TSC80251A1-A16CDR [TEMIC]

Microcontroller, 8-Bit, 16MHz, CMOS, PQFP44,;
TSC80251A1-A16CDR
型号: TSC80251A1-A16CDR
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

Microcontroller, 8-Bit, 16MHz, CMOS, PQFP44,

微控制器和处理器 外围集成电路 时钟
文件: 总166页 (文件大小:777K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSC 80251A1  
TSC 80251A1  
Extended 8–bit Microcontroller  
with Analog Interfaces  
Datasheet – 1996  
TSC 80251A1  
Table of Contents  
General Introduction  
Extended 8–bit Microcontroller with Analog Interfaces . . . . . . . . . . . . . . . . . 1.  
Section I: Introduction to TSC80251A1  
Chapter 1: Core Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. 1.1  
Chapter 2: Product Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. 2.1  
Chapter 3: Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. 3.1  
Chapter 4: Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. 4.1  
Section II: Design Information  
Chapter 1: Configuration and Memory Mapping . . . . . . . . . . . . . . . . . . II. 1.1  
1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.1  
1.2. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.1  
1.2.1. Page Mode and Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.1  
1.2.2. External Memory Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.4  
1.3. Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.6  
1.3.1. Configuration Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.6  
1.3.2. Program/Code Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.7  
1.3.3. Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.8  
Rev. B (20/09/96)  
TSC 80251A1  
1.3.4. Special Function Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.9  
Chapter 2: Parallel I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.1  
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.1  
2.2. I/O Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.3  
2.3. Port 1 and Port 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.3  
2.4. Port 0 and Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.4  
2.5. Read–Modify–Write Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.5  
2.6. Quasi–Bidirectional Port Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.6  
2.7. Port Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.7  
2.8. External Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.7  
Chapter 3: Timers/Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.1  
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.1  
3.2. Timer/Counter Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.2  
3.3. Timer 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.3  
3.3.1. Mode 0 (13–bit Timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.3  
3.3.2. Mode 1 (16–bit Timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.4  
3.3.3. Mode 2 (8–bit Timer with Auto–Reload) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.4  
3.3.4. Mode 3 (Two 8–bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.5  
3.4. Timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.5  
3.4.1. Mode 0 (13–bit Timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.6  
3.4.2. Mode 1 (16–bit Timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.6  
3.4.3. Mode 2 (8–bit Timer with Auto–Reload) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.6  
3.4.4. Mode 3 (Halt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.6  
3.5. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.7  
Chapter 4: Serial I/O Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.1  
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.1  
Rev. B (20/09/96)  
TSC 80251A1  
4.2. Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.3  
4.3. Synchronous Mode (Mode 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.3  
4.3.1. Transmission (Mode 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.4  
4.3.2. Reception (Mode 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.4  
4.4. Asynchronous Modes (Modes 1, 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.4  
4.4.1. Transmission (Modes 1, 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.5  
4.4.2. Reception (Modes 1, 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.5  
4.5. Framing Bit Error Detection (Modes 1, 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.5  
4.6. Overrun Error Detection (Modes 1, 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.5  
4.7. Multiprocessor Communication (Modes 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.6  
4.8. Automatic Address Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.6  
4.8.1. Given Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.7  
4.8.2. Broadcast Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.8  
4.8.3. Reset Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.8  
4.9. Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.8  
4.9.1. Internal Baud Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.8  
4.9.2. Baud Rate for Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.8  
4.9.3. Transmission Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.9  
4.9.4. Baud Rate for Modes 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.9  
4.9.5. Baud Rate for Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.11  
4.10. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.12  
Chapter 5: Pulse Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.1  
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.1  
5.2. Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.1  
5.3. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.4  
Chapter 6: Event and Waveform Controller . . . . . . . . . . . . . . . . . . . . . . . II. 6.1  
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.1  
6.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.1  
6.3. PCA Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.2  
Rev. B (20/09/96)  
TSC 80251A1  
6.3.1. Timers/Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.2  
6.3.2. Compare/Capture Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.3  
6.4. Enhanced PCA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.10  
6.4.1. Timers/Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.11  
6.5. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.13  
Chapter 7: 8-bit Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . II. 7.1  
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 7.1  
7.2. Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 7.1  
7.3. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 7.3  
Chapter 8: Monitoring and Power Management . . . . . . . . . . . . . . . . . . . II. 8.1  
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.1  
8.2. Power–On/Off Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.1  
8.3. Power–Fail Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.2  
8.4. Power–Off Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.4  
8.5. Clock Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.4  
8.6. Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.5  
8.6.1 Entering Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.5  
8.6.2 Exiting Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.5  
8.7. Power–Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.6  
8.7.1 Entering Power–Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.7  
8.7.2 Exiting Power–Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.7  
8.8. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.8  
Chapter 9: Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.1  
9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.1  
9.2. Interrupt System Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.2  
Rev. B (20/09/96)  
TSC 80251A1  
9.3. External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.4  
9.4. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.5  
Section III: Electrical and Mechanical Information  
Chapter 1: DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 1.1  
Chapter 2: AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 2.1  
Chapter 3: ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 3.1  
Chapter 4: EPROM Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.1  
4.1. Programming modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.1  
4.2. Verify algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.3  
Chapter 5: TSC80C251A1: Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.1  
5.1. PLCC 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.1  
5.1.1. Mechanical Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.1  
5.1.2. Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.2  
5.2. CQPJ 44 with Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.3  
5.2.1. Mechanical Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.3  
5.2.2. Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.4  
5.3. TQFP 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.5  
5.3.1. Mechanical Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.5  
5.3.2. Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.6  
Rev. B (20/09/96)  
TSC 80251A1  
Section IV: Ordering Information  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV. 1.1  
Section V: TEMIC Addresses  
Sales Offices Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. so.1  
Representatives Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. rep.1  
Distributors Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. dist.1  
Rev. B (20/09/96)  
TSC 80251A1  
List of figures  
Section I: Introduction to TSC80251A1  
Chapter 3: Block Diagram  
Figure 3.1. TSC80251A1 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. 3.1  
Chapter 4: Pin Description  
Figure 4.1. TSC80251A1 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. 4.1  
Section II: Design Information  
Chapter 1: Configuration and Memory Mapping  
Figure 1.1. Bus structure in non–page mode and page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.2  
Figure 1.2. External bus cycle: code fetch, non–page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.2  
Figure 1.3. External bus cycle: code fetch, page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.3  
Figure 1.4. External bus cycle: code fetch with one RD#/PSEN# wait state in non–page mode . . . . . . . . . . . . . II. 1.3  
Figure 1.5. Internal/external memory segments (RD1:0 = 00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.4  
Figure 1.6. Internal/external memory segments (RD1:0 = 01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.5  
Figure 1.7. Internal/external memory segments (RD1:0 = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.5  
Figure 1.8. Internal/external memory segments (RD1:0 = 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.6  
Figure 1.9. Programmable Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.7  
Figure 1.10. Data Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.8  
Figure 1.11. Configuration byte 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.11  
Figure 1.12. Configuration byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.12  
Chapter 2: Parallel I/O Ports  
Figure 2.1. Port 1 and Port 3 structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.4  
Figure 2.2. Port 0 structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.4  
Figure 2.3. Port 2 structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.5  
Figure 2.4. Internal pull–up configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.6  
Chapter 3: Timers/Counters  
Figure 3.1. Timer/Counter x (x = 0 or 1) in mode 0 and mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.3  
Figure 3.2. Timer/Counter x (x = 0 or 1) in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.4  
Figure 3.3. Timer/Counter x (x = 0 or 1) in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.4  
Figure 3.4. Timer/Counter in mode 3 : Two 8-bit Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.5  
Figure 3.5. TCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.7  
Rev. B (20/09/96)  
TSC 80251A1  
Figure 3.6. TMOD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.8  
Chapter 4: Serial I/O Port  
Figure 4.1. Serial Port block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.2  
Figure 4.2. Mode 0 timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.3  
Figure 4.3. Data frames (Modes 1, 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.5  
Figure 4.4. Overrun Error (Modes 1, 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.6  
Figure 4.5. Clock transmission sources in mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.9  
Figure 4.6. Timer 1 as Baud Rate Generator in modes 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.10  
Figure 4.7. Internal Baud Rate Generator in modes 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.10  
Figure 4.8. Baud Rate Generator selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.11  
Figure 4.9. UART in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.11  
Figure 4.10. BDRCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.12  
Figure 4.11. BRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.13  
Figure 4.12. SADDR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.13  
Figure 4.13. SADEN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.13  
Figure 4.14. SBUF register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.13  
Figure 4.15. SCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.14  
Chapter 5: Pulse Measurement Unit  
Figure 5.1. PMU block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.1  
Figure 5.2. PMU module n (n = 0, 1, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.2  
Figure 5.3. PMU measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.2  
Figure 5.4. Pulse measurement polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.3  
Figure 5.5. PMCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.4  
Figure 5.6. PMPER0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.4  
Figure 5.7. PMPER1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.5  
Figure 5.8. PMPER2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.5  
Figure 5.9. PMSCAL0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.5  
Figure 5.10. PMSCAL1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.5  
Figure 5.11. PMSCAL2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.5  
Figure 5.12. PMSTAT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.6  
Figure 5.13. PMU register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.7  
Figure 5.14. PMWID0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.7  
Figure 5.15. PMWID1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.8  
Figure 5.16. PMWID2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 5.8  
Chapter 6: Event and Waveform Controller  
Figure 6.1. EWC Timer/Counter in PCA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.3  
Figure 6.2. PCA 16–bit Capture Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.5  
Figure 6.3. PCA Software Timer and High–Speed Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.6  
Rev. B (20/09/96)  
TSC 80251A1  
Figure 6.4. PCA Watchdog Timer mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.8  
Figure 6.5. PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.9  
Figure 6.6. PWM variable duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.10  
Figure 6.7. EWC Timer/Counter in EPCA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.12  
Chapter 7: 8–bit Analog to Digital Converter  
Figure 7.1. Analog Digital Converter structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 7.1  
Figure 7.2. ADAT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 7.3  
Figure 7.3. ADCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 7.3  
Chapter 8: Power Monitoring and Management  
Figure 8.1. Behavior of the reset when the Power Supply is switched on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.1  
Figure 8.2. Behavior of the reset when the Power Supply is switched off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.2  
Figure 8.3. Power Management timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.3  
Figure 8.4. Block diagram of the digital filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.3  
Figure 8.5. Waveforms of the VDD filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.4  
Figure 8.6. Block diagram of the on–chip oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.5  
Figure 8.7. Symbolic of the on–chip oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.5  
Figure 8.8. PCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.8  
Figure 8.9. PFILT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.9  
Figure 8.10. POWM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.9  
Figure 8.11. CKRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.10  
Chapter 9: Interruption System  
Figure 9.1. Minimum pulse timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.4  
Figure 9.2. IE0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.5  
Figure 9.3. IE1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.6  
Figure 9.4. IPH0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.7  
Figure 9.5. IPH1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.8  
Figure 9.6. IPL0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.9  
Figure 9.7. IPL1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.10  
Section III: Electrical and Mechanical Information  
Chapter 1: DC Characteristics  
Figure 1.1. IPD Test Condition, Power–Down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 1.3  
Figure 1.2. IDL Test Condition, Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 1.4  
Figure 1.3. IDD Test Condition, Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 1.4  
Chapter 2: AC Characteristics  
Rev. B (20/09/96)  
TSC 80251A1  
Figure 2.1. External Instruction Bus Cycle in non–page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 2.3  
Figure 2.2. External Data Read Cycle in non–page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 2.3  
Figure 2.3. External Write Data Bus Cycle in non–page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 2.4  
Figure 2.4. External Instruction Bus Cycle in page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 2.4  
Figure 2.5. External Read Data Bus Cycle in page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 2.5  
Figure 2.6. External Write Data Bus Cycle in page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 2.5  
Figure 2.7. Serial Port Waveform – Shift Register mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 2.6  
Chapter 3: ADC Characteristics  
Figure 3.1. A/D conversion characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 3.2  
Chapter 4: EPROM Programming  
Figure 4.1. Setup for EPROM programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.1  
Figure 4.2. Timings for EPROM programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.2  
Figure 4.3. Setup for EPROM verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.3  
Figure 4.4. Timings for EPROM verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.4  
Chapter 5: Packages  
Figure 5.1. Plastic Lead Chip Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.1  
Figure 5.2. Ceramic Quad Pack J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.3  
Figure 5.3. Thin Quad Flat Pack (Plastic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.5  
Rev. B (20/09/96)  
TSC 80251A1  
List of tables  
Section I: Introduction to TSC80251A1  
Chapter 4: TSC80251A1 Pin Description  
Table 4.1. TSC80251A1 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. 4.2  
Section II: Design Information  
Chapter 1: Configuration and Memory Mapping  
Table 1.1. Minimum Times to fetch two bytes of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.7  
Table 1.2. SFR addresses and Reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 1.10  
Chapter 2: Parallel I/O Ports  
Table 2.1. Port pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.1  
Table 2.2. Instructions for external data moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 2.8  
Chapter 3: Timers/Counters  
Table 3.1. Timer/Counter SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.1  
Table 3.2. External signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 3.2  
Chapter 4: Serial I/O Port  
Table 4.1. Serial Port signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.1  
Table 4.2. Serial Port SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 4.1  
Chapter 6: Event and Waveform Controller  
Table 6.1. PCA module modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 6.4  
Chapter 8: Power Monitoring and Management  
Table 8.1. Pin conditions in various modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 8.6  
Chapter 9: Interruption System  
Table 9.1. Interrupt system signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.1  
Table 9.2. Interrupt System SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.2  
Table 9.3. Level of Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.3  
Table 9.4. Interrupt priority within level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. 9.3  
Section III: Electrical and Mechanical Information  
Chapter 1: DC Characteristics  
Table 1.2. DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 1.1  
Rev. B (20/09/96)  
TSC 80251A1  
Chapter 2: AC Characteristics  
Table 2.1. AC characteristics (Capacitive Loading = 50 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 2.1  
Chapter 3: ADC Characteristics  
Table 3.1. A/D Converter electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 3.1  
Chapter 4: EPROM Programming  
Table 4.1. EPROM programming configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.1  
Table 4.2. EPROM verifying configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.3  
Table 4.3. EPROM programming & verification characteristics  
( TA = 21 to 275C ; VCC = 5V +/– 0.25V ; VSS= 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 4.4  
Chapter 5: Packages  
Table 5.1. PLCC Chip size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.1  
Table 5.2. PLCC Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.2  
Table 5.3. CQPJ Chip size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.3  
Table 5.4. CQPJ Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.4  
Table 5.5. TQFP Chip size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.5  
Table 5.6. TQFP Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. 5.6  
Rev. B (20/09/96)  
TSC 80251A1  
General Introduction  
TSC 80251A1  
Extended 8–bit Microcontroller with Analog Interfaces  
The TSC80251A1 products are derivatives of the TEMIC Application Specific Microcontroller  
family based on the extended 8–bit C251 Architecture described below.  
This family of products are tailored to Microcontroller applications requiring analog interface  
structures.  
Three major peripheral blocks have been implemented to provide this facility to the designer:  
D Analog to Digital Converter: 4 inputs at 8–bit resolution.  
D Pulse Measurement Unit (PMU): 3 modules used to interface to smart analog sensors.  
D Event and Waveform Controller (EWC): 5 programmable Counters e.g. for Pulse Width  
Modulation (PWM) or Compare/Capture functions.  
1.1. Application focus  
Typical applications for these products are CD–ROM, Card or Barcode readers, Monitors, Car  
Navigation Systems, Airbag and Brake Systems, as well as all kinds of Industrial Control and  
Measurement Equipment. With the high instruction throughput, the TSC80251A1 products are  
focussing on all high–end 8–bit to 16–bit applications. They are also well suited to systems where  
a lower operating frequency is needed to reduce power consumption or Radio Frequency  
Interference (RFI), while maintaining a high level of CPU–power.  
1.2. C251 Architecture  
The C251 Architecture at its lowest performance level, is Binary Code compatible with the 80C51  
Architecture. Due to a 3–stage Instruction Pipeline, the CPU–Performance is increased by up to 5  
times, using existing 80C51 code without any modification.  
Using the new C251 Instruction Set, the performance will be increased by up to 15 times, at the same  
clock rate.  
This performance enhancement is based on the 16–bit instruction bus and additional internal 8 and  
16–bit data busses. The 24–bit address bus will allow an extension of the address space up to 16  
Mbytes for future derivatives.  
Programming flexibility and C–code efficiency are both increased by the Register–based  
Architecture, the 64–Kbyte extended stack space, combined with the new Instruction Set.  
Combining the above features of the C251 core, the final code size could be reduced by a factor of  
3, compared to an 80C51 implementation.  
All technical information in this document about core features are related to the core revision A  
(A–stepping). A new core revision, B/C (B–stepping) is presently in preparation.  
Both versions are upward compatible, so that no problem will appear if an A–stepping product is  
replaced by a B–stepping one.  
The major differences are some additional features in the configuration bytes and a modified  
emulator interface which will not affect existing application.  
1.  
Rev. B (20/09/96)  
TSC 80251A1  
A new document will be released as soon as the first TSC80251A1 product will be available in  
revision C.  
1.3. TSC80251A1 Products  
The TSC80251A1 is available as a ROMless version (TSC80251A1) or with on–chip Mask  
Programmable ROM (TSC83251A1). The TSC87251A1 is an EPROM version or OTPROM (One  
Time Programmable) compatible with the Mask ROM version.  
The standard production packages are 44 pins PLCC or TQFP.  
The products can be delivered as 12 or 16 MHz versions at 5 Volts and in all major temperature  
ranges.  
1.4. TSC80251A1 Documentation and Tools  
The following documentation and Starter tools are available to allow the full evaluation of the  
TEMIC TSC80251A1 product range:  
D “TSC80251A1 Microcontroller”  
Contains all information about the A1 derivatives (Block diagram, Memory mapping, Ports,  
Peripheral description, Electrical Mechanical and Ordering Information...).  
D “TSC80251 Programmer‘s Guide”  
Contains all information for the programmer.  
(Architecture, Instruction Set, Programming, Development tools)  
D “TSC80251 Design Guide”  
Contains a summary of available Application Notes for an easier usage of the TSC80251 and its  
major peripherals.  
D “TSC80251A1 Starter Kit”  
This kit enables the TSC80251A1 to be evaluated by the designer.  
It contains the following:  
G C–Compiler (limited to 2 Kbytes of code)  
G Assembler  
G Linker  
G TSC80251A1 Simulator  
G Optionally TSC80251A1 Evaluation Board with ROM–Monitor  
Please visit our WWW for updated versions in ZIP format.  
D “TSC80251A1 Development Tools”  
See chapter ”Development Tools” in the Programmer’s Guide” (Keil, Tasking, Hitex, Metalink,  
Nohau)  
D World Wide Web  
Please contact our WWW for possible updated information at http://www.temic.de  
D TSC80251 e–mail hotline: C251@temic.fr  
2.  
Rev. B (20/09/96)  
TSC 80251A1  
Section I  
Introduction to TSC80251A1  
TSC 80251A1  
Core Features  
Based on the extended 8–bit C251 Architecture, the TSC80251A1 includes a complete set of new  
or improved C51 compatible peripherals as well as a 4 channels 8–bit A/D converter for  
communication with the analog environment.  
The key features of the new C251 Architecture are:  
D Register–based Architecture:  
G 40–byte Register File  
G Registers accessible as Bytes, Words, and Double Word.  
D 3-stage instruction pipeline  
D Enriched Instruction Set  
G 16–bit and 32–bit arithmetic and logic instructions  
G Compare and conditional jump instructions  
G Expanded set of Move instructions  
D Reduced Instruction Set  
G 189 generic instructions  
G Free space for additional instructions in the future  
G Additionally all 80C51 instructions are usable in binary mode  
D 16–bit internal code fetch  
D 64 Kbytes extended stack space  
D Maximum addressable memory 16 Mbytes  
The benefits of this new architecture are:  
D 5 times 80C51 performances in binary mode (80C51 binary code compatibility)  
D 15 times 80C51 performances in source mode (full architecture performance)  
D Up to a factor 3 of code size reduction (when a C for 80C51 program is recompiled in C251  
language)  
D Reduction of RFI and power consumption (reduced operating frequency)  
D Complete System Development Support  
G Compatible with existing tools  
G New tools available: Compiler, Assembler, Debugger, ICE  
D Efficient C language support  
I. 1.1  
Rev. B (20/09/96)  
TSC 80251A1  
Product Features  
D 1 Kbyte of internal RAM  
D TSC83251A1: 24 Kbytes of on-chip masked ROM  
D TSC87251A1: 24 Kbytes of internal programmable ROM (OTP or UV erasable in window  
package)  
D TSC80251A1: ROMless version  
D External memory space (Code/Data): 256 Kbytes  
D Four 8–bit parallel I/O Ports (Ports 0, 1, 2 and 3 of the standard 80C51)  
D Two 16–bit Timers/Counters (Timers 0 and 1 of the standard 80C51)  
D Serial I/O Port : full duplex UART (80C51 compatible)  
D Three PMU: Pulse Measurement Unit for smart analog interface  
For each of the three modules:  
G 8–bit prescaler  
G 8–bit Timer for period and width measurements (duty cycle)  
G The measurement can start either on the rising or on the falling edge  
G One interrupt  
G Only one port line is used  
D EWC: Event and Waveform Controller  
G High-speed output  
G Compare/Capture inputs  
G PWM: Pulse Width Modulator  
G Watchdog Timer capabilities  
G Compatible with PCA: Programmable Counter Array (5 x 16–bit modules)  
D 8–bit Analog to Digital Converter  
G 4 channels  
G Conversion time: 600 clock periods (37.5 µs at 16 MHz)  
D Power Management  
G Power–On reset (integrated on the chip)  
G Power–Off flag (cold and warm resets)  
G Power-Fail detector  
G Power consumption reduction  
G Software programmable system clock  
G Idle and Power–Down modes  
D Power Supply: 5V ± 10%  
D Up to 16 MHz operation and three temperature ranges(*):  
G Commercial (0 to 70°C)  
G Industrial (–40 to +85°C)  
G Automotive (–40 to +125°C)  
D Packages: PLCC44, CQPJ44 (window) and TQFP44(**)  
*Please contact your sales office for availability of speed options  
** Please contact your sales office for TQFP availability  
I. 2.1  
Rev. B (20/09/96)  
TSC 80251A1  
Block Diagram  
P2 (A15–8)  
P0 (AD7–0)  
XTAL1  
XTAL2  
PSEN#  
ALE/PROG#  
EA#/VPP  
Clock Unit  
Clock System Prescaler  
OTPROM  
EPROM  
ROM  
RAM  
PORTS 0-3  
24 Kbytes  
1 Kbyte  
Interrupt Handler  
Unit  
16–bit Memory Code  
16–bit Memory Address  
RST  
Power–On Reset  
P1(A17)  
Timer 0 and Timer 1  
Bus Interface Unit  
Event and Waveform  
Controller  
Pulse Measurement  
Unit  
P3(A16)  
UART  
CPU  
4 x 8–bit ADC  
Vref  
VSS1  
VDD0  
VSS0  
AVDD  
AVSS  
Figure 3.1. TSC80251A1 block diagram  
I. 3.1  
Rev. B (20/09/96)  
TSC 80251A1  
Pin Description  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
P1.4/CEX1  
P1.5/PMI0/CEX2  
P1.6/PMI1/CEX3  
P1.7/A17/PMI2/CEX4  
EA#/VPP  
VDD0  
RST  
P3.0/RXD  
P3.1/TXD  
P3.2/INT0#  
P3.3/INT1#  
TSC80251A1  
VSS0  
ALE/PROG#  
PSEN#  
P3.4/T0  
P3.5/T1  
P2.7/A15  
P2.6/A14  
Figure 4.1. TSC80251A1 pin description  
I. 4.1  
Rev. B (20/09/96)  
TSC 80251A1  
Table 4.1. TSC80251A1 pin description  
Pin  
Type  
Description  
P0.0:7  
I/O  
Port 0  
This is an 8–bit open–drain bidirectional I/O port. Port 0 pins that have 1s written to  
them float and can be used as high–impedance inputs.  
It is also Address/Data lines AD0:7, which are multiplexed lower address lines and  
data lines for external memory.  
External pull–ups are required during program verification.  
P1.0:7  
I/O  
Port 1  
This is an 8–bit bidirectional I/O port.  
It receives the low–order address byte during EPROM programming and verifica-  
tion.  
It serves also the functions of various special features:  
P1.0 AN0 : Analog Input 0,  
P1.1 AN1 : Analog input 1,  
P1.2 ECI  
: EWC External Clock input.  
AN2 : Analog input 2,  
P1.3 CEX0 : EWC module 0 Capture input/PWM output.  
AN3 : Analog input 3,  
P1.4 CEX1 : EWC module 1 Capture input/PWM output,  
P1.5 PMI0 : Pulse Measurement input 0,  
CEX2 : EWC module 2 Capture input/PWM output.  
P1.6 EAD6 : External Address line 6,  
PMI1 : Pulse Measurement input 1,  
CEX3 : EWC module 3 Capture input/PWM output.  
P1.7 A17 : Address line for the 256–Kbyte memory space depending on the  
byte CONFIG0 (See NO TAG),  
PMI2 : Pulse Measurement input 2,  
CEX4 : EWC module 4 Capture input/PWM output.  
P2.0:7  
P3.0:7  
I/O  
I/O  
Port 2  
This is an 8–bit bidirectional I/O port with internal pull-ups.  
It is also Address lines A8:15, which are upper address lines for external memory.  
Port 3  
This is an 8–bit bidirectional I/O port with internal pull-ups.  
It receives the high–order address bits during EPROM programming and verifica-  
tion.  
It serves also the functions of various special features:  
P3.0 RXD : Serial Port Receive Data input.  
P3.1 TXD : Serial Port Transmit Data output.  
P3.2 INT0# : External Interrupt 0.  
P3.3 INT1# : External Interrupt 1.  
P3.4 T0  
P3.5 T1  
: Timer 0 external clock input.  
: Timer 1 external clock input.  
P3.6 WR# : Write signal for external access.  
P3.7 A16 : Address line for 128–Kbyte and 256–Kbyte memory space  
depending on the byte CONFIG0,  
RD# : Read signal for external access, depending on the byte CONFIG0.  
I. 4.2  
Rev. B (20/09/96)  
TSC 80251A1  
Pin  
Type  
Description  
Address Latch Enable/Program Pulse  
ALE/PROG#  
I/O  
It signals the start of an external bus cycle and indicates that valid address informa-  
tion is available on lines A15:8 and AD7:0. An external latch can use ALE to de-  
multiplex the address from address/data bus.  
It is also used as the Program Pulse input PROG#, during EPROM programming.  
PSEN#  
O
I
Program Store Enable/Read signal output  
This output is asserted for a memory address range that depends on bits RD0 and  
RD1 in configuration byte CONFIG0.  
EA#/VPP  
External Access Enable/Programming Supply Voltage  
This input directs program memory accesses to on–chip or off–chip code memory.  
For EA# = 0, all program memory accesses are off-chip.  
For EA# = 1, an access is on-chip OTPROM/EPROM/ROM if the address is within  
the range of the on–chip OTPROM/EPROM/ROM; otherwise the access is off-chip.  
The value of EA# is latched at reset. For devices without ROM on-chip, EA# must  
be strapped to ground.  
It receives also the Programming Supply Voltage VPP during EPROM programming  
operation.  
Vref  
VSS0  
VDD0  
VSS1  
AVSS  
AVDD  
RST  
I
Voltage reference for the Analog to Digital Converter  
Digital Ground  
GND  
PWR  
GND  
GND  
PWR  
I
Digital Supply Voltage  
Digital Ground  
Analog Ground  
Analog Supply Voltage  
Reset input to the chip  
Holding this pin high for 64 oscillator periods while the oscillator is running resets  
