terminated by a valid stop bit.  
To support automatic address recognition, a device is identified by a given address and a broadcast address.  
NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON  
register in mode 0 has no effect).  
Rev. A - Mar. 19, 1999  
13  
Preliminary  
 
 
TS80C31X2  
6.3.3 Given Address  
Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte  
that contains don’t-care bits (defined by zeros) to form the device’s given address. The don’t-care bits provide the  
flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.  
To address a device by its individual address, the SADEN mask byte must be 1111 1111b.  
For example:  
SADDR  
SADEN  
Given  
0101 0110b  
1111 1100b  
0101 01XXb  
The following is an example of how to use given addresses to address different slaves:  
Slave A:  
Slave B:  
Slave C:  
SADDR  
SADEN  
Given  
1111 0001b  
1111 1010b  
1111 0X0Xb  
SADDR  
SADEN  
Given  
1111 0011b  
1111 1001b  
1111 0XX1b  
SADDR  
SADEN  
Given  
1111 0010b  
1111 1101b  
1111 00X1b  
The SADEN byte is selected so that each slave may be addressed separately.  
For slave A, bit 0 (the LSB) is a don’t-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A  
only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).  
For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don’t care bit. To communicate with slaves B and C, but  
not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).  
To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2  
clear (e.g. 1111 0001b).  
6.3.4 Broadcast Address  
A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as  
don’t-care bits, e.g.:  
SADDR  
0101 0110b  
1111 1100b  
1111 111Xb  
SADEN  
Broadcast =SADDR OR SADEN  
The use of don’t-care bits provides flexibility in defining the broadcast address, however in most applications, a  
broadcast address is FFh. The following is an example of using broadcast addresses:  
Slave A:  
Slave B:  
Slave C:  
SADDR  
1111 0001b  
SADEN  
1111 1010b  
Broadcast 1111 1X11b,  
SADDR  
SADEN  
1111 0011b  
1111 1001b  
Broadcast 1111 1X11B,  
SADDR=  
SADEN  
Broadcast 1111 1111b  
1111 0010b  
1111 1101b  
For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the  
master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send  
and address FBh.  
14  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
6.3.5 Reset Addresses  
On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX  
XXXXb (all don’t-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards  
compatible with the 80C51 microcontrollers that do not support automatic address recognition.  
SADEN - Slave Address Mask Register (B9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
SADDR - Slave Address Register (A9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
Rev. A - Mar. 19, 1999  
15  
Preliminary  
TS80C31X2  
Table 5. SCON Register  
SCON - Serial Control Register (98h)  
7
6
5
4
3
2
1
0
FE/SM0  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
Bit  
Number  
Bit  
Mnemonic  
Description  
Framing Error bit (SMOD0=1)  
Clear to reset the error state, not cleared by a valid stop bit.  
Set by hardware when an invalid stop bit is detected.  
7
FE  
SMOD0 must be set to enable access to the FE bit  
Serial port Mode bit 0  
Refer to SM1 for serial port mode selection.  
SMOD0 must be cleared to enable access to the SM0 bit  
SM0  
SM1  
Serial port Mode bit 1  
SM1  
SM0  
Mode  
0
Description  
Baud Rate  
/12  
0
0
Shift Register  
F
XTAL  
6
5
0
1
1
1
0
1
1
2
3
8-bit UART  
9-bit UART  
9-bit UART  
Variable  
/64 or F  
F
/32  
XTAL  
XTAL  
Variable  
Serial port Mode 2 bit / Multiprocessor Communication Enable bit  
Clear to disable multiprocessor communication feature.  
SM2  
Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should  
be cleared in mode 0.  
Reception Enable bit  
4
3
REN  
TB8  
Clear to disable serial reception.  
Set to enable serial reception.  
Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3.  
Clear to transmit a logic 0 in the 9th bit.  
Set to transmit a logic 1 in the 9th bit.  
Receiver Bit 8 / Ninth bit received in modes 2 and 3  
Cleared by hardware if 9th bit received is a logic 0.  
Set by hardware if 9th bit received is a logic 1.  
2
RB8  
In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.  
Transmit Interrupt flag  
Clear to acknowledge interrupt.  
Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other  
modes.  
1
0
TI  
RI  
Receive Interrupt flag  
Clear to acknowledge interrupt.  
Set by hardware at the end of the 8th bit time in mode 0, see Figure 5. and Figure 6. in the other modes.  
Reset Value = 0000 0000b  
Bit addressable  
16  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
Table 6. PCON Register  
PCON - Power Control Register (87h)  
7
6
5
-
4
3
2
1
0
SMOD1  
SMOD0  
POF  
GF1  
GF0  
PD  
IDL  
Bit  
Number  
Bit  
Mnemonic  
Description  
Serial port Mode bit 1  
7
6
5
4
SMOD1  
SMOD0  
-
Set to select double baud rate in mode 1, 2 or 3.  
Serial port Mode bit 0  
Clear to select SM0 bit in SCON register.  
Set to to select FE bit in SCON register.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Power-Off Flag  
Clear to recognize next reset type.  
POF  
Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.  
General purpose Flag  
3
2
1
0
GF1  
GF0  
PD  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-Down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
IDL  
Clear by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
Reset Value = 00X1 0000b  
Not bit addressable  
Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn’t affect the value of this bit.  
Rev. A - Mar. 19, 1999  
17  
Preliminary  
TS80C31X2  
6.4 Interrupt System  
The TS80C31X2 has a total of 5 interrupt vectors: two external interrupts (INT0 and INT1), two timer interrupts  
(timers 0 and 1) and the serial port interrupt. These interrupts are shown in Figure 7.  
High priority  
interrupt  
IPH, IP  
3
INT0  
IE0  
IE1  
0
3
0
3
0
3
0
3
0
TF0  
INT1  
TF1  
Interrupt  
polling  
sequence, decreasing  
from high to low priority  
RI  
TI  
Low priority  
interrupt  
Individual Enable  
Global Disable  
Figure 7. Interrupt Control System  
Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt  
Enable register (See Table 8.). This register also contains a global disable bit, which must be cleared to disable  
all interrupts at once.  
Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing  
a bit in the Interrupt Priority register (See Table 9.) and in the Interrupt Priority High register (See Table 10.).  
shows the bit values and priority levels associated with each combination.  
18  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
Table 7. Priority Level Bit Values  
IP.x  
IPH.x  
Interrupt Level Priority  
0
0
1
1
0
1
0
1
0 (Lowest)  
1
2
3 (Highest)  
A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt.  
A high-priority interrupt can’t be interrupted by any other interrupt source.  
If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level  
is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence  
determines which request is serviced. Thus within each priority level there is a second priority structure determined  
by the polling sequence.  
Table 8. IE Register  
IE - Interrupt Enable Register (A8h)  
7
6
-
5
-
4
3
2
1
0
EA  
ES  
ET1  
EX1  
ET0  
EX0  
Bit  
Number  
Bit  
Mnemonic  
Description  
Enable All interrupt bit  
Clear to disable all interrupts.  
Set to enable all interrupts.  
7
EA  
If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt  
enable bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
6
5
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Serial port Enable bit  
4
3
2
1
0
ES  
Clear to disable serial port interrupt.  
Set to enable serial port interrupt.  
Timer 1 overflow interrupt Enable bit  
Clear to disable timer 1 overflow interrupt.  
Set to enable timer 1 overflow interrupt.  
ET1  
EX1  
ET0  
EX0  
External interrupt 1 Enable bit  
Clear to disable external interrupt 1.  
Set to enable external interrupt 1.  
Timer 0 overflow interrupt Enable bit  
Clear to disable timer 0 overflow interrupt.  
Set to enable timer 0 overflow interrupt.  
External interrupt 0 Enable bit  
Clear to disable external interrupt 0.  
Set to enable external interrupt 0.  
Reset Value = 0XX0 0000b  
Bit addressable  
Table 9. IP Register  
Rev. A - Mar. 19, 1999  
19  
Preliminary  
TS80C31X2  
IP - Interrupt Priority Register (B8h)  
7
-
6
-
5
-
4
3
2
1
0
PS  
PT1  
PX1  
PT0  
PX0  
Bit  
Number  
Bit  
Mnemonic  
Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
5
4
3
2
1
0
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Serial port Priority bit  
PS  
Refer to PSH for priority level.  
Timer 1 overflow interrupt Priority bit  
PT1  
PX1  
PT0  
PX0  
Refer to PT1H for priority level.  
External interrupt 1 Priority bit  
Refer to PX1H for priority level.  
Timer 0 overflow interrupt Priority bit  
Refer to PT0H for priority level.  
External interrupt 0 Priority bit  
Refer to PX0H for priority level.  
Reset Value = XXX0 0000b  
Bit addressable  
20  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
Table 10. IPH Register  
IPH - Interrupt Priority High Register (B7h)  
7
-
6
-
5
-
4
3
2
1
0
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
Bit  
Number  
Bit  
Mnemonic  
Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
5
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Serial port Priority High bit  
PSH  
PS  
0
1
0
1
Priority Level  
Lowest  
0
0
1
1
4
3
2
1
0
PSH  
Highest  
Timer 1 overflow interrupt Priority High bit  
PT1H  
PT1  
0
1
0
1
Priority Level  
Lowest  
0
0
1
1
PT1H  
PX1H  
PT0H  
PX0H  
Highest  
External interrupt 1 Priority High bit  
PX1H  
PX1  
Priority Level  
Lowest  
0
0
1
1
0
1
0
1
Highest  
Timer 0 overflow interrupt Priority High bit  
PT0H  
PT0  
0
1
0
1
Priority Level  
Lowest  
0
0
1
1
Highest  
External interrupt 0 Priority High bit  
PX0H  
PX0  
Priority Level  
Lowest  
0
0
1
1
0
1
0
1
Highest  
Reset Value = XXX0 0000b  
Not bit addressable  
Rev. A - Mar. 19, 1999  
21  
Preliminary  
TS80C31X2  
6.5 Idle mode  
An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode.  
In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port  
functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word,  
Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had  
at the time Idle was activated. ALE and PSEN hold at logic high levels.  
There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by  
hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to  
be executed will be the one following the instruction that put the device into idle.  
The flag bits GF0 and GF1 can be used to give and indication if an interrupt occured during normal operation or  
during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is  
terminated by an interrupt, the interrupt service routine can examine the flag bits.  
The over way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the  
hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.  
6.6 Power-Down Mode  
To save maximum power, a power-down mode can be invoked by software (Refer to Table 6., PCON register).  
In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last  
instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated.  
V
can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from  
CC  
power-down. To properly terminate power-down, the reset or external interrupt should not be executed before V  
CC  
is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.  
Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled  
and configured as level or edge sensitive interrupt input.  
Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 8.  
When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power  
down exit will be completed when the first input will be released. In this case the higher priority interrupt service  
routine is executed.  
Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction  
that put TS80C31X2 into power-down mode.  
INT0  
INT1  
XTAL1  
Active phase  
Power-down phase  
Oscillator restart phase  
Active phase  
Figure 8. Power-Down Exit Waveform  
Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect  
the SFRs.  
Exit from power-down by either reset or external interrupt does not affect the internal RAM content.  
NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt,  
PD and IDL bits are cleared and idle mode is not entered.  
22  
Rev. A - Mar. 19, 1999  
Preliminary  
 