the device. The Port pins are driven to their reset conditions when a voltage greater  
than V is applied, whether or not the oscillator is running.  
IH1  
This pin has an internal pull-down resistor which allows the device to be reset by  
connecting a capacitor between this pin and VDD0.  
Asserting RST when the chip is in Idle mode or Power–Down mode returns the chip  
to normal operation.  
XTAL1  
XTAL2  
I
Input to the on–chip inverting oscillator amplifier  
To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an  
external oscillator is used, its output is connected to this pin. XTAL1 is the clock  
source for internal timing.  
O
Output of the on–chip inverting oscillator amplifier  
To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an  
external oscillator is used, leave XTAL2 unconnected.  
I. 4.3  
Rev. B (20/09/96)  
TSC 80251A1  
Section II  
Design Information  
TSC 80251A1  
Configuration and Memory Mapping  
1.1. Introduction  
The C251 Architecture provides generic configuration and memory addressing capabilities.  
However, the products based on this Architecture may provide various derivative features. The  
configuration and memory mapping features of the TSC80251A1 derivatives are detailed in this  
section.  
1.2. Configuration  
The TSC80251A1 derivatives provide design flexibility by configuring certain operating features  
during the device reset. These features fall into the following categories:  
D external/internal memory access operation,  
D external memory interface,  
D source/binary mode opcodes,  
D selection of bytes stored on the stack by an interrupt.  
The choice of internal program/code or external memory access is made through the External Access  
pin (EA#, see paragraph 1.3.2.). The internal memories of the TSC80251A1 derivatives are detailed  
in paragraph 1.3. “Memory Mapping”.  
The choice of external memory interface is detailed in this section:  
D Page Mode and Wait States  
D External Memory Signals  
The choice of source or binary mode and the interrupt processing are discussed in the TSC80251  
Programmers’ Guide.  
These settings are made based on two configuration bytes (CONFIG0 and CONFIG1, see  
Figure 1.11. and Figure 1.12. at the end of this chapter).  
1.2.1. Page Mode and Wait States  
This part discusses the choice of external cycle speed configuration. All the external bus cycles are  
based on states which are made of two cycles of the internal oscillator. The external XTAL1  
frequency can be internally divided by the oscillator to reduce the power consumption (See “Power  
Monitoring and Management” chapter) and the speed of the external cycles is then reduced  
accordingly.  
TSC80251A1 derivatives use two 8–bit ports (P0, P2) to multiplex a 16–bit address bus and an 8–bit  
data bus. The first configuration is multiplexing the lower 8–bit address bus and the 8–bit data bus  
on Port 0; this is the non–page mode which is compatible with the 80C51 derivatives. The second  
configuration is multiplexing the upper 8–bit address bus and the 8–bit data bus on Port 2; this is the  
page mode which improves performance. This bus structure is shown on Figure 1.1 and is configured  
by the PAGE bit of CONFIG0 byte.  
II. 1.1  
Rev. B (20/09/96)  
TSC 80251A1  
TSC80251A1  
P2  
A15:8  
TSC80251A1  
P2  
A15:8  
A7:0  
D7:0  
AD7:0  
Latch  
A15:8/D7:0 A15:8  
A7:0  
Latch  
A15:8  
P0  
RAM/  
RAM/  
A7:0  
EPROM/  
Flash  
EPROM/  
Flash  
D7:0  
P0  
D7:0  
A7:0  
Non–page  
Mode  
Page Mode  
Figure 1.1. Bus structure in non–page mode and page mode  
The Figure 1.2. highlights the non–page mode configuration with a code fetch cycle. One state is  
used to latch A7:0 on Port 0, then the data are transferred during the second state.  
State 1  
State 2  
OSC  
ALE  
RD#/PSEN#  
A7:0  
A17/A16/A15:8  
D7:0  
P0  
A17/A16/P2  
Figure 1.2. External bus cycle: code fetch, non–page mode  
II. 1.2  
Rev. B (20/09/96)  
TSC 80251A1  
State 1  
State 2  
State 3  
OSC  
ALE  
RD#/PSEN#  
A17/A16/A7:0  
A15:8  
A17/A16/P0  
A17/A16/A7:0  
D7:0  
D7:0  
Figure 1.3. External bus cycle: code fetch, page mode  
Three configuration bits are provided to introduce Wait States and modulate the access time  
depending on the external devices. One wait state can be added to extend the address latch time using  
the XALE bit in CONFIG0 byte. Another wait state can also be added to extend the data access time  
once the multiplexed addresses have been latched. Figure 1.4. shows a code fetch in non–page mode  
with one such wait state. The Wait State A bit (WSA bit in CONFIG0 byte) adds one state for external  
program/code and data accesses (See segments FF:, FE:, 00: in paragraph 1.2.2.). The Wait State B  
bit (WSB bit in CONFIG1 byte) adds one state for external data accesses only (See segment 01: in  
paragraph 1.2.2.).  
State 1  
State 2  
State 3  
OSC  
ALE  
RD#/PSEN#  
A7:0  
A17/A16/A15:8  
D7:0  
P0  
A17/A16/P2  
Figure 1.4. External bus cycle: code fetch with one RD#/PSEN# wait state in non–page mode  
II. 1.3  
Rev. B (20/09/96)  
TSC 80251A1  
1.2.2. External Memory Signals  
ForeasyreferencetotheC51Architecture, itisconvenienttoconsiderthe24–bitlinearaddressspace  
of the C251 Architecture as 256 segments of 64 Kbytes (from segment 00: to segment FF:). Some  
of these segments are reserved to map the internal registers and, in this section, we only consider the  
segments which allows to access to the external memory. In the TSC80251A1 derivatives only four  
segments of the 24–bit internal address space (00:, 01:, FE:, FF:) are implemented to address the  
external memory. This allows a maximum program or data memory space of 256 Kbytes. Various  
configurations are possible, depending on the Read configuration bits (RD1:0) which are set in  
CONFIG0 byte.  
1.2.2.1. How to address 256 Kbytes  
The maximum external memory is provided when RD1:0 = 00, as shown on Figure 1.5. PSEN# is  
used as a read signal and WR# is used as a write signal. Eighteen address bits are provided externally  
(P0, P2, A16, A17) to control 256 Kbytes in four segments. In this configuration, the program/code  
and data spaces share the same external memory segments.  
Internal Spaces  
Read/Write Signals  
Segments  
Addresses  
External Memory  
A17, A16, P2, P0  
11  
FF:  
FE:  
01:  
00:  
10  
01  
00  
256 Kbytes  
Program/Code  
PSEN#  
A17/A16  
11  
FF:  
FE:  
01:  
00:  
10  
01  
00  
FF:  
FE:  
01:  
00:  
11  
10  
01  
00  
PSEN#/WR#  
Data  
Figure 1.5. Internal/external memory segments (RD1:0 = 00)  
1.2.2.2. How to address 128 Kbytes  
One I/O pin (P1.7/A17) is saved if 128 Kbytes of external memory are enough, as shown on  
Figure 1.6. (RD1:0 = 01). PSEN# is used as a read signal and WR# is used as a write signal.  
Seventeen address bits are provided externally (P0, P2, A16) to control 128 Kbytes in two segments.  
In this configuration, the program/code and data spaces share the same external memory segments  
which are replicated twice in each internal space.  
II. 1.4  
Rev. B (20/09/96)  
TSC 80251A1  
Internal Spaces  
Read/Write Signals  
Segments  
Addresses  
External Memory  
A16, P2, P0  
FF:  
FE:  
01:  
00:  
1
0
1
0
Program/Code  
PSEN#  
128 Kbytes  
01:, FF:  
00:, FE:  
A16  
1
0
FF:  
FE:  
01:  
00:  
1
0
1
0
PSEN#/WR#  
Data  
Figure 1.6. Internal/external memory segments (RD1:0 = 01)  
1.2.2.3. How to address 64 Kbytes  
Two I/O pins (P1.7/A17, P3.7/A16/RD#) are saved if 64 Kbytes of external memory are enough, as  
shown on Figure 1.7. (RD1:0 = 10). PSEN# is used as a read signal and WR# is used as a write signal.  
Sixteen address bits are provided externally (P0, P2) to control 64 Kbytes in one segment. In this  
configuration, the program/code and data share the same external memory segment which is  
replicated four times in each internal space.  
Internal Spaces  
Read/Write Signals  
Segments  
Addresses  
P2, P0  
External Memory  
FF:  
FE:  
01:  
00:  
Program/Code  
PSEN#  
64 Kbytes  
00:, 01:, FE:, FF:  
FF:  
FE:  
01:  
00:  
Data  
PSEN#/WR#  
Figure 1.7. Internal/external memory segments (RD1:0 = 10)  
1.2.2.4. How to keep C51 memory compatibility  
The last configuration provides a full compatibility with the C51 Architecture, as shown on  
Figure 1.8. (RD1:0 = 11). PSEN# is used as a read signal for program/code memory read while RD#  
is used as a read signal and WR# is used as a write signal for data memory accesses. Sixteen address  
II. 1.5  
Rev. B (20/09/96)  
TSC 80251A1  
bits are provided externally (Port 0, Port 2). In this configuration, the program/code fits in one  
read–only external memory segment and the data fits in another read–write external memory  
segment. Each segment is replicated four times in one internal space.  
Internal Spaces  
Read/Write Signals  
Segments  
Addresses  
P2, P0  
External Memory  
FF:  
FE:  
01:  
00:  
Program/Code  
PSEN#  
2x64 Kbytes  
00:, 01:, FE:, FF:  
00:, 01:, FE:, FF:  
FF:  
FE:  
01:  
00:  
Data  
RD#/WR#  
Figure 1.8. Internal/external memory segments (RD1:0 = 11)  
1.3. Memory Mapping  
The specific internal memories of the TSC80251A1 derivatives fall into the following categories:  
D 2 Configuration bytes,  
D 24 Kbytes on–chip ROM or EPROM/OTP program/code memory,  
D 1 Kbyte on–chip RAM data memory,  
D Special Function Registers (SFRs).  
1.3.1. Configuration Bytes  
The Configuration bytes, CONFIG0 and CONFIG1, are detailed in Figure 1.11. and Figure 1.12.  
During reset they are read from a specific ROM area. For the TSC87251A1 EPROM and OTPROM  
versions, these bytes are programmable in an EPROM area (See “EPROM programming” chapter).  
For the TSC83251A1 masked ROM versions, these bytes are additional information provided in a  
masked ROM area. For the TSC80251A1 ROMless versions, these bytes are configured in factory  
according to the part number (See “Ordering Information”). These bytes are not accessible by the  
user during operation and they do not appear in the Memory Mapping of the TSC80251A1  
derivatives.  
II. 1.6  
Rev. B (20/09/96)  
TSC 80251A1  
Internal Memory  
Program/code  
External Memory Space Segments  
Program/code  
ROM Code  
FF:FFFFh  
40 Kbytes  
FF:6000h  
FF:5FFFh  
FF:0000h  
8 Kbytes  
EA#=0  
24 Kbytes  
64 Kbytes  
FE:FFFFh  
FE:0000h  
FD:FFFFh  
Reserved  
02:0000h  
16 Kbytes  
01:FFFFh  
128 Kbytes  
01:0000h  
00:FFFFh  
00:0000h  
Figure 1.9. Programmable Memory Mapping  
1.3.2. Program/Code Memory  
The split of the internal and external program/code memory space is shown on Figure 1.9. If EA#  
is tied to a high level, the 24–Kbyte internal program memory are mapped in the lower part of  
segment FF: where the C251 core jumps after reset. The rest of the program/code memory space is  
mapped to the external memory (See paragraph 1.2.2. to determine to which external memory  
location each segment actually maps). If EA# is tied to a low level, the internal program/code  
memory is not used and all the accesses are directed to the external memory. Table 1.1. lists the  
minimum times to fetch on–chip and external memory.  
Table 1.1. Minimum Times to fetch two bytes of code  
Type of code memory  
On–chip code memory  
State times  
1
2
4
External memory (page mode)  
External memory (nonpage mode)  
For the TSC87251A1 EPROM and OTPROM versions, the internal program/code is programmable  
in EPROM (See “EPROM programming” chapter). For the TSC83251A1 masked ROM versions,  
the internal program/code is provided in a masked ROM. For the TSC80251A1 ROMless versions,  
there is no possible internal program/code and EA# must be tied to a low level. In fact, for  
TSC83251A1 and TSC87251A1 versions, the upper 8 Kbytes of the internal ROM are also mapped  
in the data space (See paragraph 1.3.3.).  
II. 1.7  
Rev. B (20/09/96)  
TSC 80251A1  
Note:  
Special care should be taken when the Program Counter (PC) increments:  
If your program executes exclusively from on–chip ROM/OTPROM/EPROM (not from external memory), beware  
of executing code from the upper eight bytes of the on–chip ROM/OTPROM/EPROM (FF:5FF8h–FF:5FFFh).  
Because of its pipeline capability, the 80C251A1 may attempt to prefetch code from external memory (at an  
address above FF:5FF8H/FF:5FFFH) and thereby disrupt I/O Ports 0 and 2. Fetching code constants from these  
eight bytes does not affect Ports 0 and 2.  
When PC reaches the end of segment FF:, it loops to the reset address FF:0000h (for compatibility with the C51  
architecture). When PC increments beyond the end of segment FE:, it continues at the reset address FF:0000h  
(linearity). When PC increments beyond the end of segment 01:, it loops to the beginning of segment 00: (this  
prevents it going into the reserved area).  
1.3.3. Data Memory  
Data External  
Memory Space  
Internal Memory  
ROM Code  
Data Segments  
FF:FFFFh  
40 Kbytes  
24 Kbytes  
FF:6000h  
FF:5FFFh  
FF:0000h  
8 Kbytes  
EA#=0  
EA#=1  
FE:FFFFh  
64 Kbytes  
FE:0000h  
FD:FFFFh  
Reserved  
02:0000h  
16 Kbytes  
01:FFFFh  
64 Kbytes  
8 Kbytes  
55 Kbytes  
01:0000h  
00:EFFFh  
00:E000h  
EMAP=1  
EMAP=0  
RAM Data  
1 Kbyte  
32 bytes reg.  
FC:0000h  
Figure 1.10. Data Memory Mapping  
The split of the internal and external data memory space is shown on Figure 1.10. All the  
TSC80251A1 derivatives featureaninternal1KbyteRAM. Thismemoryismappedinthedataspace  
just over the 32 bytes of registers area (See TSC80251 Programmers’ Guide). Hence, the lowermost  
96 bytes of the internal RAM are bit addressable. This internal RAM is not accessible through the  
program/code memory space.  
For computation with the internal ROM code of the TSC83251A1 and TSC87251A1 versions, its  
upper 8 Kbytes are also mapped in the data space if the EPROM Map configuration bit is cleared  
(EMAP bit in CONFIG1 byte, see Figure 1.2. ). However, if EA# is tied to a low level and the  
TSC80251A1 derivative is running as a ROMless, the code is actually fetched in the corresponding  
external memory (i.e. the upper 8 Kbytes of the lower 24 Kbytes of segment FF:). If EMAP bit is  
set, the internal ROM is not accessible through the data memory space.  
II. 1.8  
Rev. B (20/09/96)  
TSC 80251A1  
All the accesses to the portion of the data space with no internal memory mapped onto are redirected  
to the external memory, see paragraph 1.2.2. to determine to which external memory location each  
segment actually maps.  
1.3.4. Special Function Registers  
The Special Function Registers (SFRs) of the TSC80251A1 derivatives fall into the following  
categories:  
D C251 core registers (SP, SPH, DPL, DPH, DPXL, PSW, PSW1, ACC, B)  
D Port registers (P0, P1, P2, P3)  
D Timer registers (TCON, TMOD, TL0, TL1, TH0, TH1)  
D Serial Port and Baud Rate Generator registers (SCON, SBUF, SADDR, SADEN, BDRCON,  
BRL)  
D Pulse Measurement Unit registers (PMU, PMCON, PMSCAL0, PMSCAL1, PMSCAL2,  
PMPER0, PMPER1, PMPER2, PMWID0, PMWID1, PMWID2)  
D Event and Waveform Controller registers:  
G Counters (CCON, CMOD, CMOD0, CMOD1, CMOD2, COF, CRC, CIE, CL0, CL1, CL2,  
CL3, CL4, CH0, CH1, CH2, CH3, CH4)  
G Compare/Capture (CCAPM0, CCAPM1, CCAPM2, CCAPM3, CCAPM4, CCAPL0,  
CCAPL1, CCAPL2, CCAPL3, CCAPL4, CCAPH0, CCAPH1, CCAPH2, CCAPH3,  
CCAPH4)  
D Analog to Digital Converter registers (ADCON, ADAT)  
D Power monitoring/management and clock control registers (PCON, PFILT, POWM, CKRL)  
D Interrupt system registers (IE0, IE1, IPL0, IPL1, IPH0, IPH1)  
SFRs are placed in a reserved internal memory segment S: which is not represented in the internal  
memory mapping. The relative addresses within S of these SFRs within S: are provided together with  
their reset values in Table 1.2. . All the SFRs are bit–addressable using the C251 Instruction Set. The  
C251 core registers are in italics in this table and they are described in the TSC80251 Programmers’  
Guide. The other registers are detailed in the following sections which fully describe each peripheral  
unit.  
II. 1.9  
Rev. B (20/09/96)  
TSC 80251A1  
Table 1.2. SFR addresses and Reset values  
F8h  
F0h  
E8h  
E0h  
D8h  
D0h  
C8h  
C0h  
B8h  
B0h  
A8h  
A0h  
98h  
90h  
88h  
80h  
CH = CH0  
0000 0000  
CCAP0H  
CCAP1H  
CCAP2H  
CCAP3H  
CCAP4H  
CMOD3  
0000 0000  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
B**  
0000 0000  
CH1  
0000 0000  
CH2  
0000 0000  
CH3  
0000 0000  
CH4  
0000 0000  
CL = CL0  
0000 0000  
CCAP0L  
CCAP1L  
CCAP2L  
CCAP3L  
CCAP4L  
CMOD2  
0000 0000  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
ACC**  
0000 0000  
COF  
XXX0 0000  
CRC  
0000 0000  
CIE  
XXX0 0000  
CL1  
0000 0000  
CL2  
0000 0000  
CL3  
0000 0000  
CL4  
0000 0000  
CCON  
0000 0000  
CMOD  
00XX X000  
CCAPM0  
X000 0000  
CCAPM1  
X000 0000  
CCAPM2  
X000 0000  
CCAPM3  
X000 0000  
CCAPM4  
X000 0000  
CMOD1  
0000 0000  
PSW**  
0000 0000  
PSW1**  
0000 0000  
ADCON  
XXX0 0X00 XXXX XXXX  
ADAT*  
IPL0  
0000 0000  
SADEN  
0000 0000  
SPH**  
0000 0000  
P3  
1111 1111  
IE1  
X000 0000  
IPL1  
0000 0000  
IPH1  
0000 0000  
IPH0  
0000 0000  
IE0  
0000 0000  
SADDR  
0000 0000  
PMSCAL0  
PMSCAL1  
PMSCAL2  
PMCON  
X000 X000  
PMSTAT  
X000 X000  
XXXX XXXX XXXX XXXX XXXX XXXX  
P2  
1111 1111  
PMPER0* PMWID0* PMPER1*  
XXXXXXXXh XXXXXXXXh XXXXXXXXh XXXXXXXXh XXXXXXXXh XXXXXXXXh  
PMWID1*  
PMPER2*  
PMWID2*  
SCON  
SBUF  
BRL  
0000 0000  
BDRCON  
XXX0 0000  
PMU  
XXXX XXX0  
0000 0000 XXXX XXXX  
P1  
1111 1111  
TCON  
0000 0000  
TMOD  
0000 0000  
TL0  
0000 0000  
TL1  
0000 0000  
TH0  
0000 0000  
TH1  
0000 0000  
CKRL  
0000 1000  
POWM  
0XX0 0000  
P0  
SP**  
DPL**  
DPH**  
DPXL**  
PFILT  
PCON  
1111 1111  
0000 0111  
0000 0000  
0000 0000  
0000 0001  
0000 1000  
000X 0000  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
* read only  
**C251 core registers described in the TSC80251 Programmer’s Guide  
reserved  
S:00h – S7Fh unimplemented  
S:100h – S:1FFh unimplemented  
II. 1.10  
Rev. B (20/09/96)  
TSC 80251A1  
CONFIG0  
Configuration byte 0  
WSA  
XALE  
RD1  
RD0  
PAGE  
SRC  
7
6
5
4
3
2
1
0
Bit  
Mnemonic  
Bit Number  
Description  
7
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
7
5
4
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
WSA  
XALE  
Wait State A bit  
Clear to generate one external wait state for memory regions 00:, FE:, and FF:.  
Set for no wait states for these regions.  
Extend ALE bit  
Clear to extend the time of the ALE pulse from T  
one external wait state.  
to 3.T , which adds  
OSC  
OSC  
Set the time of the ALE pulse to T  
.
OSC  
3, 2  
RD1, RD0 RD# and PSEN# Function Select bits  
RD1 RD0 RD# P1.7 PSEN# Range  
0
0
1
1
0
1
0
1
A16 A17  
PSEN# is the read signal for both  
external data and program address  
space (256 Kbytes).  
A16 I/O pin PSEN# is the read signal for both  
external data and program address  
space (128 Kbytes).  
P3.7 I/O pin PSEN# is the read signal for both  
external data and program address  
space (64 Kbytes).  
RD# I/O pin 64–Kbyte code memory space  
64–Kbyte data memory space  
1
0
PAGE  
SRC  
Page Mode Select bit  
Clear for page–mode with A15:8/D7:0 on Port 2, and A7:0 on Port0.  
Set for non page–mode with A15:8 on Port 2, and A7:0/D7:0 on Port 0  
(compatible with 80C51microcontrollers).  
Source Mode/Binary Mode Select bit  
Clear for Binary Mode (Binary Code compatible with 80C51 microcontrollers)  
Set for Source Mode.  
Figure 1.11. Configuration byte 0  
Note:  
To configure the TSC80251A1 in C51 microcontroller mode, use the following bit values in CONFIG0: 1101  
1110B.  
II. 1.11  
Rev. B (20/09/96)  
TSC 80251A1  
CONFIG1  
Configuration byte 1  
INTR  
WSB  
EMAP  
7
6
5
4
3
2
1
0
Bit  
Mnemonic  
Bit Number  
Description  
7
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
6
5
4
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
INTR  
Interrupt Mode bit  
Clear so that the interrupts push 2 bytes onto the stack (the 2 lower bytes of  
the PC register).  
Set so that the interrupts push 4 bytes onto the stack (the 3 bytes of the PC  
register and the PSW1 register).  
3
2
1
0
WSB  
Wait State B bit  
Clear to generate one external wait state for memory region 01:.  
Set for no wait states for region 01:.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
EMAP  
EPROM Map bit  
Clear to map the upper 8 Kbytes of on–chip code memory  
(FF:3000h-FF:5FFFh) to 00:C000h-00:FFFFh.  
Set to map the upper 12 Kbytes of on–chip code memory  
to FF:3000h-FF:5FFFh.  
Figure 1.12. Configuration byte 1  
Note:  
To configure the TSC80251A1 in C51 microcontroller mode, use the following bit values in CONFIG1: 1110  
0111B.  
II. 1.12  
Rev. B (20/09/96)  
TSC 80251A1  
Parallel I/O Ports  
2.1. Introduction  
The TSC80251A1 uses input/output (I/O) Ports to exchange data with external devices. In addition  
to performing general–purpose I/O, some Ports are capable of external memory operations; others  
allow for alternate functions. All four TSC80251A1 I/O Ports are bidirectional. Each Port contains  
a latch, an output driver and an input buffer. Port 0 and Port 2 output drivers and input buffers  
facilitate external memory operations. Port 0 drives the lower address byte onto the parallel address  
bus and Port 2 drives the upper address byte onto the bus. In non–page mode, the data is multiplexed  
with the lower address byte on Port 0. In page mode, the data is multiplexed with the upper address  
byte on Port 2. All Port 1 and Port 3 pins serve for both general–purpose I/O and alternate functions  
(See Table 2.1. ).  
Table 2.1. Port pin descriptions  
Pin Name  
Type  
Alternate Pin Name  
Alternate Description  
Alternate Type  
P0.0  
I/O  
AD0  
Address/Data line 0 (Non–page mode)  
Address line 0 (Page mode)  
I/O  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
Address/Data line 1 (Non–page mode)  
Address line 1 (Page mode)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Address/Data line 2 (Non–page mode)  
Address line 2 (Page mode)  
Address/Data line 3 (Non–page mode)  
Address line 3 (Page mode)  
Address/Data line 4 (Non–page mode)  
Address line 4 (Page mode)  
Address/Data line 5 (Non–page mode)  
Address line 5 (Page mode)  
Address/Data line 6 (Non–page mode)  
Address line 6 (Page mode)  
Address/Data line 7 (Non–page mode)  
Address line 7 (Page mode)  
II. 2.1  
Rev. B (20/09/96)  
TSC 80251A1  
Pin Name  
P1.0  
Type  
I/O  
Alternate Pin Name  
Alternate Description  
Analog input 0  
Alternate Type  
AN0  
AN1  
I
I
P1.1  
I/O  
Analog input 1  
P1.2  
I/O  
ECI  
AN2  
EWC external clock input  
Analog input 2  
I
I
P1.3  
I/O  
CEX0  
AN3  
EWC module 0 Capture input/PWM output  
Analog input 3  
I/O  
I
P1.4  
P1.5  
I/O  
I/O  
CEX1  
EWC module 1 Capture input/PWM output  
I/O  
PMI0  
CEX2  
PMU input 0  
EWC module 2 Capture input/PWM output  
I
I/O  
P1.6  
P1.7  
I/O  
I/O  
PMI1  
CEX3  
PMU input 1  
EWC module 3 Capture input/PWM output  
I
I/O  
A17  
PMI2  
CEX4  
Address line 17  
PMU input 2  
EWC module 4 Capture input/PWM output  
I/O  
I
I/O  
Pin Name  
Type  
Alternate Pin Name  
Alternate Description  
Alternate Type  
P2.0  
I/O  
A8  
Address line 8 (Non–page mode)  
Address/Data line 8 (Page mode)  
I/O  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A9  
Address line 9 (Non–page mode)  
Address/Data line 9 (Page mode)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
Address line 10 (Non–page mode)  
Address/Data line 10 (Page mode)  
Address line 11 (Non–page mode)  
Address/Data line 11 (Page mode)  
Address line 12 (Non–page mode)  
Address/Data line 12 (Page mode)  
Address line 13 (Non–page mode)  
Address/Data line 13 (Page mode)  
Address line 14 (Non–page mode)  
Address/Data line 14 (Page mode)  
Address line 15 (Non–page mode)  
Address/Data line 15 (Page mode)  
II. 2.2  
Rev. B (20/09/96)  
TSC 80251A1  
Pin Name  
P3.0  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Alternate Pin Name  
Alternate Description  
Alternate Type  
RXD  
TXD  
INT0#  
INT1#  
T0  
Serial Port Receive Data input  
Serial Port Transmit Data output  
External Interrupt 0  
I
O
I
P3.1  
P3.2  
P3.3  
External Interrupt 1  
I
P3.4  
Timer 0 input  
I
P3.5  
T1  
Timer 1 input  
I
P3.6  
WR#  
Write signal to external memory  
O
P3.7  
RD#  
A16  
Read signal to external memory  
Address line 16  
O
I/O  
Notes:  
D EWC = Event Waveform Controller  
D PMU = Pulse Measurement Unit  
D PWM = Pulse Width Modulation  
2.2. I/O Configurations  
Each Port SFR operates via type–D latches, as illustrated in Figure 2.1. for Ports 1 and 3. A CPU  
“write to latch” signal initiates transfer of internal bus data into the type–D latch. A CPU “read latch”  
signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” signal transfers the  
logical level of the Port pin. Some Port data instructions activate the “read latch” signal while others  
activate the “read pin” signal. Latch instructions are referred to as Read–Modify–Write instructions  
(See “Read–Modify–Write Instructions” paragraph). Each I/O line may be independently  
programmed as input or output.  
2.3. Port 1 and Port 3  
Figure 2.1. shows the structure of Ports 1 and 3, which have internal pull–ups. An external source  
can pull the pin low. Each Port pin can be configured either for general–purpose I/O or for its alternate  
input or output function (See Table 2.1. ).  
To use a pin for general–purpose output, set or clear the corresponding bit in the Px register (x = 1  
or 3). To use a pin for general–purpose input, set the bit in the Px register. This turns off the output  
driver FET.  
To configure a pin for its alternate function, set the bit in the Px register. When the latch is set, the  
“alternate output function” signal controls the output level (See Figure 2.1. ). The operation of Ports  
1 and 3 is discussed further in “Quasi–Bidirectional Port Operation” paragraph.  
II. 2.3  
Rev. B (20/09/96)  
TSC 80251A1  
VDD  
Alternate  
Output  
Function  
Internal  
pull–up  
Read  
Latch  
P3.x  
P1.x  
Internal  
D
P1.x  
P3.x  
Q
Bus  
Write to  
CL  
Latch  
Q#  
Latch  
Read  
Pin  
Alternate  
Input  
Function  
Figure 2.1. Port 1 and Port 3 structure  
2.4. Port 0 and Port 2  
Ports 0 and 2 are used for general–purpose I/O or as the external address/data bus. Port 0, shown in  
Figure 2.2. , differs from the other Ports in not having internal pull–ups. Figure 2.3. shows the  
structure of Port 2. An external source can pull a Port 2 pin low.  
To use a pin for general–purpose output, set or clear the corresponding bit in the Px register (x = 0  
or 2). To use a pin for general–purpose input set the bit in the Px register to turn off the output driver  
FET.  
VDD  
Address  
Data  
Control  
Read  
Latch  
Internal  
Bus  
D
Q
P0.x  
Latch  
P0.x  
1
0
Write to  
Latch  
CL  
Q#  
Read  
Pin  
Figure 2.2. Port 0 structure  
II. 2.4  
Rev. B (20/09/96)  
TSC 80251A1  
VDD  
Control  
Address Data  
Read  
Latch  
P2.x  
1
0
Internal  
Bus  
D
Q
P2.x  
Latch  
Write to  
Latch  
CL  
Q#  
Read  
Pin  
Figure 2.3. Port 2 structure  
When Port 0 and Port 2 are used for an external memory cycle, an internal control signal switches  
the output–driver input from the latch output to the internal address/data line. “External Memory  
Access” paragraph discusses the operation of Port 0 and Port 2 as the external address/data bus.  
Notes:  
D Port 0 and Port 2 are precluded from use as general purpose I/O Ports when used as address/data bus drivers.  
D Port 0 internal pull–ups assist the logic–one output for memory bus cycles only. Except for these bus cycles, the  
pull–up FET is off. All other Port 0 outputs are open–drain.  
2.5. Read–Modify–Write Instructions  
Some instructions read the latch data rather than the pin data. The latch based instructions read the  
data, modify the data and then rewrite the latch. These are called “Read–Modify–Write” instructions.  
Below is a complete list of these special instructions. When the destination operand is a Port or a Port  
bit, these instructions read the latch rather than the pin:  
Instruction  
ANL  
Description  
Example  
logical AND  
logical OR  
ANL P1,A  
ORL P2,A  
XRL P3,A  
ORL  
XRL  
JBC  
CPL  
INC  
logical EX–OR  
jump if bit = 1 and clear bit  
complement bit  
JBC P1.1, LABEL  
CPL P3.0  
increment  
INC P2  
II. 2.5  
Rev. B (20/09/96)  
TSC 80251A1  
Instruction  
Description  
Example  
DEC  
decrement  
DEC P2  
DJNZ  
decrement and jump if not zero  
move carry bit to bit y of Port x  
clear bit y of Port x  
DJNZ P3, LABEL  
MOV P1.5, C  
CLR P2.4  
MOV Px.y, C  
CLR Px.y  
SET Px.y  
set bit y of Port x  
SET P3.3  
It is not obvious the last three instructions in this list are Read–Modify–Write instructions. These  
instructions read the Port (all 8 bits), modify the specifically addressed bit and write the new byte  
back to the latch. These Read–Modify–Write instructions are directed to the latch rather than the pin  
in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at the pin. For  
example, a Port bit used to drive the base of an external bipolar transistor cannot rise above the  
transistor’s base–emitter junction voltage (a value lower than VIL). With a logic one written to the  
bit, attempts by the CPU to read the Port at the pin are misinterpreted as logic zero. A read of the  
latch rather than the pin returns the correct logic–one value.  
2.6. Quasi–Bidirectional Port Operation  
Port 1, Port 2 and Port 3 have fixed internal pull–ups and are referred to as “quasi–bidirectional”  
Ports. When configured as an input, the pin impedance appears as logic one and sources current in  
response to an external logic zero condition. Port 0 is a “true bidirectional” pin. The pin floats when  
configured as input. Resets write logical one to all Port latches. If logical zero is subsequently written  
to a Port latch, it can be returned to input conditions by a logical one written to the latch.  
VDD  
VDD  
VDD  
2 Osc. Periods  
p1  
p2  
p3  
Q#  
from  
Port  
n
Latch  
Input data  
Read Port Pin  
Figure 2.4. Internal pull–up configurations  
Note:  
Port latch values change near the end of Read–Modify–Write instruction cycles. Output buffers (and therefore the  
pin state) update early in the instruction after the Read–Modify–Write instruction cycle.  
II. 2.6  
Rev. B (20/09/96)  
TSC 80251A1  
Logical zero–to–one transitions in Port 1, Port 2 and Port 3 use an additional pull–up to aid this logic  
transition (See Figure 2.4. ). This increases switch speed. The extra pull–up briefly sources 100 times  
normal internal circuit current. The internal pull–ups are field–effect transistors rather than linear  
resistors. Pull–ups consist of three p–channel FET (pFET) devices. A pFET is on when the gate  
senses logical zero and off when the gate senses logical one. pFET #1 is turned on for two oscillator  
periods immediately after a zero–to–one transition in the Port latch. A logical one at the Port pin turns  
on pFET #3 (a weak pull–up) through the inverter. This inverter and pFET pair form a latch to drive  
logical one. pFET #2 is a very weak pull–up switched on whenever the associated nFET is switched  
off. This is traditional CMOS switch convention. Current strengths are 1/10 that of pFET #3.  
2.7. Port Loading  
Output buffers of Port 1, Port 2 and Port 3 can each sink 1.6 mA at logic zero. These Port pins can  
be driven by open–collector and open–drain devices. Logic zero–to–one transitions occur slowly as  
limited current pulls the pin to a logic–one condition (See Figure 2.4. ). A logic–zero input turns off  
pFET #3. This leaves only pFET #2 weakly in support of the transition. In external bus mode, Port  
0 output buffers each sink 3.2 mA at logic zero. However, the Port 0 pins require external pull–ups  
to drive external gate inputs. External circuits must be designed to limit current requirements to these  
conditions.  
2.8. External Memory Access  
The external bus structure is different for page mode and non–page mode. In non–page mode (used  
by 80C51 microcontrollers), Port 2 outputs the upper address byte; the lower address byte and the  
data are multiplexed on Port 0. In page mode, the upper address byte and the data are multiplexed  
on Port 2, while Port 0 outputs the lower address byte.  
The TSC80251A1 CPU writes FFh to the Port 0 register for all external memory bus cycles. This  
overwrites previous information in Port 0. In contrast, the Port 2 register is unmodified for external  
bus cycles. When address bits or data bits are not on the Port 2 pins, the bit values in Port 2 appear  
on the Port 2 pins.  
In non–page mode, Port 0 uses a strong internal pull–up FET to output ones or a strong internal  
pull–down FET to output zeros for the lower address byte and the data. Port 0 is in a high–impedance  
state for data input. In page mode, Port 0 uses a strong internal pull–up FET to output ones or a strong  
internal pull–down FET to output zeros for the lower address byte or a strong internal pull–down  
FET to output zeros for the upper address byte.  
In non–page mode, Port 2 uses a strong internal pull–up FET to output ones or a strong internal  
pull–down FET to output zeros for the upper address byte. In page mode, Port 2 uses a strong internal  
pull–up FET to output ones or a strong internal pull–down FET to output zeros for the upper address  
byte and data. Port 2 is in a high–impedance state for data input.  
Note:  
In external bus mode Port 0 outputs do not require external pull–ups.  
There are two types of external memory accesses: external program memory and external data  
memory. External program memories use signal PSEN# as a read strobe. 80C51 microcontrollers  
II. 2.7  
Rev. B (20/09/96)  
TSC 80251A1  
use RD# (read) or WR# (write) to strobe memory for data accesses. Depending on its RD0 and RD1  
configuration bits, the TSC80251A1 uses PSEN# or RD# for data reads (See “Configuration bits  
RD0 and RD1”).  
During instruction fetches, external program memory can transfer instructions with 16–bit addresses  
for binary compatible code or with the external bus configured for extended memory addressing  
(17–bit or 18–bit).  
External data memory transfers use an 8–bit, 16–bit, 17–bit or 18–bit address bus, depending on the  
instruction and the configuration of the external bus. Table 2.2. lists the instructions that can be used  
for the these bus widths.  
Table 2.2. Instructions for external data moves  
Bus width  
Instructions  
8
MOVX @Ri  
MOV @Rm  
MOV dir8  
16  
MOVX @DPTR  
MOV @WRj  
MOV @WRj+dis  
MOV dir16  
17  
18  
MOV @DRk  
MOV @DRk+dis  
MOV @DRk  
MOV @DRk+dis  
Note:  
Avoid MOV P0 instructions for external memory accesses. These instructions can corrupt input code bytes at  
Port 0.  
External signal ALE (address latch enable) facilitates external address latch capture. The address  