TS80C31X2  
Table 11. The state of ports during idle and power-down modes  
Program  
Memory  
Mode  
ALE  
PSEN  
PORT0  
PORT1  
PORT2  
PORT3  
Idle  
External  
External  
1
0
1
0
Floating  
Floating  
Port Data  
Port Data  
Address  
Port Data  
Port Data  
Power Down  
Port Data  
Rev. A - Mar. 19, 1999  
23  
Preliminary  
TS80C31X2  
6.7 ONCE Mode (ON Chip Emulation)  
The ONCE mode facilitates testing and debugging of systems using TS80C31X2 without removing the circuit from  
the board. The ONCE mode is invoked by driving certain pins of the TS80C31X2; the following sequence must  
be exercised:  
Pull ALE low while the device is in reset (RST high) and PSEN is high.  
Hold ALE low as RST is deactivated.  
While the TS80C31X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26.  
shows the status of the port pins during ONCE mode.  
Normal operation is restored when normal reset is applied.  
Table 12. External Pin Status during ONCE Mode  
ALE  
PSEN  
Port 0  
Port 1  
Port 2  
Port 3  
XTAL1/2  
Weak pull-up  
Weak pull-up  
Float  
Weak pull-up  
Weak pull-up  
Weak pull-up  
Active  
24  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
6.8 Power-Off Flag  
The power-off flag allows the user to distinguish between a “cold start” reset and a “warm start” reset.  
A cold start reset is the one induced by V switch-on. A warm start reset occurs while V is still applied to  
CC  
CC  
the device and could be generated for example by an exit from power-down.  
The power-off flag (POF) is located in PCON register (See Table 13.). POF is set by hardware when V rises  
CC  
from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type  
of reset.  
Table 13. PCON Register  
PCON - Power Control Register (87h)  
7
6
5
-
4
3
2
1
0
SMOD1  
SMOD0  
POF  
GF1  
GF0  
PD  
IDL  
Bit  
Number  
Bit  
Mnemonic  
Description  
Serial port Mode bit 1  
7
6
5
4
SMOD1  
SMOD0  
-
Set to select double baud rate in mode 1, 2 or 3.  
Serial port Mode bit 0  
Clear to select SM0 bit in SCON register.  
Set to to select FE bit in SCON register.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Power-Off Flag  
Clear to recognize next reset type.  
POF  
Set by hardware when V rises from 0 to its nominal voltage. Can also be set by software.  
CC  
General purpose Flag  
3
2
1
0
GF1  
GF0  
PD  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-Down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
IDL  
Clear by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
Reset Value = 00X1 0000b  
Not bit addressable  
Rev. A - Mar. 19, 1999  
25  
Preliminary  
 
 
TS80C31X2  
7. Electrical Characteristics  
(1)  
7.1 Absolute Maximum Ratings  
Ambiant Temperature Under Bias:  
C = commercial  
0°C to 70°C  
I = industrial  
Storage Temperature  
Voltage on V to V  
-40°C to 85°C  
-65°C to + 150°C  
-0.5 V to + 7 V  
CC  
SS  
Voltage on Any Pin to V  
Power Dissipation  
-0.5 V to V + 0.5 V  
1 W  
SS  
CC  
(2)  
NOTES  
1. Stresses at or above those listed under “ Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions may affect device reliability.  
2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.  
26  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
7.2 DC Parameters for Standard Voltage  
TA = 0°C to +70°C; V = 0 V; V = 5 V ± 10%; F = 0 to 40 MHz.  
SS  
CC  
TA = -40°C to +85°C; V = 0 V; V = 5 V ± 10%; F = 0 to 40 MHz.  
SS  
CC  
Table 14. DC Parameters in Standard Voltage  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
V
Test Conditions  
V
Input Low Voltage  
-0.5  
0.2 V - 0.1  
CC  
IL  
V
Input High Voltage except XTAL1, RST  
Input High Voltage, XTAL1, RST  
0.2 V + 0.9  
V
V
+ 0.5  
+ 0.5  
V
IH  
CC  
CC  
CC  
V
0.7 V  
V
IH1  
CC  
(6)  
(4)  
V
0.3  
V
V
V
OL  
Output Low Voltage, ports 1, 2, 3  
I
I
I
= 100 µA  
OL  
OL  
OL  
0.45  
1.0  
(4)  
= 1.6 mA  
= 3.5 mA  
(4)  
(6)  
(4)  
(4)  
(4)  
V
0.3  
0.45  
1.0  
V
V
V
OL1  
Output Low Voltage, port 0, ALE, PSEN  
Output High Voltage, ports 1, 2, 3  
I
I
I
= 200 µA  
= 3.2 mA  
= 7.0 mA  
OL  
OL  
OL  
V
V
V
V
- 0.3  
- 0.7  
- 1.5  
V
V
V
I
I
I
= -10 µA  
= -30 µA  
= -60 µA  
OH  
CC  
CC  
CC  
OH  
OH  
OH  
V
= 5 V ± 10%  
CC  
V
R
Output High Voltage, port 0, ALE, PSEN  
V
V
V
- 0.3  
- 0.7  
- 1.5  
V
V
V
I
I
I
= -200 µA  
= -3.2 mA  
= -7.0 mA  
= 5 V ± 10%  
OH1  
CC  
CC  
CC  
OH  
OH  
OH  
V
CC  
(5)  
RST Pulldown Resistor  
50  
200  
-50  
kΩ  
µA  
µA  
µA  
pF  
RST  
90  
I
Logical 0 Input Current ports 1, 2 and 3  
Input Leakage Current  
Vin = 0.45 V  
0.45 V < Vin < V  
Vin = 2.0 V  
IL  
LI  
I
±10  
-650  
10  
CC  
I
Logical 1 to 0 Transition Current, ports 1, 2, 3  
Capacitance of I/O Buffer  
TL  
C
Fc = 1 MHz  
TA = 25°C  
IO  
(5)  
(3)  
I
Power Down Current  
50  
µA  
PD  
10  
2.0 V < V  
5.5 V  
CC <  
(7)  
I
CC  
Power Supply Current  
Freq = 1 MHz  
Icc op  
Icc idle  
Freq = 6 MHz  
Icc op  
(1)  
1.8  
1
mA  
mA  
V
V
= 5.5 V  
= 5.5 V  
CC  
CC  
10  
4
mA  
mA  
(2)  
(5)  
Icc idle  
Freq 12 MHz  
Icc op = 1.25 Freq (MHz) + 5 mA  
mA  
mA  
13@12 MHz  
16@16MHz  
5.5@12Mz  
7@16 MHz  
Icc idle = 0.36 Freq (MHz) + 2.7 mA  
Rev. A - Mar. 19, 1999  
27  
Preliminary  
TS80C31X2  
7.3 DC Parameters for Low Voltage  
TA = 0°C to +70°C; V = 0 V; V = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz.  
SS  
CC  
TA = -40°C to +85°C; V = 0 V; V = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz.  
SS  
CC  
Table 15. DC Parameters for Low Voltage  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
V
Test Conditions  
V
Input Low Voltage  
-0.5  
0.2 V - 0.1  
CC  
IL  
V
Input High Voltage except XTAL1, RST  
Input High Voltage, XTAL1, RST  
0.2 V + 0.9  
V
V
+ 0.5  
+ 0.5  
V
IH  
CC  
CC  
CC  
V
0.7 V  
V
IH1  
CC  
(6)  
(4)  
V
0.45  
V
OL  
Output Low Voltage, ports 1, 2, 3  
I
= 0.8 mA  
OL  
(6)  
(4)  
V
0.45  
V
OL1  
Output Low Voltage, port 0, ALE, PSEN  
Output High Voltage, ports 1, 2, 3  
Output High Voltage, port 0, ALE, PSEN  
Logical 0 Input Current ports 1, 2 and 3  
Input Leakage Current  
I
I
I
= 1.6 mA  
= -10 µA  
= -40 µA  
OL  
OH  
OH  
V
0.9 V  
0.9 V  
V
OH  
CC  
CC  
V
V
OH1  
I
-50  
±10  
-650  
200  
10  
µA  
µA  
µA  
kΩ  
pF  
Vin = 0.45 V  
IL  
I