byte is valid after the ALE pin drives VOL . For write cycles, valid data is written to Port 0 just prior  
to the write pin (WR#) asserting VOL . Data remains valid until WR# is undriven. For read cycles,  
data returned from external memory must appear at Port 0 before the read pin (RD#) is undriven.  
Waits states, by definition, affect bus–timing.  
II. 2.8  
Rev. B (20/09/96)  
TSC 80251A1  
Timers/Counters  
3.1. Introduction  
The TSC80251A1 contains two general–purpose, 16–bit Timers/Counters. Although they are  
identified as Timer 0 and Timer 1, you can independently configure each to operate in a variety of  
modes as a Timer or as an event Counter. Each Timer employs two 8–bit Timer registers, used  
separately or in cascade, to maintain the count. Timer registers and associated control and capture  
registers are implemented as addressable special function registers (SFRs). Table 3.1. briefly  
describes the SFRs referred to in this chapter. Two of the SFRs provide programmable control of the  
Timers as follows:  
D Timer/Counter Mode Control register (TMOD).  
D Timer/Counter Control register (TCON) for Timer 0 and Timer 1.  
These registers are described at the end of this chapter.  
Table 3.1. Timer/Counter SFRs  
Mnemonic  
Description  
Address  
TL0  
TH0  
Timer 0 registers  
Used separately as two 8–bit Counters or in cascade as one 16–bit Counter.  
S:8Ah  
S:8Ch  
Counts an internal clock signal with frequency F  
or an external input (event Counter operation).  
/12 (Timer operation)  
OSC  
TL1  
TH1  
Timer 1 registers  
S:8Bh  
S:8Dh  
Used separately as two 8–bit Counters or in cascade as one 16–bit Counter.  
Counts an internal clock signal with frequency F  
or an external input (event Counter operation).  
/12 (Timer operation)  
OSC  
TCON  
TMOD  
Timer 0/1 Control register  
S:88h  
S:89h  
Contains the run control bits, overflow flags, interrupt flags and interrupt  
type control bits for Timer 0 and Timer 1.  
Timer 0/1 Mode Control register  
Contains the mode select bits, Counter/Timer select bits and external control  
gate bits for Timer 0 and Timer 1.  
II. 3.1  
Rev. B (20/09/96)  
TSC 80251A1  
Table 3.2. describes the external signals referred to in this chapter.  
Table 3.2. External signals  
Multiplexed  
With  
Mnemonic Type  
Description  
INT0#  
INT1#  
I
I
External Interrupt 0  
P3.2  
This input sets the IE0 interrupt flag in TCON register. IT0 selects the  
triggering method: IT0 = 1 selects edge–triggered (high–to–low);  
IT0 = 0 selects level–triggered (active low). INT0# also serves as  
external run control for Timer 0, when selected by GATE0 bit in  
TCON register.  
External Interrupt 1  
P3.3  
This input sets the IE1 interrupt flag in TCON register. IT1 selects the  
triggering method: IT1 = 1 selects edge–triggered (high–to–low);  
IT1 =0 selects level–triggered (active low). INT1# also serves as  
external run control for Timer 1, when selected by GATE1 bit in  
TCON register.  
T0  
T1  
I
I
Timer 0 External Clock Input  
P3.4  
P3.5  
When Timer 0 operates as a Counter, a falling edge on the T0 pin  
increments the count.  
Timer 1 External Clock Input  
When Timer 1 operates as a Counter, a falling edge on the T1 pin  
increments the count.  
3.2. Timer/Counter Operations  
For example, a basic operation is Timer registers THx and TLx (x = 0 or 1) connected in cascade to  
form a 16–bit Timer. Setting the run control bit (TRx) turns the Timer on by allowing the selected  
input to increment TLx. When TLx overflows it increments THx; when THx overflows it sets the  
Timer overflow flag (TFx) in TCON register. Setting the run control bit does not clear the THx and  
TLx Timer registers. Timer registers can be accessed to obtain the current count or to enter preset  
values. Timer 0 and Timer 1 can also be controlled by external pin INTx# to facilitate pulse width  
measurements.  
The C\Tx# control bit selects Timer operation or Counter operation by selecting the divided–down  
system clock or external pin Tx as the source for the counted signal.  
For Timer operation (C/Tx# = 0), the Timer register counts the divided–down system clock. The  
Timer register is incremented once every peripheral cycle, i.e. once every six states. Since six states  
equals 12 oscillator periods (clock cycles), the Timer clock rate is FOSC /12.  
For Counter operation (C/Tx# = 1), the Timer register counts the negative transitions on the Tx  
external input pin. When the sample of the external inputs is high in one cycle and low in the next,  
the Counter is incremented. Since it takes 12 states (24 oscillator periods) to recognize a negative  
transition, the maximum count rate is 1/24 of the oscillator frequency. There are no restrictions on  
II. 3.2  
Rev. B (20/09/96)  
TSC 80251A1  
the duty cycle of the external input signal, but to ensure that a given level is sampled at least once  
before it changes, it should be held for at least one full peripheral cycle.  
3.3. Timer 0  
Timer 0 functions as either a Timer or event Counter in four modes of operation. Figure 3.1. ,  
Figure 3.3. and Figure 3.4. show the logical configuration of each mode.  
Timer 0 is controlled by the four low–order bits of TMOD register (See Figure 3.6. ) and bits 0, 1,  
4 and 5 of TCON register (See Figure 3.5. ). TMOD register selects the method of Timer gating  
(GATE0), Timer or Counter operation (T/C0#), and mode of operation (M10 and M00). TCON  
register provides Timer 0 control functions: overflow flag (TF0), run control bit (TR0), interrupt flag  
(IE0), and interrupt type control bit (IT0).  
For normal Timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by the selected  
input. Setting GATE0 and TR0 allows external pin INT0# to control Timer operation. This setup can  
be used to make pulse width measurements.  
Timer 0 overflow (count rolls over from all 1s to all 0s) sets TF0 flag generating an interrupt request.  
3.3.1. Mode 0 (13–bit Timer)  
Mode 0 configures Timer 0 as an 13–bit Timer which is set up as an 8–bit Timer (TH0 register) with  
a modulo 32 prescaler implemented with the lower five bits of TL0 register (See Figure 3.1. ). The  
upper three bits of TL0 register are indeterminate and should be ignored. Prescaler overflow  
increments TH0 register.  
OSC  
B12  
C/Tx = 0  
C/Tx = 1  
TLx THx  
(5 bits) (8 bits)  
TFx  
OVERFLOW  
Timer Interrupt x  
Tx  
TRx  
GATEx  
INTx#  
Figure 3.1. Timer/Counter x (x = 0 or 1) in mode 0 and mode 1  
II. 3.3  
Rev. B (20/09/96)  
TSC 80251A1  
3.3.2. Mode 1 (16–bit Timer)  
Mode 1 configures Timer 0 as a 16–bit Timer with TH0 and TL0 connected in cascade (See  
Figure 3.2. ). The selected input increments TL0.  
OSC  
B12  
C/Tx = 0  
C/Tx = 1  
TLx THx  
(8 bits) (8 bits)  
TFx  
OVERFLOW  
Timer Interrupt x  
Tx  
TRx  
GATEx  
INTx#  
Figure 3.2. Timer/Counter x (x = 0 or 1) in mode 1  
3.3.3. Mode 2 (8–bit Timer with Auto–Reload)  
Mode 2 configures Timer 0 as an 8–bit Timer (TL0 register) that automatically reloads from TH0  
register (See Figure 3.3. ). TL0 overflow sets TF0 flag in TCON register and reloads TL0 with the  
contents of TH0, which is preset by software. When the interrupt request is serviced, hardware clears  
TF0. The reload leaves TH0 unchanged.  
OSC  
B12  
C/Tx = 0  
C/Tx = 1  
TLx  
(8 bits)  
TFx  
Timer Interrupt x  
Tx  
CONTROL  
RELOAD  
TRx  
THx  
(8 bits)  
GATEx  
INTx#  
Figure 3.3. Timer/Counter x (x = 0 or 1) in mode 2  
II. 3.4  
Rev. B (20/09/96)  
TSC 80251A1  
3.3.4. Mode 3 (Two 8–bit Timers)  
Mode 3 configures Timer 0 such that registers TL0 and TH0 operate as separate 8–bit Timers (See  
Figure 3.4. ). This mode is provided for applications requiring an additional 8–bit Timer or Counter.  
TL0 uses the Timer 0 control bits C/T0# and GATE0 in TMOD register, and TR0 and TF0 in TCON  
register in the normal manner. TH0 is locked into a Timer function (counting FOSC /12) and takes  
over use of the Timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of Timer 1 is  
restricted when Timer 0 is in mode 3.  
OSC  
B12  
C/T0 = 0  
C/T0 = 1  
TL0  
(8 bits)  
Timer Interrupt 0  
TF0  
T0  
CONTROL  
TR0  
GATE0  
INT0#  
TH0  
(8 bits)  
OSC  
TR1  
B12  
TF1  
Timer Interrupt 1  
CONTROL  
Figure 3.4. Timer/Counter in mode 3 : Two 8-bit Counters  
3.4. Timer 1  
Timer 1 functions as either a Timer or event Counter in three modes of operation. Figure 3.1. and  
Figure 3.3. show the logical configuration for modes 0, 1, and 2. Timer 1’s mode 3 is a hold–count  
mode.  
Timer 1 is controlled by the four high–order bits of TMOD register (See Figure 3.6. ) and bits 2, 3,  
6 and 7 of TCON register (See Figure 3.5. ). TMOD register selects the method of Timer gating  
(GATE1), Timer or Counter operation (C/T1#), and mode of operation (M11 and M01). TCON  
register provides Timer 1 control functions: overflow flag (TF1), run control bit (TR1), interrupt flag  
(IE1), and interrupt type control bit (IT1).  
Timer 1 operation in modes 0, 1 and 2 is identical to Timer 0. Timer 1 can serve as the Baud Rate  
Generator for the Serial Port. Mode 2 is best suited for this purpose.  
For normal Timer operation (GATE1 = 0), setting TR1 allows Timer register TL1 to be incremented  
by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control Timer operation.  
This setup can be used to make pulse width measurements.  
II. 3.5  
Rev. B (20/09/96)  
TSC 80251A1  
Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag generating an interrupt  
request.  
When Timer 0 is in mode 3, it uses Timer 1’s overflow flag (TF1) and run control bit (TR1). For this  
situation, use Timer 1 only for applications that do not require an interrupt (such as a Baud Rate  
Generator for the Serial Port) and switch Timer 1 in and out of mode 3 to turn it off and on.  
3.4.1. Mode 0 (13–bit Timer)  
Mode 0 configures Timer 1 as a 13–bit Timer, which is set up as an 8–bit Timer (TH1 register) with  
a modulo–32 prescaler implemented with the lower 5 bits of the TL1 register (See Figure 3.1. ). The  
upper 3 bits of TL1 register are ignored. Prescaler overflow increments TH1 register.  
3.4.2. Mode 1 (16–bit Timer)  
Mode 1 configures Timer 1 as a 16–bit Timer with TH1 and TL1 connected in cascade (See  
Figure 3.2. ). The selected input increments TL1.  
3.4.3. Mode 2 (8–bit Timer with Auto–Reload)  
Mode 2 configures Timer 1 as an 8–bit Timer (TL1 register) with automatic reload from TH1 register  
on overflow (See Figure 3.3. ). Overflow from TL1 sets overflow flag TF1 in TCON register and  
reloads TL1 with the contents of TH1, which is preset by software. The reload leaves TH1  
unchanged.  
3.4.4. Mode 3 (Halt)  
Placing Timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt Timer 1 when  
TR1 run control bit is not available, i.e. when Timer 0 is in mode 3.  
II. 3.6  
Rev. B (20/09/96)  
TSC 80251A1  
3.5. Registers  
TCON (088h)  
Timer/Counter Control register  
TF1  
7
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
6
5
4
3
2
1
0
TF1  
TR1  
TF0  
TR0  
IE1  
Timer 1 Overflow flag  
Cleared by hardware when processor vectors to interrupt routine.  
Set by hardware on Timer/Counter overflow.  
Timer 1 Run Control bit  
Clear to turn off Timer/Counter 1.  
Set to turn on Timer/Counter 1.  
Timer 0 Overflow flag  
Cleared by hardware when processor vectors to interrupt routine.  
Set by hardware on Timer/Counter overflow.  
Timer 0 Run Control bit  
Clear to turn off Timer/Counter 0.  
Set to turn on Timer/Counter 0.  
Interrupt 1 Edge flag  
Cleared by hardware when interrupt is processed if edge-triggered (See IT1).  
Set by hardware when external interrupt is detected out INT1# pin.  
IT1  
Interrupt 1 Type Control bit  
Clear to select low level active (level triggered) for external interrupt 1.  
Set to select falling edge active (edge triggered) for external interrupt 1.  
IE0  
Interrupt 0 Edge flag  
Cleared by hardware when interrupt is processed if edge-triggered (See IT0).  
Set by hardware when external interrupt is detected out INT0# pin.  
IT0  
Interrupt 0 Type Control bit  
Clear to select low level active (level triggered) for external interrupt 0.  
Set to select falling edge active (edge triggered) for external interrupt 0.  
Reset value = 0000 0000B  
Figure 3.5. TCON register  
II. 3.7  
Rev. B (20/09/96)  
TSC 80251A1  
TMOD (089h)  
Timer/Counter Mode register  
GATE1  
C/T1#  
6
M11  
M01  
GATE0  
C/T0#  
M10  
M00  
7
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
6
5
GATE1  
C/T1#  
M11  
Timer 1 Gating Control bit  
Clear to enable Timer 1 whenever TR1 bit is set.  
Set to enable Timer/Counter 1 only while INT1# pin is high and TR1 bit is set.  
Timer 1 Counter/Timer Select bit  
Cleared for Timer operation (input from internal system clock).  
Set for Counter operation (input from T1 input pin).  
Timer 1 Mode Select bits  
M11 M01  
Operating mode  
0
0
1
0
1
0
Mode 0: 8–bit Timer/Counter (TH1) with 5–bit prescalar (TL1)  
Mode 1: 16–bit Timer/Counter  
Mode 2: 8–bit auto–reload Timer/Counter (TL1). Reloaded from  
TH1 at overflow  
4
M01  
1
1
Mode 3: Timer 1 halted. Retains count.  
3
2
1
GATE0  
C/T0#  
M10  
Timer 0 Gating Control bit  
Clear to enable Timer 0 whenever TR0 bit is set.  
Set to enable Timer/Counter 0 only while INT0# pin is high and TR0 bit is set.  
Timer 0 Counter/Timer Select bit  
Cleared for Timer operation (input from internal system clock)  
Set for Counter operation (input from T0 input pin).  
Timer 0 Mode Select bit  
M10 M00  
Operating mode  
0
0
1
0
1
0
Mode 0: 8–bit Timer/Counter (TH0) with 5–bit prescalar (TL0).  
Mode 1: 16–bit Timer/Counter.  
Mode 2: 8–bit auto–reload Timer/Counter (TL0). Reloaded from  
TH0 at overflow.  
0
M00  
1
1
Mode 3: TL0 is an 8–bit timer/counter. TH0 is an 8–bit timer using  
timer 1’s TR1 and TF1 bits.  
Reset value = 0000 0000B  
Figure 3.6. TMOD register  
II. 3.8  
Rev. B (20/09/96)  
TSC 80251A1  
Serial I/O Port  
4.1. Introduction  
This chapter provides instructions on programming the Serial Port and generating the Serial I/0 Baud  
Rates with Timer 1 and the internal Baud Rate Generator. The Serial Input/Output Port supports  
communication with modems and other external peripheral devices.  
The Serial Port provides both synchronous and asynchronous communication modes. It operates as  
a Universal Asynchronous Receiver and Transmitter (UART) in three full–duplex modes (Modes 1,  
2 and 3). Asynchronous transmission and reception can occur simultaneously and at different Baud  
Rates. The UART supports framing–bit error detection, overrun error detection, multiprocessor  
communication, and automatic address recognition. The Serial Port also operates in a single  
synchronous mode (Mode 0).  
The synchronous mode (Mode 0) operates either at a single Baud Rate (80C51 compatibility) or at  
a variable Baud Rate with an independent and internal Baud Rate Generator. Mode 2 can operate at  
two Baud Rates. Modes 1 and 3 operate over a wide range of Baud Rates, which are generated by  
Timer 1 and internal Baud Rate Generator.  
The Serial Port signals are defined in Table 4.1. and the Serial Port special function registers are  
described in Table 4.2. Figure 4.1. is a block diagram of the Serial Port.  
Table 4.1. Serial Port signals  
Name  
Type  
Description  
Multiplexed with  
TXD  
O
Transmit Data  
P3.1  
In mode 0, TXD transmits the clock signal.  
In modes 1, 2 and 3, TXD transmits serial data.  
RXD  
I/O  
Receive Data  
P3.0  
In mode 0, RXD transmits and receives serial data.  
In mode 1,2 and 3, RXD receives serial data.  
For the three asynchronous modes, the UART transmits on the TXD pin and receives on the RXD  
pin. For the synchronous mode (Mode 0), the UART outputs a clock signal on the TXD pin and sends  
and receives messages on the RXD pin (See Figure 4.1. ). SBUF register, which holds received bytes  
and bytes to be transmitted, actually consists of two physically different registers. To send, software  
writes a byte to SBUF; to receive, software reads SBUF. The receive shift register allows reception  
of a second byte before the first byte has been read from SBUF. However, if software has not read  
the first byte by the time the second byte is received, the second byte will overwrite the first. The  
UART sets interrupt bits TI and RI on transmission and reception, respectively. These two bits share  
a single interrupt request and interrupt vector.  
Table 4.2. Serial Port SFRs  
Mnemonic  
Description  
Address  
SBUF  
Serial Buffer  
S:99h  
Two separate registers comprise the SBUF register. Writing to SBUF loads the  
transmit buffer and reading SBUF accesses the receive buffer.  
II. 4.1  
Rev.B (20/09/96)  
TSC 80251A1  
Mnemonic  
Description  
Address  
SCON  
Serial Port Control register  
S:98h  
Selects the Serial Port operating mode. SCON enables and disables the receiver,  
framing bit error detection, overrun error detection, multiprocessor  
communication, automatic address recognition and the Serial Port interrupt bits.  
SADDR  
SADEN  
Serial Address  
S:0A9h  
S:0B9h  
Defines the individual address for a slave device connected on the serial lines.  
Serial Address Enable register  
Specifies the mask byte that is used to define the given address for a slave  
device.  
BDRCON  
BRL  
Baud Rate Control register  
S:09Bh  
S:09Ah  
Enables and configures the internal Baud Rate register.  
Baud Rate Reload register  
Contains the auto–reload value of the Baud Rate Generator.  
IB Bus  
Write SBUF  
Read SBUF  
Load SBUF  
SBUF  
TXD  
RXD  
SBUF  
Transmitter  
Receiver  
Mode 0 Transmit  
Receive  
Shift register  
Serial Port  
Interrupt Request  
RI  
SCON  
TI  
Figure 4.1. Serial Port block diagram  
II. 4.2  
Rev.B (20/09/96)  
TSC 80251A1  
4.2. Modes of Operation  
The Serial Port can operate in one synchronous and three asynchronous modes.  
4.3. Synchronous Mode (Mode 0)  
Mode 0 is a half–duplex, synchronous mode, which is commonly used to expand the I/0 capabilities  
of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock pulses while  
the receive data (RXD) pin transmits or receives a byte of data. The 8–bit data are transmitted and  
received least–significant bit (LSB) first. Shifts occur in the last phase (S6P2) of every peripheral  
cycle, which corresponds to a Baud Rate of FOSC/12. Figure 4.2. shows the timing for transmission  
and reception in mode 0.  
Transmit  
TxD  
S3P1 S6P1  
Write to  
SBUF  
S6P2  
Shift  
S6P2  
S6P2  
S6P2  
S1P1  
S6P2  
D1  
D7  
D2 D6  
D0  
RxD  
TI  
S6P2  
Receive  
TxD  
S3P1 S6P1  
Write to  
SCON  
Set REN, Clear RI  
Shift  
RxD  
RI  
S6P2  
D1  
S6P2  
D0  
S6P2  
D6  
S6P2  
D7  
S5P2  
Figure 4.2. Mode 0 timings  
II. 4.3  
Rev.B (20/09/96)  
TSC 80251A1  
4.3.1. Transmission (Mode 0)  
Follow these steps to begin a transmission:  
D Write to SCON register clearing bits SM0, SM1 and REN.  
D Write the byte to be transmitted to the SBUF register. This write starts the transmission.  
Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of the  
following cycle, hardware shifts the LSB (D0) onto the RXD pin. At S3P1 of the next cycle, the TXD  
pin goes low for the first clock–signal pulse. Shifts continue every peripheral cycle. In the ninth cycle  
after the write to SBUF, the MSB (D7) is on the RXD pin. At the beginning of the 10th cycle,  
hardware drives the RXD pin high and asserts TI to indicate the end of the transmission.  
4.3.2. Reception (Mode 0)  
To start a reception in mode 0, write to the SCON register. Clear bits SM0, SM1 and RI and set the  
REN bit.  
Hardware executes the write to SCON in the last phase (S6P2) of a peripheral cycle (See  
Figure 4.2. ). In the second peripheral cycle clock–signal pulse, and the LSB (D0) is sampled on the  
RXD pin at S5P2. The D0 bit is then shifted into the shift register. After eight shifts at S6P2 of every  
peripheral cycle, the LSB (D7) is shifted into the shift register, and hardware asserts RI to indicate  
acompleted reception. Software can then read the received byte from SBUF.  
4.4. Asynchronous Modes (Modes 1, 2 and 3)  
The Serial Port has three asynchronous modes of operation:  
D Mode 1  
Mode 1 is a full–duplex, asynchronous mode. The data frame (See Figure 4.3. ) consists of 10 bits:  
one start, eight data bits, and one stop bit. Serial data is transmitted on the TXD pin and received  
on the RXD pin. When a message is received, the stop bit is read in the RB8 bit in SCON register.  
The Baud Rate is generated either by overflow of timer 1 or by overflow of the internal Baud Rate  
Generator (see “Baud Rate Generator” paragraph).  
D Modes 2 and 3  
Modes 2 and 3 are full–duplex, asynchronous modes. The data frame (See Figure 4.3. ) consists  
of 11–bit: one start bit, 8–bit data (transmitted and received LSB first), one programmable ninth  
data bit, and one stop bit. Serial data is transmitted on the TXD pin and received on the RXD pin.  
On receive, the ninth bit is read from RB8 bit in SCON register. On transmit, the ninth data bit  
is written to TB8 bit in SCON register. (Alternatively, you can use the ninth bit as a command/data  
flag.)  
G In mode 2, the Baud Rate is programmable to 1/32 or 1/64 of the oscillator frequency.  
G In mode 3, the Baud Rate is generated either by overflow of Timer 1 or by overflow of internal  
Baud Rate Generator.  
II. 4.4  
Rev.B (20/09/96)  
TSC 80251A1  
Mode 1  
D0 D1 D2 D3 D4 D5 D5 D6 D7  
8–bit data  
Start  
Stop  
Mode 2 and 3  
Start  
D0 D1 D2 D3 D4 D5 D5 D6 D7 D8  
9–bit data  
Stop  
Figure 4.3. Data frames (Modes 1, 2 and 3)  
4.4.1. Transmission (Modes 1, 2 and 3)  
Follow these steps to initiate a transmission:  
D Write to SCON register. Select the mode with SM0 and SM1 bits and clear REN bit. For modes  
2 and 3, also write the ninth bit to TB8 bit.  
D Write the byte to be transmitted to SBUF register. This write starts the transmission.  
4.4.2. Reception (Modes 1, 2 and 3)  
To prepare for a reception, set REN bit in SCON register. The actual reception is then initiated by  
a detected high–to–low transition on the RXD pin.  
4.5. Framing Bit Error Detection (Modes 1, 2 and 3)  
Framing bit error detection is provided for the three asynchronous modes. To enable the framing bit  
error detection feature, set SMOD0 bit in PCON register. When this feature is enabled, the receiver  
checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on  
the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the  
software sets FE bit in SCON register.  
Software may examine FE bit after each reception to check for data errors. Once set, only software  
or a reset clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit.  
4.6. Overrun Error Detection (Modes 1, 2 and 3)  
Overrun error detection is provided for the three asynchronous modes. To enable the overrun error  
detection feature, set SMOD0 bit in PCON register.  
II. 4.5  
Rev.B (20/09/96)  
TSC 80251A1  
This error occurs when a character received and not read by the CPU is overwritten by a new one.  
Figure 4.4. shows an example of Overrun Error.  
RXD  
Character 1  
Character 2  
RI  
OVR  
Character 1 is overwritten  
by the Character 2  
Figure 4.4. Overrun Error (Modes 1, 2 and 3)  
In this example Character 1 is received and RI is set. Then a second Character is sent before the CPU  
has read the first one. The First Character is overwritten by Character 2 and the Overrun Error bit  
(OVR) is set in SCON register to indicate the error.  
4.7. Multiprocessor Communication (Modes 2 and 3)  
Modes 2 and 3 provide a ninth–bit mode to facilitate multiprocessor communication. To enable this  
feature, set SM2 bit in SCON register. When the multiprocessor communication feature is enabled,  
the Serial Port can differentiate between data frames (ninth bit clear) and address frames (ninth bit  
set). This allows the microcontroller to function as a slave processor in an environment where  
multiple slave processors share a single serial line.  
When the multiprocessor communication feature is enabled, the receiver ignores frames with the  
ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the  
received address matches the slaves address, the receiver hardware sets RB8 and RI bits in SCON  
register, generating an interrupt.  
Note:  
ES bit must be set in IE register to allow RI bit to generate an interrupt.  
The addressed slave’s software then clears SM2 bit in SCON register and prepares to receive the data  
bytes. The other slaves are unaffected by these data bytes because they are waiting to respond to their  
own address.  
4.8. Automatic Address Recognition  
The automatic address recognition feature is enabled when the multiprocessor communication  
feature is enabled (SM2 bit in SCON register is set).  
Implemented in hardware, automatic address recognition enhances the multiprocessor  
communication feature by allowing the Serial Port to examine the address of each incoming  
II. 4.6  
Rev.B (20/09/96)  
TSC 80251A1  
command frame. Only when the Serial Port recognizes its own address, the receiver sets RI bit in  
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command  
frames addressed to other devices.  
If desired, you may enable the automatic address recognition feature in mode 1. In this configuration,  
the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame  
address matches the device’s address and is terminated by a valid stop bit.  
Notes:  
G
The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0  
(i.e, setting SM2 bit in SCON register in mode 0 has no effect).  
To support automatic address recognition, a device is identified by a given address and a broadcast  
address.  
4.8.1. Given Address  
Each device has an individual address that is specified in SADDR register; the SADEN register is  
a mask byte that contains don’t–care bits (defined by zeros) to form the device’s given address. The  
don’t–care bits provide the flexibility to address one or mores slaves at a time. The following  
example illustrates how a given address is formed.  
To address a device by its individual address, the SADEN mask byte must be 1111 1111B.  
For example:  
SADDR  
SADEN  
Given  
= 0101 0110B  
= 1111 1100B  
= 0101 01XXB  
The following is an example of how to use given addresses to address different slaves:  
Slave A: SADDR  
SADEN  
Given  
Slave B: SADDR  
SADEN  
Given  
Slave C: SADDR  
SADEN  
= 1111 0001B  
= 1111 1010B  
= 1111 0X0XB  
= 1111 0011B  
= 1111 1001B  
= 1111 0XX1B  
= 1111 0010B  
= 1111 1101B  
= 1111 00X1B  
Given  
The SADEN byte is selected so that each slave may be addressed separately.  
For slave A, bit 0 (the LSB) is a don’t–care bit; for slaves B and C, bit 0 is a 1. To communicate with  
slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000B).  
For slave A, bit 1 is a 0; for slaves B and C, bit 1 is a don’t care bit. To communicate with slaves A  
and B, but not slave C, the master must send an address with bits 0 and 1 both set (e.g.  
1111 0011B).  
To communicate with slaves A, B and C, the master must send an address with bit 0 set , bit 1 clear,  
and bit 2 clear (e.g. 1111 0001B).  
II. 4.7  
Rev.B (20/09/96)  
TSC 80251A1  
4.8.2. Broadcast Address  
A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros  
defined as don’t–care bits, e.g.:  
SADDR  
SADEN  
= 0101 0110B  
= 1111 1100B  
(SADDR) or (SADEN) = 1111 111XB  
The use of don’t–care bits provides flexibility in defining the broadcast address, however in most  
applications, a broadcast address is 0FFh.  
The following is an example of using broadcast addresses:  
Slave A: SADDR  
SADEN  
Given  
Slave B: SADDR  
SADEN  
Given  
Slave C: SADDR  
SADEN  
= 1111 0001B  
= 1111 1010B  
= 1111 1X11B  
= 1111 0011B  
= 1111 1001B  
= 1111 1X11B  
= 1111 0010B  
= 1111 1101B  
= 1111 1111B  
Given  
For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with all of the  
slaves, the master must send an address FFh.  
To communicate with slaves A and B, but not slave C, the master can send and address FBh.  
4.8.3. Reset Addresses  
On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast  
addresses are XXXX XXXXB(all don’t–care bits). This ensures that the Serial Port is backwards  
compatible with the 80C51 microcontrollers that do not support automatic address recognition.  
4.9. Baud Rates  
4.9.1. Internal Baud Rate Generator  
The Baud Rate Control register (BDRCON, see Figure 4.9. is added to the TSC80251A1 derivatives  
in order to manage the new functionality of the UART. Two Baud Rate Generators can supply the  
transmission clock to the UART: Timer 1 and the internal Baud Rate Generator as detailed below  
4.9.2. Baud Rate for Mode 0  
The transmission clock is either the internal Baud Rate Generator or the internal fixed prescaler. This  
selection is done by setting bit SRC in BDRCON register. The transmission clock is shown in  
Figure 4.5.  
II. 4.8  
Rev.B (20/09/96)  
TSC 80251A1  
By default, after a reset, the bit SRC is cleared and the transmission clock is compatible with 80C51  
microcontrollers. Setting this bit to one, selects the internal Baud Rate Generator. The 8–bit register  
BRL is the reload register of the Baud Rate Generator.  
4.9.3. Transmission Clock Selection  
D When SRC = 0, the Baud Rate is fully compatible with 80C51 microcontrollers. The 1/12 clock  
frequency supplies the Baud Rate: Baud_Rate = FOSC/12  
D When SRC = 1, the Baud Rate Generator is selected and is variable in two ranges:  
G When SPD = 1, the Fast mode is selected: Baud_Rate = Fosc/[4x(256–BRL)]  
G When SPD = 0, the Slow mode is selected: Baud_Rate = Fosc/[24x(256–BRL)].  
OSC  
6  
2  
SRC=0  
SRC=1  
UART  
SPD=0  
SPD=1  
2  
BRG  
SPD  
BRR  
BRL  
SRC  
Figure 4.5. Clock transmission sources in mode 0  
4.9.4. Baud Rate for Modes 1 and 3  
Two Baud Rate Generators can supply the Baud Rate to the UART: Timer 1 and the internal Baud  
Rate Generator. It is possible to have two different transmission clocks for the transmission and  
reception.  
4.9.4.1. Timer 1  
When Timer 1 is used as Baud Rate Generator, the Baud Rates in Modes 1 and 3 are determined by  
the Timer 1 overflow and the value of SMOD1 as follows:  
Mode 1 and 3,  
2SMOD1   FOSC  
Baud_Rate +  
[
(
)]  
12   32   256 * TH1  
and if the Baud Rate is known the value of TH1 is:  
2SMOD1   fOSC  
TH1 + 256 *  
384   Baud_Rate  
The configuration is shown in Figure 4.6.  
II. 4.9  
Rev.B (20/09/96)  
TSC 80251A1  
OSC  
12  
SMOD1=1  
C/T1=0  
TL1  
TH1  
TIMER1_BRG  
2  
T1  
C/T1=1  
SMOD1=0  
INT0#  
GATE0  
TR1  
SMOD1  
Control  
Figure 4.6. Timer 1 as Baud Rate Generator in modes 1 and 3  
4.9.4.2. Internal Baud Rate Generator  
When the internal Baud Rate Generator is used, the Baud Rates are determined by the BRG overflow,  
the value of SPD bit (Speed Mode) and the value of the SMOD1 bit (Serial Mode).  
2SMOD1   FOSC  
Baud_Rate +  
[
(
)]  
2   32   256 * BRL  
2SMOD1   FOSC  
BRL + 256 *  
64   Baud_Rate  
If the slow Mode is selected (SPD = 0, default mode), the Baud Rate is as follows:  
2SMOD1   FOSC  
Baud_Rate +  
[
(
)]  
12   32   256 * BRL  
2SMOD1   FOSC  
BRL + 256 *  
384   Baud_Rate  
The configuration is shown in the Figure 4.7.  
SMOD1=1  
INT_BRG  
SMOD1=0  
OSC  
2  
6  
SPD=0  
SPD=1  
BRG  
2  
SPD  
BRL  
BRR  
SMOD1  
Figure 4.7. Internal Baud Rate Generator in modes 1 and 3  
II. 4.10  
Rev.B (20/09/96)  
TSC 80251A1  
4.9.4.3. Baud Rate Selection  
TheBaudRateGeneratorfortransmitandreceiveclockscanbeselectedseparatelyviatheBDRCON  
register (See Figure 4.10. )  
Figure 4.8. gives the configuration of RBCK and TBCK bits to select the source of RX Clock and  
TX Clock.  
RBCK = 1  
INT_BRG  
TIMER1_BRG  
16  
RX Clock  
RBCK = 0  
RBCK  
TBCK = 1  
INT_BRG  
16  
TX Clock  
TIMER1_BRG  
TBCK = 0  
TBCK  
Figure 4.8. Baud Rate Generator selection  
4.9.5. Baud Rate for Mode 2  
The Baud Rate in mode 2 depends on the value of SMOD1 bit in PCON register. If SMOD1 = 0  
(default value on reset), the Baud Rate is 1/64 the oscillator frequency. If SMOD1 = 1, the Baud Rate  
is 1/32 the oscillator frequency.  
2SMOD1   FOSC  
The formula is given below:  
Baud_Rate +  
64  
The configuration is shown in Figure 4.9.  
OSC  
2  
2  
SMOD1 = 0  
16  
UART  
SMOD1 = 1  
SMOD1  
Figure 4.9. UART in mode 2  
II. 4.11  
Rev.B (20/09/96)  
TSC 80251A1  
4.10. Registers  
BDRCON (9Bh)  
Baud Rate Control register  
BRR  
TBCK  
RBCK  
SPD  
SRC  
7
6
5
4
3
2
1
0
Bit  
Number  
Bit  
Mnemonic  
Description  
7
6
5
4
3
2
1
0
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
BRR  
TBCK  
RBCK  
SPD  
SRC  
Baud Rate Run control bit  
Clear to stop the Baud Rate  
Set to start the Baud Rate  
Transmission Baud Rate Generator Selection bit  
Clear to select Timer 1 for the Baud Rate Generator  
Set to select Internal Baud Rate Generator  
Reception Baud Rate Generator Selection bit  
Clear to select Timer 1 for the Baud Rate Generator  
Set to select Internal Baud Rate Generator  
Baud Rate Speed control bit  
Clear to select the SLOW Baud Rate Generator when SRC = 0  
Set to select the FAST Baud Rate Generator when SRC = 1  
Baud Rate Source select bit in MODE 0  
= 1, selects the INTERNAL Baud Rate Generator,  
= 0, selects teh 1/12 clock as the Baud Rate Generator (fixed transmission  
clock in Mode 0)  
Reset value = XXX0 0000B  
Figure 4.10. BDRCON register  
II. 4.12  
Rev.B (20/09/96)  
TSC 80251A1  
BRL (9Ah)  
Baud Rate Reload register (8–bit)  
7
6
5
4
3
2
1
0
Reset value = 0000 0000B  
Figure 4.11. BRL register  
SADDR (0A9h)  
Serial Address register  
7
6
5
4
3
2
2
2
1
1
1
0
0
0
Reset value = 0000 0000B  
Figure 4.12. SADDR register  
SADEN (0B9h)  
Serial Address Enable register  
7
6
5
4
3
Reset value = 0000 0000B  
Figure 4.13. SADEN register  
SBUF (099h)  
Serial Buffer register  
7
6
5
4
3
Reset value = XXXX XXXXB  
Figure 4.14. SBUF register  
II. 4.13  
Rev.B (20/09/96)  
TSC 80251A1  
SCON (098h)  
Serial Control register  
FE/SM0  
OVR/SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
7
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
6
FE  
Framing Error bit  
To select this function, set SMOD0 bit in PCON register.  
Set by hardware to indicate an invalid stop bit.  
Must be cleared by software.  
Serial Port Mode bit 0  
SM0  
OVR  
To select this function, clear SMOD0 bit in PCON register.  
Software writes to bits SM0 and SM1 to select the Serial Port operating mode.  
Refer to SM1 bit for the mode selections.  
Overrun error bit  
To select this function, set SMOD0 bit in PCON register.  
Set by hardware to indicate an overwrite of the receive buffer.  
Must be cleared by software  
Serial Port Mode bit 1  
SM1  
To select this function, clear SMOD0 bit in PCON register.  
Software writes to bits SM1 and SMO to select the Serial Port operating mode.  
SMO SM1 Mode Description  
Baud Rate  
/12 or variable if SRC bit  
0
0
0