0.45 V < Vin < V  
Vin = 2.0 V  
LI  
CC  
I
Logical 1 to 0 Transition Current, ports 1, 2, 3  
RST Pulldown Resistor  
TL  
RST  
(5)  
R
50  
90  
CIO  
Capacitance of I/O Buffer  
Fc = 1 MHz  
TA = 25°C  
(5)  
(3)  
I
Power Down Current  
TBD  
µA  
PD  
TBD  
V
= 2.0 V to 5.5 V  
CC  
(7)  
I
CC  
Power Supply Current  
(5)  
(5)  
(1)  
(2)  
TBD  
TBD  
mA  
mA  
Active Mode 16MHz  
Idle Mode 16MHz  
TBD  
TBD  
V
V
= 3.3 V  
= 3.3 V  
CC  
CC  
NOTES  
1. Operating I is measured with all output pins disconnected; XTAL1 driven with T  
, T  
= 5 ns (see Figure 12.), V = V + 0.5 V,  
IL SS  
CC  
CLCH CHCL  
V
= V - 0.5V; XTAL2 N.C.; EA = RST = Port 0 = V . I would be slightly higher if a crystal oscillator used..  
CC CC CC  
IH  
2. Idle I is measured with all output pins disconnected; XTAL1 driven with T  
, T  
= 5 ns, V = V + 0.5 V, V = V - 0.5 V; XTAL2  
CC  
CLCH CHCL IL SS IH CC  
N.C; Port 0 = V ; EA = RST = V (see Figure 10.).  
CC  
SS  
3. Power Down I is measured with all output pins disconnected; EA = V , PORT 0 = V ; XTAL2 NC.; RST = V (see Figure 11.).  
CC  
SS  
CC  
SS  
4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V s of ALE and Ports 1 and 3. The noise is  
OL  
due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst  
cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V peak 0.6V. A Schmitt Trigger use is not necessary.  
OL  
5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.  
6. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin: 10 mA  
OL  
Maximum I per 8-bit port:  
OL  
Port 0: 26 mA  
Ports 1, 2 and 3: 15 mA  
Maximum total I for all output pins: 71 mA  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.  
OL  
OL  
7. For other values, please contact your sales office.  
28  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
V
CC  
I
CC  
V
CC  
V
CC  
P0  
EA  
V
CC  
RST  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
V
SS  
All other pins are disconnected.  
All other pins are disconnected.  
All other pins are disconnected.  
Figure 9. I  
Test Condition, Active Mode  
CC  
V
CC  
I
CC  
V
CC  
V
CC  
P0  
RST  
EA  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
V
SS  
Figure 10. I  
Test Condition, Idle Mode  
CC  
V
CC  
I
CC  
V
CC  
V
CC  
P0  
EA  
RST  
XTAL2  
XTAL1  
(NC)  
V
SS  
Figure 11. I  
Test Condition, Power-Down Mode  
CC  
Rev. A - Mar. 19, 1999  
29  
Preliminary  
TS80C31X2  
V
-0.5V  
0.45V  
CC  
0.7V  
0.2V -0.1  
CC  
CC  
T
T
CLCH  
CHCL  
T
= T  
= 5ns.  
CHCL  
CLCH  
Figure 12. Clock Signal Waveform for I  
Tests in Active and Idle Modes  
CC  
7.4 AC Parameters  
7.4.1 Explanation of the AC Symbols  
Each timing symbol has 5 characters. The first character is always a “T” (stands for time). The other characters,  
depending on their positions, stand for the name of a signal or the logical status of that signal. The following is  
a list of all the characters and what they stand for.  
Example:T  
= Time for Address Valid to ALE Low.  
AVLL  
T
= Time for ALE Low to PSEN Low.  
LLPL  
TA = 0 to +70°C; V = 0 V; V = 5 V ± 10%; -M and -V ranges.  
SS  
CC  
TA = -40°C to +85°C; V = 0 V; V = 5 V ± 10%; -M and -V ranges.  
SS  
CC  
TA = 0 to +70°C; V = 0 V; 2.7 V < V  
5.5 V; -L range.  
SS  
CC <  
TA = -40°C to +85°C; V = 0 V; 2.7 V < V  
5.5 V; -L range.  
SS  
CC <  
(Load Capacitance for port 0, ALE and PSEN = 100 pF; Load Capacitance for all other outputs = 80 pF.)  
Table 16., Table 19. and Table 22. give the description of each AC symbols.  
Table 17., Table 20. and Table 23. give for each range the AC parameter.  
Table 18., Table 21. and Table 24. give the frequency derating formula of the AC parameter. To calculate each  
AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value  
in the formula.  
Example:  
T
in X2 mode for a -V part at 25 MHz:  
LLIV  
x= 22  
T= 40ns  
T
= 2T - x = 2 x 40 - 22 = 58ns  
LLIV  
30  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
7.4.2 External Program Memory Characteristics  
Table 16. Symbol Description  
Symbol  
Parameter  
T
Oscillator clock period  
ALE pulse width  
T
LHLL  
T
Address Valid to ALE  
AVLL  
T
Address Hold After ALE  
ALE to Valid Instruction In  
ALE to PSEN  
LLAX  
T
LLIV  
LLPL  
PLPH  
T
T
PSEN Pulse Width  
T
PSEN to Valid Instruction In  
Input Instruction Hold After PSEN  
Input Instruction FloatAfter PSEN  
PSEN to Address Valid  
PLIV  
PXIX  
T
T
PXIZ  
T
PXAV  
T
Address to Valid Instruction In  
PSEN Low to Address Float  
AVIV  
T
PLAZ  
Table 17. AC Parameters for Fix Clock  
Speed  
-M  
-V  
-L  
Units  
(see ordering)  
Symbol  
Min  
25  
Max  
Min  
17  
Max  
Min  
50  
Max  
T
ns  
ns  
T
40  
25  
60  
LHLL  
T
10  
10  
7
7
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
T
LLAX  
T
70  
45  
125  
LLIV  
LLPL  
PLPH  
T
T
10  
60  
7
20  
45  
105  
T
25  
18  
25  
12  
60  
30  
PLIV  
PXIX  
T
0
0
0
T
PXIZ  
T
18  
12  
30  
PXAV  
T
85  
10  
53  
10  
145  
10  
AVIV  
T
PLAZ  
Rev. A - Mar. 19, 1999  
31  
Preliminary  
TS80C31X2  
Table 18. AC Parameters for a Variable Clock  
Symbol  
Type  
Standard X2 Clock  
Clock  
-M  
-V  
-L  
Units  
T
Min  
Min  
Min  
Max  
Min  
Min  
Max  
Min  
Max  
Min  
Max  
Max  
2 T - x  
T - x  
T - x  
4 T - x  
T - x  
3 T - x  
3 T - x  
x
T - x  
0.5 T - x  
0.5 T - x  
2 T - x  
0.5 T - x  
1.5 T - x  
1.5 T - x  
x
10  
15  
15  
30  
15  
15  
50  
0
8
10  
10  
22  
10  
5
40  
30  
30  
75  
30  
45  
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
T
AVLL  
T
LLAX  
T
LLIV  
LLPL  
PLPH  
T
T
T
25  
0
PLIV  
PXIX  
T
T
T - x  
T - x  
5 T - x  
x
0.5 T - x  
0.5 T - x  
2.5 T - x  
x
7
5
20  
20  
105  
10  
PXIZ  
T
7
5
PXAV  
T
40  
10  
30  
10  
AVIV  
T
PLAZ  
7.4.3 External Program Memory Read Cycle  
12 T  
CLCL  
T
T
LLIV  
LHLL  
ALE  
PSEN  
T
LLPL  
T
PLPH  
T
PXAV  
T
T
LLAX  
T
T
PXIZ  
PLIV  
AVLL  
T
TPLAZ  
PXIX  
PORT 0  
PORT 2  
INSTR IN  
A0-A7  
INSTR IN  
A0-A7  
INSTR IN  
T
AVIV  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15  
ADDRESS A8-A15  
Figure 13. External Program Memory Read Cycle  
32  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
7.4.4 External Data Memory Characteristics  
Table 19. Symbol Description  
Symbol  
Parameter  
T
RD Pulse Width  
RLRH  
T
WR Pulse Width  
WLWH  
T
RD to Valid Data In  
RLDV  
T
Data Hold After RD  
Data Float After RD  
ALE to Valid Data In  
Address to Valid Data In  
ALE to WR or RD  
RHDX  
T
RHDZ  
T
LLDV  
T
AVDV  
T
LLWL  
T
Address to WR or RD  
Data Valid to WR Transition  
Data set-up to WR High  
Data Hold After WR  
RD Low to Address Float  
RD or WR High to ALE high  
AVWL  
QVWX  
QVWH  
WHQX  
T
T
T
T
RLAZ  
T
WHLH  
Rev. A - Mar. 19, 1999  
33  
Preliminary  
TS80C31X2  
Table 20. AC Parameters for a Fix Clock  
Speed  
-M  
-V  
-L  
Units  
(see ordering)  
Symbol  
Min  
105  
Max  
Min  
85  
Max  
Min  
200  
Max  
T
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
T
105  
90  
200  
WLWH  
T
100  
60  
155  
RLDV  
RHDX  
T
0
0
0
T
15  
13  
100  
100  
65  
40  
310  
360  
60  
RHDZ  
T
160  
165  
110  
LLDV  
T
AVDV  
T
40  
40  
3
30  
27  
0
90  
100  
18  
LLWL  
T
AVWL  
QVWX  
QVWH  
WHQX  
T
T
T
145  
10  
90  
7
280  
20  
T
0
0
0
RLAZ  
T
5
45  
5
29  
20  