Shift register  
F
OSC  
BDRCON register is set  
Variable  
0
1
1
1
0
1
1
2
3
8–bit UART  
9–bit UART  
9–bit UART  
F /32 or F  
OSC  
/64  
OSC  
Variable  
5
SM2  
Serial Port Mode bit 2  
Software writes to bit SM2 to enable and disable the multiprocessor  
communication and automatic address recognition features.  
This allows the Serial Port to differentiate between data and command frames  
and to recognize slave and broadcast addresses.  
4
3
REN  
TB8  
Receiver Enable bit  
Clear to enable transmission. Set to enable reception.  
Transmit bit 8  
Modes 0 and 1: Not used.  
Modes 2 and 3: Software writes the ninth data bit to be transmitted to TB8.  
2
RB8  
Receiver bit 8  
Mode 0: Not used.  
Mode 1 (SM2 cleared): Set or cleared by hardware to reflect the stop bit received.  
Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth bit  
received.  
1
0
TI  
RI  
Transmit Interrupt flag  
Set by the transmitter after the last data bit is transmitted.  
Must be cleared by software.  
Receive Interrupt flag  
Set by the receiver after the stop bit of a frame has been received.  
Must be cleared by software.  
Reset value = 0000 0000B  
Figure 4.15. SCON register  
II. 4.14  
Rev.B (20/09/96)  
TSC 80251A1  
Pulse Measurement Unit  
5.1. Introduction  
This chapter describes the Pulse Measurement Unit (PMU) which allows to measure the width and  
the period of pulses. It is useful for each application using a smart analog sensor which provide a  
Pulse Width Modulated information.  
With standard peripherals, measuring both the period and the width of pulses series involve two  
Timers, hence two I/O Port lines. The PMU is specially designed to measure the period and the width  
of pulses using only one Timer and one I/O Port line. Compared to the standard solution, this new  
one saves one I/O Port line.  
5.2. Description  
Just after reset, the Pulse Measurement Mode selection bit (PMMOD) bit is equal to zero which  
places the PMU in test mode (PMU register, see Figure 5.13. ). This bit must be set to one before  
any PMU configuration, otherwise the TSC80251A1 behavior is unpredictable.  
The PMU includes three identical modules, as shown in Figure 5.1. Each module features one Pulse  
Measurement Input (PMIn) connected to one pin of Port 1 which provides the pulses to measure. The  
internal oscillator provide a clock reference commontoall the modulestocount cyclesbetweenpulse  
edges. When a new measurement is detected, the corresponding Pulse Measurement Finished flag  
(PMFn) is set. However, if the PMU Timer overflows before the measurement completion, the  
corresponding PMU overflow flags (PMVn) is set. When any of these flags is set, the PMU interrupt  
request which is shared by the three modules is sent to the Interrupt System (see IS in section 9).  
PMI0/P1.5  
PMF0  
PMU module 0  
PMV0  
PMI1/P1.6  
PMF1  
PMV1  
PMU  
Interrupt  
Request  
PMU module 1  
PMU module 2  
PMI2/P1.7  
OSC  
PMF2  
PMV2  
2  
Figure 5.1. PMU block diagram  
II. 5.1  
Rev. B (20/09/96)  
TSC 80251A1  
The PMU module structure is detailed in Figure 5.2. Each module features its own 8–bit Pulse  
Measurement prescaler (PMSCALn) which allows to adapt the PMU time base to the sensor. If the  
PMSCALn value is well chosen, the PMPERn value will be comprised between 128 and 255. Using  
the TSC80251A1 at its nominal speed, the prescaler then allows to achieve a measurement accuracy  
better than 1% while managing wave periods ranging from 20 ms to 1 ms.  
The PWM ratio is simply obtained by dividing the 8–bit PMU width value (PMWIDn) by the 8–bit  
PMU Period value (PMPERn). As shown on Figure 5.3. , the Timer is set to zero at the beginning  
of one measurement, hence the errors on the PMPERn value and on the PMWIDn value are both  
negative (+0/–1 LSB). However, due to the division, the maximum relative error on the PWM ratio  
then will be +/–1 LSB.  
8–bit PMPERn  
Load  
PMIn  
OSC  
Rst  
Clk  
8–bit Timer  
2  
PMSCALn  
8–bit  
Load  
Load  
Temp Register  
PMRn PMEn  
PMCON  
8–bit PMWIDn  
PMFn PMVn  
PMSTAT  
Figure 5.2. PMU module n (n = 0, 1, 2)  
Period Tn  
Width Wn  
PMIn  
Wn–1  
Tn–1  
Wn  
Tn  
PMWIDn  
PMPERn  
Timer  
0
0
Wn  
Wn–1  
Temporary  
register  
PMFn  
Reset by the Interrupt Service Routine  
Figure 5.3. PMU measurement  
II. 5.2  
Rev. B (20/09/96)  
TSC 80251A1  
All the status information regarding each module are gathered in the Pulse Measurement Status  
register (PMSTAT, See Figure 5.12. ). When an overflow occurs in one PMU, its PMSCALn value  
must be increased to slow down the PMU time base until the measured period is less than 256 PMU  
time base clock cycles.  
The Pulse Measurement Control register (PMCON, See Figure 5.5. ) allows to enable or disable each  
PMU module operation through the Pulse Measurement Run control bits (PMRn, n = 0, 1, 2). When  
PMUn is stopped, its Timer is disabled and its PMPERn and PMWIDn registers are frozen. When  
PMUn is running, its PMPERn and PMWIDn registers are periodically updated. Hence, in order to  
get a consistent measurement from PMUn (i.e. PMPERn and PMWIDn values relating to the same  
period), its flags must be reset by software before any measurement and its measurement must be  
read as soon as possible after completion (i.e. when PMFn is set and before the end of the next  
period). When PMUn overflows, it should be stopped before resetting its flag to prevent a false  
measurement update if the measurement is not yet completed.  
The PMCON register also allows to define the input polarity for each PMU through the Pulse  
Measurement Edge select bits (PMEn). The width measurement is performed either on the low level  
or the high level state as shown on Figure 5.4.  
(PMEn = 0)  
Period  
Width  
PMIn  
Width  
Period  
(PMEn = 1)  
Figure 5.4. Pulse measurement polarity  
II. 5.3  
Rev. B (20/09/96)  
TSC 80251A1  
5.3. Registers  
PMCON (0ADh)  
Pulse Measurement Control register  
PME2  
PME1  
PME0  
PMR2  
PMR1  
PMR0  
7
6
5
4
3
2
1
0
Bit  
Mnemonic  
Bit Number  
Description  
7
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
6
5
4
3
2
1
0
PME2  
PME1  
PME0  
Pulse Measurement 2 edge select bit  
Clear this bit to start PMU module n (n = 2) on falling edge.  
Set this bit to start PMU module n (n = 2) on rising edge.  
Pulse Measurement 1 edge select bit  
Clear this bit to start PMU module n (n = 1) on falling edge.  
Set this bit to start PMU module n (n = 1) on rising edge.  
Pulse Measurement 0 edge select bit  
Clear this bit to start PMU module n (n = 0) on falling edge.  
Set this bit to start PMU module n (n = 0) on rising edge.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
PMR2  
PMR1  
PMR0  
Pulse Measurement 2 run control bit  
Clear this bit to stop PMU module n (n = 2).  
Set this bit to start PMU module n (n = 2).  
Pulse Measurement 1 run control bit  
Clear this bit to stop PMU module n (n = 1).  
Set this bit to start PMU module n (n = 1).  
Pulse Measurement 0 run control bit  
Clear this bit to stop PMU module n (n = 0).  
Set this bit to start PMU module n (n = 0).  
Reset Value = X000 X000B  
Figure 5.5. PMCON register  
PMPER0 (0A2h)  
Pulse Measurement Period register 0 (8–bit read only)  
7
6
5
4
3
2
1
0
Reset Value = X000 X000B  
Figure 5.6. PMPER0 register  
II. 5.4  
Rev. B (20/09/96)  
TSC 80251A1  
PMPER1 (0A4h)  
Pulse Measurement Period register 1 (8–bit read only)  
7
6
5
4
3
2
2
2
2
2
1
1
1
1
1
0
0
0
0
0
Reset Value = XXXX XXXXB  
Figure 5.7. PMPER1 register  
PMPER2 (0A6h)  
Pulse Measurement Period register 2 (8–bit read only)  
7
6
5
4
3
Reset Value = XXXX XXXXB  
Figure 5.8. PMPER2 register  
PMSCAL0 (0AAh)  
Pulse Measurement Prescaler register (8–bit)  
7
6
5
4
3
Reset Value = XXXX XXXXB  
Figure 5.9. PMSCAL0 register  
PMSCAL1 (0ABh)  
Pulse Measurement Prescaler register (8–bit)  
7
6
5
4
3
Reset Value = XXXX XXXXB  
Figure 5.10. PMSCAL1 register  
PMSCAL2 (0ACh)  
Pulse Measurement Prescaler register (8–bit)  
7
6
5
4
3
Reset Value = XXXX XXXXB  
Figure 5.11. PMSCAL2 register  
II. 5.5  
Rev. B (20/09/96)  
TSC 80251A1  
PMSTAT (0AEh)  
Pulse Measurement Status register  
PMV2  
PMV1  
PMV0  
PMF2  
PMF1  
PMF0  
7
6
5
4
3
2
1
0
Bit  
Mnemonic  
Bit Number  
Description  
7
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
6
5
4
PMV2  
PMV1  
PMV0  
PMU Overflow flag  
Set by hardware when an overflow of the Counter has occured during the  
pulse measurement.  
Must be cleared by software.  
PMU Overflow flag  
Set by hardware when an overflow of the Counter has occured during the  
pulse measurement.  
Must be cleared by software.  
PMU Overflow flag  
Set by hardware when an overflow of the Counter has occured during the  
pulse measurement.  
Must be cleared by software.  
3
2
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
PMF2  
Pulse Measurement flag  
Cleared by hardware when PMU module 2 is stopped.  
Set by hardware when PMU module 2 detects a transition.  
Must be cleared by software to allow a new measurement.  
1
0
PMF1  
PMF0  
Pulse Measurement flag  
Cleared by hardware when PMU module 1 is stopped.  
Set by hardware when PMU module 1 detects a transition.  
Must be cleared by software to allow a new measurement.  
Pulse Measurement flag  
Cleared by hardware when PMU module 0 is stopped.  
Set by hardware when PMU module 0 detects a transition.  
Must be cleared by software to allow a new measurement.  
Reset Value = X000 X000B  
Figure 5.12. PMSTAT register  
II. 5.6  
Rev. B (20/09/96)  
TSC 80251A1  
PMU (09Fh)  
Pulse Measurement Unit Mode Control register  
PMU.0  
7
6
5
4
3
2
1
0
Bit  
Mnemonic  
Bit Number  
Description  
7
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
6
5
4
3
2
1
0
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
PMMOD  
Pulse Measurement Unit  
Must be set to one before any PMU configuration, otherwise the  
TSC80C251A1 behavior is unpredictable.  
Reset Value = XXXX XXX0B  
Figure 5.13. PMU register  
PMWID0 (0A3h)  
Pulse Measurement Width register (8–bit read only)  
7
6
5
4
3
2
1
0
Reset Value = XXXX XXX0B  
Figure 5.14. PMWID0 register  
II. 5.7  
Rev. B (20/09/96)  
TSC 80251A1  
PMWID1 (0A5h)  
Pulse Measurement Width register (8–bit read only)  
7
6
5
4
3
2
1
0
Reset Value = XXXX XXXXB  
Figure 5.15. PMWID1 register  
PMWID2 (0A7h)  
Pulse Measurement Width register (8–bit, read only)  
7
6
5
4
3
2
1
0
Reset Value = XXXX XXXXB  
Figure 5.16. PMWID2 register  
II. 5.8  
Rev. B (20/09/96)  
TSC 80251A1  
Event and Waveform Controller  
6.1. Introduction  
This chapter describes the Event and Waveform Controller (EWC) which is a superset of the  
Programmable Counter Array (PCA) found in some 80C51 microcontrollers. This is an on–chip  
peripheral of the TSC80251A1 which performs a variety of timing and counting operations,  
including Pulse Width Modulation (PWM).  
The EWC can be configured in two modes:  
D PCA  
D Enhanced PCA (EPCA)  
ThePCAmodehasuptofiveCompare/CapturemodulesusingthesametimebaseandeventCounter.  
The EPCA mode has the Compare/Capture modules using their own time base and event Counter.  
The EWC also provides the capability for a software Watchdog Timer (WDT).  
6.2. Features  
D Compatible with PCA: Programmable Counter Array (PCA mode)  
D Enhanced PCA (EPCA mode)  
D Programmable Counter mode with 8–bit parallel output on Port 1 (External Counter mode)  
D Five 16–bit Counter  
D Five 16–bit Compare/Capture modules  
D The last module can also be programmed as a Watchdog Timer (WDT)  
D Each module may use up to seven clock sources:  
G 1/12 of the clock frequency  
G 1/4 of the clock frequency  
G Timer 0 overflow (Modes 1, 2 and 3 )  
G External input on ECI (P1.2)  
G FOSC/2 (EPCA mode)  
G Timer 1 overflow (EPCA mode)  
G Baud Rate Generator (EPCA mode)  
D Each module can be programmed in any of the following modes:  
G Rising and/or falling edge Capture  
G Software Timer  
G High-speed Output  
G Pulse Width Modulation (PWM)  
II. 6.1  
Rev. B (20/09/96)  
TSC 80251A1  
6.3. PCA Mode  
6.3.1. Timers/Counters  
Figure 6.1. depicts the basic logic of the Timer/Counter portion of the PCA. The CH/CL special  
function register pair operates as a 16–bit Timer/Counter. The selected input increments CL (low  
byte) register. When CL overflows, CH (high byte) register increments after two oscillator periods;  
when CH overflows, it sets the PCA overflow flag (CF in CCON register) generating a PCA interrupt  
request if ECF bit in CMOD register is set.  
CPS1 and CPS0 bits in CMOD register select one of four signals as the input to the Timer/Counter  
(See Figure 6.1. ):  
D FOSC /12  
Provides a clock pulse at S5P2 of every peripheral cycle. With FOSC = 16 MHz, the Timer/Counter  
increments every 750 ns.  
D FOSC /4  
Provides clock pulses at S1P2, S3P2, and S5P2 of every peripheral cycle. With FOSC = 16 MHz,  
the Timer/Counter increments every 250 ns.  
D Timer 0 overflow  
The CL register is incremented at S5P2 of the peripheral cycle when Timer 0 overflows. This  
selection provides the PCA with a programmable frequency input.  
D External signal on Port 1.2/ECI  
The CPU samples the ECI pin at S1P2, S3P2 and S5P2 of every peripheral cycle. The first clock  
pulse (S1P2, S3P2 or S5P2) that occurs following a high–to–low transition at the ECI pin  
increments the CL register. The maximum input frequency for this input selection is FOSC /8.  
Setting the run control bit (CR in CCON register) turns the PCA Timer/Counter on, if the output of  
the NAND gate (See Figure 6.1. ) equals logic 1. The PCA Timer/Counter continues to operate  
during idle mode unless CIDL bit of CMOD register is set. CPU can read the contents of CH and  
CL registers at any time. However, writing to them is inhibited while they are counting i.e., when  
CR bit is set.  
II. 6.2  
Rev. B (20/09/96)  
TSC 80251A1  
Module 0  
Module 1  
Module 2  
Module 3  
Module 4  
CMOD  
CPS1 CPS0  
00  
01  
10  
11  
F
F
OSC/2  
EWC  
Interrupt  
OSC/4  
CH  
CL  
CF  
Timer 0  
(8 bits) (8 bits)  
P1.2/ECI  
Timer/Counter  
CR  
CIDL  
Processor  
in Idle Mode  
ECF  
CMOD  
Figure 6.1. EWC Timer/Counter in PCA mode  
6.3.2. Compare/Capture Modules  
Each Compare/Capture module is made up of a Compare/Capture register pair (CHx/CLx; x = 0, 1, 2,  
3, 4), a 16–bit comparator and various logic gates and signal transition selectors. The registers store  
the time or count at which an external event occurred (capture) or at which an action should occur  
(comparison). For example, in the PWM mode, the low–byte register Counter the duty cycle of the  
output waveform. The logical configuration of a Compare/Capture module controls depends on its  
mode of operation.  
Each module can be independently programmed for operation in any of the following modes:  
D 16–bit Capture mode with triggering on the positive edge, negative edge or either edge  
D Compare modes:  
G 16–bit software Timer  
G 16–bit high–speed output  
G 16–bit Watchdog Timer (module 4 only)  
G 8–bit Pulse Width Modulation  
The Compare function provides the capability for operating the five modules as Timers, event  
Counters or Pulse Width Modulators. Four modes employ the Compare function: 16–bit software  
Timer mode, high–speed output mode, WDT mode and PWM mode. In the first three of these, the  
Compare/Capture module continuously compares the 16–bit PCA Timer/Counter value with the  
16–bit value pre–loaded into the module’s CCAPxH/CCAPxL register pair. In the PWM mode, the  
module continuously compares the value in the low–byte PCA Timer/Counter register (CL) with an  
8–bit value in the CCAPxL module register. Comparisons are made three times per peripheral cycle  
to match the fastest PCA Timer/Counter clocking rate (FOSC/4).  
II. 6.3  
Rev. B (20/09/96)  
TSC 80251A1  
Setting ECOMx bit in a module’s mode register (CCAPMx) selects the Compare function for that  
module. To use the modules in the Compare modes, observe the following general procedure:  
G Select the module’s mode of operation.  
G Select the input signal for the PCA Timer/Counter.  
G Load the comparison value into the module’s Compare/Capture register pair.  
G Set the PCA Timer/Counter run Counter bit.  
G After a match causes an interrupt, clear the module’s Compare/Capture flag.  
D No operation  
Bit combinations programmed into a Compare/Capture module’s mode register (CCAPMx)  
determine the operation mode. Figure 6.10. provides bit definition and Table 6.1. lists the bit  
combinations of the available modes. Other bit combinations are invalid and produce undefined  
results.  
The Compare/Capture modules perform their programmed functions when their common time base,  
the PCA Timer/Counter, runs. The Timer/Counter is turned on and off with CR bit in CCON register.  
To disable any given module, program it for the “no operation” mode. The occurrence of a Capture,  
software Timer, or high–speed output event in a Compare/Capture module sets the module’s  
Compare/Capture flag (CCFx) in CCON register and generates a PCA interrupt request if the  
corresponding enable bit in CCAPMx register is set.  
The CPU can read or write CCAPxH and CCAPxL registers at any time.  
Table 6.1. PCA module modes  
ECOMx CAPPx CAPNx MATx TOGx PWMx ECCFx  
Module Mode  
0
(2)  
0
1
0
0
0
0
0
0
0
0
0
No operation  
(2)  
X
X
X
X
X
X
16–bit Capture  
on positive–edge trigger at CEXx  
(2)  
(2)  
(2)  
(2)  
0
1
1
1
0
0
0
0
0
0
16–bit Capture  
on negative–edge trigger at CEXx  
16-bit Capture  
on positive/negative-edge trigger at CEXx  
(2)  
(2)  
1
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
1
0
X
X
Compare: software Timer  
Compare: high–speed output  
Compare: 8–bit PWM  
1
1
1
0
(2)  
(2)  
(3)  
X
X
Compare: PCA WDT (CCAPM4 only)  
Notes:  
1. This table shows the CCAPMx register bit combinations for selecting the operating modes of the PCA  
Compare/Capture modules. Other bit combinations are invalid.  
2. X = indetermined; x = 0, 1, 2, 3, 4.  
3. For the PCA WDT mode, set also WDTE bit in CMOD register to enable the reset output signal.  
6.3.2.1. 16-bit Capture Mode  
The Capture mode (See Figure 6.2. ) provides the PCA with the ability to measure periods, pulse  
widths, duty cycles and phase differences at up to five separate inputs. External I/0 pins CEXO  
through CEX4 are sampled for signal transitions (positive and/or negative as specified). When a  
II. 6.4  
Rev. B (20/09/96)  
TSC 80251A1  
Compare/Capture module programmed for the Capture mode detects the specified transition, it  
captures the PCA Timer/Counter value. This records the time at which an external event is detected,  
with a resolution equal to the Timer/Counter clock period.  
To program a Compare/Capture module for the 16–bit Capture mode, program the CAPPx and  
CAPNx bits in the module’s CCAPMx register as follows:  
D To trigger the Capture on a positive transition, set CAPPx and clear CAPNx  
D To trigger the Capture on a negative transition, set CAPNx and clear CAPPx  
D To trigger the Capture on a positive or negative transition, set both CAPPx and CAPNx  
Table 6.1. lists the bit combinations for selecting module modes. For modules in the Capture mode,  
detection of a valid signal transition at the I/O pin (CEXx) causes hardware to load the current PCA  
Timer/Counter value into the Compare/Capture registers (CCAPxH/CCAPxL) and to set the  
module’s Compare/Capture flag (CCFx) in the CCON register. If the corresponding interrupt enable  
bit (ECCFx) inthe CCAPMxregister is set, a the PCAsendsan interrupt request to the EWC interrupt  
handler.  
Since hardware does not clear the event flag when the interrupt is processed, the user must clear the  
flag by software. A subsequent Capture by the same module overwrites the existing captured value.  
To preserve a captured value, save it in RAM with the interrupt service routine before the next  
Capture event occurs.  
PCA Timer/Counter  
Count  
Input  
CH  
CL  
(8bits) (8bits)  
Capture  
CEX  
x = 0, 1, 2, 3, 4  
CCAPxH CCAPxL  
EWC  
Interrupt  
CCFx  
CCON Register  
Enable  
0
CAPPx CAPNx  
0
0
0
ECCFx  
0
7
CCAPMx Mode Register  
(x = 0, 1, 2, 3, 4)  
Figure 6.2. PCA 16–bit Capture Mode  
II. 6.5  
Rev. B (20/09/96)  
TSC 80251A1  
6.3.2.2. 16–bit Software Timer Mode  
To program a Compare/Capture module for the 16–bit software Timer mode (See Figure 6.3. ), set  
the ECOMx and MATx bits in the module’s CCAPMx register. Table 6.1. lists the bit combinations  
for selecting module modes.  
A match between the PCA Timer/Counter and the Compare/Capture registers (CCAPxH/CCAPxL)  
sets the module’s Compare/Capture flag (CCFx in CCON register). This generates an interrupt  
request if the corresponding interrupt enable bit (ECCFx in CCAPMx register) is set. Since hardware  
does not clear the Compare/Capture flag when the interrupt is processed, the user must clear the flag  
in software. During the interrupt routine, a new 16–bit Compare value can be written to the  
Compare/Capture registers (CCAPxH/CCAPxL).  
PCA Timer/Counter Compare/Capture Module  
CH  
CL  
CCAPxH CCAPxL  
(8 bits) (8 bits)  
Count  
(8 bits) (8 bits)  
Toggle  
Match  
16-Bit  
Comparator  
CEXx  
EWC  
Interrupt  
Enable  
CCFx  
CCON  
0
Enable  
7
ECOMx 0  
0
MATx TOGx  
ECCFx  
0
CCAPMx Mode Register  
x = 0, 1, 2, 3, 4  
“0”  
Reset  
Write to  
CCAPxL  
For software Timer mode, set ECOMx and MATx.  
For high speed output mode, set ECOMx, MATx  
and TOGx.  
“1”  
Write to CCAPxH  
Figure 6.3. PCA Software Timer and High–Speed Output Modes  
Note:  
To prevent an invalid match while updating these registers, user software should write to CCAPxL first, then  
CCAPxH. A write to CCAPxL clears the ECOMx bit disabling the Compare–function, while a write to CCAPxH  
sets the ECOMx bit re–enabling the Compare function.  
6.3.2.3. High-Speed Output Mode  
The high–speed output mode (See Figure 6.3. ) generates an output signal by toggling the module’s  
I/0 pin (CEXx) when a match occurs. This provides greater accuracy than toggling pins in software  
because the toggle occurs before the interrupt request is serviced. Thus, interrupt response time does  
not affect the accuracy of the output.  
To program a Compare/Capture module for the high–speed output mode, set the ECOMx, MATx,  
TOGx bits in the module’s CCAPMx register. Table 6.1. lists the bit combinations for selecting  
module modes. A match between the PCA Timer/Counter and the Compare/Capture registers  
(CCAPxH/CCAPxL) toggles the CEXx pin and sets the module’s Compare/Capture flag (CCFx in  
II. 6.6  
Rev. B (20/09/96)  
TSC 80251A1  
CCON register). By setting or clearing the CEXx pin in software, the user selects whether the match  
toggles the pin from low to high or vice versa.  
6.3.2.4. Watchdog Timer mode  
A Watchdog Timer (WDT) provides the means to recover from routines that do not complete  
successfully. A WDT automatically invokes a device reset if it does not regularly receive hold–off  
signals. Watchdog Timers are used in applications that are subject to electrical noise, power glitches,  
electrostatic discharges, etc., or where high reliability is required.  
The PCA provides a 16–bit programmable frequency WDT as a mode option on Compare/Capture  
module 4. This mode generates a device reset when the count in the PCA Timer/Counter matches the  
value stored in the module 4 Compare/Capture registers. A PCA WDT reset has the same effect as an  
external reset.  
Module 4 is the only PCA module that has the WDT mode (See Figure 6.4. ). When not programmed  
as a WDT, it can be used in the other modes.  
To program module 4 for the PCA WDT mode:  
D Set ECOM4 and MAT4 bits in CCAPM4 register and WDTE bit in CMOD register.  
Table 6.1. lists the bit combinations for selecting module modes.  
D Select the desired input for the PCA Timer/Counter by programming CPS0 and CPS1 bits in  
CMOD register (See Figure 6.15. ).  
D Enter a 16–bit comparison value in the Compare/Capture registers (CCAP4H/CCAP4L).  
D Enter a 16–bit initial value in the PCA Timer/Counter (CH/CL) or use the reset value (0000h).  
D The difference between these values multiplied by the PCA input pulse rate determines the  
running time to ”expiration.”  
D Set the Timer/Counter run Counter bit (CR in CCON register) to start the PCA WDT.  
D The PCA WDT generates a reset signal each time a match occurs.  
D To hold off a PCA WDT reset, the user has three options:  
G Periodically change the comparison value in CCAP4H/CCAP4L so a match never occurs.  
G Periodically change the PCA Timer/Counter value so a match never occurs.  
G Disable the module 4 reset output signal by clearing WDTE bit before a match occurs, then  
later re–enable it.  
The first two options are more reliable because the Watchdog Timer is not disabled as in the third  
option. The second option is not recommended if other PCA modules are in use, since the five  
modules share a common time base. Thus, in most applications the first option is the best one.  
II. 6.7  
Rev. B (20/09/96)  
TSC 80251A1  
PCA Timer/Counter  
Compare/Capture Module  
CL  
(8 bits)  
CH  
(8 bits)  
CCAPxL  
(8 bits)  
CCAPxH  
(8 bits)  
Count  
Match  
16-Bit  
Comparator  
PCA WDT  
Reset  
Enable  
WDTE  
CMOD.6  
ECOM4  
0
0
1
0
0
7
CCAPM4 Mode Register  
“0”  
“1”  
For software Timer mode, set ECOMx and MATx  
For high speed output mode, set ECOMx, MA  
TOGx.  
Reset  
Write to  
CCAP4L  
Write to  
CCAP4H  
Figure 6.4. PCA Watchdog Timer mode  
6.3.2.5. Pulse Width Modulator Mode  
The five PCA Compare/Capture modules can be independently programmed to function as Pulse  
Width Modulators (PWM). The modulated output, which has an 8–bit pulse width resolution is  
available on CEXx pin. The PWM output can be used to convert digital data to an analog signal with  
simple external circuitry.  
In this mode, the value in the low byte of the PCA Timer/Counter (CL) is continuously compared  
with the value in the low byte of the Compare/Capture register (CCAPxL; x = 0, 1, 2, 3, 4). When  
CL < CCAPxL, the output waveform is low (See Figure 6.6. ). When a match occurs (CL =  
CCAPxL), the output waveform goes high and remains high until CL register rolls over from FFh to  
00h, ending the period. At roll–over the output returns to low, the value in CCAPxH register is loaded  
into CCAPxL register, and a new period begins.  
The value in CCAPxL register determines the duty cycle of the current period.  
The value in CCAPxH register determines the duty cycle of the following period.  
Changing the value in CCAPxL over time modulates the pulse width. As depicted in Figure 6.6. , the  
8–bit value in CCAPxL can vary from 0 (100% duty cycle) to 255 (0.4% duty cycle).  
II. 6.8  
Rev. B (20/09/96)  
TSC 80251A1  
To program a Compare/Capture module for the PWM mode:  
D Set ECOMx and PWMx bits in the module’s CCAPMx register. Table 6.1. lists the bit  
combinations for selecting module modes.  
D Select the desired input for the PCA Timer/Counter by programming CPS0 and CPS1 bits in  
CMOD register.  
D Enter an 8–bit value in CCAPxL to specify the duty cycle of the first period of the PWM output  
waveform.  
D Enter an 8–bit value in CCAPxH to specify the duty cycle of the second period.  
D Set the Timer/Counter run Counter bit (CR in CCON register) to start the PCA Timer/Counter.  
Note:  
To change the value in CCAPxL without glitches, write the new value to the high byte register (CCAPxH). This  
value is shifted by hardware into CCAPxL when CL rolls over from FFh to 00h.  
The frequency of the PWM output equals the frequency of the PCA Timer/Counter input signal  
divided by 256. The highest frequency occurs when the FOSC/4 input is selected for the PCA  
Timer/Counter. For FOSC = 16 MHz, this is 15.6 KHz.  
CCAPxH  
CL rollover from FFH TO 00h  
loads CCAPxH contents into  
CCAPxL  
CCAPxL  
“0”  
CL < CCAPxL  
8-Bit  
Comparator  
CEX  
CL (8 bits)  
CL >= CCAPxL  
“1”  
x = 0, 1, 2 or 4  
ECOMx  
0
0
0
0
PWMx  
0
0
7
CCAPMx Mode Register  
Figure 6.5. PWM mode  
II. 6.9  
Rev. B (20/09/96)  
TSC 80251A1  
CCAPxL  
Duty Cycle  
1
Output Waveform  
255  
0.4%  
0
1
230  
128  
10%  
50%  
0
1
0
1
0
1
0
25  
0
90%  
100%  
Figure 6.6. PWM variable duty cycle  
6.4. Enhanced PCA mode  
The Enhanced PCA mode (EPCA) provides all the PCA functionalities with additional features. It  
has the five Compare/Capture modules using their own EPCA Timer/Counter. One Timer/Counter  
and its Capture/Compare module form an EPCA unit. These five EPCA units may be linked to form a  
Time Base Array (TBA).  
The EPCA mode is enabled by EPCA bit in CRC register. After reset, EPCA mode is disabled and the  
EWC is configured in PCA mode.  
Please notice that the external Counter mode (See NO TAG) takes precedence over the EPCA mode  
and should be disabled to have the EPCA working.  
II. 6.10  
Rev. B (20/09/96)  
TSC 80251A1  
6.4.1. Timers/Counters  
EPCA mode features five identical Timers/Counters instead of one in PCA mode. Each  
Timer/Counter is dedicated to one module. The structure of the EPCA unit is shown on Figure 6.7.  
EPCA Timers/Counters are very similar to PCA Timer/Counter. The behavior of the  
Capture/Compare module is exactly the same as in PCA mode. All the differences are highlighted  
below:  
D Independent Counter High and Counter Low registers (CHx and CLx; x = 0, 1, 2, 3, 4). In fact, in  
EPCA mode, CL is used as CL0 and CH is used as CH0.  
D Independent Counter Run Counter bits (CRx; x = 0, 1, 2, 3, 4). These flags are gathered in the  
Counter Run Counter register (CRC). CR bit of CCON register is not used in EPCA mode.  
D Independent Counter Idle Counter bits (CIDLx; x = 0, 1, 2, 3, 4). These flags are in the Counter  
Mode registers (CMODx; x = 1, 2, 3). CIDL bit of CMOD register is not used in EPCA mode.  
D Up to seven different clock sources instead of four. They are selected independently for each  
Timer/Counter by the Count Pulse Select bits (CPx(2:0); x = 0, 1, 2, 3, 4). Three bits encode seven  
possible choice and one reserved. If CPx2 = 0, CPx(1:0) is performing the same selection as would  
CPS1:0 in PCA mode. The three new choices are provided by CPx2 set to one:  
G Fastest clock: FOSC/4 is selected by CPx(1:0)=00.  
G Timer 1 overflow: Timer 1 is selected by CPx(1:0)=01.  
G Baud Rate Generator: it is selected by CPx(1:0)=11.  
D Independent Counter Overflow flags (CFx; x = 0, 1, 2, 3, 4). These flags are gathered in the  
Counter Overflow Flag register (COF). CF bit of CCON register is not used in EPCA mode. When  
a flag is set, it produces an EWC interrupt request if the corresponding Enable Counter Overflow  
flag (ECFx; x = 0, 1, 2, 3, 4) is set. These flags are gathered in the Enable Counter Overflow Flag  
register (ECOF). ECF bit of CMOD register is not used in EPCA mode. They must be cleared by  
software.  
D Four independent Compare/Capture interrupt request for CCFx (x = 1, 2, 3, 4). Each of them has  
its own interrupt vector (See “Interrupt System” chapter). Nevertheless CCF0 bit shares the  
general EWC interrupt request with the Counter Overflow flags (CFx; x = 0, 1, 2, 3, 4). All CCFx  
(x = 0, 1, 2, 3, 4) bits are gathered in CCON register as in PCA mode. The Enable CCFx interrupt  
bits (ECCFx; x = 0, 1, 2, 3, 4) are in the Compare/Capture Module mode registers (CCAPMx; x =  
0, 1, 2, 3, 4) which works exactly the same as in PCA mode.  
II. 6.11  
Rev. B (20/09/96)  
TSC 80251A1  
CCAPMn  
ECCFn  
CPn2  
CPn1  
CPn0  
CMODx (x = 1, 2, 3)  
CCON  
CCFn  
EWCn  
Interrupt  
000  
001  
010  
F
F
OSC/12  
Capture/Compare  
Modules n  
OSC/4  
Timer 0  
EWC  
Interrupt  
P1.2/ECI  
011  
100  
CHn  
(8 bits) (8 bits)  
CLn  
CFn  
COF  
F
OSC/2  
101  
110  
111  
Timer 1  
Timer/Counter  
reserved  
BRG  
ECFn  
CIE  
CRn  
Module (n = 1, 2, 3, 4)  
CIDL  
Processor  
in Idle Mode  
CCAPM0  
ECCF0  
CP02  
CP01  
CP00  
CMOD  
CCON  
CCF0  
000  
F
F
OSC/12  
Capture/Compare  
Module 0  
001  
010  
EWC  
OSC/4  
Timer 0  
Interrupt  
P1.2/ECI  
011  
100  
CH0  
CL0  
CF0  
(8 bits) (8 bits)  
F
OSC/2  
COF  
101  
110  
111  
Timer 1  
Timer/Counter  
reserved  
BRG  
ECF0  
CIE  
CR0  
Module 0  
CIDL  
Processor  
in Idle Mode  
Figure 6.7. EWC Timer/Counter in EPCA mode  
II. 6.12  
Rev. B (20/09/96)  
TSC 80251A1  
6.5. Registers  
CCAP0H (0FAh)  
CCAP1H (0FBh)  
CCAP2H (0FCh)  
CCAP3H (0FDh)  
CCAP4H (0FEh)  
Compare/Capture Module x (x = 0, 1, 2, 3, 4) High registers  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000B  
Figure 6.8. EWC CCAPxH registers (x = 0, 1, 2, 3, 4)  
CCAP0L (0EAh)  
CCAP1L (0EBh)  
CCAP2L (0ECh)  
CCAP3L (0EDh)  
CCAP4L (0EEh)  
Compare/Capture Module x (x = 0, 1, 2, 3, 4) Low registers  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000B  
Figure 6.9. EWC CCAPxL registers (x = 0, 1, 2, 3, 4)  
II. 6.13  
Rev. B (20/09/96)  
TSC 80251A1  
CCAPM0 (0DAh)  
CCAPM1 (0DBh)  
CCAPM2 (0DCh)  
CCAPM3 (0DDh)  
CCAPM4 (0DEh)  
Compare/Capture Module x (x = 0, 1, 2, 3, 4) Mode registers  
7
ECOMx  
CAPPx  
CAPNx  
MATx  
TOGx  
PWMx  
ECCFx  
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
6
ECOMx  
Enable Compare Mode bit  
Clear to disable the Compare function. Set to enable the Compare function.  
The Compare function is used to implement the software Timer, high-speed output,  
PWM and WDT modes.  
5
4
3
CAPPx  
CAPNx  
MATx  
Capture Mode (Positive) bit  
Clear to disable the Capture function triggered by a positive edge on CEXx pin.  
Set to enable the Capture function triggered by a positive edge on CEXx pin.  
Capture Mode (Negative) bit  
Clear to disable the Capture function triggered by a negative edge on CEXx pin.  
Set to enable the Capture function triggered by a negative edge on CEXx pin.  
Match bit  
Set by hardware when a match of the PCA Timer/Counter with the  
Compare/Capture register sets the CCFx bit in the CCON register, flagging an  
interrupt.  
Must be cleared by software.  
2
TOGx  
Toggle bit  
The toggle mode is configured by setting ECOMx, MATx and TOGx bits.  
Set by hardware when a match of the PCA Timer/Counter with the  
Compare/Capture register toggles the CEXx pin.  
Must be cleared by software.  
1
0
PWMx  
ECCFx  
Pulse Width Modulation Mode bit  
Set to configure the module for operation as an 8-bit Pulse Width Modulator with  
output waveform on CEXx pin.  
Must be cleared by software.  
Enable CCFx Interrupt bit  
Set to enable Compare/Capture flag CCFx in CCON register to generate an  
interrupt request.  
Must be cleared by software.  
Reset Value = X000 0000B  
Figure 6.10. EWC CCAPMx (x = 0, 1, 2, 3, 4) registers  
II. 6.14  
Rev. B (20/09/96)  
TSC 80251A1  
CCON (0D8h)  
Timer/Counter Control register  
CF  
7
CR  
6
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
CF  
PCA Timer/Counter Overflow flag  
Set by hardware when the PCA Timer/Counter rolls over. This generates a PCA  