80  
WHLH  
34  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
Table 21. AC Parameters for a Variable Clock  
Symbol  
Type  
Standard X2 Clock  
Clock  
-M  
-V  
-L  
Units  
T
Min  
Min  
Max  
Min  
Max  
Max  
Max  
Min  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
Max  
6 T - x  
6 T - x  
5 T - x  
x
3 T - x  
3 T - x  
2.5 T - x  
x
45  
45  
25  
0
15  
10  
23  
0
100  
100  
95  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
T
WLWH  
T
RLDV  
T
RHDX  
T
2 T - x  
8 T - x  
9 T - x  
3 T - x  
3 T + x  
4 T - x  
T - x  
T - x  
35  
40  
60  
35  
35  
60  
22  
30  
15  
0
20  
33  
50  
20  
15  
40  
17  
27  
10  
0
60  
90  
90  
60  
60  
100  
32  
70  
30  
0
RHDZ  
T
4T -x  
LLDV  
T
4.5 T - x  
1.5 T - x  
1.5 T + x  
2 T - x  
0.5 T - x  
3.5 T - x  
0.5 T - x  
x
AVDV  
T
LLWL  
LLWL  
T
T
AVWL  
QVWX  
QVWH  
WHQX  
T
T
T
7 T - x  
T - x  
T
x
RLAZ  
WHLH  
WHLH  
T
T
T - x  
0.5 T - x  
0.5 T + x  
20  
20  
12  
12  
30  
30  
T + x  
7.4.5 External Data Memory Write Cycle  
T
WHLH  
ALE  
PSEN  
WR  
T
T
LLWL  
WLWH  
T
QVWX  
T
T
T
QVWH  
WHQX  
LLAX  
PORT 0  
PORT 2  
A0-A7  
DATA OUT  
T
AVWL  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15 OR SFR P2  
Figure 14. External Data Memory Write Cycle  
Rev. A - Mar. 19, 1999  
35  
Preliminary  
TS80C31X2  
7.4.6 External Data Memory Read Cycle  
T
WHLH  
T
ALE  
PSEN  
RD  
LLDV  
T
T
RLRH  
LLWL  
T
RHDZ  
T
AVDV  
T
T
LLAX  
RHDX  
PORT 0  
PORT 2  
A0-A7  
DATA IN  
T
RLAZ  
T
AVWL  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15 OR SFR P2  
Figure 15. External Data Memory Read Cycle  
7.4.7 Serial Port Timing - Shift Register Mode  
Table 22. Symbol Description  
Symbol  
Parameter  
T
T
T
Serial port clock cycle time  
XLXL  
QVHX  
XHQX  
Output data set-up to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
TXHDX  
T
Clock rising edge to input data valid  
XHDV  
Table 23. AC Parameters for a Fix Clock  
Speed  
-M  
-V  
-L  
Units  
(see ordering)  
Symbol  
Min  
300  
200  
20  
Max  
Min  
200  
117  
13  
Max  
Min  
600  
367  
50  
Max  
T
ns  
ns  
ns  
ns  
ns  
XLXL  
QVHX  
XHQX  
XHDX  
XHDV  
T
T
T
T
0
0
0
200  
117  
367  
36  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
Table 24. AC Parameters for a Variable Clock  
Symbol  
Type  
Standard X2 Clock  
Clock  
-M  
-V  
-L  
Units  
T
Min  
Min  
Min  
Min  
Max  
12 T  
10 T - x  
2 T - x  
x
6 T  
5 T - x  
T - x  
x
ns  
ns  
ns  
ns  
ns  
XLXL  
QVHX  
XHQX  
XHDX  
XHDV  
T
T
T
T
50  
30  
0
50  
20  
0
133  
50  
0
10 T - x  
5 T- x  
50  
50  
133  
7.4.8 Shift Register Timing Waveforms  
0
1
2
3
4
5
6
7
8
INSTRUCTION  
ALE  
T
XLXL  
CLOCK  
T
XHQX  
T
QVXH  
0
1
2
3
4
5
6
7
OUTPUT DATA  
T
SET TI  
XHDX  
VALID  
T
XHDV  
WRITE to SBUF  
INPUT DATA  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
CLEAR RI  
Figure 16. Shift Register Timing Waveforms  
Rev. A - Mar. 19, 1999  
37  
Preliminary  
TS80C31X2  
7.4.9 External Clock Drive Characteristics (XTAL1)  
Table 25. AC Parameters  
Symbol  
Parameter  
Min  
25  
5
Max  
Units  
ns  
T
Oscillator Period  
High Time  
Low Time  
CLCL  
T
ns  
CHCX  
T
T
T
5
ns  
CLCX  
CLCH  
CHCL  
Rise Time  
5
5
ns  
Fall Time  
ns  
T
/T  
Cyclic ratio in X2 mode  
40  
60  
%
CHCX CLCX  
7.4.10 External Clock Drive Waveforms  
V
-0.5 V  
CC  
0.7V  
CC  
0.2V -0.1 V  
0.45 V  
T
CHCX  
CC  
T
T
T
CHCL  
CLCH  
CLCX  
T
CLCL  
Figure 17. External Clock Drive Waveforms  
7.4.11 AC Testing Input/Output Waveforms  
V
-0.5 V  
CC  
0.2V +0.9  
CC  
INPUT/OUTPUT  
0.2V -0.1  
CC  
0.45 V  
Figure 18. AC Testing Input/Output Waveforms  
AC inputs during testing are driven at V - 0.5 for a logic “1” and 0.45V for a logic “0”. Timing measurement  
CC  
are made at V min for a logic “1” and V max for a logic “0”.  
IH  
IL  
7.4.12 Float Waveforms  
FLOAT  
V
-0.1 V  
+0.1 V  
OH  
V
V
V
+0.1 V  
-0.1 V  
LOAD  
LOAD  
LOAD  
V
OL  
Figure 19. Float Waveforms  
38  
Rev. A - Mar. 19, 1999  
Preliminary  
TS80C31X2  
For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins  
to float when a 100 mV change from the loaded V /V level occurs. I /I  
≥ ± 20mA.  
OH OL  
OL OH  
7.4.13 Clock Waveforms  
Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two.  
STATE1  
P1 P2  
STATE2  
STATE3  
STATE4  
P1 P2 P1  
STATE4  
P1 P2  
STATE5  
P1 P2  
STATE6  
P1 P2  
STATE5  
INTERNAL  
CLOCK  
P1  
P2 P1 P2  
P2  
XTAL2  
ALE  
THESE SIGNALS ARE NOT ACTIVATED DURING THE  
EXECUTION OF A MOVX INSTRUCTION  
EXTERNAL PROGRAM MEMORY FETCH  
PSEN  
PCL OUT  
PCL OUT  
PCL OUT  
DATA  
P0  
DATA  
SAMPLED  
DATA  
SAMPLED  
SAMPLED  
FLOAT  
FLOAT  
FLOAT  
INDICATES ADDRESS TRANSITIONS  
P2 (EXT)  
READ CYCLE  
RD  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
P0  
P2  
DPL OR Rt OUT  
FLOAT  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
WRITE CYCLE  
WR  
PCL OUT (EVEN IF PROGRAM  
MEMORY IS INTERNAL)  
P0  
DPL OR Rt OUT  
DATA OUT  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
P2  
PORT OPERATION  
OLD DATA  
P0 PINS SAMPLED  
NEW DATA  
P0 PINS SAMPLED  
MOV DEST P0  
P1, P2, P3 PINS SAMPLED  
RXD SAMPLED  
P1, P2, P3 PINS SAMPLED  
MOV DEST PORT (P1, P2, P3)  
(INCLUDES INT0, INT1, TO, T1)  
RXD SAMPLED  
SERIAL PORT SHIFT CLOCK  
TXD (MODE 0)  
Figure 20. Clock Waveforms  
This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins,  
however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin  
loading. Propagation also varies from output to output and component. Typically though (T =25°C fully loaded)  
A
RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays  
are incorporated in the AC specifications.  
Rev. A - Mar. 19, 1999  
39  
Preliminary  
TS80C31X2  
8. Ordering Information  
TS  
-M  
C
R
80C31X2  
B
Packages:  
-M: VCC: 5V +/- 10%  
40 MHz, standard mode  
20 MHz, X2 mode  
A: PDIL 40  
B: PLCC 44  
C: PQFP F1 (13.9 mm footprint)  
E: VQFP 44 (1.4mm)  
-V:  
VCC: 5V +/- 10%  
40 MHz, standard mode  
30 MHz, X2 mode  
VCC: 2.7 to 5.5 V  
-L:  
30 MHz, standard mode  
20 MHz, X2 mode  
Conditioning  
R: Tape & Reel  
D: Dry Pack  
B: Tape & Reel and  
Dry Pack  
Temperature Range  
C: Commercial 0 to 70oC  
I: Industrial -40 to 85oC  
TEMIC Semiconductors  
Table 26. Maximum Clock Frequency  
-M  
-V  
-L  
Unit  
MHz  
MHz  
Code  
Standard Mode, oscillator frequency  
Standard Mode, internal frequency  
40  
40  
40  
40  
30  
30  
X2 Mode, oscillator frequency  
X2 Mode, internal equivalent frequency  
20  
40  
30  
60  
20  
40  
40  
Rev. A - Mar. 19, 1999  
Preliminary  

相关型号:

TS80C31X2-MCED

8-bit CMOS Microcontroller ROMless
ATMEL

TS80C31X2-MCED

8-bit CMOS Microcontroller 0-60 MHz
TEMIC

TS80C31X2-MCER

8-bit CMOS Microcontroller ROMless
ATMEL

TS80C31X2-MCER

8-bit CMOS Microcontroller 0-60 MHz
TEMIC

TS80C31X2-MIA

IC-8-BIT CMOS CPU
TEMIC

TS80C31X2-MIA

8-bit CMOS Microcontroller ROMless
ATMEL

TS80C31X2-MIAB

8-bit CMOS Microcontroller 0-60 MHz
TEMIC

TS80C31X2-MIAD

8-bit CMOS Microcontroller 0-60 MHz
TEMIC

TS80C31X2-MIAR

8-bit CMOS Microcontroller 0-60 MHz
TEMIC

TS80C31X2-MIB

8-bit CMOS Microcontroller ROMless
ATMEL

TS80C31X2-MIBB

8-bit CMOS Microcontroller 0-60 MHz
TEMIC

TS80C31X2-MIBD

8-bit CMOS Microcontroller 0-60 MHz
TEMIC