interrupt request if the ECF interrupt enable bit in CMOD register is set.  
CF can be set by hardware or software but must be cleared by software.  
6
CR  
PCA Timer/Counter Run Control bit  
Clear to turn the PCA Timer/Counter off.  
Set to turn the PCA Timer/Counter on.  
5
4
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
CCF4  
PCA Module 4 Compare/Capture flag  
Set by hardware when a match or capture occurs. This generates a PCA interrupt  
request if the ECCF4 interrupt enable bit in the corresponding CCAPM4 register is  
set.  
Must be cleared by software.  
3
2
1
0
CCF3  
CCF2  
CCF1  
CCF0  
PCA Module 3 Compare/Capture flag  
Set by hardware when a match or capture occurs. This generates a PCA interrupt  
request if the ECCF3 interrupt enable bit in the corresponding CCAPM3 register is  
set.  
Must be cleared by software.  
PCA Module 2 Compare/Capture flag  
Set by hardware when a match or capture occurs. This generates a PCA interrupt  
request if the ECCF2 interrupt enable bit in the corresponding CCAPM2 register is  
set.  
Must be cleared by software.  
PCA Module 1 Compare/Capture flag  
Set by hardware when a match or capture occurs. This generates a PCA interrupt  
request if the ECCF1 interrupt enable bit in the corresponding CCAPM1 register is  
set.  
Must be cleared by software.  
PCA Module 0 Compare/Capture flag  
Set by hardware when a match or capture occurs. This generates a PCA interrupt  
request if the ECCF0 interrupt enable bit in the corresponding CCAPM0 register is  
set.  
Must be cleared by software.  
Reset Value = 00X0 0000B  
Figure 6.11. EWC CCON register  
II. 6.15  
Rev. B (20/09/96)  
TSC 80251A1  
CH0=CH (0F9h)  
CH1 (0F4h)  
CH2 (0F5h)  
CH3 (0F6h)  
CH4 (0F7h)  
Counter x (x = 0, 1, 2, 3, 4) High registers  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000B  
Figure 6.12. EWC CHx registers (x = 0, 1, 2, 3, 4)  
CIE (0E3h)  
Timer/Counter Interrupt Enable register  
ECF4  
ECF3  
ECF2  
ECF1  
ECF0  
7
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
6
5
4
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
ECF4  
Enable Counter 4 Overflow bit  
Clear to disable the interrupt generated by CF4 bit in COF register.  
Set to enable CF4 bit in COF register to generate an interrupt.  
3
2
1
0
ECF3  
ECF2  
ECF1  
ECF0  
Enable Counter 3 Overflow bit  
Clear to disable the interrupt generated by CF3 bit in COF register.  
Set to enable CF3 bit in COF register to generate an interrupt.  
Enable Counter 2 Overflow bit  
Clear to disable the interrupt generated by CF2 bit in COF register.  
Set to enable CF2 bit in COF register to generate an interrupt.  
Enable Counter 1 Overflow bit  
Clear to disable the interrupt generated by CF1 bit in COF register.  
Set to enable CF1 bit in COF register to generate an interrupt.  
Enable Counter 0 Overflow bit  
Clear to disable the interrupt generated by CF0 bit in COF register.  
Set to enable CF0 bit in COF register to generate an interrupt.  
Reset Value = XXX0 0000B  
Figure 6.13. EWC CIE register  
II. 6.16  
Rev. B (20/09/96)  
TSC 80251A1  
CL0=CL (0E9h)  
CL1 (0E4h)  
CL2 (0E5h)  
CL3 (0E6h)  
CL4 (0E7h)  
Counter x (x = 0, 1, 2, 3, 4) Low registers  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000B  
Figure 6.14. EWC CLx registers (x = 0, 1, 2, 3, 4)  
II. 6.17  
Rev. B (20/09/96)  
TSC 80251A1  
CMOD (0D9h)  
Counter Mode register  
CIDL  
7
WDTE  
6
CPS1  
CPS0  
ECF  
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
CIDL  
Counter Idle Control bit  
Clear to let the EWC running during Idle mode.  
Set to stop the EWC running when Idle mode is invoked.  
6
WDTE  
Watchdog Timer Enable bit  
Clear to disable the Watchdog Timer function on EWC module 4.  
Set to enable the Watchdog Timer function on EWC module 4.  
5
4
3
2
1
0
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
CPS1  
CPS0  
ECF  
EWC Count Pulse Select bits  
CPS1 CPS0  
Clock source  
Internal Clock, Fosc/12  
Internal Clock, Fosc/4  
Timer 0 overflow  
External clock at ECI/P1.2 pin (Max. Rate = Fosc/8)  
0
0
1
1
0
1
0
0
Enable Counter Overflow Interrupt bit  
Clear to disable the interrupt generated by CF bit in CCON register.  
Set to enable CF bit in CCON register to generate an interrupt.  
Figure 6.15. EWC CMOD register  
II. 6.18  
Rev. B (20/09/96)  
TSC 80251A1  
CMOD1 (0DFh)  
Counter 1 Mode register  
CID1  
CP12  
CP11  
CP10  
CID0  
CP02  
CP01  
CP00  
7
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number  
Mnemonic  
7
CID1  
Timer/Counter 1 Idle Control bit  
Clear to let the EWC running during Idle mode.  
Set to stop the EWC running when Idle mode is invoked.  
6
5
4
3
CP12  
CP11  
CP10  
CID0  
EWC Module 1 Count Pulse Select bits  
CP12 CP11 CP10  
Clock source  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Internal clock, Fosc/12  
Internal clock, Fosc/4  
Timer 0 overflow  
External clock at ECI/P1.2 pin (Max. Rate = Fosc/8)  
Internal clock, Fosc/2  
Timer 1 overflow  
Reserved  
Baud Rate Generator overflow  
Timer/Counter 0 Idle Control bit  
Clear to let the EWC running during Idle mode.  
Set to stop the EWC running when Idle mode is invoked.  
2
1
0
CP02  
CP01  
CP00  
EWC Module 0 Count Pulse Select bits  
CP02 CP01 CP00  
Clock source  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Internal clock, Fosc/12  
Internal clock, Fosc/4  
Timer 0 overflow  
External clock at ECI/P1.2 pin (Max. Rate = Fosc/8)  
Internal clock, Fosc/2  
Timer 1 overflow  
Reserved  
Baud Rate Generator overflow  
Reset Value = 0000 0000B  
Figure 6.16. EWC CMOD1 register  
II. 6.19  
Rev. B (20/09/96)  
TSC 80251A1  
CMOD2 (0EFh)  
Counter 2 Mode register  
CID3  
7
CP32  
CP31  
CP30  
CID2  
CP22  
CP21  
CP20  
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
CID3  
Timer/Counter 3 Idle Control bit  
Clear to let the EWC running during Idle mode.  
Set to stop the EWC running when Idle mode is invoked.  
6
5
4
3
CP32  
CP31  
CP30  
CID2  
EWC Module 3 Count Pulse Select bits  
CP32 CP31 CP30  
Clock source  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Internal clock, Fosc/12  
Internal clock, Fosc/4  
Timer 0 overflow  
External clock at ECI/P1.2 pin (Max. Rate = Fosc/8)  
Internal clock, Fosc/2  
Timer 1 overflow  
Reserved  
Baud Rate Generator overflow  
Timer/Counter 2 Idle Control bit  
Clear to let the EWC running during Idle mode.  
Set to stop the EWC running when Idle mode is invoked.  
2
1
0
CP22  
CP21  
CP20  
EWC Module 2 Count Pulse Select bits  
CP22 CP21 CP20  
Clock source  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Internal clock, Fosc/12  
Internal clock, Fosc/4  
Timer 0 overflow  
External clock at ECI/P1.2 pin (Max. Rate = Fosc/8)  
Internal clock, Fosc/2  
Timer 1 overflow  
Reserved  
Baud Rate Generator overflow  
Reset Value = 0000 0000B  
Figure 6.17. EWC CMOD2 register  
II. 6.20  
Rev. B (20/09/96)  
TSC 80251A1  
CMOD3 (0FFh)  
Counter 3 Mode register  
CID4  
CP42  
CP41  
CP40  
7
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
6
5
4
3
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
CID4  
Timer/Counter 4 Idle Control bit  
Clear to let the EWC running during Idle mode.  
Set to stop the EWC running when Idle mode is invoked.  
2
1
0
CP42  
CP41  
CP40  
EWC Module 4 Count Pulse Select bits  
CP42 CP41 CP40  
Clock source  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Internal clock, Fosc/12  
Internal clock, Fosc/4  
Timer 0 overflow  
External clock at ECI/P1.2 pin (Max. Rate = Fosc/8)  
Internal clock, Fosc/2  
Timer 1 overflow  
Reserved  
Baud Rate Generator overflow  
Reset Value = 0000 0000B  
Figure 6.18. EWC CMOD3 register  
II. 6.21  
Rev. B (20/09/96)  
TSC 80251A1  
COF (0E1h)  
Timer/Counter Overflow Flag register  
CF4  
CF3  
CF2  
CF1  
CF0  
7
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
6
5
4
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
CF4  
EWC Timer/Counter 4 Overflow flag  
Set by hardware when the Counter rolls over.  
CF4 flags an interrupt if ECF4 bit in ECF register is set.  
CF4 can be set by hardware or software but must be cleared by software  
3
2
1
0
CF3  
CF2  
CF1  
CF0  
EWC Timer/Counter 3 Overflow flag  
Set by hardware when the Counter rolls over.  
CF3 flags an interrupt if ECF3 bit in ECF register is set.  
CF3 can be set by hardware or software but must be cleared by software.  
EWC Timer/Counter 2 Overflow flag  
Set by hardware when the Counter rolls over.  
CF2 flags an interrupt if ECF2 bit in ECF register is set.  
CF2 can be set by hardware or software but must be cleared by software.  
EWC Timer/Counter 1 Overflow flag  
Set by hardware when the Counter rolls over.  
CF1 flags an interrupt if ECF1 bit in ECF register is set.  
CF1 can be set by hardware or software but must be cleared by software.  
EWC Timer/Counter 0 Overflow flag  
Set by hardware when the Counter rolls over.  
CF0 flags an interrupt if ECF0 bit in ECF register is set.  
CF0 can be set by hardware or software but must be cleared by software.  
Reset Value = XXX0 0000B  
Figure 6.19. EWC COF register  
II. 6.22  
Rev. B (20/09/96)  
TSC 80251A1  
CRC (0E2h)  
Counter Run Control register  
STPM  
7
MODE  
CR4  
CR3  
CR2  
CR1  
CR0  
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
STPM  
Stop Mode bit  
Clear to stop the Counter immediately upon a reset of the CR0 bit.  
Set to stop the Counter after the roll-over upon a reset of the CR0 bit.  
6
5
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
MODE  
PCA/EPCA bit  
Clear to configure the EWC in PCA mode (configuration per default, after a  
hardware reset).  
Set to configure the EWC in EPCA mode. In that case, CR bit in CCON register is  
don’t care.  
4
3
2
1
0
CR4  
CR3  
CR2  
CR1  
CR0  
EWC Timer/Counter 4 Run bit  
If the MODE bit is cleared, setting this bit is irrelevant.  
Clear to turn the EWC Timer/Counter 4 off.  
Set to turn the EWC Timer/Counter 4 on.  
EWC Timer/Counter 3 Run bit  
If the MODE bit is cleared, setting this bit is irrelevant.  
Clear to turn the EWC Timer/Counter 3 off.  
Set to turn the EWC Timer/Counter 3 on.  
EWC Timer/Counter 2 Run bit  
If the MODE bit is cleared, setting this bit is irrelevant.  
Clear to turn the EWC Timer/Counter 2 off.  
Set to turn the EWC Timer/Counter 2 on.  
EWC Timer/Counter 1 Run bit  
If the MODE bit is cleared, setting this bit is irrelevant.  
Clear to turn the EWC Timer/Counter 1 off.  
Set to turn the EWC Timer/Counter 1 on.  
EWC Timer/Counter 0 Run bit  
If the MODE bit is cleared, setting this bit is irrelevant.  
Clear to turn the EWC Timer/Counter 0 off.  
Set to turn the EWC Timer/Counter 0 on.  
Reset Value = 0000 0000B  
Figure 6.20. EWC CRC register  
II. 6.23  
Rev. B (20/09/96)  
TSC 80251A1  
8-bit Analog to Digital Converter  
7.1. Introduction  
This chapter describes the Analog to Digital Converter (ADC) and the relating SFR. This ADC is  
a key for digital processing of real world phenomena when electronic sensors providing a voltage  
analogy to physical phenomena are used.  
7.2. Description  
Figure 7.1. shows the ADC structure. It consists of a 4–input analog multiplexer followed by a  
sample and hold and an 8–bit successive approximation Analog/Digital (A/D) converter. It only  
requires an external Voltage Reference (Vref) with no other support component. This pin is next to  
the Analog ground pin (AVSS) to optimize its decoupling. The analog inputs (AN0 to AN3) are next  
to Vref which allows to easily shield all the analog pins using an AVSS guard ring.  
AN0 to AN3 are alternate function of Port 1. Digital inputs on Port 1 can be read any time during  
an A/D conversion. However, special care should be taken in mixing analog and digital signals on  
these pins, which may cause cross–talk and degrades the ADC accuracy. Furthermore, if one of these  
pins is selected to perform a conversion, it will return a digital one when read while the conversion  
is in progress.  
The acquisition is controlled by the ADC Control register (ADCON, See Figure 7.3. ). The  
multiplexer selects one of the four possible analog inputs according to the number coded in two  
address bits (ADDR1 and ADDR0). Then the ADC Start bit (ADCS) allows to begin an acquisition  
by setting it to one. It remains set until the end of the conversion, then it automatically reset. This  
may takes up to 600 oscillator clock periods. This conversion time includes an acquisition time: this  
is the sum of the times required for the muxed analog signal to settle after the multiplexer command  
is selected and for the sample and hold procedure to complete.  
AN0/P1.0  
Analog  
MUX  
AN1/P1.1  
AN2/P1.2  
AN3/P1.3  
S/H  
+
SAR  
ADAT  
Vref  
R/2R DAC  
ADCON  
7
ADCI ADCS  
ADDR1 ADDR0  
0
ADC Interrupt  
Figure 7.1. Analog Digital Converter structure  
II. 7.1  
Rev. B (20/09/96)  
TSC 80251A1  
No new acquisition can begin while ADCS bit is set (i.e. a conversion is in progress) and this bit  
cannotberesetbysoftware. Whenanewresultisreadyinthe8–bitADCDataregister(ADAT), when  
the conversion is completed, the ADC Interrupt bit (ADCI) is set and an ADC interrupt request is  
sent to the Interrupt System (see “Interrupt System” chapter). This bit must be reset by software when  
the contents of ADAT register can be disposed of (i.e. after it has been read by the interrupt service  
routine). Then a new acquisition can be requested (i.e. ADCS bit cannot be set while ADCI bit is set).  
ADCI bit and ADAT register are preserved in Idle mode and in Power–Down mode (see “Power  
Monitoring and Management”chapter), hence an already completed conversion is not lost. A  
conversion in progress will be aborted when entering the Idle mode, while it may not be aborted when  
entering in Power–Down mode. Therefore, it is recommended to wait for ADCS bit is zero before  
going into this mode, otherwise ADCI bit and ADAT register may change and a false interrupt may  
occur when this mode is exited through an interrupt. After an hardware reset, ADCON is set to its  
default value and the Analog to Digital Converter is inactive.  
II. 7.2  
Rev. B (20/09/96)  
TSC 80251A1  
7.3. Registers  
ADAT (0C6h)  
Analog Data register (8–bit, read only)  
7
6
5
4
3
2
1
0
Reset value = XXXX XXXXB  
Figure 7.2. ADAT register  
ADCON (0C5h)  
ADC Control register  
7
ADCI  
ADCS  
ADDR1  
ADDR0  
6
5
4
3
2
1
0
Bit  
Bit  
Description  
Number Mnemonic  
7
6
5
4
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
ADCI  
ADC Interrupt flag  
Set by hardware when an A/D result is ready to be read. An interrupt is invoked if  
the ADC interrupt flag is enabled.  
Must be cleared by software.  
3
2
1
0
ADCS  
ADC Start and Status bit  
Cleared by hardware when the A/D conversion is completed, then ADCI is set.  
Set to start an A/D conversion.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
ADDR1  
ADDR0  
Input Channel Selection bits  
ADDR1 ADDR0  
Input pin selection  
AN0 (P1.0)  
AN1 (P1.1)  
AN2 (P1.2)  
AN3 (P1.3)  
0
0
1
1
0
1
0
1
Reset Value = 0000 0000B  
Figure 7.3. ADCON register  
II. 7.3  
Rev. B (20/09/96)  
TSC 80251A1  
Power Monitoring and Management  
8.1. Introduction  
These features can be used to supervise the Power Supply (VDD) and to start up properly the  
microcontroller when the power is up.  
The power monitoring and management consist of the main features listed below and explained  
hereafter  
D Power–On/Off reset  
D Power–Fail detector  
D Power–Off flag  
D Clock Prescaler  
D Idle Mode  
D Power–Down Mode  
All these features are controlled by four 8–bit registers, the Power Management register (POWM),  
the Power Filter register (PFILT), the Power Control register (PCON) and the Clock Reload register  
(CKRL).  
8.2. Power–On/Off Reset  
The Power–On reset ensures a proper starting of the microcontroller.  
As long as VDD has not reached the VRST+ threshold, the microcontroller is left under reset and  
the oscillator is not enabled. As soon as VDD has reached VRST+, the oscillator is enabled and starts  
up.  
When the oscillator level on pin XTAL1 has reached the trigger level of the digital monostable, the  
reset counter is incremented by the oscillator. When the counter rolls off, it stops the reset system.  
This system is not sensitive to the VDD rise time, because the oscillator is only enabled when the  
Power Supply (VDD) is stabilized over a reference level.  
It is not either sensitive to the frequency, because the width of the reset pulse: tRST is proportional  
to the crystal frequency. So this system guarantees a proper starting of the TSC80251A1 by  
protecting the reset against random conditions of VDD (See Figure 8.1. ).  
VDD  
V
RST+  
tRST=64xT  
OSC  
VSS  
RST  
Duration of the reset  
Figure 8.1. Behavior of the reset when the Power Supply is switched on  
II. 8.1  
Rev. B (20/09/96)  
TSC 80251A1  
The Power–Off reset ensures a proper stopping of the TSC80251A1 when VDD fails or the Power  
Supply is switched off. If VDD reaches the VRST+ threshold, the microcontroller is maintained under  
reset until the Power Supply is completely off or VDD has reached again the VRST+ threshold.  
This system avoids the TSC80251A1 running while the Power Supply is below the VDD  
specification.  
It also guarantees a correct behavior of the microcontroller for the external components (See  
Figure 8.2. ).  
VDD  
V
RST+  
RST–  
V
VSS  
RST  
Figure 8.2. Behavior of the reset when the Power Supply is switched off  
8.3. Power–Fail Detector  
This mechanism is useful for applications which need to save system variables in a non–volatile  
memory. This feature monitors VDD and warns the TSC80251A1 by generating an early warning  
Power–Fail interrupt when VDD has dropped below the threshold level VFAIL–. In that case  
Power–Fail Interrupt Enable bit (PFIE) in IE1 register has to be set and Power–Fail Disable bit (PFD)  
has to be cleared. Power–Fail Interrupt Enable bit (PFIE) should have the highest priority (see IS  
in paragraph 9).  
If VDD drops below VFAIL– and then recovers and reaches VFAIL+ a new interrupt is generated and  
Power–Fail flag (PFF) is set in POWM register. The sequence waveform is shown in Figure 8.3.  
To improve the noise immunity on VDD, glitches are filtered through a digital filter to allow only  
a persistent condition to trigger the internal reset. The filter consists of an 8–bit programmable  
counter incremented by the system clock as shown in Figure 8.4. The filtering window is  
programmable from 0 to 255 x 2TOSC and is equal to 8 x 2TOSC by default (after reset).  
II. 8.2  
Rev. B (20/09/96)  
TSC 80251A1  
VDD  
V
V
FAIL+  
V
V
FAIL–  
RST+  
RST+  
RST (Internal)  
T
Power Fail  
Interrupt  
RST  
Power–Off  
flag  
cleared by the interrupt service routine  
Power–Fail  
flag  
cleared by software  
cleared by the interrupt service routine  
Figure 8.3. Power Management timings  
V
FAIL+  
Power–Fail  
Detector  
Power–Fail  
Interrupt request  
Control  
VDD  
OSC  
PFF PFI  
POWM  
V
FAIL–  
8–bit counter  
PFILT register  
2  
Figure 8.4. Block diagram of the digital filter  
Figure 8.5. shows the principle of in the VDD filtering. A signal is considered as a glitch when its  
width is smaller than the time set–up in the 8–bit PFILT register. In this example filtering period is  
equal to 6 system clock periods and the A signal is considered as a glitch because its width is less  
II. 8.3  
Rev. B (20/09/96)  
TSC 80251A1  
than 6 system clock periods. The B signal is not considered as a glitch and asserts the Power–Fail  
interrupt request.  
VDD  
A
V
FAIL+  
V
FAIL–  
B
A
Power–Fail  
Window  
B
width < t  
width > t  
(= 6 x 2T  
(= 6 x 2T  
)
)
FILT  
OSC  
FILT  
OSC  
Power–Fail  
Interrupt request  
t
= 6 x 2 T  
B
FILT  
OSC  
A
Figure 8.5. Waveforms of the VDD filtering  
8.4. Power–Off Flag  
The POF bit in PCON register is set to 1 when a hardware reset has been applied during the power  
is up. This reset is called ”Cold reset”. If a hardware reset is applied during the microcontroller is  
running, POF bit is not set. This reset is called ”Warm reset”. This flag allows to distinguish a cold  
from a warm reset and initialization. POF bit is useful in Power–Down mode when it is completed  
by a hardware reset. When used, this bit must be cleared by software after “Cold reset”.  
8.5. Clock Prescaler  
In order to optimize the consumption and the execution time needed for a specific task , an internal  
clock prescaler feature has been implemented to program the system clock frequency. It is possible  
to work at full speed for all tasks requiring quick response time at low frequency for background tasks  
which do not need CPU power but consumption optimizing. Figure 8.6. shows the diagram of the  
on–chip oscillator where the clock programming block clearly appears. The CPU clock can be  
programmed via 8–bit CKRL register and by setting to one CKSRC bit in POWM register:  
FXTAL  
2 CXRL ) 1  
FOSC  
+
(
)
II. 8.4  
Rev. B (20/09/96)  
TSC 80251A1  
XTAL1  
XTAL2  
OSC output  
CPU  
8–bit Divider  
CKRL  
CKSRC  
CKSRC  
Clock Prescaler  
PD#  
IDL#  
Figure 8.6. Block diagram of the on–chip oscillator  
The on–chip oscillator is used to be symbolized by Figure 8.7. in all this datasheet.  
OSC  
OSC output  
Figure 8.7. Symbolic of the on–chip oscillator  
8.6. Idle Mode  
Idle mode is a power reduction mode that reduces the power consumption to about 40% of the typical  
running power consumption. In this mode, program execution halts. Idle mode freezes the clock to  
the CPU at known states while the peripherals continue to be clocked (See Figure 8.6. ). The CPU  
status before entering Idle mode is preserved, i.e., the program counter, program status word register,  
and register file retain their data for the duration of Idle mode. The contents of the SFRs and RAM  
are also retained. The status of the Port pins depends upon the location of the program memory:  
D Internal program memory: the ALE and PSEN# pins are pulled high and the Ports 0, 1, 2 and 3  
pins are reading data (See Table 8.1. ).  
D External program memory: the ALE and PSEN# pins are pulled high; the Port 0 pins are floating  
and the pins of Ports 1, 2 and 3 are reading data (See Table 8.1. ).  
8.6.1. Entering Idle Mode  
To enter Idle mode, set IDL bit in PCON register. The TSC80251A1 enters Idle mode upon execution  
of the instruction that sets IDL bit. The instruction that sets IDL bit is the last instruction executed.  
Caution:  
If IDL bit and PD bit are set simultaneously, the TSC80251A1 enters Power–Down mode.  
8.6.2. Exiting Idle Mode  
There are two ways to exit Idle mode:  
D Generate an enabled interrupt. Hardware clears IDL bit in the PCON register which restores the  
clock to the CPU. Execution resumes with the interrupt service routine. Upon completion of the  
II. 8.5  
Rev. B (20/09/96)  
TSC 80251A1  
interrupt service routine, program execution resumes with the instruction immediately following  
the instruction that activated Idle mode. The general purpose flags (GF1 and GF0 in PCON  
register) may be used to indicate whether an interrupt occurred during normal operation or during  
Idle mode. When Idle mode is exited by an interrupt, the interrupt service routine may examine  
GF1 and GF0.  
D Reset the chip. A logic high on the RST pin clears IDL bit in PCON register directly and  
asynchronously. This restores the clock to the CPU. Program execution momentarily resumes  
with the instruction immediately following the instruction that activated the Idle mode and may  
continue for a number of clock cycles before the internal reset algorithm takes control. Reset  
initializes the TSC80251A1 and vectors the CPU to address FF:0000h.  
Note:  
During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port  
pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the  
instruction that activated Idle mode should not write to a Port pin or to the external RAM.  
Table 8.1. Pin conditions in various modes  
Program  
Memory  
PSEN#  
pin  
Mode  
ALE pin  
Port 0 pin Port 1 pin Port 2 pin Port 3 pin  
Reset  
Idle  
Don’t care Weak High Weak High Floating Weak High Weak High Weak High  
Internal  
External  
Internal  
External  
1
1
0
0
1
1
0
0
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Idle  
Floating  
Data  
Power–Down  
Power–Down  
Floating  
8.7. Power–Down Mode  
The Power–Down mode places the TSC80251A1 in a very low power state. Power–Down mode  
stops the oscillator and freezes all clock at known states (See Figure 8.6. ). The CPU status prior to  
entering Power–Down mode is preserved, i.e., the program counter, program status word register,  
and register file retain their data for the duration of Power–Down mode. In addition, the SFRs and  
RAM contents are preserved. The status of the Port pins depends on the location of the program  
memory:  
D Internal program memory: the ALE and PSEN# pins are pulled low and the Ports 0, 1, 2 and 3  
pins are reading data (See Table 8.1. ).  
D External program memory: the ALE and PSEN# pins are pulled low; the Port 0 pins are floating  
and the pins of Ports 1, 2 and 3 are reading data (See Table 8.1. ).  
Note:  
VDD may be reduced to as low as 2 V during Power–Down to further reduce power dissipation. Take care,  
however, that VDD is not reduced until Power–Down is invoked.  
II. 8.6  
Rev. B (20/09/96)  
TSC 80251A1  
8.7.1. Entering Power–Down Mode  
To enter Power–Down mode, set PD bit in PCON register. The TSC80251A1 enters the  
Power–Down mode upon execution of the instruction that sets PD bit. The instruction that sets PD  
bit is the last instruction executed.  
8.7.2. Exiting Power–Down Mode  
Caution:  
If VDD was reduced during the Power–Down mode, do not exit Power–Down until VDD is restored to the normal  
operating level.  
There are two ways to exit the Power–Down mode:  
D Generate an enabled external interrupt. Hardware clears PD bit in PCON register which starts the  
oscillator and restores the clocks to the CPU and peripherals. Execution resumes with the interrupt  
service routine. Upon completion of the interrupt service routine, program execution resumes  
with the instruction immediately following the instruction that activated Power–Down mode.  
Note:  
To enable an external interrupt, set EX0 and/or EX1 bit(s) in IE register. The external interrupt used to exit  
Power–Down mode must be configured as level sensitive and must be assigned the highest priority. In addition, the  
duration of the interrupt must be of sufficient length to allow the oscillator to stabilize.  
D Generate a reset. A logic high on the RST pin clears PD bit in PCON register directly and  
asynchronously. This starts the oscillator and restores the clock to the CPU and peripherals.  
Program execution momentarily resumes with the instruction immediately following the  
instruction that activated Power–Down and may continue for a number of clock cycles before the  
internal reset algorithm takes control. Reset initializes the TSC80251A1 and vectors the CPU to  
address FF:0000h.  
Note:  
During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port  
pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the  
instruction that activated the Power–Down mode should not write to a Port pin or to the external RAM.  
II. 8.7  
Rev. B (20/09/96)  
TSC 80251A1  
8.8. Registers  
PCON (87h)  
Power Configuration register  
SMOD1  
SMODO  
RPD  
POF  
GF1  
GF0  
PD  
IDL  
7
6
5
4
3
2
1
0
Bit  
Number  
Bit  
Mnemonic  
Description  
7
SMOD1  
Double Baud Rate bit  
Set to double the Baud Rate when Timer 1 is used and mode 1, 2 or 3 is  
selected in SCON register.  
6
SMOD0  
SCON Select bit  
When cleared, read/write accesses to SCON.7 are to SM0 bit and read/write  
accesses to SCON.6 are to SM1 bit.  
When set, read/write accesses to SCON.7 are to FE bit and read/write  
accesses to SCON.6 are to OVR bit.  
See Serial Port Control register (SCON).  
5
4
RPD  
POF  
Recover for Idle/Power–Down bit  
Clear to enable only the enable interrupt sources to exit from Idle or  
Power–Down mode.  
Set to permit to recover from Idle or Power–Down modes using external  
interrupt source. If the interrupt source is not enabled, the program simply  
continue at the address otherwise it jumps to interrupt service routine.  
Power–Off flag  
Set by hardware as VDD rises above 3 V to indicate that the Power has been  
off or VDD had fallen below 3 V and that on–chip volatile memory is  
indeterminated.  
3
2
1
GF1  
GF0  
PD  
General Purpose flag 1  
One use is to indicate whether an interrupt occured during normal operation  
or during Idle mode.  
General Purpose flag 0  
One use is to indicate whether an interrupt occured during normal operation  
or during Idle mode.  
Power–Down Mode bit  
Cleared by hardware when an interrupt or reset occurs.  
Set to activate the Power–Down mode.  
If IDL and PD are both set, PD takes precedence.  
0
IDL  
Idle Mode bit  
Cleared by hardware when an interrupt or reset occurs.  
Set to activate the Idle mode.  
If IDL and PD are both set, PD takes precedence.  
Reset Value = 0000 0000B  
Figure 8.8. PCON register  
II. 8.8  
Rev. B (20/09/96)  
TSC 80251A1  
PFILT (86h)  
Power Filter register (8–bit)  
7
6
5
4
3
2
1
0
Reset Value = 0000 1000B  
Figure 8.9. PFILT register  
POWM (8Fh)  
Power Management register  
CKSRC  
RSTD  
PFD  
PFF  
PFI  
7
6
5
4
3
2
1
0
Bit  
Number  
Bit  
Mnemonic  
Description  
7
CKSRC  
Clock Source bit  
Cleared by hardware after a Power-Up. In that case the CPU clock is the  
oscillator source divided by two.  
Set to enable the programmable clock. In that case the clock is divided by  
the value contained in CKRL register.  
6
5
4
3
2
1
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
RSTD  
PFD  
PFF  
Reset Detector Disable bit  
Clear to enable the Reset detector.  
Set to disable the Reset detector.  
Power-Fail Disable bit  
Clear to enable the Power-Fail detector.  
Set to disable the Power-Fail detector.  
Power-Fail Flag bit  
Cleared by hardware after a reset or when VDD falls from V  
to V  
.
FAIL–  
FAIL+  
Set by hardware when VDD rises from V  
This bit may be cleared by software.  
to V  
.
FAIL–  
FAIL+  
0
PFI  
Power-Fail Interrupt flag bit  
Must be cleared by software.  
Set by hardware when VDD falls from V  
from V to V  
to V  
, or when VDD rises  
FAIL+  
FAIL–  
.
FAIL+  
FAIL–  
Reset Value = 0000 0000B  
Figure 8.10. POWM register  
II. 8.9  
Rev. B (20/09/96)  
TSC 80251A1  
CKRL (8Eh)  
Clock Reload register (8–bit)  
7
6
5
4
3
2
1
0
Reset Value = 0000 1000B  
Figure 8.11. CKRL register  
II. 8.10  
Rev. B (20/09/96)  
TSC 80251A1  
Interrupt System  
9.1. Introduction  
The TSC80251A1, like other control–oriented computer architectures, employs a program interrupt  
method. This operation branches to a subroutine and performs some service in response to the  
interrupt. When the subroutine completes, execution resumes at the point where the interrupt  
occurred. Interrupts may occur as a result of internal TSC80251A1 activity (e.g., Timer overflow)  
or at the initiation of electrical signals external to the microcontroller (e.g., Serial Port  
communication). In all cases, interrupt operation is programmed by the system designer, who  
determines priority of interrupt service relative to normal code execution and other interrupt service  
routines. Thirteen of the fourteen interrupts are enabled or disabled by the system designer and may  
be manipulated dynamically.  
A typical interrupt event chain occurs as follows:  
D An internal or external device initiates an interrupt–request signal.  
D This signal, connected to an input pin and periodically sampled by the TSC80251A1, latches the  
event into a flag buffer.  
D The priority of the flag is compared to the priority of other interrupts by the interrupt handler.  
A high priority causes the handler to set an interrupt flag.  
D This signals the instruction execution unit to execute a context switch. This context switch breaks  
the current flow of instruction sequences. The execution unit completes the current instruction  
prior to a save of the program counter (PC) and reloads the PC with the start address of a software  
service routine.  
D The software service routine executes assigned tasks and as a final activity performs a RETI  
(return from interrupt) instruction. This instruction signals completion of the interrupt, resets the  
interrupt–in–progress priority and reloads the program counter. Program operation then continues  
from the original point of interruption.  
Table 9.1. Interrupt system signals  
Multiplexed  
Mnemonic  
Type  
Description  
with  
INT0#  
I
External Interrupt 0  
P3.2  
This input sets IE0 bit in TCON register.  
If IT0 bit in TCON register is set, IE0 bit is controlled by a  
negative edge trigger on INT0#. If IT0 bit in TCON register  
is cleared, IE0 bit is controlled by a low level trigger on  
INT0#.  
INT1#  
I
External Interrupt 1  
P3.3  
This input sets IE1 bit in TCON register.  
If IT1 bit in TCON register is set, IE1 bit is controlled by a  
negative edge trigger on INT1#. If IT1 bit in TCON register  
is cleared, IE1 bit is controlled by a low level trigger on  
INT1#.  
II. 9.1  
Rev. B (20/09/96)  
TSC 80251A1  
Table 9.2. Interrupt System SFRs  
Mnemonic  
Description  
Address  
IE0  
IE1  
Interrupt Enable register  
S:A8h  
Used to enable and disable the eight lowest programmable interrupts.  
The reset value of this register is zero (interrupts disabled).  
Interrupt Enable register  
S:B1h  
S:B8h  
Used to enable and disable the eight highest programmable interrupts.  
The reset value of this register is zero (interrupts disabled).  
IPL0  
Interrupt Priority Low register 0  
Establishes relative four–level priority for the eight lowest programmable  
interrupts.  
Used in conjunction with IPH0.  
IPH0  
IPL1  
IPH1  
Interrupt Priority High register 0  
Establishes relative four–level priority for the eight lowest programmable  
interrupts.  
S:B7h  
S:B2h  
S:B3h  
Used in conjunction with IPL0.  
Interrupt Priority Low register 1  
Establishes relative four–level priority for the eight lowest programmable  
interrupts.  
Used in conjunction with IPH1.  
Interrupt Priority High register 1  
Establishes relative four–level priority for the eight highest programmable  
interrupts.  
Used in conjunction with IPL1.  
The TSC80251A1 has one software interrupt: TRAP and thirteen peripheral interrupt sources: two  
external (INT0# and INT1#), one for Timer 0, one for Timer 1, one for Serial Port, one for Pulse  
Measurement Unit, five for Event and Waveform Controller, one for Analog to Digital Converter,  
one for Power–Fail detector.  
Note:  
NMI interrupt source is not implemented in this derivative.  
Six interrupt registers are used to control the interrupt system. Two 8–bit registers are used to enable  
separately the interrupt sources: IE0 and IE1 (See Figure 9.1 and Figure 9.2).  
Four 8–bit registers are used to establish the priority level of the sixteen sources: IPL0, IPH0, IPL1  
and IPH1 (See Figure 9.3, Figure 9.4, Figure 9.5 and Figure 9.6).  
9.2. Interrupt System Priorities  
Each of the thirteen interrupt sources on the TSC80251A1 may be individually programmed to one  
of four priority levels. This is accomplished by one bit in the Interrupt Priority High registers (IPH0  
or IPH1, see Figure 9.4. and Figure 9.5. ) and one in the Interrupt Priority Low registers (IPL0 or  
IPL1, see Figure 9.6. and Figure 9.7. ) This provides each interrupt source four possible priority  
levels select bits (See Table 9.3. ).  
II. 9.2  
Rev. B (20/09/96)  
TSC 80251A1  
Table 9.3. Level of Priority  
IPHxx  
IPLxx  
Priority Level  
0
0
1
1
0
1
0
1
0 Lowest  
1
2
3 Highest  
A low–priority interrupt is always interrupted by a higher priority interrupt but not by another  
interrupt of lower priority. Higher priority interrupts are serviced before lower priority interrupts.  
The response to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same  
four state interrupt cycle) is determined by a hardware priority–within–level resolver (See  
Table 9.4. ).  
Table 9.4. Interrupt priority within level  
Interrupt request flag  
cleared by hardware (H)  
or by software (S)  
Interrupt Address  
Interrupt Name  
Priority Number  
Vectors  
TRAP  
1
FF:007Bh  
Highest Priority  
not interruptible  
Reserved  
INT0#  
3
FF:003Bh  
FF:0003h  
FF:000Bh  
FF:0013h  
FF:001Bh  
FF:0023h  
FF:002Bh  
FF:0033h  
FF:0043h  
FF:004Bh  
FF:0053h  
FF:005Bh  
FF:0063h  
FF:006Bh  
FF:0073h  
FF:0083h  
H if edge, S if level  
Timer 0  
INT1#  
4
H if edge, S if level  
5
H if edge, S if level  
Timer 1  
Serial Port  
A/D converter  
EWC0  
6
H
S
S
S
S
S
S
S
S
7
8
9
PMU  
10  
11  
12  
13  
14  
15  
16  
EWC1  
EWC2  
EWC3  
EWC4  
Reserved  
Reserved  
Power–Fail  
17  
S
Lowest Priority  
II. 9.3  
Rev. B (20/09/96)  
TSC 80251A1  
9.3. External Interrupts  
External interrupts INT0# and INT1# (INTn#, n = 0, 1) pins may each be programmed to be  
level–triggered or edge–triggered, dependent upon bits IT0 and IT1 (ITn, n = 0, 1) in TCON register.  
If ITn = 0, INTn# is triggered by a low level at the pin. If ITn = 1, INTn# is negative–edge triggered.  
External interrupts are enabled with bits EX0 and EX1 (EXn, n = 0, 1) in IE0 register. Events on  
INTn# set the interrupt request flag IEn in TCON. A request bit is cleared by hardware vectors  
to service routines only if the interrupt is edge triggered. If the interrupt is level–triggered, the  
interrupt service routine must clear the request bit. External hardware must deassert INTn# before  
the service routine completes, or an additional interrupt is requested. External interrupt pins must  
be deasserted for at least four state times prior to a request.  
External interrupt pins are sampled once every four state times (a frame length of 500 ns at 16 MHz).  
A level–triggered interrupt pin held low or high for five–state time period guarantees detection.  
Edge–triggered external interrupts must hold the request pin low for at least five state times. This  
ensures edge recognition and sets interrupt request bit EXn. The CPU clears EXn automatically  
during service routine fetch cycles for edge–triggered interrupts.  
Level–Triggered interrupt  
5 states  
5 states  
4 states  
4 states  
Edge–Triggered Interrupt  
5 states  
4 states  
4 states  
Figure 9.1. Minimum pulse timings.  
II. 9.4  
Rev. B (20/09/96)  
TSC 80251A1  
9.4. Registers  
IE0 (0A8h)  
Interrupt Enable 0 register  
EA  
EC  
EADC  
ES  
ET1  
EX1  
ET0  
EX0  
7
6
5
4
3
2
1
0
Bit  
Number  
Bit  
Mnemonic  
Description  
7
EA  
Global Interrupt Enable bit  
Clear to disable all interrupts that are individually disabled by bits 6:0 in  
IE0 register and bits 6:0 in IE1 register.  
Set to enable all interrupts that are individually enabled by bits 6:0 in  
IE0 register and bits 6:0 in IE1 register.  
6
5
4
3
2
1
0
EC  
EADC  
ES  
Enable Counter Interrupt bit  
Clear to disable EWC interrupt.  
Set to enable EWC interrupt.  
Enable Analog to Digital Converter Interrupt bit  
Clear to disable ADC interrupt.  
Set to enable ADC interrupt.  
Enable Serial Port Interrupt bit  
Clear to disable Serial Port interrupt.  
Set to enable Serial Port interrupt.  
ET1  
EX1  
ET0  
EX0  
Enable Timer 1 Interrupt bit  
Clear to disable Timer 1 overflow interrupt.  
Set to enable Timer 1 overflow interrupt.  
Enable External 1 Interrupt bit  
Clear to disable external interrupt 1.  
Set to enable external interrupt 1.  
Enable Timer 0 Interrupt bit  
Clear to disable Timer 0 overflow interrupt.  
Set to enable Timer 0 overflow interrupt.  
Enable External 0 Interrupt bit  
Clear to disable External interrupt 0.  
Set to enable External interrupt 0.  
Reset Value = 0000 0000B  
Figure 9.2. IE0 register  
II. 9.5  
Rev. B (20/09/96)  
TSC 80251A1  
IE1 (0B1h)  
Interrupt Enable 1 register  
PFIE  
EC4  
EC3  
EC2  
EC1  
PMU  
7
6
5
4
3
2
1
0
Bit  
Number  
Bit  
Mnemonic  
Description  
7
6
5
4
3
2
1
0
PFIE  
Power-Fail Interrupt Enable bit  
Clear to disable the Power-Fail interrupt.  
Set to enable the Power-Fail interrupt.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
EC4  
EC3  
EC2  
EC1  
EPMU  
Enable Counter 4 Interrupt bit  
Clear to disable the EWCn Counter 4 interrupt.  
Set to enable the EWCn Counter 4 interrupt.  
Enable Counter 3 Interrupt bit  
Clear to disable the EWCn Counter 3 interrupt.  
Set to enable the EWCn Counter 3 interrupt.  
Enable Counter 2 Interrupt bit  
Clear to disable the EWCn Counter 2 interrupt.  
Set to enable the EWCn Counter 2 interrupt.  
Enable Counter 1 Interrupt bit  
Clear to disable the EWCn Counter 1 interrupt.  
Set to enable the EWCn Counter 1 interrupt.  
Enable Pulse Measurement Unit Interrupt bit  
Clear to disable the PMU interrupt.  
Set to enable the PMU interrupt.  
Reset Value = 0000 0000B  
Figure 9.3. IE1 register  
II. 9.6  
Rev. B (20/09/96)  
TSC 80251A1  
IPH0 (0B7h)  
Interrupt Priority High 0 register  
IPHC  
IPHADC  
IPHS  
IPHT1  
IPHX1  
IPHT0  
IPHX0  
7
6
5
4
3
2
1
0
Bit  
Number  
Bit  
Mnemonic  
Description  
7
Reserved  
The value read from this bit is indeterminate. Do not set this bit  
6
IPHC  
EWC Counter Interrupt Priority level most significant bit  
IPHC  
IPLC  
Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
5
4
3
2
1
0
IPHADC  
IPHS  
ADC Interrupt Priority level most significant bit  
IPHADC IPLADC Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
Serial Port Interrupt Priority level most significant bit  
IPHS  
IPLS  
Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
IPHT1  
IPHX1  
IPHT0  
IPHX0  
Timer 1 Interrupt Priority level most significant bit  
IPHT1  
IPLT1  
Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
External Interrupt 1 Priority level most significant bit  
IPHX1 IPLX1 Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
Timer 0 Interrupt Priority level most significant bit  
IPHT0  
IPLT0  
Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
External Interrupt 0 Priority level most significant bit  
IPHX0 IPLX0 Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
Reset Value = X000 0000B  
Figure 9.4. IPH0 register  
II. 9.7  
Rev. B (20/09/96)  
TSC 80251A1  
IPH1 (0B1h)  
Interrupt Priority High 1 register  
IPHPF  
IPHC4  
IPHC3  
IPHC2  
IPHC1  
IPHPMU  
7
6
5
4
3
2
1
0
Bit  
Number  
Bit  
Mnemonic  
Description  
Power–Fail Interrupt Priority level most significant bit  
7
IPHPF  
IPHPF  
IPLPF  
Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
6
5
4
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
IPHC4  
EWC Counter 4 Interrupt Priority level most significant bit  
IPHEC4  
IPLEC4  
Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
3
2
1
0
IPHC3  
IPHC2  
EWC Counter 3 Interrupt Priority level most significant bit  
IPHEC3  
IPLEC3  
Priority level  
Lowest priority  
0
0
1
1
0
1
0
1
0
1
2
3
Highest priority  
EWC Counter 2 Interrupt Priority level most significant bit  
IPHEC2  
IPLEC2  
Priority level  
Lowest priority  
0
0
1
1
0
1
0
1
0
1
2
3
Highest priority  
IPHC1  
EWC Counter 1 Interrupt Priority level most significant bit  
IPHEC1  
IPLEC1  
Priority level  
Lowest priority  
0
0
1
1
0
1
0
1
0
1
2
3
Highest priority  
IPHPMU  
PMU Interrupt 0 Priority level most significant bit  
IPHPMU  
IPLPMU  
Priority level  
0
0
1
1
0
1
0
1
0
1
2
3
Lowest priority  
Highest priority  
Reset Value = X000 0000B  
Figure 9.5. IPH1 register  
II. 9.8  
Rev. B (20/09/96)  
TSC 80251A1  
IPL0 (0B8h)  
Interrupt Priority Low 0 register  
IPLC  
IPLADC  
IPLS  
IPLT1  
IPLX1  
IPLT0  
IPLX0  
7
6
5
4
3
2
1
0
Bit  
Number  
Bit  
Mnemonic  
Description  
7
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
6
5
4
3
2
1
0
IPLC  
IPLADC  
IPLS  
EWC Counter Interrupt Priority level most significant bit.  
Refer to IPHC for priority level.  
ADC Interrupt Priority level most significant bit.  
Refer to IPHADC for priority level.  
Serial Port Interrupt Priority level most significant bit.  
Refer to IPHS for priority level.  
IPLT1  
IPLX1  
IPLT0  
IPLX0  
Timer 1 Interrupt Priority level most significant bit.  
Refer to IPHT1 for priority level.  
External Interrupt 1 Priority level most significant bit.  
Refer to IPHX1 for priority level.  
Timer 0 Interrupt Priority level most significant bit.  
Refer to IPHT0 for priority level.  
External Interrupt 0 Priority level most significant bit.  
Refer to IPHX0 for priority level.  
Reset Value = X000 0000B  
Figure 9.6. IPL0 register  
II. 9.9  
Rev. B (20/09/96)  
TSC 80251A1  
IPL1 (0B2h)  
Interrupt Priority Low 1 register  
IPLPF  
IPLC4  
IPLC3  
IPLC2  
IPLC1  
IPLPMU  
7
6
5
4
3
2
1
0
Bit  
Number  
Bit  
Mnemonic  
Description  
7
IPLPF  
Power–Fail Interrupt Priority level most significant bit.  
Refer to IPHPF for priority level.  
6
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
5
Reserved  
The value read from this bit is indeterminate.  
Do not set this bit.  
4
3
2
1
0
IPLC4  
IPLC3  
EWC Counter 4 Interrupt Priority level most significant bit.  
Refer to IPHEC4 for priority level.  
EWC Counter 3 Interrupt Priority level most significant bit.  
Refer to IPHEC3 for priority level.  
IPLC2  
EWC Counter 2 Interrupt Priority level most significant bit.  
Refer to IPHEC2 for priority level.  
IPLC1  
EWC Counter 1 Interrupt Priority level most significant bit.  
Refer to IPHEC1 for priority level.  
IPLPMU  
PMU Interrupt Priority level most significant bit.  
Refer to IPHPMU for priority level.  
Reset Value = X000 0000B  
Figure 9.7. IPL1 register  
II. 9.10  
Rev. B (20/09/96)  
TSC 80251A1  
Section III  
Electrical and Mechanical Information  
TSC 80251A1  
DC characteristics  
Table 1.1. Absolute maximum ratings  
D Ambient Temperature Under Bias  
Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to +70°C  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40 to +85°C  
Automotive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to +125°C  
D Storage Temperature . . . . . . . . . . . . . . . . . . . . . . –65 to +150°C  
D Voltage on EA#/VPP Pin to VSS . . . . . . . . . . . . 0 to +13.0 V  
D Voltage on any other Pin to VSS . . . . . . . . . . . . –0.5 to +6.5 V  
D I per I/O Pin . . . . . . . . . . . . . . . . . . . . . . . . . . 15 mA  
OL  
D Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W  
Note:  
Stresses at or above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Table 1.2. DC characteristics  
Parameter values applied to all devices unless otherwise indicated.  
Commercial  
Industrial  
Automotive  
TA = 0 to 70°C  
VSS = 0 V  
TA = –40 +85°C  
VSS = 0 V  
TA = –40 +125°C  
VSS = 0 V  
VDD = 5 V ± 10 %  
VDD = 5 V ± 10 %  
VDD = 5 V ± 10 %  
Typical  
(4)  
Symbol  
Parameter  
Min  
Max  
Units  
Test Conditions  
V
Input Low Voltage  
(except EA#)  
–0.5  
0.2VDD - 0.1  
0.2VDD - 0.3  
VDD + 0.5  
V
IL  
V
IL1  
Input Low Voltage  
(EA#)  
0
V
V
V
V
V
IH  
Input high Voltage  
(except XTAL1, RST)  
0.2VDD + 0.9  
0.7 VDD  
V
IH1  
Input high Voltage  
(XTAL1)  
VDD + 0.5  
V
OL  
Output Low Voltage  
(Ports 1, 2, 3)  
0.3  
0.45  
1.0  
I
I
I
= 100 µA  
= 1.6 mA  
= 3.5 mA  
OL  
OL  
OL  
(1, 2)  
V
V
+
Reset threshold on  
Reset threshold off  
3.7  
3.3  
V
V
RST  
RST  
III. 1.1  
Rev. B (20/09/96)  
TSC 80251A1  
Typical  
(4)  
Symbol  
Parameter  
Min  
Max  
Units  
Test Conditions  
V
V
+
VDD–Fail threshold on  
VDD–Fail threshold off  
4.2  
4.1  
V
V
V
FAIL  
FAIL  
V
Output Low Voltage  
(Ports 0, ALE, PSEN#)  
0.3  
0.45  
1.0  
I
I
I
= 200 µA  
= 3.2 mA  
= 7.0 mA  
OL1  
OL  
OL  
OL  
(1, 2)  
V
OH  
Output high Voltage  
(Ports 1, 2, 3, ALE,  
PSEN#)  
VDD –0.3  
VDD –0.7  
VDD –1.5  
V
I
I
I
= –10 µA  
= –30 µA  
= –60 µA  
OH  
OH  
OH  
(3)  
V
Output high Voltage  
(Port 0 in External  
Address)  
VDD –0.3  
VDD –0.7  
VDD –1.5  
V
V
I
I
I
= –200 µA  
= –3.2 mA  
= –7.0 mA  
OH1  
OH  
OH  
OH  
V
OH2  
Output high Voltage  
(Port 2 in External  
Address during Page  
Mode)  
VDD –0.3  
VDD –0.7  
VDD –1.5  
I
I
I
= –200 µA  
= –3.2 mA  
= –7.0 mA  
OH  
OH  
OH  
I
Logical 0 Input Current  
(Ports 1, 2, 3)  
- 50  
- 75  
µA  
V
= 0.45 V  
IL  
LI  
IN  
Automotive  
range  
I
Input Leakage Current  
(Port 0)  
± 10  
µA  
µA  
0.45<V <VDD  
IN  
I
Logical 1-to-0 Transition  
Current  
- 650  
VIN = 2.0 V  
TL  
(Ports 1, 2, 3)  
R
RST Pull–Down Resistor  
Pin Capacitance  
40  
225  
kW  
RST  
C
10  
pF  
F
OSC  
= 16 MHz  
IO  
PD  
DL  
T = 25°C  
A
I
I
Powerdown Current  
Idle Mode Current  
20  
15  
10  
µA  
mA  
mA  
F
F
= 16 MHz  
= 12 MHz  
OSC  
OSC  
III. 1.2  
Rev. B (20/09/96)  
TSC 80251A1  
Typical  
(4)  
Symbol  
Parameter  
Min  
Max  
Units  
Test Conditions  
50  
40  
mA  
mA  
F
F
= 16 MHz  
= 12 MHz  
OSC  
I
Operating Current  
DD  
OSC  
Notes:  
1. Under steady–state (non–transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin: . . . . . . . . . . . . . . . . . . 10 mA  
OL  
Maximum I per 8–bit port:  
Port 0 . . . . . . . 26 mA  
Ports 1-3 . . . . 15 mA  
Output Pins . . 71 mA  
OL  
Maximum Total I for all:  
OL  
If I exceeds the test conditions, V may exceed the related specification. Pins are not guaranteed to sink  
OL  
OL  
current greater than the listed test conditions.  
2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low–level outputs of  
ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2  
pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF, the  
noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a  
Schmitt Trigger or CMOS–level input logic.  
3. Capacitive loading on Ports 0 and 2 causes the V on ALE and PSEN# to drop below the specification when  
OH  
the address lines are stabilizing.  
4. Typical values are obtained using VDD = 5 V and T = 25°C with no guarantee.  
A
They are not tested and there is not guarantee on these values.  
+5V  
I
PD  
VDD  
VDD  
P0  
RST  
EA#  
TSC80251A1  
(NC)  
XTAL2  
XTAL1  
VSS  
Clock Signal  
All other pins are unconnected  
Figure 1.1. IPD Test Condition, Power–Down mode  
III. 1.3  
Rev. B (20/09/96)  
TSC 80251A1  
+5V  
I
DL  
VDD  
VDD  
P0  
RST  
EA#  
TSC80251A1  
(NC)  
Clock Signal  
XTAL2  
XTAL1  
VSS  
All other pins are unconnected  
Figure 1.2. IDL Test Condition, Idle mode  
+5V  
I
DD  
VDD  
VDD  
P0  
VDD  
RST  
EA#  
TSC80251A1  
(NC)  
Clock Signal  
XTAL2  
XTAL1  
VSS  
All other pins are unconnected  
Figure 1.3. IDD Test Condition, Active mode  
III. 1.4  
Rev. B (20/09/96)  
TSC 80251A1  
AC characteristics  
Table 2.1. AC characteristics (Capacitive Loading = 50 pF)  
12 MHz  
16 MHz  
F
OSC  
Symbol  
Parameter  
Units  
Min Max Min Max  
Min  
Max  
T
1/F  
83  
73  
63  
63  
63  
53  
43  
43  
ns  
OSC  
OSC  
T
ALE Pulse Width  
T
-10  
ns (2)  
ns (2)  
ns  
LHLL  
OSC  
OSC  
OSC  
T
AVLL  
Address Valid to ALE Low  
T
T
- 20  
- 20  
T
Address hold after ALE  
Low  
LLAX  
T
RD# or PSEN# Pulse Width  
65  
45  
T
OSC  
- 18  
ns (3)  
RLRH  
(1)  
T
WR# Pulse Width  
65  
73  
45  
53  
T
T
- 18  
- 10  
ns (3)  
ns  
WLWH  
OSC  
T
ALE Low to RD# or PSEN#  
Low  
LLRL  
(1)  
OSC  
T
ALE High to RD# or PSEN#  
High  
73  
53  
T
- 10  
ns  
RHRL  
LHAX  
OSC  
T
T
ALE high to Address hold  
147  
105  
2T  
- 20  
- 50  
ns (2)  
ns (3)  
OSC  
RD# or PSEN# Low to Valid  
Data/Instruction.  
33  
13  
T
OSC  
RLDV  
(1)  
T
Data/Instruct. hold After  
RD# or PSEN# high  
0
0
0
ns  
ns  
RHDX  
(1)  
T
RD#/PSEN# Low to  
Address Float  
2
2
2
RLAZ  
(1)  
T
Data/Instruct. Float After  
RD# or PSEN# high  
63  
43  
T
OSC  
- 20  
ns  
RHDZ  
(1)  
T
T
RD#/PSEN# high to ALE  
high (Instruction)  
68  
48  
T
- 15  
- 15  
- 15  
ns (1)  
ns (1)  
ns  
RHLH1  
(1)  
OSC  
RD#/PSEN# high to ALE  
high (Data)  
235  
235  
173  
173  
3T  
3T  
RHLH2  
(1)  
OSC  
T
WR# high to ALE high  
WHLH  
OSC  
T
Address (P0) Valid to Valid  
Data/Instruction In  
190  
273  
107  
128  
190  
107  
3T  
4T  
2T  
- 60  
- 60  
- 60  
ns  
(2, 3, 4)  
AVDV1  
OSC  
OSC  
OSC  
T
Address (P2) Valid to Valid  
Data/Instruction In  
ns  
(2, 3, 4,)  
AVDV2  
T
Address (P0) Valid to Valid  
Instruction In  
ns  
AVDV3  
III. 2.1  
Rev. B (20/09/96)  
TSC 80251A1  
12 MHz  
16 MHz  
F
OSC  
Symbol  
Parameter  
Units  
Min Max Min Max  
Min  
Max  
T
Address Valid to  
RD#/PSEN# Low  
143  
143  
220  
101  
101  
158  
2T  
2T  
3T  
- 24  
ns (2)  
AVRL  
OSC  
OSC  
OSC  
T
Address (P0) Valid to WR#  
Low  
- 24  
- 30  
ns (2)  
ns (2)  
AVWL1  
T
Address (P2) Valid to WR#  
Low  
AVWL2  
T
Data hold after WR# high  
Data Valid to WR# high  
WR# high to Address hold  
63  
58  
43  
38  
T
T
- 20  
- 25  
- 20  
ns  
ns (3)  
ns  
WHQX  
QVWH  
WHAX  
OSC  
T
T
OSC  
147  
1000  
105  
750  
2T  
OSC  
T
Serial Port Clock Cycle  
Time  
12 T  
ns  
XLXL  
QVSH  
XHQX  
XHDX  
XHDV  
OSC  
T
Output Data Setup to Clock  
Rising Edge  
870  
720  
0
620  
510  
0
12 T  
- 133  
ns  
ns  
ns  
ns  
OSC  
T
T
T
Output Data hold after  
Clock Rising Edge  
10 T  
- 117  
OSC  
Input Data Hold after Clock  
Rising Edge  
0
Clock Rising Edge to Input  
Data Valid  
700  
500  
10 T  
- 133  
OSC  
Notes :  
1. Specifications for PSEN# are identical to those for RD#.  
2. If a wait state is added by extending ALE, add 2T  
OSC.  
3. If a wait state is added by extending RD#/PSEN#/WR#, add 2T  
.
OSC  
4. If wait states are added as described in both Note 2 and Note 3, add a total of 4T  
.
OSC  
III. 2.2  
Rev. B (20/09/96)  
TSC 80251A1  
K
T
LHLL  
ALE  
K
K
T
LLRL  
T
RLRH  
T
RHLH1  
PSEN#  
K
T
RLDV  
T
RLAZ  
K
T
RHDZ  
T
RHDX  
T
LHAX  
K
T
T
LLAX  
AVLL  
P0  
P2  
A7:0  
D7:0  
Instruction In  
K
T
AVRL  
K
T
AVDV1  
K
T
AVDV2  
A15:8  
K The value of this parameter depends on wait states. See the table of AC characteristics.  
Figure 2.1. External Instruction Bus Cycle in non–page mode  
K
T
LHLL  
ALE  
K
K
T
LLRL  
T
RLRH  
T
RHLH2  
PSEN#  
K
T
RLDV  
T
RLAZ  
K
T
RHDZ  
T
RHDX  
T
LHAX  
K
T
T
LLAX  
AVLL  
P0  
P2  
A7:0  
D7:0  
Data In  
K
T
AVRL  
K
T
AVDV1  
K
T
AVDV2  
A15:8  
K The value of this parameter depends on wait states. See the table of AC characteristics.  
Figure 2.2. External Data Read Cycle in non–page mode  
III. 2.3  
Rev. B (20/09/96)  
TSC 80251A1  
K
T
LHLL  
ALE  
K
T
WLWH  
T
WHLH  
WR#  
K
T
LHAX  
T
QVWH  
K
T
AVLL  
T
LLAX  
T
WHQX  
A7:0  
P0  
P2  
D7:0  
Data Out  
K
T
AVWL1  
K
T
T
WHAX  
AVWL2  
A15:8  
K The value of this parameter depends on wait states. See the table of AC characteristics.  
Figure 2.3. External Write Data Bus Cycle in non–page mode  
K
T
LHLL  
ALE  
K
K
T
LLRL  
T
RHRL  
T
RLRH  
T
RHLH1  
PSEN#  
K
T
RLDV  
T
RLAZ  
T
RHDZ  
K
T
LHAX  
K
T
AVLL  
T
LLAX  
T
RHDX  
P0  
P2  
A15:8  
D7:0  
D7:0  
Instruction In  
Instruction In  
K
T
AVRL  
K
T
AVDV1  
K
K
T
AVDV3  
T
AVDV2  
A7:0  
A7:0  
KK  
KK  
Page Miss  
Page hit  
K The value of this parameter depends on wait states. See the table of AC characteristics.  
KK A page hit (i.e., a code fetch to the same 256-byte “page” as the previous code fetch) requires one state  
(2T  
); a page miss requires two states (4T  
).  
OSC  
OSC  
Figure 2.4. External Instruction Bus Cycle in page mode  
III. 2.4  
Rev. B (20/09/96)  
TSC 80251A1  
K
T
LHLL  
ALE  
K
K
T
LLRL  
T
RLRH  
T
RHLH2  
RD#PSEN#  
K
T
RLDV  
T
RLAZ  
K
T
T
LHAX  
RHDZ  
K
T
T
LLAX  
AVLL  
T
RHDX  
P0  
P2  
A15:8  
D7:0  
K
Data In  
T
AVRL  
K
T
AVDV1  
K
T
AVDV2  
A7:0  
K The value of this parameter depends on wait states. See the table of AC characteristics.  
Figure 2.5. External Read Data Bus Cycle in page mode  
K
T
LHLL  
ALE  
WR#  
K
T
WLWH  
T
WHLH  
K
T
LHAX  
T
QVWH  
K
T
AVLL  
T
LLAX  
T
WHQX  
A15:8  
P0  
P2  
D7:0  
K
Data Out  
T
AVWL1  
K
T
T
WHAX  
AVWL2  
A7:0  
K The value of this parameter depends on wait states. See the table of AC characteristics.  
Figure 2.6. External Write Data Bus Cycle in page mode  
III. 2.5  
Rev. B (20/09/96)  
TSC 80251A1  
T
XLXL  
TXD  
T
XHQX  
K
K
Set TI  
T
QVXH  
RXD  
(Out)  
0
1
2
3
4
5
6
7
K
T
AV  
T
Set RI  
Valid  
XHDX  
T
XHDV  
RXD  
(In)  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
K
TI and RI are set during S1P1 of the peripheral cycle following the shift of the eight bit.  
Figure 2.7. Serial Port Waveform – Shift Register mode  
Notation for timing parameters name  
A = Address  
Q = Data out  
D = Data  
S = Supply (VPP )  
E = Enable  
V = Valid  
G = PROG#  
X = No Longer Valid  
H = high  
L = Low  
Z = Floating  
III. 2.6  
Rev. B (20/09/96)  
TSC 80251A1  
ADC characteristics  
Table 3.1. A/D Converter electrical characteristics  
Commercial  
Industrial  
Automotive  
TA = 0 to 70°C  
VSS = 0 V  
TA = –40 to +85°C ;  
VSS = 0 V  
TA = –40 to +125°C  
VSS = 0 V  
VDD = 5 V ± 10 %  
VDD = 5 V ± 10 %  
VDD = 5 V ± 10 %  
F
OSC  
= 1 to 16 MHz  
F
OSC  
= 1 to 16 MHz  
F
OSC  
= 1 to 12 MHz  
Symbol  
Parameter  
Test Conditions  
Min  
Max  
Unit  
V
AVDD Analog supply voltage  
AVDD = VDD±0.2V  
4.50  
5.50  
1.20  
AI  
Analog supply current: operating  
Analog input voltage  
Port 1 = 0 to AVDD  
mA  
V
DD  
AV  
AVSS–0.2  
AVSS–0.2  
1
AVDD+0.2  
AVDD+0.2  
10  
IN  
V
ref  
Reference voltage  
V
R
ref  
C
IA  
Resistance between V and AVSS  
kΩ  
pF  
µs  
ref  
Analog input capacitance  
Sampling time  
15  
t
108 T  
600 T  
6.757 at 16 MHz  
9 at 12 MHz  
108 at 1 MHz  
ADS  
OSC  
t
Conversion time (including sam-  
pling time)  
37.5 at 16 MHz  
50 at 12 MHz  
600 at 1 MHz  
µs  
ADC  
OSC  
1,2  
DLe  
ILe  
OSe  
Ge  
Differential non–linearity  
±1  
±1  
LSB  
LSB  
LSB  
%
1,3  
Integral non–linearity  
1,4  
Offest error  
±1  
1,5  
Gain error  
0,40  
±1  
M
CTC  
Channel to channel matching  
LSB  
dB  
6
C
t
Crosstalk between inputs of Port 1  
0 to 100 kHz  
–60  
1000  
T
OSC  
Oscillator Clock Period  
Com, Ind = 62  
Auto = 83  
ns  
Notes:  
1. Conditions : AVDD = 5.V; V  
= 5.12V. ADC is monotonic with no missing codes.  
REF  
2. The differential non–linearity (DLe) is the difference between the actual step width and the ideal step width.  
(See Figure 3.1. )  
3. The integral non–linearity (ILe) is the peak difference between the center of the steps of the actual and the  
ideal transfer curve after appropriate adjustment of gain and offset error. (See Figure 3.1. )  
4. The offset error (OSe) is the absolute difference between the straight line which fits the actual transfer curve  
(after removing gain error), and a straight line which fits the ideal transfer curve. (See Figure 3.1. )  
5. The gain error (Ge) is the relative difference in percent between the straight line fitting the actual transfer  
curve (after removing offset error), and the straight line which fits the ideal transfer curve. Gain error is constant  
at every point on the transfer curve. (See Figure 3.1. )  
6. This should be considered when both analog and digital signals are simultaneously input to Port 1.  
III. 3.1  
Rev. B (20/09/96)  
TSC 80251A1  
(Offset error Gain Error)  
OSe  
Ge  
(Code Out)  
255  
254  
253  
252  
(2)  
9
8
7
6
(1)  
(5)  
5
4
3
2
(4)  
(3)  
1 LSB  
(ideal)  
1
(LSB  
)
AV  
ideal  
IN  
0
253 254 255 256  
252  
6
7
8
1
2
3
4
5
9
Offset error OSe  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) Differential non–linearity (DLe)  
(4) Integral on–linearity (ILe)  
(5) Center of a step of the actual transfer curve  
Figure 3.1. A/D conversion characteristic  
III. 3.2  
Rev. B (20/09/96)  
TSC 80251A1  
EPROM Programming  
4.1. Programming modes  
The TSC87251A1 derivatives in Window CQPJ are erasable by UV which set all the EPROM  
memory cells to one and allows a reprogrammation. The other TSC87251A1 derivatives are one time  
programmable as an EPROM cell cannot be reset once programmed to 0. Table 4.1. shows the  
hardware setup needed to program the TSC87251A1 EPROM areas:  
D The chip has to be maintained under reset and the PSEN# has to be to forced to 0 until the  
completion of the programming sequence.  
D The programming address are applied on Ports 1 and 3 which are respectively the upper and lower  
address lines.  
D The programming data are applied on Port 2.  
D The EPROM programming is done by applying VPP on the EA# pin and by generating 5 pulses  
on ALE/PROG# pin for the on–chip code memory and 25 for the configuration bytes.  
Table 4.1. EPROM programming configuration  
EPROM Mode  
On–chip code memory  
Configuration bytes  
RST EA# PSEN#  
ALE  
P0  
P2 P1(Upper)P3(Lower) Notes  
1
1
VPP  
VPP  
0
0
5 Pulses  
25 Pulses  
68h Data  
69h Data  
0000h-5FFFh  
0080h-0081h  
1
1
Notes:  
1. The ALE/PROG# pulse waveform is shown in Figure 4.2.  
VDD  
+ 5 V  
EA#/VPP  
ALE/PROG#  
RST  
VPP  
VDD  
5 x 100 µs  
PSEN#  
Mode  
P0  
TSC87251A1  
A7:0  
P3  
XTAL1  
4 to 6 MHz  
A14:8  
P1  
P2  
VSS  
PGM Data  
Figure 4.1. Setup for EPROM programming  
III. 4.1  
Rev. B (20/09/96)  
TSC 80251A1  
P1 = A14:8  
P3 = A7:0  
Address  
T
GHAX  
T
AVGL  
P2 = D7:0  
Data  
T
DVGL  
T
GHDX  
VPP  
EA#/VPP VDD  
VSS  
T
SHGL  
T
2
GHGL  
ALE/PROG#  
1
3
4
5
T
GLGH  
T
EHSH  
P0  
Mode = 68h or 69h  
Note:  
The timing is the same for both programming modes excepted the number of programming pulses. Only 5  
programming pulses are shown here.  
Figure 4.2. Timings for EPROM programming  
III. 4.2  
Rev. B (20/09/96)  
TSC 80251A1  
4.2. Verify algorithm  
Figure 4.3. show the setup needed to verify the TSC80251A1 EPROM areas. Table 4.2. shows the  
configuration needed to verify the on-chip code memory and Configuration bytes. The 15 addresses  
mustbeconnectedtothePorts3and1. ALE/PROG#and PSEN#aredrivenlowwhilePort0receives  
the configuration.  
Figure 4.4. shows the timings to apply in orded to execute the EPROM verify mode.  
D Port 0 drives the verify mode (28h for programming mode).  
D The address to access is driven on Port 1 and Port 3 while the PSEN# and ALE are driven low.  
The data is driven on Port 2, 48 clock periods after the address is stable.  
Table 4.2. EPROM verifying configuration  
Verify EPROM  
On–chip code memory  
Configuration bytes  
RST  
EA#  
PSEN#  
ALE  
P0  
P2  
P1(Upper) P3(Lower)  
0000h-5FFFh  
1
1
1
1
0
0
1
1
28h  
29h  
Data  
Data  
0080h-0083h  
VDD  
+ 5 V  
EA#/VPP  
VDD  
P2  
ALE/PROG#  
RST  
PGM Data  
PSEN#  
Mode  
A7:0  
P0  
TSC87251A1  
P3  
P1  
XTAL1  
VSS  
4 to 6 MHz  
A14:8  
Figure 4.3. Setup for EPROM verification  
III. 4.3  
Rev. B (20/09/96)  
TSC 80251A1  
P0  
Mode = 28h or 29h  
T
ELQV  
T
EHQZ  
P1 = A14:8  
P3 = A7:0  
Address  
P2 = D7:0  
Data  
T
AQV  
> = 48 x t  
clc  
Figure 4.4. Timings for EPROM verification  
Table 4.3. EPROM programming & verification characteristics  
( TA = 21 to 27°C ; VCC = 5V +/– 0.25V ; VSS= 0 )  
Symbol  
Parameter  
Programming Supply Voltage  
Programming Supply Current  
Oscillator Frequency  
Min  
Max  
13  
Units  
V
VPP  
IPP  
12,75  
75  
mA  
ns  
T
167  
250  
OSC  
T
Address Setup to PROG# low  
Address Hold after PROG# low  
Data Setup to PROG# low  
Data Hold after PROG#  
ENABLE High to VPP  
VPP Setup to PROG# low  
VPP Hold after PROG#  
PROG# Width  
48T  
AVGL  
OSC  
OSC  
OSC  
OSC  
OSC  
T
48T  
48T  
48T  
48T  
GHAX  
DVGL  
GHDX  
EHSH  
SHGL  
GHSL  
GLGH  
T
T
T
T
T
T
10  
ms  
ms  
ms  
10  
90  
110  
T
Address to Data Valid  
48T  
AVQV  
OSC  
OSC  
OSC  
T
ENABLE low to Data Valid  
Data Float after ENABLE  
PROG high to PROG# low  
48T  
48T  
ELQV  
EHQZ  
GHGL  
T
T
0
10  
ms  
III. 4.4  
Rev. B (20/09/96)  
TSC 80C251A1  
Packages  
5.1. PLCC 44  
5.1.1. Mechanical Outline  
Figure 5.1. Plastic Lead Chip Carrier  
Table 5.1. PLCC chip size  
MM  
Max  
4.57  
INCH  
Min  
4.20  
Min  
.165  
.090  
.685  
.647  
.590  
.685  
.647  
.590  
Max  
.180  
.120  
.695  
.656  
.630  
.695  
.656  
.630  
A
A1  
D
2.29  
3.04  
17.40  
16.44  
14.99  
17.40  
16.44  
14.99  
17.65  
16.66  
16.00  
17.65  
16.66  
16.00  
1.27 BSC  
1.22  
D1  
D2  
E
E1  
E2  
e
.050 BSC  
G
1.07  
1.07  
0.51  
.042  
.042  
.020  
.048  
.056  
H
1.42  
J
III. 5.1  
Rev. B (20/09/96)  
TSC 80C251A1  
MM  
INCH  
Min  
Max  
Min  
Max  
K
0.33  
0.53  
.013  
.021  
Nd  
Ne  
11  
11  
11  
11  
PKG STD  
00  
5.1.2. Pin Assignment  
Table 5.2. PLCC pin assignment  
Pin Number  
Pin Name  
AVSS  
Pin Number  
Pin Name  
P2.0/A8  
1
2
3
4
23  
24  
25  
26  
27  
28  
29  
30  
21  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Vref  
P2.1/A9  
P1.0/AN0  
P1.1/AN1  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN#  
5
P1.2/ECI/AN2  
P1.3/CEX0/AN3  
P1.4/CEX1  
P1.5/PMI0/CEX2  
P1.6/PMI1CEX3  
P1.7/A17/PMI2/CEX4  
RST  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
ALE/PROG#  
VSS0  
P3.0/RXD  
VDD0  
P3.1/TXD  
EA#/VPP  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
AVDD  
P3.2/INT0#  
P3.3/INT1#  
P3.4/T0  
P3.5/T1  
P3.6/WR#  
P3.7/A16/RD#  
XTAL2  
XTAL1  
VSS1  
III. 5.2  
Rev. B (20/09/96)  
TSC 80C251A1  
5.2. CQPJ 44 with Window  
5.2.1. Mechanical Outline  
Figure 5.2. Ceramic Quad Pack J  
Table 5.3. CQPJ chip size  
MM  
Max  
INCH  
Min  
Min  
Max  
.193  
.010  
.691  
.656  
A
4.90  
C
0.15  
17.40  
16.36  
0.25  
.006  
.685  
.644  
D – E  
17.55  
16.66  
1.27 TYP  
0.53  
D1 – E1  
e
f
.050 TYP  
0.43  
0.86  
.017  
.034  
.610  
.021  
.044  
.630  
J
1.12  
Q
R
15.49  
16.00  
0.86 TYP  
11  
.034 TYP  
N1  
N2  
11  
11  
11  
III. 5.3  
Rev. B (20/09/96)  
TSC 80C251A1  
5.2.2. Pin Assignment  
Table 5.4. CQPJ pin assignment  
Pin Number  
Pin Name  
P1.4/CEX1  
Pin Number  
Pin Name  
P2.6/A14  
P2.7/A15  
PSEN#  
1
2
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P1.5/PMI0/CEX2  
P1.6/PMI1CEX3  
P1.7/A17/PMI2/CEX4  
RST  
3
4
ALE/PROG#  
VSS0  
5
6
P3.0/RXD  
P3.1/TXD  
P3.2/INT0#  
P3.3/INT1#  
P3.4/T0  
VDD0  
7
EA#/VPP  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
AVDD  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
P3.5/T1  
P3.6/WR#  
P3.7/A16/RD#  
XTAL2  
XTAL1  
VSS1  
P2.0/A8  
AVSS  
P2.1/A9  
Vref  
P2.2/A10  
P1.0/AN0  
P1.1/AN1  
P1.2/ECI/AN2  
P1.3/CEX0/AN3  
P2.3/A11  
P2.4/A12  
P2.5/A13  
III. 5.4  
Rev. B (20/09/96)  
TSC 80C251A1  
5.3. TQFP 44  
5.3.1. Mechanical Outline  
Figure 5.3. Thin Quad Flat Pack (Plastic)  
Table 5.5. TQFP chip size  
MM  
Max  
INCH  
Min  
Min  
Max  
A
A1  
A2  
A3  
D
1.60  
.063  
0.64 REF  
0.64 REF  
1.45  
.025 REF  
.025REF  
1.35  
11.90  
9.90  
11.90  
9.90  
0.05  
0.45  
.053  
.468  
.390  
.468  
.390  
.002  
.018  
.057  
.476  
.398  
.476  
.398  
6
12.10  
D1  
E
10.10  
12.10  
E1  
J
10.10  
L
0.75  
.030  
e
0.80 BSC  
0.35 BSC  
.0315 BSC  
.014 BSC  
f
III. 5.5  
Rev. B (20/09/96)  
TSC 80C251A1  
5.3.2. Pin Assignment  
Table 5.6. TQFP pin assignment  
Pin Number  
Pin Name  
P1.4/CEX1  
Pin Number  
Pin Name  
P2.6/A14  
P2.7/A15  
PSEN#  
1
2
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P1.5/PMI0/CEX2  
P1.6/PMI1CEX3  
P1.7/A17/PMI2/CEX4  
RST  
3
4
ALE/PROG#  
VSS0  
5
6
P3.0/RXD  
P3.1/TXD  
P3.2/INT0#  
P3.3/INT1#  
P3.4/T0  
VDD0  
7
EA#/VPP  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
AVDD  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
P3.5/T1  
P3.6/WR#  
P3.7/A16/RD#  
XTAL2  
XTAL1  
VSS1  
P2.0/A8  
AVSS  
P2.1/A9  
Vref  
P2.2/A10  
P1.0/AN0  
P1.1/AN1  
P1.2/ECI/AN2  
P1.3/CEX0/AN3  
P2.3/A11  
P2.4/A12  
P2.5/A13  
III. 5.6  
Rev. B (20/09/96)  
TSC 80251A1  
Section IV  
Ordering Information  
TSC 80251A1  
Ordering information  
TSC  
80251A1  
XXX  
A
12  
C
B
R
Conditioning  
R : Tape & Reel  
D : Dry Pack  
B : Tape & Reel  
Dry Pack  
A: Source Mode  
B: Binary Mode  
Part Number  
Temperature Range  
80251A1: External ROM  
87251A1: 24Kbytes  
OTP/EPROM  
C : Commercial 0° to 70°C  
I : Industrial –40° to 85°C  
A: Automotive –55° to 125°C  
251A1: 24kbytes MaskROM  
12: 12 MHz version  
16: 16 MHz version  
Customer ROM Code  
Packaging  
B: PLCC 44  
C: Window CQPJ 44  
(EPROM version)  
D: TQFP 44  
TEMIC Semiconductor  
Microcontroller Product Division  
Examples  
Part Number  
Description  
TSC80251A1–A16CBR  
TSC87251A1–A12CB  
TSC87251A1–A12CBR  
ROMless, Source Mode, 16 MHz, PLCC 44, 0 to 70°C, Tape and Reel  
OTP, Source Mode, 12 MHz, PLCC 44, 0 to 70°C  
EPROM, Source Mode, 12 MHz, PLCC 44, 0 to 70°C, Tape and Reel  
Development Tools  
Part Number  
Description  
Software Starter Kit Keil  
TSC80251A1–SKA  
TSC80251A1–SKB  
TSC80251A1–EKA  
TSC80251A1–EKB  
Software Starter Kit Tasking  
Evaluation Kit Keil  
Evaluation Kit Tasking  
Product Marking :  
TEMIC  
Customer P/N  
Temic P/N  
M
Intel’95  
YYWW Lot Number  
IV. 1.1  
Rev. B (20/09/96)  
Sales Offices  
Addresses  
Europe  
Denmark  
Italy  
Sweden  
TEMIC Dansk  
TEMIC TELEFUNKEN micro-  
electronic GmbH  
Kruppstrasse 6  
45128 Essen  
Tel: 49 201 24730 0  
Fax: 49 201 24730 47  
TEMIC Italiana  
Via Stephenson 94  
20157 Milano  
Tel: 39 2 33212 1  
Fax: 39 2 33212 234  
TEMIC Nordic AB  
Kavallerivaegen 24, Rissne  
17202 Sundbyberg  
Box 2042  
Tel: 46 8 733 0090  
Fax: 46 8 733 0558  
c/o AEG Industri A/S  
Roskildevej 8–10  
2620 Albertslund  
Tel: 45 42 6485 22  
Fax: 45 43 6262 28  
Spain  
TEMIC Iberica  
Principe de Vergara, 112  
28002 Madrid  
Tel: 34 1 562 7600  
Fax: 34 1 562 7514  
TEMIC TELEFUNKEN micro-  
electronic GmbH  
Theresienstrasse 2  
74072 Heilbronn  
Postfach 3535, PLZ 74025  
Tel: 49 7131 67 0  
France  
TEMIC France  
Les Quadrants – 3, avenue du  
centre  
78054 St.–Quentin–en–Yve-  
lines Cedex  
United Kingdom  
TEMIC U.K. Ltd.  
Easthampstead Road  
Bracknell  
Berkshire RG12 1LX  
Tel: 44 1344 707 300  
Fax: 44 1344 427 371  
Fax: 49 7131 67 2444  
B.P. 309  
Tel: 33 1 3060 7000  
Fax: 33 1 3060 7111  
Hungary  
TEMIC TELEFUNKEN micro-  
electronic Hungary Kft.  
Napmatka u. 6  
1106 Budapest  
Tel: 36 1 2608 542  
Fax: 36 1 2649 017  
Germany  
TEMIC TELEFUNKEN micro-  
electronic GmbH  
Erfurter Strasse 31  
85386 Eching  
Tel: 49 89 319 700  
Fax: 49 89 319 4621  
North America  
USA  
Alabama  
Georgia  
Michigan  
New Jersey  
TEMIC North America Inc.  
125 Electronics Boulevard,  
Ste.C–1  
TEMIC North America Inc.  
6045 Atlantic Blvd.,Ste.212  
Norcross  
TEMIC North America Inc.  
Continental Plaza  
2701 Troy Center Drive,  
Ste.220  
TEMIC North America Inc.  
180 Mount Airy Road, Ste.100  
Basking Ridge  
Huntsville  
Georgia 30071  
New Jersey 07920  
Alabama 35824  
Tel: 1 205 461 7894  
Fax: 1 205 461 7928  
Tel: 1 770 662 1598  
Fax: 1 770 662 1561  
Troy  
Tel: 1 908 630 9200  
Fax: 1 908 630 9201  
Michigan 48084  
Tel: 1 810 244 0610  
Fax: 1 810 244 0848  
Illinois 60192  
TEMIC North America Inc.  
5401 Trillium BLVD.,Ste.275  
Hoffman Estates  
Illinois 60192  
Tel: 1 847 645 0038  
Fax: 1 847 645 0041  
New York  
TEMIC North America Inc.  
3 River Island Drive  
Brewerton  
New York 13029  
Tel: 1 315 676 4228  
Fax: 1 315 676 2244  
New Hampshire  
TEMIC North America Inc.  
c/o Siliconix Inc.  
5 Casey Circle Nashua  
Nashua  
New Hampshire 03062  
Tel: 1 603 598 2541  
Fax: 1 603 886 9603  
California  
TEMIC North America  
2201 Laurelwood Road  
Santa Clara  
California 95056–0951  
Tel: 1 408 988 8000  
Fax: 1 408 970 3950  
TEMIC North America Inc.  
16 Rockledge Ave, Ste.56–1  
Scarborough  
New York 10510  
Tel: 1 914 945 0618  
Fax: 1 914 945 0769  
TEMIC North America Inc.  
12431 Landale Street  
Studio City  
California 91604  
Tel: 1 818 985 0558  
Fax: 1 818 985 0418  
V. so.1  
Sales Offices  
North America  
USA / Mexico  
North Carolina  
Texas  
Mexico  
TEMIC North Carolina  
5525 Doemont Drive  
Apex  
North Carolina 27502  
Tel: 1 919 662 9595  
Fax: 1 919 662 9520  
TEMIC North America Inc.  
2100 West Loop South, Ste.800  
Houston  
Texas 77027  
Tel: 1 713 297 8871  
Fax: 1 713 297 8872  
TEMIC Technical Support  
Center  
5605 North MacArthur  
Blvd.220  
Irving  
Texas 75038  
TEMIC Mexicana Division  
Semiconductorres  
13 Sur 505 – 10 Piso  
72000 Puebla, PUE  
Tel: 525 22 464634  
Fax: 525 22 464404  
Tel: 1 214 756 0302  
Fax: 1 214 756 0702  
China / Asia Pacific / Japan  
China  
India  
Rep. of Singapore  
Japan  
TEMIC Shanghai Ltd.  
3/F 501 Jiangchang West Road  
200436 Shanghai  
Tel: 86 21 5677 3398  
Fax: 86 21 5603 3194  
TEMIC India  
TEMIC Singapore Pte Ltd  
AEG Building, #02–00  
25 Tampines Street 92  
Singapore 528877  
Tel: 65 788 6668  
Fax: 65 788 0031  
TEMIC Japan K.K.  
Roppongi First Bldg. 17F  
1–9–9, Roppongi, Minato–ku  
Tokyo 106  
Tel: 81 3 5562 3321  
Fax: 81 3 5562 3316  
8/53 South Patel Nagar  
110008 New Delhi  
Tel: 91 11 578 9133  
Fax: 91 11 578 9133  
Hong Kong  
TEMIC Hong Kong Limited  
Ste.1701, World Finance  
Centre  
South Tower, Harbour City  
17 Canton Road, Tsimshatsui  
Kowloon  
Tel: 852 23 789 789  
Fax: 852 23 755 733  
Korea  
TEMIC Korea  
Taiwan, R.O.C.  
TEMIC Taiwan  
17F–1, 76, Section 2  
Tun Hwa South Road  
Taipei City  
Tel: 886 2 755 6108  
Fax: 886 2 755 4777  
Ste.605, Singsong Bldg.  
#25–4, Yoido–Dong  
Youngdeungpo–Ku  
150–010 Seoul  
Tel: 82 2 7851 136  
Fax: 82 2 7851 137  
V. so.2  
TSC 80251A1  
Section V  
TEMIC Addresses  
Representatives  
Addresses  
Europe  
Austria  
Israel  
Rep. of Ireland  
United Kingdom  
SEI/Elbatex  
Eitnergasse 6  
1233 Wien  
Tel: 43 1 8160 2215  
Fax: 43 1 8160 2400  
Tritech Ltd.  
Ind. Zone  
Memec Ireland Ltd.  
Gardner House  
Bank Place  
Limerick  
Tel: 353 61 4118 42  
Fax: 353 61 4118 88  
BCD Microelectronics Ltd.  
Swaffham Bulbeck  
3 Station Road  
Cambridge CB5 ONB  
Tel: 44 1223 8125 98  
Fax: 44 1223 8126 86  
4, Hayetzira Street  
43100 RAANANA  
P.O. Box 2436  
Tel: 972 9 917 277  
Fax: 972 9 982 616  
Croatia  
Dolenc d.o.o.  
Ivana Mazuranica 31  
10290 Zagreb / Zapresic  
Tel: 385 41 704 905  
Fax: 385 41 702 769  
Abercorn Electronics Ltd.  
Philipstown, Scotland  
Pardovan, West Lothian  
Linlinthgow EH49 6QZ  
Tel: 44 1506 8342 22  
Fax: 44 1506 8345 54  
Turkey  
ERDA elektronik sanayi ve ti-  
caret a.s.  
Poland  
APL  
ul. Mokotowska 4/6  
00641 Warszawa  
Tel: 48 22 256 259  
Fax: 48 22 257 276  
Garanti Koza Evleri  
Visne 1 Mah.2. SokakNo.1  
80936 Zekeriyakoy–Istanbul  
Tel: 90 212 2026 318  
Fax: 90 212 2026 307  
Germany  
Ing. Buero Rainer Koenig  
Giesensdorfer Strasse 11 A  
12207 Berlin  
Postfach 420, PLZ 12174  
Tel: 49 30 7689 090  
Fax: 49 30 7689 0930  
North America  
USA  
QuadRep Southern Inc.  
11995 El Camino Real, Ste.305  
San Diego  
California 92130  
Tel: 1 619 755 1188  
Fax: 1 619 793 9269  
Rep. Inc. South  
235 South Maitland, Ste.211  
Maitland  
Florida 32751  
Tel: 1 407 628 4837  
Fax: 1 407 645 0356  
Alabama  
Rep. Inc.  
11535 Gilleland Road  
Huntsville  
Alabama 35803  
Tel: 1 205 881 9270  
Fax: 1 205 882 6692  
Connecticut  
see New York (Metro/L.I.)  
Delaware  
see New Jersey  
District of Columbia  
see Maryland  
Naltron Corporation  
110 S. W. 91 Av., Ste.206  
Plantation  
Florida 33324  
Tel: 1 305 236 3580  
Fax: 1 305 236 3581  
QuadRep North, Inc.  
2635 North First Street, Ste.116  
San Jose  
California 95134–2009  
Tel: 1 408 432 3300  
Fax: 1 408 432 3428  
Alaska  
see Washington  
Florida  
Naltron Corporation  
Southern Office  
14460 Greenbriar Place  
Davie  
Florida 33325  
Tel: 1 305 370 9363  
Fax: 1 305 370 6188  
Arizona  
QuadRep Southern Inc.  
40 W. Baseline Road, Ste.116  
Tempe  
Arizona 85283  
Tel: 1 602 839 2102  
Fax: 1 602 839 2126  
Naltron Corporation  
South  
5401 W. Kennedy, Ste.1060  
Tampa  
Florida 33609  
Tel: 1 813 287 1433  
Fax: 1 813 287 1746  
Colorado  
QuadRep Rocky Mtn. Inc.  
6500 South Quebec Street,  
Ste.210  
Englewood  
Colorado 80111  
Naltron Corporation  
Central Office  
588 Peregrine Drive  
Indialantic  
Florida 32903  
Tel: 1 407 777 3399  
Fax: 1 407 777 2050  
Arkansas  
see Texas (Arlington)  
Tel: 1 303 771 6886  
Fax: 1 303 771 6887  
California  
QuadRep Southern, Inc.  
15215 Alton Parkway, Ste.200  
Irvine  
California 92130  
Tel: 1 714 727 4222  
Fax: 1 714 727 4033  
QuadRep Rocky Mtn. Inc.  
19410 Rim of the World  
Monument  
Colorado 80132  
Tel: 1 719 4889 097  
Fax: 1 719 4889 312  
V. rep.1  
Representatives  
Naltron Corporation  
4144 Waterview Loop  
Winter Park  
Florida 32792  
Tel: 1 407 657 7003  
Fax: 1 407 657 4240  
Victory Sales  
32901 Station Street, Ste.104  
Solon  
Ohio 44139  
Tel: 1 216 498 7570  
Fax: 1 216 498 7574  
Maine  
see Massachusetts  
Nevada  
(exc. Clark County)  
QuadRep Sierra  
987 Tahoe Blvd.  
Incline Village  
Nevada 89451  
Tel: 1 702 832 2701  
Fax: 1 702 832 2703  
Maryland  
Arbotek Associates, Inc.  
2408 Peppermill Drive, Ste.I  
Glen Burnie  
Maryland 21061  
Tel: 1 410 768 5355  
Fax: 1 410 768 8118  
Georgia  
Rep. Inc.  
1944 Northlake Parkway, Ste.1  
Tucker  
Georgia 30084  
Oklahoma  
see Texas (Arlington)  
New Hampshire  
see Massachusetts  
Oregon  
QuadRep Northwest  
17020 SW Upr. Boones Fry.  
Rd. #202  
Portland  
Oregon 97224  
Massachusetts  
C&D Electronics  
90 Carando Drive  
Springfield  
Massachusetts 01104  
Tel: 1 413 781 1776  
Fax: 1 413 736 8549  
Tel: 1 404 938 4358  
Fax: 1 404 938 0194  
New Jersey (Northern)  
see New York (Metro/L.I.)  
Hawaii  
see California  
New Jersey (Southern)  
see Pennsylvania (Eastern)  
Tel: 1 503 620 8320  
Fax: 1 503 639 4023  
Idaho  
QuadRep Northwest  
10451 West Garverdale,  
Ste.209  
Boise  
Idaho 83704  
New Mexico  
see Arizona  
Pennsylvania  
(Western)  
Technology Sales Inc.  
332 Second Avenue  
Waltham  
Massachusetts 02154  
Tel: 1 617 890 5700  
Fax: 1 617 890 3913  
see Ohio (Solon)  
New York  
Astrorep Incorporated  
103 Cooper Street  
Babylon  
New York (Metro/L.I.)  
Tel: 1 516 422 2500  
Fax: 1 516 422 2504  
Pennsylvania (Eastern)  
Tel: 1 208 375 9868  
Fax: 1 208 323 9386  
Astrorep Mid Atlantic Inc.  
375 Horsham Road, Ste.200  
Horsham, PA. 19044  
Pennsylvania  
Tel: 1 215 957 9580  
Fax: 1 215 957 9583  
Michigan  
Victory Sales  
39111 W. Six Mile Road  
Livonia  
Michigan 48152  
Tel: 1 313 432 3147  
Fax: 1 313 432 3146  
Illinois  
Victory Sales  
1030 W. Higgins Road, Ste.101  
Hoffman Estates  
Illinois (Northern) 60195  
Tel: 1 847 490 0300  
Fax: 1 847 490 1499  
Technology Sales, Inc.  
920 Perinton Hills Office Park  
Fairport  
New York 14450 (Upstate)  
Tel: 1 716 223 7500  
Fax: 1 716 223 5526  
Puerto Rico  
Technology Sales, Inc.  
Edificio Rali, Ste.216  
San German  
Minnesota  
Stan Clothier Company  
9600 West 76th Street, Ste.A  
Eden Prairie  
Minnesota 55344  
Tel: 1 612 944 3456  
Fax: 1 612 944 6904  
Indiana  
Victory Sales  
3077 East 98th Street, Ste.135  
Indianapolis  
Indiana 46280  
P.O. Box 121  
North Carolina  
Rep, Inc. #062  
1026 Forest Oak Drive, Ste.204  
Charlotte  
North Carolina 28209  
Tel: 1 704 521 9982  
Fax: 1 704 521 9995  
Puerto Rico 00683–0121  
Tel: 1 809 892 4745  
Fax: 1 809 892 1128  
Tel: 1 317 581 0880  
Fax: 1 317 581 0882  
Rhode Island  
see Massachusetts  
Mississippi  
see Alabama  
Iowa  
Stan Clothier Company  
1930 St. Andrews NE  
Cedar Rapids  
Iowa 52402  
Tel: 1 319 393 1576  
Fax: 1 319 393 7317  
South Carolina  
see North Carolina  
Rep. Inc.  
2500 Gateway Centre Blvd.  
Morisville  
North Carolina 27560  
Tel: 1 919 469 9997  
Fax: 1 919 481 3879  
Missouri  
Stan Clothier Company  
3910 Old Highway 94, South  
Ste.116  
St. Charles  
Missouri 63304  
South Dakota  
see Minnesota  
Tennessee  
Rep. Inc.  
1908 Branner Avenue  
Jefferson City  
P.O. Box 490  
Tennessee 37760  
Tel: 1 615 475 9012  
Fax: 1 615 475 6340  
Kansas  
Stan Clothier Company  
13000 West 87th Street Park-  
way, Ste.105  
Lenexa  
Kansas 66215  
North Dakota  
see Minnesota  
Tel: 1 314 928 8078  
Fax: 1 314 447 5214  
Montana  
see Colorado  
Ohio  
Victory Sales Inc.  
7333 Paragon Road, Suite 210  
Centerville  
Tel: 1 913 492 2124  
Fax: 1 913 492 1855  
Nebraska  
see Kansas  
Ohio 45458  
Tel: 1 513 436 1222  
Fax: 1 513 436 1224  
Kentucky  
see Indiana  
Nevada (Clark County)  
see Arizona  
Louisiana  
see Texas (Arlington)  
V. rep.2  
Representatives  
Ion Associates, Inc.  
20405 S.H. 249, Ste.150  
Houston  
Texas 77070  
Tel: 1 713 376 2000  
Fax: 1 713 376 2034  
Texas  
Ion Associates, Inc.  
2221 East Lamar, Ste.250  
Arlington  
Texas 76006  
Tel: 1 817 695 8000  
Fax: 1 817 695 8010  
Vermont  
see Massachusetts  
West Virginia  
see Maryland  
Virginia  
see Maryland  
Wisconsin  
Victory Sales  
405 North Calhoun Road,  
Ste.208  
Brookfield  
Wisconsin 53005  
Tel: 1 414 789 5770  
Fax: 1 414 789 5760  
Washington  
QuadRep Crown, Inc.  
375 118th Avenue, South East,  
Ste.110  
Utah  
Ion Associates, Inc.  
9390 Research Blvd., Ste.210  
Austin  
Texas 78759  
Tel: 1 512 794 9006  
Fax: 1 512 794 9008  
QuadRep Rocky Mtn. Inc.  
180 South 300 West, Ste.231  
Salt Lake City  
Utah 84101  
Tel: 1 801 521 4717  
Fax: 1 801 821 4745  
Bellevue  
Washington 98005–3575  
Tel: 1 206 453 5100  
Fax: 1 206 646 8775  
Wyoming  
see Colorado  
Canada / South America  
Ontario  
Brasil  
Venezuela  
Dynasty Components Inc.  
1 Terence Matthews Guide  
Kanata K2M293  
Ontario  
Tel: 1 613 599 5570  
Fax: 1 613 599 5577  
Mikrotron Representacao e  
Consultoria S/C Ltda.  
Rua Morato Coelho 798, cj.71  
05417–001 Sao Paulo–SP  
Tel: 55 11 814 7315  
Electronica Uribe C.A.  
Aptdo. de Correos  
Piso 1, Oficina G Calle 3–A, L  
Uribina  
62621 Caracas  
Tel: 58 2 241 2689  
Fax: 58 2 241 0192  
Fax: 55 11 815 8790  
Asia Pacific  
Scan Technology (S) Pte Ltd.  
Jurong Industrial Estate  
10 Penjuru Lane  
Singapore 6091901233  
Tel: 65 2 652 655  
Australia  
Consulaust International Ptv  
Ltd  
3rd Floor, 10 Bridge Street  
Granville, NSW 2142  
Tel: 61 2 637 2558  
Fax: 61 2 682 4521  
Korea  
Kaolink Trading Company  
Unit 12,9/F.,Kodak House,Ph.  
2
39 Healthy Street East  
North Point  
Changnam Electronics Industry  
#44–22, Yoido–Dong  
9th Fl., Hosung Bldg.  
Seoul  
Youngdeungpo–Ku  
Tel: 82 2 7820 412  
Fax: 82 2 7847 702  
Fax: 65 2 655 200  
Tel: 852 2 805 5988  
Fax: 852 2 805 5922  
Taiwan, R.O.C.  
Uppertech Enterprise Co.,Ltd.  
Hsin Tien City  
6F, No 92, Pao Chung Road  
Taipei  
Tel: 886 2 916 1997  
Fax: 886 2 914 1152  
IRH Components  
1–5 Carter Street  
2128 Silverwater  
NSW  
Tel: 61 2 364 1766  
Fax: 61 2 648 3505  
Willias–Array Electronics Ltd.  
200 Tai Lin Pai Road  
Unit 1,24/F, Wyler Centre  
Phase 2  
Kwai Chung  
N.T.  
Malaysia  
Scan Components (M)  
Sdn.Bhd.  
11900 Sungei Nibong  
761–B, Jalan Sultan Azlan  
Shah  
Penang  
Tel: 60 4 643 5136  
Fax: 60 4 643 6320  
Consulaust International Pty.  
Ltd.  
15 Shierlaw Avenue  
Canterbury  
P.O.Box 357, Camberwell  
VIC  
Tel: 61 3 8362 566  
Fax: 61 3 8301 1764  
Tel: 852 2 418 3700  
Fax: 852 2 481 6992  
World Peace Industrial CS  
Ltd.(WPI)  
8 F,76 Cheng Kung Road Sec.1  
Nanking  
Taipei  
Tel: 886 2 7885 200  
Fax: 886 2 7883 255  
India  
Blue Star Limited  
Blue Star House 11/A  
Magarath Road  
560 025 Bangalore  
Tel: 91 80 558 4728  
Fax: 91 80 558 4599  
Rep. of Singapore  
QuadRep Marketing (S)  
Pte.Ltd.  
#12–05 Parkway Builders  
Centre  
1 Marine Parade Central  
Singapore 449408  
Tel: 65 346 1933  
Fax: 65 346 1911  
Hong Kong  
Audio Mechanical Corp. Ltd.  
Ste.1701 A World Finance  
Centre  
South Tower, Harbour City  
17, Canton Road, Tsimshatsui  
Kowloon  
Tel: 852 2 736 8192  
Fax: 852 2 735 0926  
Thailand  
Scan Technology (T) Pte Ltd  
93/37 Modern Group Building  
Chaeng Wattana Road  
Pakkred Nontaburi, 11120  
Tel: 662 982 9023  
Blue Star Limited  
Sahas 414/2  
Veer Savarkar Marg  
400025 Prabhadevi, Bombay  
Tel: 91 22 430 6155  
Fax: 91 22 430 7078  
Fax: 662 574 6386  
V. rep.3  
Distributors  
Addresses  
Europe  
AEG Industri A/S  
Roskildevej 8–10  
2620 Albertslund  
Tel: 45 42 648 522  
Fax: 45 42 643 311  
Arrow  
Centreda  
Avenue Didier Dorat  
31700 Blagnac  
Tel: 33 1 6115 7518  
Fax: 33 1 6130 0193  
Arrow  
Austria  
EBV Elektronik GmbH  
Diefenbachgasse 35/6  
1150 Wien  
Tel: 43 1 8941 7740  
Fax: 43 1 8941 775  
Les jardins d’entreprise–BatB3  
213, rue de Gerland  
69007 Lyon  
Tel: 33 1 7872 7942  
Fax: 33 1 7872 8024  
EBV Elektronik  
Im Lutelicum  
1 Square du Chene Germain  
35510 Cesson Sevigne  
Tel: 33 99 3843 38  
Fax: 33 99 3892 65  
SCAIB  
8, rue du Repos  
69007 Lyon  
Tel: 33 1 7273 2127  
Fax: 33 1 7869 1080  
Farnell Electronic Services  
Akaziengasse 42  
1234 Wien  
Tel: 43 1 6945 170  
Fax: 43 1 6945 10  
Farnell Electronic Services  
Smedeholm 13–19  
2730 Herlev  
Tel: 45 4485 7500  
Fax: 45 4485 7530  
SCAIB  
Chemin des Clos, ZIRST  
38240 Meylan  
Tel: 33 1 7690 2260  
Fax: 33 1 7641 0954  
SEI/Elbatex GmbH  
Eitnergasse 6  
1232 Wien  
Tel: 43 1 8664 20  
Fax: 43 1 8664 2201  
SEI/Hatteland A/S  
Tindbjergvej 18  
8600 Silkeborg  
Tel: 45 8683 6211  
Fax: 45 8683 6383  
Arrow  
Parc d’affaires Hercule  
12C, rue des Landelles  
35510 Cesson–Sevigne  
Tel: 33 1 9941 7044  
Fax: 33 1 9950 1128  
SCAIB  
3 ter, rue de l’hyppodrome  
44300 Nantes  
Tel: 33 4037 0036  
Fax: 33 4037 0104  
SPOERLE Electronic GmbH  
Heiligenstaedter Strasse 52  
1190 Wien  
Tel: 43 1 3187 2700  
Fax: 43 1 3692 273  
Arrow–EXATEC  
Mileparken 20 E  
2740 Skovlunde  
Tel: 45 4492 7000  
Fax: 45 4492 6020  
EBV Elektronik  
16, rue Galilee Cité Descartes  
77436 Champs–sur–Marne  
Tel: 33 1 6468 8600  
EBV Elektronik  
Gladsaxevej 370  
2860 Soborg  
Tel: 45 3969 0511  
Fax: 45 3969 0504  
Belgium  
Farnell Electronic Services  
Excelsiorlaan 4A  
1930 Zavantem  
Tel: 32 2 7253 533  
Fax: 32 2 7254 135  
SEI/SCAIB  
Fax: 33 1 6468 2767  
6 Rue Ambroise Croizat  
91127 Palaiseau Cedex  
Tel: 33 1 6919 8900  
Fax: 33 1 6919 8920  
Future Electronics  
Parc Technopolis  
LP 854 – Les Ulis  
3, Courtaboeuf du Canada, Bat.  
Theta 2  
91974 Courtaboeuf Cedex  
Tel: 33 1 6982 1111  
Fax: 33 1 6982 1100  
Finland  
Arrow–Field OY  
Nittyläntie 5  
00620 Helsinki  
Tel: 358 0 777 571  
Fax: 358 0 777 3718  
Arrow Electronique  
73/79, Rue des Solets  
94663 Rungis Cedex  
B.P. Silic 585  
Tel: 33 1 4978 4948  
Fax: 33 1 4978 0596  
EBV Elektronik  
Excelsiorlaan 35  
1930 Zaventem  
Tel: 32 2 7160 010  
Fax: 32 2 7208 152  
Farnell Electronic Services  
ZAC des Maisons Neuves  
15, rue de Beledonne  
38320 Eybens  
BP 133  
Tel: 33 1 7624 5261  
Fax: 33 1 7662 2804  
SPOERLE Electronic  
Keiberg II – Minervastraat 14  
1930 Zaventem  
Tel: 32 2 725 4660  
Fax: 32 2 725 4511  
Farnell Electronic Services  
Tyopajakatu 5  
00580 Helsinki  
PL 25  
Tel: 358 0 4766 60  
Fax: 358 0 4766 6329  
Farnell Electronic Services  
59 Route du General de Gaulle  
67300 Schiltigheim  
Tel: 33 1 8862 9596  
Fax: 33 1 6985 8399  
Czech Republic  
SPOERLE Electronic  
spol.sr.o.  
Scharkovska 24  
101 Praha 10  
Tel: 42 2 731 354  
Fax: 42 2 731 355  
Arrow  
Les Delonix  
138, chemin du stade  
83140 Six–Fours  
Tel: 33 1 9434 2323  
Fax: 33 1 9474 8659  
Farnell Electronic Services  
Espace Technologique  
BP 69 Saint Aubin  
91192 Gif–Sur–Yvette Cedex  
16 ZA de Coutraboeuf  
Tel: 33 1 6985 8383  
SEI/Hatteland  
Malminkaari 230  
00700 Helsinki  
Tel: 358 0351 61 521  
Fax: 358 0351 61 522  
Fax: 33 1 6985 8399  
France  
Dimacel  
Denmark  
63, rue Jean–Jaures  
95874 Bezons Cedex  
Tel: 33 1 3423 7069  
Fax: 33 1 3423 7033  
EBV Elektronik  
Ved Lunden 9  
8230 Aabyhoj  
Tel: 45 8625 0466  
Fax: 45 8625 0466  
V. dist.1  
Distributors  
SCAIB  
EBV Elektronik GmbH  
Behaimstrasse 3  
10585 Berlin  
Postfach 100208, PLZ 10562  
Tel: 49 30 3421 041  
Fax: 49 30 3419 003  
SPOERLE Electronic GmbH  
Headquarter  
Max–Planck–Str. 1–3  
63303 Dreieich  
Postfach 102140, PLZ 63267  
Tel: 49 6103 304 0  
Fax: 49 6103 304 344  
Farnell Electronic Services  
GmbH  
Feithstrasse 41  
58095 Hagen  
Tel: 49 2331 5899 40  
Fax: 49 2331 5899 40  
Rue des Charrons  
31702 Toulouse  
BP 57  
Tel: 33 1 6171 9083  
Fax: 33 1 6130 4987  
EBV Elektronik  
Eurodis Enatechnik Electronics  
GmbH  
Sickingenstrasse 1  
10553 Berlin  
Tel: 49 30 3441 043  
Fax: 49 30 3449 544  
SPOERLE Electronic GmbH  
Schnackenburger Allee 149  
22525 Hamburg  
Postfach 540824, PLZ 22508  
Tel: 49 40 853 134 0  
Parc Club du Moulin á Vent  
33, Av. du Docteur Georges  
Levy, Bat 55  
69693 Venissieux Cedex  
Tel: 33 1 7877 6777  
Fax: 33 1 7800 8081  
Eurodis Enatechnik Electronics  
GmbH  
St. Petersburger Str. 15  
01309 Dresden  
Tel: 49 351 3361 304  
Fax: 49 351 3361 306  
Fax: 49 40 8531 3490  
Future Electronics  
Luxemburger Strasse 35  
11353 Berlin  
Tel: 49 30 4690 890  
Fax: 49 30 4690 8989  
Eurodis Enatechnik Electronics  
GmbH  
Rendsburger Str. 24  
30659 Hannover  
Tel: 49 511 6159 70  
Fax: 49 511 6159 798  
Farnell Electronic Services  
Parc Club du Moulin Vent  
33, rue du Docteur Gerard  
Levy  
69693 Venissieux Cedex  
Tel: 33 1 7278 1870  
Fax: 33 1 7278 1897  
EBV Elektronik GmbH  
Burgstrasse 81–83  
65817 Eppstein  
Tel: 49 6198 5920 50  
Fax: 49 6198 5920 70  
SPOERLE Electronic GmbH  
Rudower Strasse 27–29  
12351 Berlin  
Future Electronics Deutschland  
GmbH  
Farnell Electronic Services  
GmbH  
Black & Decker–Strasse 17B  
65510 Idstein  
Tel: 49 30 6060 11  
Fax: 49 30 6014 057  
SCAIB  
Technoparc  
Fr.–Engels–Strasse 54/94  
99086 Erfurt  
Tel: 49 6126 5402 0  
Fax: 49 6126 5162 9  
23, allee Lavoisier  
59650 Villeneuve d’Ascq  
Tel: 33 1 2005 2903  
Fax: 33 1 2005 9912  
Tel: 49 361 211 3580  
Fax: 49 361 211 3580  
SPOERLE Electronic GmbH  
Hoepfigheimer Strasse 5  
74321 Bietigheim–Bissingen  
Postfach 1727, PLZ 74307  
Tel: 49 7142 7003 0  
EBV Elektronik GmbH  
Matthias–Claudius–Strasse 2A  
41564 Kaarst  
Tel: 49 2131 9677 0  
Fax: 49 2131 9677 30  
Future Electronics Deutschland  
GmbH  
Wilhelm–Wolff–Str.6  
99099 Erfurt  
Tel: 49 361 4208 70  
Fax: 49 361 4208 760  
Arrow  
P.A.T de Brabois–Bat B8  
18, allee de la foret de la Reine  
54600 Villers Les Nancy  
Tel: 33 1 8344 1616  
Fax: 33 1 8344 3863  
Fax: 49 7142 7003 60  
EBV Elektronik GmbH  
In der Meineworth 21  
30938 Burgwedel  
Postfach 1355, PLZ 30929  
Tel: 49 5139 8087 0  
Fax: 49 5139 5199  
EBV Elektronik GmbH  
Headquarter  
Ammerthalstr. 28  
85551 Kirchheim–Heimstetten  
Tel: 49 89 9911 40  
Fax: 49 89 9911 4422  
Farnell Electronic Services  
GmbH  
Am Geissberg 8  
71292 Friolzheim  
Tel: 49 7044 440 49  
Fax: 49 7044 441 48  
Germany  
SPOERLE Electronic GmbH  
Kackertstrasse 10  
52072 Aachen  
Tel: 49 241 8896 90  
Fax: 49 241 8116 2  
Eurodis Enatechnik Electronics  
GmbH  
Henschelring 5  
85551 Kirchheim/Muenchen  
Tel: 49 89 9049 820  
Fax: 49 89 9049 8240  
Eurodis Enatechnik Electronics  
GmbH  
Rheinstrasse 24  
64283 Darmstadt  
Tel: 49 6151 1741 0  
Fax: 49 6151 1741 11  
Farnell Electronic Services  
GmbH  
Kurze Strasse 1  
74376 Gemmrigheim  
Tel: 49 7143 9439 0  
Fax: 49 7143 9439 0  
Farnell Electronic Services  
GmbH  
Heubergstrasse 43  
72631 Aichtal  
Tel: 49 7127 508 78  
Fax: 49 7127 562 25  
Eurodis Enatechnik Electronics  
GmbH  
Max–Stromeyerstrasse 1  
78467 Konstanz  
Tel: 49 7531 6104 8  
Fax: 49 7531 6726 0  
Future Electronics Deutschland  
GmbH  
Hauert 8  
44227 Dortmund  
Tel: 49 231 9750 480  
Fax: 49 231 9750 823  
DLC 3  
Rodeweg 18  
37081 Goettingen  
Postfach 3352, PLZ 37023  
Tel: 49 551 904 0  
Fax: 49 551 904 46748  
Farnell Electronic Services  
GmbH  
Maubacher Strasse 30  
71522 Backnang  
Tel: 49 7191 689 31  
Fax: 49 7191 689 31  
SPOERLE Electronic GmbH  
Hildebrandstrasse 13  
44319 Dortmund  
Farnell Electronic Services  
GmbH  
Postfach 130362, PLZ 44313  
Tel: 49 231 218 010  
Bantorfer Brink 75  
30890 Barsinghausen  
Tel: 49 5105 5146 63  
Fax: 49 5105 5140 60  
Fax: 49 231 2180 167  
V. dist.2  
Distributors  
Future Electronics Deutschland  
GmbH  
Johannes–Daur–Strasse 1  
70825 Korntal–Muenchingen  
Tel: 49 711 8308 30  
Fax: 49 711 8308 383  
SPOERLE Electronic GmbH  
Rathsbergstrasse 17  
90411 Nuernberg  
Tel: 49 911 5215 60  
Fax: 49 911 5215 635  
Future Electronics Deutschland  
GmbH  
Headquarter–D  
Muenchner Strasse 18  
85774 Unterfoehring  
Tel: 49 89 9572 70  
Fax: 49 89 9572 7205  
Avnet EMG S.R.L.  
Centro Direzionale–Via Nova-  
ra 570  
20153 Milano  
Tel: 39 2 38103 100  
Fax: 39 2 38002 988  
Farnell Electronic Services  
GmbH  
Am Saalbach 5  
76661 Philipsburg  
Tel: 49 7256 7878  
Fax: 49 7256 7878  
Lasi Elettronica S.P.A.  
Div.Della Silverstar Ltd.  
Viale Fulvio Testi 280  
20126 Milano  
Tel: 39 2 6614 31  
Fax: 39 2 6610 1385  
Farnell Electronic Services  
GmbH  
Saphirweg 14  
71665 Vaihingen  
Tel: 49 7042 920 17  
Fax: 49 7042 920 17  
Farnell Electronic Services  
GmbH  
Platanenstrasse 33  
86899 Landsberg  
Tel: 49 8191 229 45  
Fax: 49 8191 229 45  
SPOERLE Electronic GmbH  
Wernher–von–Braun–Strasse 9  
85640 Putzbrunn  
Tel: 49 89 4561 80  
Fax: 49 89 4561 8399  
Vector Electronic S.R.L.  
Via Cialdini 37  
20161 Milano  
Tel: 39 2 6624 011  
Fax: 39 2 6620 2851  
Farnell Electronic Services  
GmbH  
Finkenweg 7  
38159 Vechelde  
Tel: 49 5302 840 112  
Fax: 49 5302 840 112  
Future Electronics  
Buschkamp 84  
30853 Langenhagen  
Tel: 49 511 7256 20  
Fax: 49 511 7256 262  
Eurodis Enatechnik Electronics  
GmbH Headquarter  
Pascalkehre 1  
25443 Quickborn  
Tel: 49 4106 701 0  
Fax: 49 4106 701 268  
CO. V. EL S.R.L  
(TFK only)  
Via Vittorio Veneto 82  
35013 Tombolo (PD)  
Tel: 39 49 9470 970  
Fax: 39 49 9471 018  
EBV Elektronik GmbH  
Boeblinger Strasse 13  
71229 Leonberg  
Tel: 49 7152 300 90  
Fax: 49 7152 7595 8  
Farnell Electronic Services  
GmbH  
Hansjakobweg 7  
75045 Walzbachtal  
Tel: 49 7203 5278  
Fax: 49 7203 5278  
Future Electronics Deutschland  
GmbH  
Max–Weber–Strasse 3  
25451 Quickborn  
Tel: 49 4106 7102 1  
Fax: 49 4106 7522 6  
Cecchi Gianni  
Farnell Electronic Services  
GmbH  
Othlinghauser Strasse 29A  
58509 Luedenscheid  
Tel: 49 2351 6340 34  
Fax: 49 2351 6340 34  
Via F.LLI.Carli 32  
50060 Molino Del Piano (FI)  
Firenze  
Tel: 39 55 8364 059  
Fax: 39 55 8364 061  
Greece  
P. Caritato & Associates S.A.  
31 Ilia Iliou  
Athens 11743  
Tel: 30 1 9020 115  
Fax: 30 1 9017 024  
EPSa GmbH  
Werk Saalfeld  
Remschützer Strasse 1  
07318 Saalfeld  
Tel: 49 3671 448 150  
Fax: 49 3671 448 161  
Netherlands  
EBV Elektronik  
Planetenbaan 2  
3606 AK Maarssenbroek  
Tel: 31 3465 623 53  
Fax: 31 3465 642 77  
SPOERLE Electronic GmbH  
Hauptstrasse 103  
04416 Markkleeberg  
Tel: 49 341 3562 20  
Fax: 49 341 35622 66  
EBV Elektronik  
1, Anaxagora Str.  
17778 Tavros  
Tel: 30 1 3414 300  
Fax: 30 1 3414 304  
Farnell Electronic Services  
GmbH  
Kirchroettenbach 47  
91220 Schnaittach  
Tel: 49 9126 39 94  
Fax: 49 9126 39 95  
Farnell Electronic Services  
GmbH  
Stiftstrasse 14  
32427 Minden  
Tel: 49 571 8401 12  
Fax: 49 571 8401 12  
SPOERLE Electronic  
Coltbaan 17  
3439 NG Nieuwegein  
Tel: 31 3402 912 34  
Fax: 31 3402 359 24  
Hungary  
SPOERLE Elektronik  
Vaci ut 45  
1134 Budapest  
Tel: 36 1 270 1333  
Farnell Electronic Services  
GmbH  
Roemerstrasse 116  
59379 Selm  
Tel: 49 2592 9812 13  
Fax: 49 2592 9812 13  
Farnell Electronic Services  
GmbH  
Elektronik Vertrieb Headquar-  
ter  
Bahnhofstrasse 44  
71693 Moeglingen  
Tel: 49 7141 487 0  
Fax: 49 7141 487 210  
Farnell  
Chroomstraat 28  
2718 RH Zoetermeer  
PB 345  
Tel: 31 7961 3161  
Fax: 31 7961 3169  
Italy  
Farnell Electronic Services  
Viale Milanofiori, E/5  
20094 Assago (Milano)  
Tel: 39 2 8247 01  
Eurodis Enatechnik Electronics  
GmbH  
Dreifelder Str. 36  
SPOERLE Electronic  
Eindhoven  
De Run 1120  
5503 LA Veldhoven  
Tel: 31 402 545 430  
Fax: 31 402 535 540  
Fax: 39 2 8242 631  
Eurodis Enatechnik Electronics  
GmbH  
Hellersberger Strasse 14  
41469 Neuss  
Tel: 49 2131 918 890  
Fax: 49 2131 918 930  
Sonelco S.P.A.  
70599 Stuttgart  
Via Monfalcone 15  
20092 Cinisello Balsamo (MI)  
Tel: 39 2 6602 61  
Postfach 720150, PLZ 70577  
Tel: 49 711 458 960  
Fax: 49 711 458 96 66  
Fax: 39 2 6601 1295  
SPOERLE Electronic GmbH  
Am Gansacker 10  
79224 Umkirch  
Postfach 1143, PLZ 79220  
Tel: 49 7665 9855 0  
Fax: 49 7665 9855 98  
EBV Elektronik S.R.L.  
Via C. Frova 34  
20092 Cinisello Balsamo (Mil)  
Tel: 39 2 6609 61  
Eurodis Enatechnik Electronics  
GmbH  
Lina–Ammon–Strasse 22  
90471 Nuernberg  
Tel: 49 911 8603 0  
Fax: 49 911 8603 230  
Fax: 39 2 6601 7020  
V. dist.3  
Distributors  
EBV Elektronik  
Calle Maria Tubau 6  
28049 Madrid  
Tel: 34 1 3588 608  
Fax: 34 1 3589 430  
Abacus Polar  
Cherrycourt Way  
Leighton Buzzard  
Bedfordshire LU7 8YY  
Tel: 44 1525 5850 00  
Fax: 44 1525 8580 01  
Norway  
Jakob Hatteland Electronic AS  
SEI  
5578 Nedre Vats  
Tel: 47 5376 3000  
Fax: 47 5376 5339  
SPOERLE Electronic  
En Chamard  
1442 Montagny p/–Yverdon  
Tel: 41 24 270 100  
Fax: 41 24 245 245  
SEI/ADM electronica s/a  
Head Office  
Tomas Breton, 50 30 2  
28045 Madrid  
Tel: 34 1 5304 121  
Fax: 34 1 5300 164  
Future Electronics Ltd.  
Headquarter–UK  
Future House, Poyle Road  
Colnbrook  
Berkshire SL3 OEZ  
Tel: 44 1753 6870 0  
Fax: 44 1753 6891 00  
Arrow–Tahonic AS  
Sagveien 17  
0404 Oslo  
4554 Torshov  
Tel: 47 22 3784 40  
Fax: 47 22 3707 20  
Fabrimex Spoerle  
Cherstrasse 4  
8152 Opfikon–Glattbrugg  
Tel: 41 1 8746 262  
Fax: 41 1 8746 200  
EBV Elektronik  
Farnell Electronic Services  
Brandschenkestrasse 178  
8027 Zuerich  
Tel: 41 1 2046 111  
Fax: 41 1 2046 311  
Centro Empresarial Euronova  
Ronda de Poniente 4  
28760 Tres Cantos Madrid  
Tel: 34 1 8043 256  
Farnell Electronic Services  
Karihaugen 89  
1001 Oslo  
120 Foroset  
Tel: 47 22 3212 70  
Fax: 47 22 3251 20  
Macro Group  
Burnham Lane  
Slough  
Berkshire SL1 6LN  
Tel: 44 1628 6043 83  
Fax: 44 1628 6668 73  
Fax: 34 1 8044 103  
United Kingdom  
Micromark Electronics Ltd.  
Maidenhead  
159 Boyn Valley Road  
Berkshire SL6 4EG  
Tel: 44 1628 7617 6  
Fax: 44 1628 7837 99  
Sweden  
Farnell Electronic Services  
Ankdammsgatan 32  
17126 Solna  
Box 1330  
Tel: 46 8 8300 20  
Fax: 46 8 2713 03  
Poland  
Semicond S.C.  
ul. Nateczowska 35  
02–922 Warszawa  
Tel: 48 22 651 9828  
Fax: 48 22 651 9827  
Eurodis HB Electronics  
Lever Street  
Bolton  
BL3 6BJ  
Tel: 44 1204 555 000  
Fax: 44 1204 384 911  
Eltek Semiconductors  
Arrow – TH’s AB  
Arrendevagen 36  
16303 Spanga  
Box 3027  
Tel: 46 8 3629 70  
Fax: 46 8 7613 065  
SPOERLE Elektroni  
Polska Sp.z.o.o.  
ul. Domaniewska 41  
02–672 Warszawa  
Tel: 48 22 6400 447  
Fax: 48 22 6400 348  
Nelson Road Industrial Estate  
Dartmouth, Devon TQ6 9LA  
Tel: 44 803 834 455  
EBV Electronics  
4/5 Market Square  
Marlow  
Buckinghamshire  
Tel: 44 1438 4887 11  
Fax: 44 1438 4887 22  
Fax: 44 803 833 011  
SEI/Hatteland  
Farnell Electronic Services  
Edinburgh Way  
Harlow, Essex, CM20 2DF  
Tel: 44 1279 626 777  
Fax: 44 1279 441 687  
Portugal  
Gunnebogatan 30  
16303 Spanga  
Box 3009  
Tel: 46 8 7600 140  
Fax: 46 8 3646 86  
2001  
ADM Electronica s/a  
Sonepar Branch Office  
En 107,No.743,Arde-  
gaes,Aguas Santas  
4445 Ermesinde  
Stevenage Business Park, Pin  
Green  
Stevenage  
Hertfordshire SG1 4SU  
Tel: 44 1438 7420 01  
Fax: 44 1438 7420 02  
Farnell Electronic Components  
Armley Road  
Leeds, West Yorkshire,LS12  
2QQ  
Tel: 44 0113 2790 101  
Fax: 44 0113 2633 404  
Switzerland  
EBV Elektronik  
Vorstadtstrasse 37  
8953 Dietikon  
Tel: 41 1 745 6161  
Fax: 41 1 741 5110  
Tel: 351 2 9736 957  
Fax: 351 2 9736 958  
Slovenia  
EBV Elektronik  
Dunajska 22/9  
1511 Ljubljana  
Tel: 386 61 1330 216  
Fax: 386 61 1330 457  
EBV Elektronik  
10 Passage St. Francois  
1003 Lausanne  
Tel: 41 21 3112 804  
Fax: 41 21 3112 807  
Spain  
EBV Elektronik  
Calle Paris, 71  
08029 Barcelona  
Tel: 34 93 4108 533  
Fax: 34 93 4190 825  
V. dist.4  
Distributors  
Africa / Middle East  
Rep. of South Africa  
Israel  
Turkey  
Electrolink (PTY) Ltd.  
Fleetway House  
Martin Hammerschlag Way  
Cape Town 8000  
P.O. Box 1020  
Tel: 27 21 2153 50  
Fax: 27 21 4196 256  
Tritech Ltd.  
Ind. Zone  
4, Hayetzira Street  
P.O. Box 2436  
Tel: 972 9 917 277  
Fax: 972 9 982 616  
EBV Elektronik  
Perdemsac Plaza  
Bayar Cad.Gulbahar Sok.No  
17  
K:13, D:131–132 Kozyatagi  
Istanbul  
Tel: 90 216 463 1352  
Fax: 90 216 463 1355  
EMPA  
Besyol Lowdra Asfalti  
Florya Is Merkezi No.5,Kat:3  
34630 Sefaköy–Istanbul  
Tel: 90 212 599 3050  
Fax: 90 212 599 3059  
North America / Canada  
USA  
Hamilton/Hallmark  
1626 South Edward Drive  
Tempe  
Arizona 85281  
Tel: 1 800 332 8638  
Fax: 1 800 257 0568  
Anthem Electronics  
9131 Oakdale Avenue  
Chatsworth  
California 91311  
Tel: 1 818 775 1333  
Fax: 1 818 775 1302  
Alabama  
All American  
4950 Corporate Dr., Ste.115D  
Huntsville  
Alabama 35816  
Arizona  
Future Electronics Corp.  
4636 East University Drive,  
Ste.245  
Phoenix  
Arizona 85034  
Tel: 1 205 837 1555  
Fax: 1 205 837 7733  
Tel: 1 602 968 7140  
Fax: 1 602 968 0334  
Hamilton Corporate  
10950 West Washington Blvd.  
Culver City  
California 90230  
Tel: 1 310 558 2000  
Fax: 1 310 558 2076  
California  
Future Electronics Corp.  
27489 West Agoura Road,  
Ste.300  
Anthem Electronics  
4920–H Corporate Drive  
Huntsville  
Alabama 35805  
Tel: 1 205 890 0302  
Fax: 1 205 890 0130  
Marshall Industries  
9831 South 51st Street,  
Ste.C108  
Phoenix  
Arizona 85044  
Agoura Hills  
California 91301  
Tel: 1 818 865 0040  
Fax: 1 818 865 1340  
Tel: 1 602 496 0290  
Fax: 1 602 893 9029  
Future Electronics Corp.  
1825 University Square, Ste.12  
Huntsville  
Alabama 35816  
Tel: 1 205 830 2322  
Fax: 1 205 830 6664  
All American  
10805 Holder Str., Ste.100  
Cypress  
California 90630  
Tel: 1 714 229 8600  
Fax: 1 714 229 8300  
Pioneer Std.  
5126 Clareton Drive, Ste.160  
Agoura Hills  
California 91301  
Tel: 1 818 865 580  
Fax: 1 818 865 5814  
Pioneer–Standard Electronics  
4908 E. McDowell Rd.,Ste.103  
Phoenix  
Arizona 85008  
Tel: 1 602 231 6400  
Fax: 1 602 231 8877  
Hamilton/Hallmark–#23  
4890 University Square, Ste.1  
Huntsville  
Alabama 35816  
Tel: 1 205 837 8700  
Fax: 1 205 830 8404  
Marshall Corporate  
9320 Telstar Avenue  
El Monte  
California 91731  
Tel: 1 818 307 6000  
Fax: 1 818 307 6297  
All American  
26010 Mureau Rd., Ste.120  
Calabasas  
California 91302  
Tel: 1 818 878 0555  
Fax: 1 818 878 1603  
Bell Industries  
10611 N. Hayden Rd.  
Scottsdale  
Arizona 85260  
Tel: 1 602 905 2355  
Fax: 1 602 905 2356  
Marshall Industries  
3313 Memorial Pkwy. South,  
Ste.150  
Huntsville  
Alabama 35801  
Anthem Electronics  
1 Oldfield Drive  
Irvine  
California 92718–2809  
Tel: 1 714 768 4444  
Fax: 1 714 768 6456  
Marshall Industries  
26637 Agoura Road  
Calabasas  
California 91302–1959  
Tel: 1 818 878 7000  
Fax: 1 818 880 6846  
Anthem Electronics  
1555 West 10th Place, Ste.101  
Tempe  
Tel: 1 205 881 9235  
Fax: 1 205 881 1490  
Arizona 85281  
Tel: 1 602 966 6600  
Fax: 1 602 966 4826  
Pioneer Tech.  
4835 University Square, Ste.5  
Huntsville  
Alabama 35816  
Tel: 1 205 837 9300  
Fax: 1 205 837 9358  
V. dist.5  
Distributors  
Bell Industries  
220 Technology Drive, Ste.100  
Irvine  
Anthem Electronics  
580 Menlo Drive, Ste.8  
Rocklin  
Marshall Industries  
5961 Kearny Villa Road  
San Diego  
Bell Industries  
1161 North Fairoaks Avenue  
Sunnyvale  
California 92718  
Tel: 1 714 727 4500  
Fax: 1 714 453 4610  
California 95765  
Tel: 1 916 624 9744  
Fax: 1 916 624 9750  
California 92123  
Tel: 1 619 627 4140  
Fax: 1 619 627 4163  
California 94089  
Tel: 1 408 734 8570  
Fax: 1 408 734 8875  
Future Electronics Corp.  
25B Technology Drive, Ste.200  
Irvine  
Hamilton/Hallmark–#35  
580 Menlo Drive, Ste.2  
Rocklin  
Pioneer  
9449 Balboa Ave., Ste.114  
San Diego  
All American Semiconductor  
369 Van Ness Way, Ste.701  
Torrance  
California 92718  
Tel: 1 714 453 1515  
Fax: 1 714 453 1226  
California 95765  
Tel: 1 916 624 9781  
Fax: 1 916 961 0922  
California 92123  
Tel: 1 619 514 7700  
Fax: 1 619 514 7799  
California 90501  
Tel: 1 310 320 0240  
Fax: 1 310 320 2707  
Hamilton/Hallmark  
140 Technology DR #400  
Irvine  
California 92718–2401  
Tel: 1 714 789 4102  
Fax: 1 714 789 4122  
Bell Industries  
3001 Douglas Boulevard,  
Suite#205  
All American  
230 Devcon Drive  
San Jose  
California 95112  
Tel: 1 408 441 1300  
Fax: 1 408 437 8984  
Bell Industries  
125 Auburn Court  
Westlake Village  
California 91362  
Tel: 1 805 373 5600  
Fax: 1 805 496 7340  
Roseville  
California 95661  
Tel: 1 916 781 8070  
Fax: 1 916 781 2954  
Marshall Industries  
1 Morgan  
Irvine  
California 92718  
Tel: 1 714 859 5050  
Fax: 1 714 581 5255  
All American Semiconductor  
230 Devcon Dr.  
San Jose  
California 95112  
Tel: 1 408 437 4624  
Fax: 1 408 943 1393  
Hamilton/Avnet–#48/01  
21150 Califa Street  
Woodland Hills  
California 91367  
Tel: 1 818 594 0404  
Fax: 1 818 594 8234  
Future Electronics Corp.  
755 Sunrise Avenue, Ste.150  
Roseville  
California 95661  
Tel: 1 916 783 7877  
Fax: 1 916 783 7988  
Pioneer Std.  
217 Technology Drive, Ste.110  
Irvine  
California 92718  
Tel: 1 714 753 5090  
Fax: 1 714 753 5589  
Anthem Electronics  
1160 Ridder Park Drive  
San Jose  
California 95131  
Tel: 1 408 453 1200  
Fax: 1 408 441 4504  
Colorado  
All American  
6390 Greenwich Dr., Ste.170  
San Diego  
California 92122  
Tel: 1 619 658 0200  
Fax: 1 619 658 0201  
Marshall Industries  
4680 Edison, Ste.D  
Colorado Springs  
Colorado 80915  
Tel: 1 719 573 0904  
Fax: 1 719 573 0103  
Zeus Electronics  
6 Cromwell, Ste.100  
Irvine  
California 92718  
Tel: 1 714 581 4622  
Fax: 1 714 454 4355  
Future Electronics Corp.  
2220 O’Toole Avenue  
San Jose  
California 95131–1326  
Tel: 1 408 434 1122  
Fax: 1 408 433 0822  
All American Semiconductor  
5625 Ruffin Road, Ste.200  
San Diego  
California 92123  
Tel: 1 619 268 1505  
Fax: 1 619 268 3836  
Pioneer  
5600 Green Wood Plaza Blvd.,  
Ste.201  
Denver  
Colorado  
Tel: 1 303 773 8090  
Fax: 1 303 773 8194  
Hamilton/Hallmark–#03  
2105 Lundy Avenue  
San Jose  
California 95131  
Tel: 1 408 435 3500  
Fax: 1 408 435 3720  
Anthem Electronics  
9369 Carroll Park Drive  
San Diego  
California 92121  
Tel: 1 619 453 9005  
Fax: 1 619 546 7893  
Bell Industries Corporate  
11812 San Vincente  
Blvd.,Ste.300  
Anthem Electronics  
373 Inverness Drive South  
Englewood  
Colorado 80112  
Tel: 1 303 790 4500  
Fax: 1 303 790 4532  
Los Angeles  
California 90049  
Tel: 1 310 826 2355  
Fax: 1 310 826 1534  
Pioneer Tech.  
333 River Oaks Parkway  
San Jose  
California 95134  
Tel: 1 408 954 9100  
Fax: 1 408 954 9113  
Bell Industries  
5520 Ruffin Road, Ste.209  
San Diego  
California 92123  
Tel: 1 619 576 3924  
Fax: 1 619 492 9826  
Marshall Industries  
336 Los Coches Street  
Milpitas  
California 95035  
Tel: 1 408 942 4600  
Fax: 1 408 262 1224  
Hamilton/Hallmark–#06  
12503 East Euclid Drive,  
Ste.20  
Englewood  
Colorado 80111  
Zeus Electronics  
6276 San Ignacio Avenue,  
Ste.E  
Tel: 1 303 799 7800  
Fax: 1 303 790 4991  
Future Electronics Corp.  
5151 Shoreham Place, Ste.220  
San Diego  
California 92122  
Tel: 1 619 625 2800  
Fax: 1 619 625 2810  
Marshall Industries  
3039 Kilgore Avenue, Ste.140  
Rancho Cordova  
California 95670  
Tel: 1 916 635 9700  
Fax: 1 916 635 6044  
San Jose  
Future Electronics Corp.  
12600 West Colfax Avenue,  
Ste.B110  
Lakewood  
Colorado 80215  
California 95119  
Tel: 1 408 629 4789  
Fax: 1 408 629 4792  
Hamilton/Hallmark–#02  
4545 Viewridge Avenue  
San Diego  
California 92123  
Tel: 1 619 571 7540  
Fax: 1 619 277 6136  
Taitron  
25202 Anza Drive  
Santa Clarita  
California 91355–3496  
Tel: 1 805 257 6060  
Fax: 1 805 257 6415  
Tel: 1 303 232 2008  
Fax: 1 303 232 2009  
JAN Devices  
6925 Canby, Bldg. 109  
Reseda  
California 91335  
Tel: 1 818 757 2000  
Fax: 1 818 708 743  
V. dist.6  
Distributors  
Bell Industries  
9351 Grant Street, Ste.460  
Thornton  
Anthem Electronics  
61 Mattatuck Heights Road  
Waterbury, CT 06705  
Connecticut 06705  
Future Electronics Corp.  
1400 E. Newport Center  
Dr.,Ste.200  
All American Semiconductor  
16085 N.W. 52nd Avenue  
Miami  
Colorado 80229  
Deerfield Beach  
Florida 33014  
Tel: 1 303 691 9270  
Fax: 1 303 691 9036  
Tel: 1 203 575 1575  
Fax: 1 203 575 3232  
Florida 33442  
Tel: 1 305 426 4043  
Fax: 1 305 426 3939  
Tel: 1 305 621 8282  
Fax: 1 305 620 7831  
Marshall Industries  
12351 North Grant Street,  
Ste.A  
Marshall Industries  
2840 Scherer Drive, Ste.410  
St. Petersburg  
Florida 33716  
Tel: 1 813 573 1399  
Fax: 1 813 573 0069  
Florida  
Future Electronics Corp.  
237 S. Westmonte Dr., Ste.307  
Altamonte Spring  
Florida 32714  
Tel: 1 407 865 7900  
Fax: 1 407 865 7660  
Pioneer Tech.  
674 South Military Trail  
Deerfield Beach  
Florida 33442  
Tel: 1 305 428 8877  
Fax: 1 305 481 2950  
Thornton  
Colorado 80241  
Tel: 1 303 451 8444  
Fax: 1 303 457 2899  
Future Electronics Corp.  
1435 Market Street  
Tallahassee  
Florida 32312  
Tel: 1 904 668 7772  
Fax: 1 904 668 0856  
Added Value/All American  
4090 Youngfield Street  
Wheat Ridge  
Colorado 80033  
Tel: 1 303 422 1701  
Fax: 1 303 422 2529  
Anthem Electronics  
5450 N.W. 33Rd Ave,Ste.101  
Fort Lauderdale  
Florida 33309  
Tel: 1 305 484 0990  
Fax: 1 305 484 0951  
Anthem Electronics  
598 South Northlake  
Blvd.#1024  
Altamonte Springs  
Florida 32701  
Tel: 1 407 831 0007  
Fax: 1 407 831 6990  
Reptron  
(TFK only)  
14401 McCormick Drive  
Tampa  
Florida  
Hamilton/Hallmark–#17  
3350 North West 53rd Avenue,  
Ste.105  
Fort Lauderdale  
Florida 33309  
Connecticut  
Future Electronics Corp.  
Westgate Office Center  
700 West Johnson Avenue  
Cheshire  
Connecticut 06410  
Tel: 1 203 250 0083  
Fax: 1 203 250 0081  
Bell Industries  
650 South Northlake Blvd.,  
Ste.400  
Altamonte Springs  
Florida 32701  
Tel: 1 407 339 0078  
Fax: 1 407 339 0139  
Tel: 1 813 854 2351  
Fax: 1 813 854 1324  
Tel: 1 305 484 5482  
Fax: 1 305 484 4740  
Georgia  
Anthem Electronics  
3305 Breckinridge, Ste.108  
Duluth  
Georgia 30136  
Tel: 1 770 931 3900  
Fax: 1 770 931 3902  
Marshall Industries  
2700 West Cypress Creek  
Road, Ste.D114  
Fort Lauderdale  
Florida 33309  
Hamilton/Hallmark–#21  
125 Commerce Court, Unit 6  
Chesire  
Connecticut 06410  
Tel: 1 203 271 2844  
Fax: 1 203 272 1704  
Marshall Industries  
650 South Northlake Blvd.,  
Ste.1024  
Altamonte Springs  
Florida 32701  
Tel: 1 305 977 4880  
Fax: 1 305 977 4887  
Tel: 1 407 767 8585  
Fax: 1 407 767 8676  
Hamilton/Hallmark–#76  
3425 Corporate Way, Ste.A  
Duluth  
Georgia 30136  
Tel: 1 404 623 4400  
Fax: 1 404 476 3043  
Zeus Components  
37 Skyline Drive, Bldg. D,  
Ste.3101  
Lake Mary  
Florida 32746  
All American  
100 Mill Plain Road, Ste.360  
Danbury  
Connecticut 06811  
Tel: 1 203 791 3818  
All American  
14450 46th St., No. Ste.116  
Clearwater  
Florida 34622  
Tel: 1 813 532 9800  
Fax: 1 813 538 5567  
Tel: 1 407 333 3055  
Fax: 1 407 333 9681  
Pioneer Std.  
4250C Rivergreen Pkwy.  
Duluth  
Georgia 30136  
Tel: 1 770 623 1003  
Fax: 1 770 623 0665  
Bell Industries  
1064 East Main Street  
Meriden  
Connecticut 06413  
Tel: 1 203 639 6000  
Fax: 1 203 639 6005  
Future Electronics Corp.  
2200 Tall Pines Drive, Ste.108  
Largo  
Florida 34641  
Tel: 1 813 530 1222  
Fax: 1 813 538 9598  
Anthem Electronics  
13575 58th St.N.Ste.122  
Clearwater  
Florida 34620  
Tel: 1 813 538 4157  
Fax: 1 813 538 4158  
All American  
Pioneer Std.  
2 Trap Falls Road  
Shelton  
Connecticut 06484  
Tel: 1 203 929 5600  
Fax: 1 203 929 9791  
6875 Jimmy Carter  
Blvd.,Ste.3100  
Norcross  
Georgia 30071  
Tel: 1 770 441 7500  
Fax: 1 770 441 3660  
Hamilton/Hallmark–#25  
10491 77th Street North  
Largo  
Florida 34647  
Tel: 1 813 541 7440  
Fax: 1 813 544 4394  
All American Semiconductor  
1400 East Newport Center  
Dr.Ste.205  
Deerfield Beach  
Florida 33442  
Marshall Industries  
Barnes Industrial Park  
20 Sterling Drive  
Wallingford  
Fax: 1 954 429 0391  
Connecticut 06492  
Tel: 1 203 265 3822  
Fax: 1 203 284 9285  
V. dist.7  
Distributors  
Bell Industries  
3020 Business Park Drive,  
Ste.D  
Victory Sales #067  
405 N. Calhoun Road, Ste.208  
Hoffman Estates  
Illinios 60195  
Tel: 1 708 490 0300  
Fax: 1 708 490 1499  
Future Electronics Corp.  
8425 Woodfield Crossing  
Indianapolis  
Indiana 46240  
Tel: 1 317 469 0447  
Fax: 1 317 469 0448  
Kentucky  
Hamilton/Hallmark  
1847 Mercer Road, Ste.G  
Lexington  
Kentucky 40511–1001  
Tel: 1 606 259 1475  
Fax: 1 606 288 4936  
Norcross  
Georgia 30071  
Tel: 1 404 446 7167  
Fax: 1 404 446 7264  
All American  
1989 University Lane  
Lisle  
Marshall Industries  
6990 Corporate Drive  
Indianapolis  
Future Electronics Corp.  
3150 Holcomb Bridge Road,  
Ste.130  
Maryland  
All American  
Illinois 60532  
Indiana 46278  
Tel: 1 708 852 7708  
Fax: 1 708 852 7791  
Tel: 1 317 388 9069  
Fax: 1 317 297 2787  
Norcross  
Georgia 30071  
14636 Rothgeb Drive  
Rockville  
Tel: 1 404 441 7676  
Fax: 1 404 441 7580  
Maryland 20850  
Tel: 1 301 251 1205  
Fax: 1 301 251 8574  
Zeus Electronics  
1140 West Thorndale Avenue  
Itasca  
Illinois 60143  
Tel: 1 708 595 9730  
Fax: 1 708 595 9896  
Pioneer Std.  
9350 North Priority Way West  
Drive  
Indianapolis  
Indiana 46240  
Marshall Industries  
5300 Oakbrook Pkwy., Ste.140  
Norcross  
Georgia 30093  
Tel: 1 404 923 5750  
Fax: 1 404 923 2743  
Anthem Electronics  
7168A Columbia Gateway  
Drive  
Tel: 1 317 573 0880  
Fax: 1 317 573 0979  
Columbia  
All American  
1930 N. Thoreau Dr., Ste.200  
Schaumburg  
Illinois 60173  
Tel: 1 708 303 1995  
Fax: 1 708 303 1996  
Maryland 21046  
Tel: 1 410 995 6640  
Fax: 1 410 290 9862  
Iowa  
Future Electronics Corp.  
12438 W. Bridgen Street  
Boise  
Idaho 83713  
Tel: 1 208 376 8080  
Fax: 1 208 376 6168  
Hamilton/Hallmark–#44  
2335–A Blairsferry North East  
Cedar Rapids  
Iowa 52402  
Tel: 1 319 393 0033  
Fax: 1 319 393 7050  
Bell Industries  
8945 Guilford Road, Ste.130  
Columbia  
Maryland 21046  
Tel: 1 410 290 5100  
Fax: 1 410 290 8006  
Anthem Electronics  
1300 Remington Road,Ste.A  
Schaumburg  
Illinois 60173  
Tel: 1 708 884 0200  
Fax: 1 708 884 0480  
Idaho  
QuadRep Crown, Inc. #010  
10451 W. Garverdale, Ste.209  
Boise  
Idaho 83704  
Tel: 1 208 375 9868  
Fax: 1 208 323 9386  
Kansas  
Anthem Electronics  
13820 Santa Fee Trail  
Drive,Ste.109  
Lenexa  
Kansas 66215  
Future Electronics Corp.  
6716 Alexander Bell Drive,  
Ste.101  
Marshall Industries  
50 East Commerce Drive, Unit  
I
Schaumburg  
Illinois 60173  
Columbia  
Maryland 21046  
Tel: 1 410 290 0600  
Fax: 1 410 290 0328  
Tel: 1 913 599 1528  
Fax: 1 913 599 1325  
Illinois  
Tel: 1 708 490 0155  
Fax: 1 708 490 0569  
Pioneer Std.  
2171 Executive Drive, Ste.200  
Addison  
Marshall Industries  
10413 West 84th Terrace  
Lenexa  
Hamilton/Hallmark–#12  
71347 Gateway Drive, Ste.100  
Columbia  
Indiana  
Illinois 60101  
Kansas 66214  
Maryland 21045  
Tel: 1 708 495 9680  
Fax: 1 708 495 9831  
Tel: 1 913 492 3121  
Fax: 1 913 492 6205  
Tel: 1 410 720 3400  
Fax: 1 410 720 3434  
Hamilton Hallmark–#28  
655 W. Carmel Drive, Ste.160  
Carmel  
Indiana 46032–2500  
Tel: 1 317 872 8875  
Fax: 1 317 876 7165  
Hamilton/Hallmark–#10  
3030 Salt Creek Lane, Ste.300  
Arlington Heights  
Illinois 60005  
Tel: 1 708 797 7361  
Fax: 1 708 797 7724  
Future Electronics Corp.  
8826 Santa Fee Drive, Ste.150  
Overland Park  
Kansas 66212  
Tel: 1 913 649 1531  
Fax: 1 913 649 1786  
Marshall Industries  
9130B Guilford Road  
Columbia  
Maryland 21046  
Tel: 1 410 880 3030  
Fax: 1 410 880 3232  
Bell Industries  
525 Airport North Office Park  
Fort Wayne  
Indiana 46803  
Tel: 1 219 422 4300  
Fax: 1 219 423 3420  
Bell Industries  
Hamilton/Hallmark–#58  
9200 Indian Greek  
Pkwy.Ste.200  
Overland Park  
Kansas 66210  
Pioneer Tech.  
15810 Gaither Drive  
Gaithersburg  
Maryland 20877  
Tel: 1 301 921 3826  
Fax: 1 301 921 3858  
870 Cambridge Drive  
Elk Grove Village, IL 60007  
Illinois 60007  
Tel: 1 708 640 1910  
Fax: 1 708 640 1928  
Tel: 1 913 663 7900  
Fax: 1 913 663 7979  
Bell Industries  
5230 West 79th Street  
Indianapolis  
Future Electronics Corp.  
3150 West Higgins Road,  
Ste.160  
P.O. Box 6885  
Indiana 46268  
Hoffman Estates  
Tel: 1 317 875 8200  
Fax: 1 317 875 8219  
Illinois 60195  
Tel: 1 708 882 1255  
Fax: 1 708 490 9290  
V. dist.8  
Distributors  
Pioneer Tech.  
9100 Gaither Road  
Gaithersburg  
Maryland 20877  
Tel: 1 301 921 0660  
Fax: 1 301 921 4255  
Zeus Electronics  
25 Upton Drive  
Wilmington  
Massachusetts 01877  
Tel: 1 508 658 4776  
Fax: 1 508 694 2199  
Marshall Industries  
514 Earth City Expressway,  
Ste.131  
Earth City  
Missouri 63045  
Minnesota  
Hamilton/Hallmark–#63  
9401 James Avenue South,  
Ste.140  
Bloomington  
Tel: 1 314 770 1749  
Fax: 1 314 770 1486  
Minnesota 55341  
Tel: 1 612 881 2600  
Fax: 1 612 881 9461  
Michigan  
Future Electronics Corp.  
4505 Broadmoor South East  
Grand Rapids  
Michigan 49512  
Tel: 1 616 698 6800  
Fax: 1 616 698 6821  
Future Electronics Corp.  
12125 Woodcrest Executive  
Drive, Ste.220  
St. Louis  
Missouri 63141  
All American Semiconductor  
14636 Rothgeb Drive  
Rockville  
Maryland 20850  
Tel: 1 301 251 1205  
Fax: 1 301 251 8754  
Anthem Electronics  
7690 Golden Triangle Drive  
Eden Prairie  
Minnesota 55344  
Tel: 1 612 944 5454  
Fax: 1 612 944 3045  
Tel: 1 314 469 6805  
Fax: 1 314 469 7226  
Anthem Electronics  
39111 W.Six Mile Road,  
Ste.160  
Massachusetts  
Bell Industries  
100 Burtt Road, Ste.106  
Andover  
Massachusetts 01810  
Tel: 1 508 474 8880  
Fax: 1 508 474 8902  
New Hampshire  
see Massachusetts  
Future Electronics Corp.  
10025 Valley View Road,  
Ste.196  
Livonia  
New Hampshire  
see Massachusetts  
Michigan 48152  
Tel: 1 313 591 3218  
Fax: 1 313 591 6381  
Eden Prairie  
Minnesota 55344  
Tel: 1 612 944 2200  
Fax: 1 612 944 2520  
New Jersey  
Hamilton/Hallmark–#14  
One Keystone Avenue  
Cherry Hill  
New Jersey 08003  
Tel: 1 609 424 0100  
Fax: 1 609 751 2509  
Future Electronics Corp.  
Celeste Doerwald  
35200 Schoolcraft Road,  
Ste.106  
All American  
19A Crosby Drive  
Bedford  
Massachussets 01730  
Tel: 1 617 275 8888  
Fax: 1 617 275 1982  
Pioneer Std.  
7625 Golden Triangle Drive  
Eden Prairie  
Minnesota 55344  
Tel: 1 612 944 3355  
Fax: 1 612 944 3794  
Livonia  
Michigan 48150  
Tel: 1 313 261 5270  
Fax: 1 313 261 8175  
Future Electronics Corp.  
41 Main Street  
Bolton  
Massachusetts 01740  
Tel: 1 508 779 3000  
Fax: 1 508 779 5143  
Marshall Industries  
31067 Schoolcraft Road  
Livonia  
Michigan 48150  
Tel: 1 313 525 5850  
Fax: 1 313 525 5855  
Bell Industries  
271 Route 46 West,  
Ste.F202–203  
All American  
7716 Golden Triangle Drive  
Eden Prairie  
Minnesota 55344  
Tel: 1 612 944 2151  
Fax: 1 612 944 9803  
Fairfield  
New Jersey 07004  
Tel: 1 201 227 6060  
Fax: 1 201 227 2626  
Pioneer Std.  
44 Hartwell Avenue  
Lexington  
Massachusetts 02173  
Tel: 1 617 861 9200  
Fax: 1 617 863 1547  
Hamilton Hallmark–#67  
44191 Plymouth Oaks  
Blvd.,Ste.1300  
Marshall Industries  
14800, 28th. Avenue North,  
Ste.175  
Marshall Industries  
101 Fairfield Road  
Fairfield  
New Jersey 07006  
Tel: 1 201 882 0320  
Fax: 1 201 882 0095  
Plymouth  
Minneapolis  
Michigan 48170–2585  
Tel: 1 313 416 5800  
Fax: 1 313 416 4106  
Minnesota 55447  
Tel: 1 612 559 2211  
Fax: 1 612 559 8321  
Hamilton/Hallmark–#18  
10D Centennial Drive  
Peabody  
Massachusetts 01960  
Tel: 1 508 532 3701  
Fax: 1 508 532 9802  
Pioneer Std.  
44190 Plymouth Oaks Drive  
Plymouth  
Michigan 48270  
Tel: 1 313 416 2157  
Fax: 1 313 416 2415  
Pioneer Std.  
14 A Madison Road  
Fairfield  
New Jersey 07006  
Tel: 1 201 575 3510  
Fax: 1 201 575 3454  
Missouri  
Hamilton/Hallmark–#05  
3783 Rider Trail South  
Earth City  
Missouri 63045  
Tel: 1 314 291 5350  
Fax: 1 314 770 6363  
Anthem Electronics  
200 Research Drive  
Wilmington  
Massachusetts 01887  
Tel: 1 508 657 5170  
Fax: 1 508 657 6008  
Pioneer Std.  
4467 Byron Center Road  
Wyoming  
Michigan 49509  
Tel: 1 616 534 0500  
Fax: 1 616 534 3922  
Marshall Industries  
33 Upton Drive  
Wilmington  
Massachusetts 01887  
Tel: 1 508 658 0810  
Fax: 1 508 657 5931  
V. dist.9  
Distributors  
Future Electronics Corp.  
12 East Stow Road, Ste.200,  
Bldg. 12  
Pioneer Std.  
840 Fairport Park  
Fairport  
Marshall Industries  
3505 Veterans Memorial HWY  
Ste L  
Anthem Electronics  
4805 Green Road, Ste.100  
Raleigh  
Marlton  
New York 14450  
Tel: 1 716 381 7070  
Fax: 1 716 381 5955  
Ronkonkoma  
New York 11779–7613  
Tel: 1  
North Carolina 27604  
Tel: 1 919 871 6200  
Fax: 1 919 790 8970  
New Jersey 08053  
Tel: 1 609 596 4080  
Fax: 1 609 596 4266  
All American  
275B Marcus Boulevard  
Hauppauge  
New York 11788  
Tel: 1 516 434 9000  
Fax: 1 516 434 9394  
Future Electronics Corp.  
200 Salina Meadows Pkwy.,  
Ste.130  
Future Electronics Corp.  
5225 Capitol  
Raleigh  
North Carolina 27604  
Tel: 1 919 790 7111  
Fax: 1 919 790 9022  
Bell Industries  
158 Gaither DR Ste.110  
Mount Laurel  
New Jersey 08054–1716  
Tel: 1 609 439 8860  
Fax: 1 609 439 9009  
Syracuse  
New York 13212–4513  
Tel: 1 315 451 2371  
Fax: 1 315 451 7258  
Future Electronics Corp.  
801 Motor Parkway  
Hauppauge  
New York 11788  
Tel: 1 516 234 4000  
Fax: 1 516 234 6183  
Hamilton/Hallmark  
5234 Greens Dairy Road  
Raleigh  
North Carolina 27604  
Tel: 1 919 872 0712  
Fax: 1 919 878 8729  
Marshall Industries  
158 Gaither Drive, Unit 100  
Mt. Laurel  
New Jersey 08054  
Tel: 1 609 234 9100  
Fax: 1 609 778 1819  
Hamilton/Hallmark–#08  
100 Elwood Davis Road  
Syracuse  
New York 13212  
Tel: 1 315 453 4000  
Fax: 1 315 453 4010  
Hamilton Hallmark–#20  
390 Rabro Dr.  
Hauppauge  
New York 11788  
Tel: 1 516 434 7470  
Fax: 1 516 434 7491  
Marshall Industries  
5224 Greens Dairy Road  
Raleigh  
North Carolina 27604  
Tel: 1 919 878 9882  
Fax: 1 919 872 2431  
Future Electronics Corp.  
1259 Route 46 East  
Parsippany  
New Jersey 07054  
Tel: 1 201 299 0400  
Fax: 1 201 299 1377  
Pioneer Std.  
60 Crossways Park West  
Woodbury  
New York 11797  
Tel: 1 516 921 8700  
Fax: 1 516 921 2143  
Zeus Electronics  
100 Midland Avenue  
Port Chester  
New York 10573  
Tel: 1 914 937 7400  
Fax: 1 914 937 2553  
Ohio  
Future Electronics Corp.  
1430 Oak Court, Ste.203  
Beavercreek  
Ohio 45430  
Tel: 1 513 426 0090  
Fax: 1 513 426 8490  
Anthem Electronics  
26 Chapin Road  
Pine Brook  
New Jersey 07058  
Tel: 1 201 227 7960  
Fax: 1 201 227 9246  
North Carolina  
Future Electronics Corp.  
8401 University Executive  
Park, Ste.108  
Charlotte  
North Carolina 28262  
Tel: 1 704 547 1107  
Fax: 1 704 547 9650  
All American  
333 Metro Park  
Rochester  
New York 14623  
Tel: 1 716 292 6700  
Fax: 1 716 292 6755  
All American  
245–D Clifton Avenue  
West Berlin  
New Jersey 08091  
Tel: 1 609 768 6767  
Fax: 1 609 768 3649  
Pioneer Std.  
4800 East 131st Street  
Cleveland  
Ohio 44105  
Tel: 1 216 587 3600  
Fax: 1 216 587 3906  
Future Electronics Corp.  
Smith Tower, Ste. 314  
Charlotte Motor Speedway  
Concord  
P.O. Box 600  
New Mexico  
Future Electronics Corp.  
300 Linden Oaks  
Rochester  
New York 14620  
Tel: 1 716 387 9550  
Fax: 1 716 387 9563  
Bell Industries  
446 Windsor Park Drive  
Dayton  
Ohio 45459  
Tel: 1 513 434 8231  
Fax: 1 513 434 8103  
North Carolina 28026  
Tel: 1 704 455 9030  
Fax: 1 704 455 9173  
Hamilton/Hallmark–#22  
NE–Bldg. 2, Ste.102  
7801 Academy Road  
Albuquerque  
New Mexico 87109–3147  
Tel: 1 505 345 0001  
Fax: 1 505 828 0360  
Pioneer Tech.  
2200 Gateway Center Blvd.,  
Ste.215  
Hamilton/Hallmark–#61  
1057 East Henrietta Road  
Rochester  
New York 14623  
Tel: 1 716 475 9130  
Fax: 1 716 475 9119  
Hamilton/Hallmark–#64  
7760 Washington Village Drive  
Dayton  
Ohio 45459  
Tel: 1 513 439 6721  
Fax: 1 513 439 6705  
Morrisville  
New York  
Pioneer Std.  
1249 Upper Front Street,  
Ste.201  
North Carolina 27560  
Tel: 1 919 460 1530  
Fax: 1 919 460 1540  
Binghamton  
Marshall Industries  
1250 Scottsville Road  
Rochester  
New York 14624  
Tel: 1 716 235 7620  
Fax: 1 716 235 0052  
New York 13901  
Tel: 1 607 722 9300  
Fax: 1 607 722 9562  
Marshall Industries  
100 Marshall Drive  
Endicott  
New York 13760  
Tel: 1 607 785 2345  
Fax: 1 607 785 5546  
V. dist.10  
Distributors  
Pioneer Tech.  
Pioneer Std.  
1826 D Kramer Lane  
Austin  
Texas 78758  
Tel: 1 512 835 4000  
Fax: 1 512 835 9829  
Oregon  
All American  
1815 NW 169th Pl., Ste.6025  
Beaverton  
Oregon 97006  
Keith Valley Business Center  
500 Enterprise Road  
Horsham  
Pennsylvania 19044  
Tel: 1 215 674 4000  
Fax: 1 215 674 3107  
Marshall Industries  
3520 Park Center Drive  
Dayton  
Ohio 45414  
Tel: 1 513 898 4480  
Fax: 1 513 898 9835  
Tel: 1 503 531 3333  
Fax: 1 503 531 3695  
Zeus Electronics  
3220 Commander Drive  
Carrollton  
Texas 75006  
Tel: 1 214 380 4330  
Fax: 1 214 447 2222  
Pioneer Std.  
4433 Interpoint Blvd.  
Dayton  
Ohio 45424  
Tel: 1 513 236 9900  
Fax: 1 513 236 8133  
Bell Industries  
8705 SW Nimbus, Ste.100  
Beaverton  
Oregon 97008  
Tel: 1 503 644 3444  
Fax: 1 503 520 1948  
Pioneer Std.  
259 Kappa Drive  
Pittsburgh  
Pennsylvania 15238  
Tel: 1 412 782 2300  
Fax: 1 412 963 8255  
Hamilton Hallmark  
11333 Pagemill Rd  
Dallas  
Texas 75243  
Tel: 1 214 553 6800  
Fax: 1 214 553 4359  
Zeus Components  
8200 Washington Village Drive  
Dayton  
Ohio 45458  
Tel: 1 513 291 0276  
Fax: 1 513 291 9060  
Future Electronics Corp.  
Cornell Oaks Corp. Center  
15236 North West Greenbrier  
Beaverton  
Oregon 97006  
Tel: 1 503 645 9454  
Fax: 1 503 645 1559  
Texas  
All American  
6400 McNeil Road, Ste.203  
Austin  
Texas 78729  
Pioneer Std.  
13765 Beta Road  
Dallas  
Texas 75244  
Tel: 1 214 386 7300  
Fax: 1 214 490 6419  
Tel: 1 512 335 2280  
Fax: 1 512 335 2282  
Future Electronics Corp.  
6009 East Lander Haven Drive  
Maryfield Heights  
Ohio 44124  
Tel: 1 216 449 6996  
Fax: 1 216 449 8987  
Hamilton/Hallmark–#27  
9750 South West Nimbus Ave.  
Beaverton  
Oregon 97005  
Tel: 1 503 526 6200  
Fax: 1 503 641 5939  
Anthem Electronics  
14040 Summit Park Drive,  
Ste.119  
Austin  
Texas 78728  
All American  
11210 Steeplecrest, Ste.206  
Houston  
Texas 77065  
Tel: 1 713 955 1993  
Fax: 1 713 955 2215  
Marshall Industries  
30700 Bainbridge Road Unit A  
Solon  
Ohio 44139  
Tel: 1 216 248 1788  
Fax: 1 216 248 2312  
Tel: 1 512 388 0049  
Fax: 1 512 388 0271  
Marshall Industries  
9705 South West Gemini  
Beaverton  
Oregon 97005  
Tel: 1 503 644 5050  
Fax: 1 503 646 8256  
Future Electronics Corp.  
6850 Austin Center Blvd.  
Ste.320  
Austin  
Texas 78731  
Hamilton/Hallmark–#11  
8000 West Glenn  
Houston  
Texas 77063  
Tel: 1 713 781 6100  
Fax: 1 713 953 8420  
Anthem Electronics  
1286 Vantage Way  
Streetsboro  
Ohio 44241  
Tel: 1 800 359 3520  
Fax: 1 216 626 5001  
Pioneer Tech.  
8905 S.W. Gemini Drive  
Beaverton  
Oregon 97008  
Tel: 1 503 626 7300  
Fax: 1 503 626 5300  
Tel: 1 512 502 0991  
Fax: 1 512 502 0740  
Hamilton/Hallmark–#26  
12211 Technology Blvd.  
Austin  
Texas 78727  
Tel: 1 512 258 8848  
Fax: 1 512 258 3777  
Marshall Industries  
10681 Haddington, Ste.160  
Houston  
Texas 77043  
Tel: 1 713 467 1666  
Fax: 1 713 467 9805  
Hamilton/Hallmark–#79  
777 Dearboran Lane, Ste.L  
Worthington  
Ohio 43085  
Tel: 1 614 888 3313  
Fax: 1 614 888 0767  
Anthem Electronics  
15115 S.W. Sequoia, Ste.160  
Portland  
Oregon 97226  
Tel: 1 503 598 9660  
Fax: 1 503 598 7893  
Marshall Industries  
8504 Cross Park Drive  
Austin  
Oklahoma  
Hamilton/Hallmark  
5411 South 125th East Avenue,  
Ste.305  
Texas 78727  
Tel: 1 512 837 1991  
Fax: 1 512 832 8910  
Pennsylvania  
Anthem Electronics  
355 Business Center Drive  
Horsham  
Tulsa  
Oklahoma 74146  
Tel: 1 918 252 7297  
Fax: 1 918 254 6207  
Pennsylvania 19044  
Tel: 1 215 443 5150  
Fax: 1 215 675 9875  
Pioneer Std.  
9717 East 42nd Street, Ste.105  
Tulsa  
Oklahoma 74146  
Tel: 1 918 665 7840  
Fax: 1 918 665 1891  
V. dist.11  
Distributors  
Pioneer Std.  
10530 Rockley Road, Ste.100  
Houston  
Texas 77099  
Tel: 1 713 495 4700  
Fax: 1 713 495 5642  
Marshall Industries  
1551 North Glenville Drive  
Richardson  
Texas 75081  
Tel: 1 214 705 0604  
Fax: 1 214 705 0675  
Marshall Electronics  
2355 S. 1070 West, Ste.10 D  
Salt Lake City  
Utah 84119–1552  
Tel: 1 801 973 2288  
Fax: 1 801 973 2296  
Wisconsin  
Future Electronics Corp.  
250 N. Patrick Blvd., Ste.170  
Brookfield  
Wisconsin 53045  
Tel: 1 414 879 0244  
Fax: 1 414 879 0250  
Future Electronics Corp.  
10333 Richmond Avenue,  
Ste.970  
Houston, TX 77042  
Texas 77042  
Future Electronics Corp.  
6800 Park Ten Blvd.,  
Ste.137–E  
San Antonio  
Texas 78213  
Washington  
Bell Industries  
1715 114th Avenue,South East  
208  
Bellevue  
Washington 98004  
Tel: 1 206 646 8750  
Fax: 1 206 646 8559  
Pioneer Std.  
120 Bishops Way, Ste.163  
Brookfield  
Wisconsin 53005  
Tel: 1 414 784 3480  
Fax: 1 414 784 8207  
Tel: 1 800 785 1156  
Fax: 1 713 785 4558  
Tel: 1 210 738 3330  
Fax: 1 210 738 0511  
All American  
1771 International Parkway,  
Ste.101  
Richardson  
Texas 75081  
Utah  
Bell Industries  
6912 South 185 West, Ste.B  
Midvale  
Utah 84047  
Marsh Electronics, Inc.  
1563 South 101st Street  
Milwaukee  
Wisconsin 53214  
Tel: 1 414 475 6000  
Fax: 1 414 771 2847  
Pioneer Tech  
2800 156th Avenue, South East  
Bellevue  
Washington 98007  
Tel: 1 206 644 7500  
Fax: 1 206 644 7300  
Tel: 1 214 231 5300  
Fax: 1 214 437 0353  
Tel: 1 801 561 9691  
Fax: 1 801 255 2477  
Hamilton/Hallmark–#57  
2440 South 179th Street  
New Berlin  
Wisconsin 53146  
Tel: 1 414 780 7200  
Fax: 1 414 780 7201  
All American Semiconductor  
1771 International Parkway,  
Ste.101  
Richardson  
Texas 75081  
All American  
4455 South 700 East, Ste.301  
Salt Lake City  
Utah 84107  
Tel: 1 801 261 4210  
Fax: 1 801 261 3885  
Anthem Electronics  
19017–120th Ave.Ne.Ste.102  
Bothell  
Washington 98011  
Tel: 1 206 483 1700  
Fax: 1 206 486 0571  
Tel: 1 214 231 7100  
Fax: 1 214 437 0353  
Bell Industries  
W.226 N–900 Eastmound  
Drive  
Waukesha  
Wisconsin 53186  
Tel: 1 414 547 8879  
Fax: 1 414 547 6547  
Anthem Electronics  
1279 West 2200 South  
Salt Lake City  
Utah 84119  
Tel: 1 801 973 8555  
Fax: 1 801 973 8909  
Future Electronics Corp.  
19102 N. Creek Pkwy., Ste.118  
Bothell  
Washington 98011  
Tel: 1 206 489 3400  
Fax: 1 206 489 3411  
Anthem Electronics  
651 N. Plano Road, Ste.401  
Richardson  
Texas 75081  
Tel: 1 214 238 7100  
Fax: 1 214 238 0237  
Future Electronics Corp.  
3450 South Highland Drive,  
Ste.301  
Salt Lake City  
Utah 84106  
Marshall Industries  
11715 N. Creek Pkwy., South,  
Ste.112  
Future Electronics Corp.  
20875 Crossroads Cir., Ste.200  
Waukesha  
Wisconsin 53186  
Tel: 1 414 786 1884  
Fax: 1 414 879 0250  
Bell Industries  
1701 Greenville Avenue,  
Ste.306  
Richardson  
Texas 75081  
Bothell  
Washington 98011  
Tel: 1 206 486 5747  
Fax: 1 206 486 6964  
Tel: 1 801 467 4448  
Fax: 1 801 467 3604  
Tel: 1 214 458 0047  
Fax: 1 214 404 0267  
Marshall Industries  
20900 Swenson Drive  
Waukesha  
Wisconsin 53186  
Tel: 1 414 797 8400  
Fax: 1 414 797 8270  
Hamilton/Hallmark–#09  
1100 East 6600 South, Ste.120  
Salt Lake City  
Utah 84121  
Tel: 1 801 266 2022  
Fax: 1 801 263 0104  
Hamilton/Hallmark–#07  
8630 154th Avenue,North East  
Redmond  
Washington 98052  
Tel: 1 206 881 6697  
Fax: 1 206 867 0159  
Future Electronics Corp.  
800 East Cambell  
Richardson  
Texas 75081  
Tel: 1 214 437 2437  
Fax: 1 214 669 2347  
V. dist.12  
Distributors  
Canada  
Alberta  
Manitoba  
Future Electronics Corp.  
2015 32nd Ave.,NE, Ste.1  
T2E 6Z3 Calgary  
Tel: 1 403 250 5550  
Fax: 1 403 291 7054  
Future Electronics Corp.  
106 King Edward Court  
R3H 0N8 Winnipeg  
Tel: 1 204 786 7711  
Fax: 1 204 783 8133  
Hamilton/Hallmark–#59  
151 Superior Blvd.  
L5T 2L1 Mississauga  
Tel: 1 905 564 6060  
Fax: 1 905 564 6033  
Marshall Industries  
148 Brunswick Blvd.  
H9R 5P7 Pointe Claire  
Tel: 1 514 694 8142  
Fax: 1 514 694 6989  
Future Electronics Corp.  
4606 97th Street  
T6E 5N9 Edmonton  
Tel: 1 403 438 2858  
Fax: 1 403 434 0812  
Future Electronics Corp.  
Baxter Centre  
1050 Baxter Road  
K2C 3P2 Ottawa  
Tel: 1 613 820 8313  
Fax: 1 613 820 3271  
Future Electronics Corp.  
1000 Avenue St. Jean–Baptiste,  
Ste.100  
G2E 5G5 Quebec  
Tel: 1 418 682 8092  
Fax: 1 418 682 8303  
Ontario  
Future Electronics Corp.  
5935 Airport Road, Ste.200  
L4V 1W5 Mississauga  
Tel: 1 905 612 9200  
Fax: 1 905 612 9185  
British Columbia  
Hamilton/Hallmark–#45  
8610 Commerce Ct.  
V5A 4N6 Burnaby  
Tel: 1 604 420 4101  
Fax: 1 604 420 5376  
Hamilton/Hallmark–#65  
7575 Transcanadiene Highway,  
Ste.600  
H4T 1V6 St. Laurent  
Tel: 1 514 335 1000  
Fax: 1 514 355 2381  
Quebec  
Future Electronics Corp.  
237 Hymus Blvd.  
H9R 5C7 Pointe Claire  
Tel: 1 514 694 7710  
Fax: 1 514 695 3707  
G. S. Marshall–Canada  
6285 Northam Drive, Ste.112  
L4V 1X5 Mississauga  
Tel: 1 905 612 1771  
Fax: 1 905 612 1988  
Future Electronics Corp.  
1695 Boundary Road  
V5K 4X7 Vancouver  
Tel: 1 604 294 1166  
Fax: 1 604 294 1206  
South America  
Argentina  
Brasil  
Compania de Semiconductores  
y Componentes S.A.  
Parana 751/55  
1017 Buenos Aires  
Tel: 54 1 373 4091  
Fax: 54 1 325 8689  
Politronic Produtos Eletroele-  
tronicos Ltda.  
Rua Manoel Ignacio Moreira  
200  
13210–770 Jundiai–SP  
Tel: 55 11 7397 2428  
Fax: 55 11 7397 1012  
Electrocomponentes S.A.  
Solis 225/227/229  
1078 Buenos Aires  
Tel: 54 1 4761 864  
Fax: 54 1 3258 076  
Atlas Componentes Eletronicos  
Ltda.  
Vila Mariana  
R.Tenente Gomes Ribei-  
ro,182–10 Andar  
04038–040 Sao Paulo–SP  
Tel: 55 11 574 0404  
Fax: 55 11 573 3144  
V. dist.13  
Distributors  
Asia Pacific  
Australia  
India  
New Zealand  
Braemac Pty Ltd  
Blue Star Limited  
Blue Star House 11/A  
Magarath Road  
560 025 Bangalore  
Tel: 91 80 558 4728  
Fax: 91 80 558 4599  
Arrow (NZ) Ltd.  
19–21 Pretoria Street  
Lower Hutt  
P.O.Box 31186, WMC  
Tel: 64 4 566 3222  
Fax: 64 4 566 2111  
Scan Technology (S) Pte Ltd.  
Jurong Industrial Estate  
10 Penjuru Lane  
Singapore 609190  
Tel: 65 2 652 655  
1/59–61 Burrows Road  
Alexandria NSW 2015  
Tel: 61 2 550 6600  
Fax: 61 2 550 6377  
Fax: 65 2 655 200  
Consulaust International Ptv  
Ltd  
3rd Floor, 10 Bridge Street  
Granville, NSW 2142  
Tel: 61 2 637 2558  
Fax: 61 2 682 4521  
Spectra Innovations Inc.  
S–822 Manipal Centre  
47 Dickenson Road  
560–042 Bangalore  
Tel: 91 8055 8800 1  
Fax: 91 8055 8687 2  
Rep. of Singapore  
Tomen (S) Pte Ltd  
10 Shenton Way,#16–02 MAS  
Build.  
Singapore 079117  
Tel: 65 221 1422  
Fax: 65 221 0400  
Taiwan, R.O.C.  
Dynamar Taiwan Co. Ltd.  
Section 4  
#142, 11 F–7 Chung–Hsiao  
East Road  
Taipei  
Consulaust International Pty.  
Ltd.  
2064 Artarmon  
P.O.Box 994  
NSW  
Tel: 61 2 415 965  
Fax: 61 2 411 5294  
Tel: 886 2 721 3007  
Fax: 886 2 775 1597  
Spectra Innovations Inc.  
301, 5–Pusa Road  
110005 New Delhi  
Tel: 91 11 7535 719  
Fax: 91 11 7525 341  
Ryosho Techno (S) Pte Ltd  
396 Alexandra Road, #04–03  
BP Tower  
Singapore 119955  
Tel: 65 473 7118  
Uppertech Enterprise Co.,Ltd.  
Hsin Tien City  
6F, No 92,Pao Chung Road  
Taipei  
Tel: 886 2 916 1997  
Fax: 886 2 914 1152  
Blue Star Limited  
Sahas 414/2  
Veer Savarkar Marg  
400025 Prabhadevi, Bombay  
Tel: 91 22 430 6155  
Fax: 91 22 430 7078  
Fax: 65 479 8286  
IRH Components  
1–5 Carter Street  
2128 Silverwater  
NSW  
Tel: 61 2 364 1766  
Fax: 61 2 648 3505  
Spectra Innovations Inc.  
#01–07 Henderson Industr.  
Park  
213 Henderson Road  
Singapore 159553  
Tel: 65 271 0016  
Fax: 65 271 4112  
World Peace Industrial Co., Ltd  
.
8 F., 76, Section 1  
8F,76 Cheng Kung Road, Nan-  
kang  
Taipei  
Tel: 886 2 7885 200  
Fax: 886 2 7883 255  
Korea  
Hong Kong  
Audio Mechanical Corp. Ltd.  
Ste.1701 A World Finance  
Centre  
South Tower, Harbour City  
17, Canton Road, Tsimshatsui  
Kowloon  
Tel: 852 2 736 8192  
Fax: 852 2 735 0926  
Changnam Electronics Industry  
#44–22, Yoido–Dong  
9th Fl., Hosung Bldg.  
Seoul  
Youngdeungpo–Ku  
Tel: 82 2 7820 412  
Fax: 82 2 7847 702  
Uppertech Singapore  
Cititech Industrial Building  
629 Aljunied Road #03–10  
Singapore 389838  
Tel: 65 747 4900  
Fax: 65 747 1234  
Thailand  
Scan Technology (T) Pte Ltd  
93/37 Modern Group Building  
Chaeng Wattana Road  
Pakkred Nontaburi, 11120  
Tel: 662 982 9023  
Malaysia  
Scan Components (M)  
Sdn.Bhd.  
11900 Sungei Nibong  
761–B, Jalan Sultan Azlan  
Shah  
Penang  
Tel: 60 4 643 5136  
Fax: 60 4 643 6320  
Willias–Array (S) Pte Ltd  
40 Jalan Pemimpin  
# 04–03B Tat Ann Building  
Singapore 577185  
Tel: 65 353 3655  
Fax: 65 353 6153  
Aggressive  
Unit 6,BlkB,7/F Hoi Luen Ind  
C
55 Hoi Yuen Road  
Kowloon  
Kwuntong  
Fax: 662 574 6386  
Tel: 852 2342 2181  
Fax: 852 2797 9388  
Willas–Array Electronics Ltd.  
200 Tai Lin Pai Road  
Unit 1,24/F, Wyler Centre  
Phase 2  
Kwai Chung  
N.T.  
Tel: 852 2 418 3700  
Fax: 852 2 481 6992  
Japan  
Ryoden Trading Co., Ltd.  
3–15–15 Higashi–Ikebukuru,  
Toshima–ku  
Ryoden Trading Co., Ltd.  
4–1–4, Miyahara, Yodogawa–  
ku  
Tomen Electronics Corp.  
Nisshin Bldg.  
1–8–27, Konan, Minato–ku  
Tokyo 108  
Tokyo 170  
Osaka 532  
Tel: 81 3 5396 6233  
Fax: 81 3 5396 6443  
Tel: 81 6 399 3436  
Fax: 81 6 399 3460  
Tel: 81 3 5462 9629  
Fax: 81 3 5462 9684  
V. dist.14  
TSC 80251A1  
TEMIC reserves the right to make changes in the products or specifications contained in this datasheet in order to  
improve design or performance and to supply the best possible products. TEMIC also assumes no responsibility for  
the use of any circuits described herein, conveys no license under any patents or other rights, and makes no  
representations that the circuits are free from patent infringement. Applications for any integrated circuits contained  
in this publication are for illustration purposes only and TEMIC makes no representation or warranty that such  
applications will be suitable for the use specified without further testing or modification. Reproduction of any portion  
hereof without the prior written consent of TEMIC is prohibited.  
On line information  
World Wide Web:  
http://www.temic.de  
Copyright INTEL Corporation 1994. Portions reprinted by permission of INTEL Corporation.  
“Quick Pulse Algorithm” is a trademark Intel.  
MATRA MHS  

相关型号:

TSC80251A1-B12IBB

Microcontroller, 8-Bit, 12MHz, CMOS, PQCC44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-B12IDD

Microcontroller, 8-Bit, 12MHz, CMOS, PQFP44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-B16CDD

Microcontroller, 8-Bit, 16MHz, CMOS, PQFP44, TQFP-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-B16IBD

Microcontroller, 8-Bit, 16MHz, CMOS, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-B16ID

Microcontroller, 8-Bit, 16MHz, CMOS, PQFP44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-B16IDD

Microcontroller, 8-Bit, 16MHz, CMOS, PQFP44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-B16IDR

Microcontroller, 8-Bit, 16MHz, CMOS, PQFP44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-EKA

Extended 8-bit Microcontroller with Analog Interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-EKB

Extended 8-bit Microcontroller with Analog Interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-SKA

Extended 8-bit Microcontroller with Analog Interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1-SKB

Extended 8-bit Microcontroller with Analog Interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC80251A1XXX-A12ABD

Microcontroller, 8-Bit, 12MHz, CMOS, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC