TSC80251G2D-L16CED [TEMIC]

8/16-bit Microcontroller with Serial Communication Interfaces; 8位/ 16位微控制器,串行通信接口
TSC80251G2D-L16CED
型号: TSC80251G2D-L16CED
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

8/16-bit Microcontroller with Serial Communication Interfaces
8位/ 16位微控制器,串行通信接口

微控制器 外围集成电路 异步传输模式 ATM 通信 时钟
文件: 总63页 (文件大小:813K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSC80251G2D  
8/16-bit Microcontroller with Serial Communication  
Interfaces  
1. Description  
The TSC80251G2D products are derivatives of the the TSC83251G2D and TSC87251G2D provide on-chip  
TEMIC Microcontroller family based on the 8/16-bit code memory: 32 Kbytes ROM and 32 Kbytes EPROM/  
C251 Architecture. This family of products is tailored OTPROM respectively.  
to 8/16-bit microcontroller applications requiring an  
They provide transparent enhancements to Intel’s  
increased instruction throughput, a reduced operating  
8xC251Sx family with an additional Synchronous Serial  
frequency or a larger addressable memory space. The  
architecture can provide a significant code size reduction  
when compiling C programs while fully preserving the  
legacy of C51 assembly routines.  
2
Link Controller (SSLC supporting I C, µWire and SPI  
protocols), a Keyboard interrupt interface, a dedicated  
Baud Rate Generator for UART, and Power Management  
features.  
The TSC80251G2D derivatives are pin and software  
compatible with standard 80C51/Fx/Rx/Rx+ with  
extended on-chip data memory (1 Kbyte RAM) and up  
to 256 Kbytes of external code and data. Additionally,  
TSC80251G2D derivatives are optimized for speed and  
for low power consumption on a wide voltage range.  
Note:  
This Datasheet provides the technical description of the TSC80251G2D derivatives. For further information on the device usage, please request  
the TSC80251 Programmer’s Guide and the TSC80251G1D Design Guide.  
2. Typical Applications  
ISDN Terminals  
High-Speed Modems  
PABX (SOHO)  
Line Cards  
Scanners  
Banking Machines  
Barcode Readers  
Smart Cards Readers  
High-End Digital Monitors  
High-End Joysticks  
DVD ROM and Players  
Printers  
Plotters  
Rev. A - May 7, 1999  
1
TSC80251G2D  
3. Features  
Pin and Software Compatibility with Standard 80C51  
16-bit watchdog timer/counter capability  
Products and 80C51Fx/Rx/Rx+  
Secure 14-bit Hardware Watchdog Timer  
Power Management  
Plug-In Replacement of Intel’s 8xC251Sx  
®
C251 core: Intel’s MCS 251 D-step Compliance  
Power-On reset (integrated on the chip)  
Power-Off flag (cold and warm resets)  
Software programmable system clock  
Idle mode  
40-byte register file  
Registers accessible as Bytes, Words or Dwords  
Three-stage instruction pipeline  
16-bit internal code fetch  
Power-Down mode  
Enriched C51 Instruction Set  
Keyboard Interrupt Interface on Port 1  
Non Maskable Interrupt Input (NMI)  
16-bit and 32-bit ALU  
Compare and conditional jump instructions  
Expanded set of move instructions  
Real-Time Wait States Inputs (WAIT#/AWAIT#)  
ONCE mode and full speed Real-Time In-Circuit  
Linear Addressing  
Emulation support (Third Party Vendors)  
1 Kbyte of On-Chip RAM  
High Speed Versions:  
External Memory Space (Code/Data) Programmable  
4.5 to 5.5 V  
from 64 Kbytes to 256 Kbytes  
16 MHz and 24 MHz  
TSC87251G2D: 32 Kbytes of On-Chip EPROM/  
Typical operating current: 35 mA @ 24 MHz  
24 mA @ 16 MHz  
OTPROM  
SINGLE PULSE Programming Algorithm  
Typical power-down current: 2 µA  
TSC83251G2D: 32 Kbytes of On-Chip Masked ROM  
TSC80251G2D: ROMless Version  
Low Voltage Version:  
2.7 to 5.5 V  
Four 8-bit Parallel I/O Ports (Ports 0, 1, 2 and 3 of  
16 MHz  
the standard 80C51)  
Typical operating current: 11 mA @ 3V  
Typical power-down current: 1 µA  
Serial I/O Port: full duplex UART (80C51  
compatible) with independent Baud Rate Generator  
Temperature Ranges:  
SSLC: Synchronous Serial Link Controller  
2
Commercial (0°C to +70°C)  
I C multi-master protocol  
Industrial (-40°C to +85°C)  
µWire and SPI master and slave protocols  
Option: extended range (-55°C to +125°C)  
Three 16-bit Timers/Counters (Timers 0, 1 and 2 of  
the standard 80C51)  
Packages:  
EWC: Event and Waveform Controller  
PDIL 40, PLCC 44 and VQFP 44  
Compatible with Intel’s Programmable Counter  
Array (PCA)  
CDIL 40 and CQPJ 44 with window  
Options: known good dice and ceramic packages  
Common 16-bit timer/counter reference with four  
possible clock sources (Fosc/4, Fosc/12, Timer 1  
and external input)  
Five modules, each with four programmable  
modes:  
-
-
16-bit software timer/counter  
16-bit timer/counter capture input and  
software pulse measurement  
-
-
High-speed output and 16-bit software pulse  
width modulation (PWM)  
8-bit hardware PWM without overhead  
2
Rev. A - May 7, 1999  
TSC80251G2D  
4. Block Diagram  
P3(A16) P2(A15-8) P1(A17) P0(AD7-0)  
PSEN#  
ALE/PROG#  
EA#/VPP  
ROM  
Timers 0, 1 and 2  
EPROM  
OTPROM  
32 Kbytes  
RAM  
PORTS 0-3  
1 Kbyte  
UART  
Baud Rate Generator  
16-bit Memory Code  
16-bit Memory Address  
Event and Waveform  
Controller  
2
I C/SPI/µWire  
AWAIT#  
Controller  
Bus Interface Unit  
Watchdog Timer  
RST  
Power Management  
XTAL2  
Clock Unit  
Clock System Prescaler  
XTAL1  
Keyboard Interface  
CPU  
NMI  
Interrupt Handler  
Unit  
VDD  
VSS  
VSS1  
VSS2  
Figure 1. TSC80251G2D Block Diagram  
Rev. A - May 7, 1999  
3
TSC80251G2D  
5. Pin Description  
5.1 Pinout  
P1.0/T2  
1
2
3
4
5
6
7
8
9
40  
39  
38  
37  
36  
VDD  
P1.1/T2EX  
P1.2/ECI  
P0.0/AD0  
P0.1/AD1  
P0.2/AD2  
P0.3/AD3  
P1.3/CEX0  
P1.4/CEX1/SS#  
P1.5/CEX2/MISO  
P1.6/CEX3/SCL/SCK/WAIT#  
P1.7/A17/CEX4/SDA/MOSI/WCLK  
RST  
35 P0.4/AD4  
34 P0.5/AD5  
33 P0.6/AD6  
32 P0.7/AD7  
31 EA#/VPP  
30 ALE/PROG#  
29 PSEN#  
P3.0/RXD 10  
P3.1/TXD 11  
P3.2/INT0# 12  
P3.3/INT1# 13  
P3.4/T0 14  
TSC80251G2D  
28 P2.7/A15  
27 P2.6/A14  
26 P2.5/A13  
25 P2.4/A12  
24 P2.3/A11  
23 P2.2/A10  
22 P2.1/A9  
21 P2.0/A8  
P3.5/T1 15  
P3.6/WR# 16  
P3.7/A16/RD# 17  
XTAL2 18  
XTAL1 19  
VSS 20  
Figure 2. TSC80251G2D 40-pin DIP package  
P1.5/CEX2/MISO  
P1.6/CEX3/SCL/SCK/WAIT#  
P1.7/A17/CEX4/SDA/MOSI/WCLK  
7
8
9
39 P0.4/AD4  
38 P0.5/AD5  
37 P0.6/AD6  
36 P0.7/AD7  
35 EA#/VPP  
34 NMI  
33 ALE/PROG#  
32 PSEN#  
31 P2.7/A15  
30 P2.6/A14  
29 P2.5/A13  
RST 10  
P3.0/RXD 11  
AWAIT# 12  
P3.1/TXD 13  
P3.2/INT0# 14  
P3.3/INT1# 15  
P3.4/T0 16  
TSC80251G2D  
P3.5/T1 17  
Figure 3. TSC80251G2D 44-pin PLCC Package  
4
Rev. A - May 7, 1999  
TSC80251G2D  
P1.5/CEX2/MISO  
P1.6/CEX3/SCL/SCK/WAIT#  
P1.7/A17/CEX4/SDA/MOSI/WCLK  
1
2
3
4
5
6
7
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA#/VPP  
NMI  
ALE/PROG#  
PSEN#  
P2.7/A15  
P2.6/A14  
P2.5/A13  
RST  
P3.0/RXD  
AWAIT#  
P3.1/TXD  
P3.2/INT0#  
P3.3/INT1#  
P3.4/T0  
TSC80251G2D  
9
10  
11  
P3.5/T1  
Figure 4. TSC80251G2D 44-pin VQFP Package  
Table 1. TSC80251G2D Pin Assignment  
DIP PLCC VQFP  
Name  
DIP PLCC VQFP  
Name  
1
2
39  
40  
41  
42  
43  
44  
1
VSS1  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
VSS2  
1
2
P1.0/T2  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P2.0/A8  
3
P1.1/T2EX  
P1.2/ECI  
P2.1/A9  
3
4
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN#  
4
5
P1.3/CEX0  
P1.4/CEX1/SS#  
5
6
6
7
P1.5/CEX2/MISO  
7
8
2
P1.6/CEX3/SCL/SCK/WAIT#  
8
9
3
P1.7/A17/CEX4/SDA/MOSI/WCLK  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
4
RST  
10  
5
P3.0/RXD  
AWAIT#  
P3.1/TXD  
P3.2/INT0#  
P3.3/INT1#  
P3.4/T0  
ALE/PROG#  
NMI  
6
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
7
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
EA#/VPP  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
VDD  
8
9
10  
11  
12  
13  
14  
15  
16  
P3.5/T1  
P3.6/WR#  
P3.7/A16/RD#  
XTAL2  
XTAL1  
VSS  
Rev. A - May 7, 1999  
5
TSC80251G2D  
5.2 Signals  
Table 2. Product Name Signal Descriptions  
Signal  
Name  
Alternate  
Function  
Type  
Description  
th  
A17  
O
18 Address Bit  
P1.7  
Output to memory as 18th external address bit (A17) in extended bus applications, depending  
on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 15).  
th  
A16  
O
17 Address Bit  
Output to memory as 17th external address bit (A16) in extended bus applications, depending  
on the values of bits RD0 and RD1 in UCONFIG0 byte (see Table 13, Page 15).  
P3.7  
(1)  
A15:8  
O
I/O  
O
Address Lines  
P2.7:0  
P0.7:0  
Upper address lines for the external bus.  
(1)  
AD7:0  
Address/Data Lines  
Multiplexed lower address lines and data for the external memory.  
ALE  
Address Latch Enable  
ALE signals the start of an external bus cycle and indicates that valid address information  
are available on lines A16/A17 and A7:0. An external latch can use ALE to demultiplex the  
address from address/data bus.  
AWAIT#  
I
Real-time Asynchronous Wait States Input  
When this pin is active (low level), the memory cycle is stretched until it becomes high.  
When using the Product Name as a pin-for-pin replacement for a 8xC51 product, AWAIT#  
can be unconnected without loss of compatibility or power consumption increase (on-chip  
pull-up).  
Not available on DIP package.  
CEX4:0  
EA#  
I/O  
I
PCA Input/Output pins  
P1.7:3  
CEXx are input signals for the PCA capture mode and output signals for the PCA compare  
and PWM modes.  
External Access Enable  
EA# directs program memory accesses to on-chip or off-chip code memory.  
For EA#= 0, all program memory accesses are off-chip.  
For EA#= 1, an access is on-chip ROM if the address is within the range of the on-chip  
ROM; otherwise the access is off-chip. The value of EA# is latched at reset.  
For devices without ROM on-chip, EA# must be strapped to ground.  
ECI  
O
PCA External Clock input  
P1.2  
P1.5  
ECI is the external clock input to the 16-bit PCA timer.  
MISO  
I/O  
SPI Master Input Slave Output line  
When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in  
slave mode, MISO outputs data to the master controller.  
MOSI  
I/O  
I
SPI Master Output Slave Input line  
P1.7  
When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in  
slave mode, MOSI receives data from the master controller.  
INT1:0#  
External Interrupts 0 and 1  
P3.3:2  
INT1#/INT0# inputs set IE1:0 in the TCON register. If bits IT1:0 in the TCON register are  
set, bits IE1:0 are set by a falling edge on INT1#/INT0#. If bits IT1:0 are cleared, bits IE1:0  
are set by a low level on INT1#/INT0#.  
NMI  
I
Non Maskable Interrupt  
Holding this pin high for 24 oscillator periods triggers an interrupt.  
When using the Product Name as a pin-for-pin replacement for a 8xC51 product, NMI can  
be unconnected without loss of compatibility or power consumption increase (on-chip pull-  
down).  
Not available on DIP package.  
P0.0:7  
I/O  
Port 0  
AD7:0  
P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float  
and can be used as high impedance inputs. To avoid any paraitic current consumption, Floating  
P0 inputs must be polarized to V or V  
.
SS  
DD  
6
Rev. A - May 7, 1999  
TSC80251G2D  
Signal  
Name  
Alternate  
Function  
Type  
Description  
P1.0:7  
I/O  
Port 1  
P1 is an 8-bit bidirectional I/O port with internal pull-ups. P1 provides interrupt capability  
for a keyboard interface.  
P2.0:7  
P3.0:7  
I/O  
I/O  
I
Port 2  
P2 is an 8-bit bidirectional I/O port with internal pull-ups.  
A15:8  
Port 3  
P3 is an 8-bit bidirectional I/O port with internal pull-ups.  
PROG#  
Programming Pulse input  
The programming pulse is applied to this input for programming the on-chip EPROM/  
OTPROM.  
PSEN#  
RD#  
O
O
I
Program Store Enable/Read signal output  
PSEN# is asserted for a memory address range that depends on bits RD0 and RD1 in  
UCONFIG0 byte (see Table 13, Page 15).  
th  
Read or 17 Address Bit (A16)  
P3.7  
Read signal output to external data memory depending on the values of bits RD0 and RD1  
in UCONFIG0 byte (see Table 13, Page 15).  
RST  
Reset input to the chip  
Holding this pin high for 64 oscillator periods while the oscillator is running resets the device.  
The Port pins are driven to their reset conditions when a voltage greater than V  
whether or not the oscillator is running.  
is applied,  
IH1  
This pin has an internal pull-down resistor which allows the device to be reset by connecting  
a capacitor between this pin and VDD.  
Asserting RST when the chip is in Idle mode or Power-Down mode returns the chip to normal  
operation.  
RXD  
SCL  
SCK  
I/O  
I/O  
I/O  
Receive Serial Data  
P3.0  
P1.6  
P1.6  
RXD sends and receives data in serial I/O mode 0 and receives data in serial I/O modes 1,  
2 and 3.  
2
I C Serial Clock  
2
When I C controller is in master mode, SCL outputs the serial clock to slave peripherals.  
2
When I C controller is in slave mode, SCL receives clock from the master controller.  
SPI Serial Clock  
When SPI is in master mode, SCK outputs clock to the slave peripheral. When SPI is in  
slave mode, SCK receives clock from the master controller.  
2
SDA  
SS#  
T1:0  
T2  
I/O  
I
I C Serial Data  
P1.7  
P1.4  
2
SDA is the bidirectional I C data line.  
SPI Slave Select Input  
When in Slave mode, SS# enables the slave mode.  
I/O  
I/O  
Timer 1:0 External Clock Inputs  
When timer 1:0 operates as a counter, a falling edge on the T1:0 pin increments the count.  
Timer 2 Clock Input/Output  
P1.0  
P1.1  
For the timer 2 capture mode, T2 is the external clock input. For the Timer 2 clock-out mode,  
T2 is the clock output.  
T2EX  
TXD  
I
Timer 2 External Input  
In timer 2 capture mode, a falling edge initiates a capture of the timer 2 registers. In auto-  
reload mode, a falling edge causes the timer 2 register to be reloaded. In the up-down counter  
mode, this signal determines the count direction: 1= up, 0= down.  
O
Transmit Serial Data  
P3.1  
TXD outputs the shift clock in serial I/O mode 0 and transmits data in serial I/O modes 1,  
2 and 3.  
VDD  
VPP  
PWR  
I
Digital Supply Voltage  
Connect this pin to +5V or +3V supply voltage.  
Programming Supply Voltage  
The programming supply voltage is applied to this input for programming the on-chip EPROM/  
OTPROM.  
Rev. A - May 7, 1999  
7
TSC80251G2D  
Signal  
Name  
Alternate  
Function  
Type  
Description  
VSS  
GND  
GND  
Circuit Ground  
Connect this pin to ground.  
VSS1  
Secondary Ground 1  
This ground is provided to reduce ground bounce and improve power supply bypassing.  
Connection of this pin to ground is recommended. However, when using the TSC80251G2D  
as a pin-for-pin replacement for a 8xC51 product, VSS1 can be unconnected without loss of  
compatibility.  
Not available on DIP package.  
VSS2  
GND  
Secondary Ground 2  
This ground is provided to reduce ground bounce and improve power supply bypassing.  
Connection of this pin to ground is recommended. However, when using the TSC80251G2D  
as a pin-for-pin replacement for a 8xC51 product, VSS2 can be unconnected without loss of  
compatibility.  
Not available on DIP package.  
WAIT#  
WCLK  
I
Real-time Synchronous Wait States Input  
P1.6  
The real-time WAIT# input is enabled by setting RTWE bit in WCON (S:A7h). During bus  
cycles, the external memory system can signal ‘system ready’ to the microcontroller in real  
time by controlling the WAIT# input signal.  
O
Wait Clock Output  
P1.7  
P3.6  
The real-time WCLK output is enabled by setting RTWCE bit in WCON (S:A7h). When  
enabled, the WCLK output produces a square wave signal with a period of one half the  
oscillator frequency.  
WR#  
O
I
Write  
Write signal output to external memory.  
XTAL1  
Input to the on-chip inverting oscillator amplifier  
To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external  
oscillator is used, its output is connected to this pin. XTAL1 is the clock source for internal  
timing.  
XTAL2  
O
Output of the on-chip inverting oscillator amplifier  
To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external  
oscillator is used, leave XTAL2 unconnected.  
Note:  
1. The description of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the Non-Page mode chip configuration. If the chip is configured in Page mode  
operation, port 0 carries the lower address bits (A7:0) while port 2 carries the upper address bits (A15:8) and the data (D7:0).  
8
Rev. A - May 7, 1999  
TSC80251G2D  
6. Address Spaces  
The TSC80251G2D derivatives implement four different address spaces:  
On-chip ROM program/code memory (not present in ROMless devices)  
On-chip RAM data memory  
Special Function Registers (SFRs)  
Configuration array  
6.1 Program/Code Memory  
The TSC83251G2D and TSC87251G2D implement 32 Kbytes of on-chip program/code memory. Figure 5 shows  
the split of the internal and external program/code memory spaces. If EA# is tied to a high level, the 32-Kbyte  
on-chip program memory is mapped in the lower part of segment FF: where the C251 core jumps after reset. The  
rest of the program/code memory space is mapped to the external memory. If EA# is tied to a low level, the  
internal program/code memory is not used and all the accesses are directed to the external memory.  
The TSC83251G2D products provide the internal program/code memory in a masked ROM memory while the  
TSC87251G2D products provide it in an EPROM memory. For the TSC80251G2D products, there is no internal  
program/code memory and EA# must be tied to a low level.  
Program/code  
External Memory Space  
Program/code  
Segments  
On-chip ROM/EPROM  
Code Memory  
FF:FFFFh  
32 Kbytes  
32 Kbytes  
FF:8000h  
FF:7FFFh  
EA#= 0  
EA#= 1  
32 Kbytes  
FF:0000h  
FE:FFFFh  
64 Kbytes  
FE:0000h  
FD:FFFFh  
Reserved  
02:0000h  
01:FFFFh  
01:0000h  
00:FFFFh  
128 Kbytes  
00:0000h  
Figure 5. Program/Code Memory Mapping  
Notes:  
Special care should be taken when the Program Counter (PC) increments:  
1. If the program executes exclusively from on-chip code memory (not from external memory), beware of executing code from the upper eight  
bytes of the on-chip ROM (FF:7FF8h-FF:7FFFh). Because of its pipeline capability, the TSC80251G2D derivative may attempt to prefetch  
code from external memory (at an address above FF:7FFFh) and thereby disrupt I/O Ports 0 and 2. Fetching code constants from these  
8 bytes does not affect Ports 0 and 2.  
2. When PC reaches the end of segment FF:, it loops to the reset address FF:0000h (for compatibility with the C51 Architecture). When PC  
increments beyond the end of segment FE:, it continues at the reset address FF:0000h (linearity). When PC increments beyond the end of  
segment 01:, it loops to the beginning of segment 00: (this prevents from its going into the reserved area).  
Rev. A - May 7, 1999  
9
TSC80251G2D  
6.2 Data Memory  
The TSC80251G2D derivatives implement 1 Kbyte of on-chip data RAM. Figure 6 shows the split of the internal  
and external data memory spaces. This memory is mapped in the data space just over the 32 bytes of registers  
area (see TSC80251 Programmers’ Guide). Hence, the part of the on-chip RAM located from 20h to FFh is bit  
addressable. This on-chip RAM is not accessible through the program/code memory space.  
For faster computation with the on-chip ROM/EPROM code of the TSC83251G2D/TSC87251G2D, its upper 16  
Kbytes are also mapped in the upper part of the region 00: if the On-Chip Code Memory Map configuration bit  
is cleared (EMAP# bit in UCONFIG1 byte, see Figure 8). However, if EA# is tied to a low level, the TSC80251G2D  
derivative is running as a ROMless product and the code is actually fetched in the corresponding external memory  
(i.e. the upper 16 Kbytes of the lower 32 Kbytes of the segment FF:). If EMAP# bit is set, the on-chip ROM is  
not accessible through the region 00:.  
All the accesses to the portion of the data space with no on-chip memory mapped onto are redirected to the external  
memory.  
Data External  
Memory Space  
On-chip ROM/EPROM  
Code Memory  
Data Segments  
FF:FFFFh  
32 Kbytes  
32 Kbytes  
FF:8000h  
FF:7FFFh  
16 Kbytes  
16 Kbytes  
EA#= 0  
EA#= 1  
FF:0000h  
FE:FFFFh  
64 Kbytes  
FE:0000h  
FD:FFFFh  
EMAP#= 0  
Reserved  
02:0000h  
01:FFFFh  
64 Kbytes  
01:0000h  
00:FFFFh  
RAM Data  
16 Kbytes  
EMAP#= 1  
00:C000h  
00:BFFFh  
1 Kbyte  
47 Kbytes  
00:0420h  
32 bytes reg.  
Figure 6. Data Memory Mapping  
6.3 Special Function Registers  
The Special Function Registers (SFRs) of the TSC80251G2D derivatives fall into the categories detailed in Table 3  
to Table 11.  
SFRs are placed in a reserved on-chip memory region S: which is not represented in the data memory mapping  
(Figure 6). The relative addresses within S: of these SFRs are provided together with their reset values in Table 12.  
They are upward compatible with the SFRs of the standard 80C51 and the Intel’s 80C251Sx family. In this table,  
the C251 core registers are identified by Note 1 and are described in the TSC80251 Programmer’s Guide. The  
other SFRs are described in the TSC80251G1D Design Guide. All the SFRs are bit-addressable using the C251  
instruction set.  
10  
Rev. A - May 7, 1999  
 
TSC80251G2D  
Table 3. C251 Core SFRs  
Mnemonic Name  
Mnemonic Name  
(1)  
(1)  
ACC  
Accumulator  
SPH  
Stack Pointer High - MSB of SPX  
(1)  
(1)  
B
B Register  
DPL  
DPH  
Data Pointer Low byte - LSB of DPTR  
Data Pointer High byte - MSB of DPTR  
(1)  
(1)  
PSW  
Program Status Word  
Program Status Word 1  
Stack Pointer - LSB of SPX  
PSW1  
DPXL  
Data Pointer Extended Low byte of DPX - Region  
number  
(1)  
SP  
Note:  
1. These SFRs can also be accessed by their corresponding registers in the register file.  
Table 4. I/O Port SFRs  
Mnemonic Name  
Mnemonic Name  
P0  
P1  
Port 0  
Port 1  
P2  
P3  
Port 2  
Port 3  
Table 5. Timers SFRs  
Mnemonic Name  
Mnemonic Name  
TL0  
Timer/Counter 0 Low Byte  
TMOD  
Timer/Counter 0 and 1 Modes  
TH0  
TL1  
Timer/Counter 0 High Byte  
Timer/Counter 1 Low Byte  
Timer/Counter 1 High Byte  
Timer/Counter 2 Low Byte  
Timer/Counter 2 High Byte  
Timer/Counter 0 and 1 Control  
T2CON  
Timer/Counter 2 Control  
T2MOD  
RCAP2L  
RCAP2H  
WDTRST  
Timer/Counter 2 Mode  
TH1  
TL2  
Timer/Counter 2 Reload/Capture Low Byte  
Timer/Counter 2 Reload/Capture High Byte  
WatchDog Timer Reset  
TH2  
TCON  
Table 6. Serial I/O Port SFRs  
Mnemonic Name  
Mnemonic Name  
SCON  
SBUF  
Serial Control  
SADDR  
BRL  
Slave Address  
Serial Data Buffer  
Baud Rate Reload  
Baud Rate Control  
SADEN  
Slave Address Mask  
BDRCON  
Table 7. SSLC SFRs  
Mnemonic Name  
Mnemonic Name  
SSCON  
SSDAT  
SSCS  
Synchronous Serial control  
SSADR  
SSBR  
Synchronous Serial Address  
Synchronous Serial Bit Rate  
Synchronous Serial Data  
Synchronous Serial Control and Status  
Rev. A - May 7, 1999  
11  
TSC80251G2D  
Table 8. Event Waveform Control SFRs  
Mnemonic Name  
Mnemonic Name  
CCON  
EWC-PCA Timer/Counter Control  
CCAP0L  
CCAP1L  
CCAP2L  
CCAP3L  
CCAP4L  
CCAP0H  
CCAP1H  
CCAP2H  
CCAP3H  
CCAP4H  
EWC-PCA Compare Capture Module 0 Low Register  
CMOD  
CL  
EWC-PCA Timer/Counter Mode  
EWC-PCA Compare Capture Module 1 Low Register  
EWC-PCA Compare Capture Module 2 Low Register  
EWC-PCA Compare Capture Module 3 Low Register  
EWC-PCA Compare Capture Module 4 Low Register  
EWC-PCA Compare Capture Module 0 High Register  
EWC-PCA Compare Capture Module 1 High Register  
EWC-PCA Compare Capture Module 2 High Register  
EWC-PCA Compare Capture Module 3 High Register  
EWC-PCA Compare Capture Module 4 High Register  
EWC-PCA Timer/Counter Low Register  
EWC-PCA Timer/Counter High Register  
EWC-PCA Timer/Counter Mode 0  
EWC-PCA Timer/Counter Mode 1  
EWC-PCA Timer/Counter Mode 2  
EWC-PCA Timer/Counter Mode 3  
EWC-PCA Timer/Counter Mode 4  
CH  
CCAPM0  
CCAPM1  
CCAPM2  
CCAPM3  
CCAPM4  
Table 9. System Management SFRs  
Mnemonic Name  
Mnemonic Name  
PCON  
Power Control  
Power Management  
CKRL  
Clock Reload  
POWM  
WCON  
Synchronous Real-Time Wait State Control  
Table 10. Interrupt SFRs  
Mnemonic Name  
Mnemonic Name  
IE0  
Interrupt Enable Control 0  
IPL0  
IPH1  
IPL1  
Interrupt Priority Control Low 0  
Interrupt Priority Control High 1  
Interrupt Priority Control Low 1  
IE1  
Interrupt Enable Control 1  
IPH0  
Interrupt Priority Control High 0  
Table 11. Keyboard Interface SFRs  
Mnemonic Name  
Mnemonic Name  
P1IE  
P1F  
Port 1 Input Interrupt Enable  
Port 1 Flag  
P1LS  
Port 1 Level Selection  
12  
Rev. A - May 7, 1999  
TSC80251G2D  
Table 12. SFR Addresses and Reset Values  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
CH  
0000 0000  
CCAP0H  
0000 0000  
CCAP1H  
0000 0000  
CCAP2H  
0000 0000  
CCAP3H  
0000 0000  
CCAP4H  
0000 0000  
F8h  
F0h  
E8h  
E0h  
D8h  
D0h  
C8h  
C0h  
B8h  
B0h  
A8h  
A0h  
98h  
90h  
88h  
80h  
FFh  
F7h  
EFh  
E7h  
DFh  
D7h  
CFh  
C7h  
BFh  
B7h  
AFh  
A7h  
9Fh  
97h  
(1)  
B
0000 0000  
CL  
0000 0000  
CCAP0L  
0000 0000  
CCAP1L  
0000 0000  
CCAP2L  
0000 0000  
CCAP3L  
0000 0000  
CCAP4L  
0000 0000  
(1)  
ACC  
0000 0000  
CCON  
00X0 0000  
CMOD  
00XX X000  
CCAPM0  
X000 0000  
CCAPM1  
X000 0000  
CCAPM2  
X000 0000  
CCAPM3  
X000 0000  
CCAPM4  
X000 0000  
(1)  
(1)  
PSW  
PSW1  
0000 0000  
0000 0000  
T2CON  
0000 0000  
T2MOD  
XXXX XX00  
RCAP2L  
0000 0000  
RCAP2H  
0000 0000  
TL2  
0000 0000  
TH2  
0000 0000  
(1)  
IPL0  
X000 0000  
SADEN  
0000 0000  
SPH  
0000 0000  
P3  
IE1  
IPL1  
IPH1  
IPH0  
X000 0000  
1111 1111  
XX0X XXX0 XX0X XXX0 XX0X XXX0  
IE0  
0000 0000  
SADDR  
0000 0000  
P2  
WDTRST  
1111 1111  
WCON  
XXXX XX00  
1111 1111  
SCON  
0000 0000  
SBUF  
XXXX XXXX  
BRL  
0000 0000  
BDRCON  
XXX0 0000  
P1LS  
0000 0000  
P1IE  
0000 0000  
P1F  
0000 0000  
P1  
SSBR  
0000 0000  
SSCON  
SSCS  
SSDAT  
0000 0000  
SSADR  
0000 0000  
(2)  
(3)  
1111 1111  
TCON  
0000 0000  
TMOD  
0000 0000  
TL0  
0000 0000  
TL1  
0000 0000  
TH0  
0000 0000  
TH1  
0000 0000  
CKRL  
0000 1000  
POWM  
0XXX XXXX  
8Fh  
87h  
(1)  
(1)  
(1)  
(1)  
P0  
SP  
DPL  
DPH  
DPXL  
PCON  
0000 0000  
1111 1111  
0000 0111  
0000 0000  
0000 0000  
0000 0001  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
Reserved  
Notes:  
1. These registers are described in the TSC80251 Programmer’s Guide (C251 core registers).  
2. In I C and SPI modes, SSCON is splitted in two separate registers. SSCON reset value is 0000 0000 in I C mode and 0000 0100 in SPI mode.  
3. In read and write modes, SSCS is splitted in two separate registers. SSCS reset value is 1111 1000 in read mode and 0000 0000 in write mode.  
2
2
Rev. A - May 7, 1999  
13  
TSC80251G2D  
6.4 Configuration Bytes  
The TSC80251G2D derivatives provide user design flexibility by configuring certain operating features at device  
reset. These features fall into the following categories:  
external memory interface (Page mode, address bits, programmed wait states and the address range for RD#,  
WR#, and PSEN#)  
source mode/binary mode opcodes  
selection of bytes stored on the stack by an interrupt  
mapping of the upper portion of on-chip code memory to region 00:  
Two user configuration bytes UCONFIG0 (see Figure 7) and UCONFIG1 (see Figure 8) provide the information.  
When EA# is tied to a low level, the configuration bytes are fetched from the external address space. The  
TSC80251G2D derivatives reserve the top eight bytes of the memory address space (FF:FFF8h-FF:FFFFh) for an  
external 8-byte configuration array. Only two bytes are actually used: UCONFIG0 at FF:FFF8h and UCONFIG1  
at FF:FFF9h.  
For the mask ROM devices, configuration information is stored in on-chip memory (see ROM Verifying). When  
EA# is tied to a high level, the configuration information is retrieved from the on-chip memory instead of the  
external address space and there is no restriction in the usage of the external memory.  
UCONFIG0  
Configuration Byte 0  
7
-
6
5
4
3
2
1
0
WSA1#  
WSA0#  
XALE#  
RD1  
RD0  
PAGE#  
SRC  
Bit Number Bit Mnemonic  
Description  
Reserved  
7
-
Set this bit when writing to UCONFIG0.  
Wait State A bits  
Select the number of wait states for RD#, WR# and PSEN# signals for external memory accesses  
(all regions except 01:).  
6
WSA1#  
WSA1#  
WSA0#  
Number of Wait States  
0
0
1
1
0
1
0
1
3
2
1
0
5
4
WSA0#  
XALE#  
Extend ALE bit  
Clear to extend the duration of the ALE pulse from T  
to 3·T  
OSC.  
OSC  
Set to minimize the duration of the ALE pulse to 1·T  
.
OSC  
Memory Signal Select bits  
3
2
RD1  
RD0  
Specify a 18-bit, 17-bit or 16-bit external address bus and the usage of RD#, WR# and PSEN#  
signals (see Table 13).  
(1)  
Page Mode Select bit  
1
0
PAGE#  
SRC  
Clear to select the faster Page mode with A15:8/D7:0 on Port 2 and A7:0 on Port 0.  
Set to select the non-Page mode with A15:8 on Port 2 and A7:0/D7:0 on Port 0.  
(2)  
Source Mode/Binary Mode Select bit  
Clear to select the binary mode.  
Set to select the source mode.  
Notes:  
1. UCONFIG0 is fetched twice so it can be properly read both in Page or Non-Page modes. If P2.1 is cleared during the first data fetch, a  
Page mode configuration is used, otherwise the subsequent fetches are performed in Non-Page mode.  
2. This selection provides compatibility with the standard 80C51 hardware which is multiplexing the address LSB and the data on Port 0.  
Figure 7. Configuration Byte 0  
14  
Rev. A - May 7, 1999  
 
TSC80251G2D  
UCONFIG1  
Configuration Byte 1  
7
6
5
-
4
3
2
1
0
CSIZE  
-
INTR  
WSB  
WSB1#  
WSB0#  
EMAP#  
Bit Number Bit Mnemonic  
Description  
(1)  
On-Chip Code Memory Size bit  
CSIZE  
TSC87251G2D  
Clear to select 16 Kbytes of on-chip code memory (TSC87251G1D product).  
Set to select 32 Kbytes of on-chip code memory (TSC87251G2D product).  
7
-
Reserved  
Set this bit when writing to UCONFIG1.  
TSC80251G2D  
TSC83251G2D  
Reserved  
Set this bit when writing to UCONFIG1.  
6
5
-
-
Reserved  
Set this bit when writing to UCONFIG1.  
(2)  
Interrupt Mode bit  
Clear so that the interrupts push two bytes onto the stack (the two lower bytes of the PC register).  
Set so that the interrupts push four bytes onto the stack (the three bytes of the PC register and the  
PSW1 register).  
4
3
2
INTR  
WSB  
(3)  
Wait State B bit  
Clear to generate one wait state for memory region 01:.  
Set for no wait states for memory region 01:.  
Wait State B bits  
Select the number of wait states for RD#, WR# and PSEN# signals for external memory accesses  
(only region 01:).  
WSB1#  
WSB1#  
WSB0#  
Number of Wait States  
0
0
1
1
0
1
0
1
3
2
1
0
1
0
WSB0#  
EMAP#  
On-Chip Code Memory Map bit  
Clear to map the upper 16 Kbytes of on-chip code memory (at FF:4000h-FF:7FFFh) to the data  
space (at 00:C000h-00:FFFFh).  
Set not to map the upper 16 Kbytes of on-chip code memory (at FF:4000h-FF:7FFFh) to the data  
space.  
Notes:  
1. The CSIZE is only available on EPROM/OTPROM products.  
2. Two or four bytes are transparently popped according to INTR when using the RETI instruction. INTR must be set if interrupts are used  
with code executing outside region FF:.  
3. Use only for Step A compatibility; set this bit when WSB1:0# are used.  
Figure 8. Configuration Byte 1  
Table 13. Address Ranges and Usage of RD#, WR# and PSEN# Signals  
RD1  
RD0  
P1.7  
P3.7/RD#  
PSEN#  
WR#  
External Memory  
Read signal for all external Write signal for all external  
memory locations memory locations  
0
0
A17  
A16  
256 Kbytes  
Read signal for all external Write signal for all external  
memory locations memory locations  
0
1
1
1
0
1
I/O pin  
I/O pin  
I/O pin  
A16  
128 Kbytes  
64 Kbytes  
Read signal for all external Write signal for all external  
memory locations memory locations  
I/O pin  
Read signal for regions 00: Read signal for regions FE: Write signal for all external  
and 01: and FF: memory locations  
(1)  
2 × 64 Kbytes  
Note:  
1. This selection provides compatibility with the standard 80C51 hardware which has separate external memory spaces for data and code.  
Rev. A - May 7, 1999  
15  
TSC80251G2D  
7. Instruction Set Summary  
This section contains tables that summarize the instruction set. For each instruction there is a short description, its  
length in bytes, and its execution time in states (one state time is equal to two system clock cycles). There are  
two concurrent processes limiting the effective instruction throughput:  
Instruction Fetch  
Instruction Execution  
Table 20 to Table 34 assume code executing from on-chip memory, then the CPU is fetching 16-bit at a time and  
this is never limiting the execution speed.  
If the code is fetched from external memory, a pre-fetch queue will store instructions ahead of execution to optimize  
the memory bandwidth usage when slower instructions are executed. However, the effective speed may be limited  
depending on the average size of instructions (for the considered section of the program flow). The maximum  
average instruction throughput is provided by Table 14 depending on the external memory configuration (from  
Page Mode to Non-Page Mode and the maximum number of wait states). If the average size of instructions is not  
an integer, the maximum effective throughput is found by pondering the number of states for the neighbor integer  
values.  
Table 14. Minimum Number of States per Instruction for given Average Sizes  
Average size of  
Instructions  
(bytes)  
Non-Page Mode (states)  
Page Mode  
(states)  
0 Wait State  
1 Wait State  
2 Wait States  
3 Wait States  
4 Wait States  
1
2
3
4
5
1
2
3
4
5
2
4
3
6
4
5
6
8
10  
15  
20  
25  
12  
18  
24  
30  
6
9
12  
16  
20  
8
12  
15  
10  
If the average execution time of the considered instructions is larger than the number of states given by Table 14,  
this larger value will prevail as the limiting factor. Otherwise, the value from Table 14 must be taken. This is  
providing a fair estimation of the execution speed but only the actual code execution can provide the final value.  
7.1 Notation for Instruction Operands  
Table 15 to Table 19 provide notation for Instruction Operands.  
Table 15. Notation for Direct Addressing  
Direct Address  
Description  
C251  
C51  
A direct 8-bit address. This can be a memory address (00h-7Fh) or a SFR address (80h-  
FFh). It is a byte (default), word or double word depending on the other operand.  
dir8  
dir16  
A 16-bit memory address (00:0000h-00:FFFFh) used in direct addressing.  
Table 16. Notation for Immediate Addressing  
Description  
Immediate  
Address  
C251  
C51  
#data  
An 8-bit constant that is immediately addressed in an instruction  
A 16-bit constant that is immediately addressed in an instruction  
#data16  
#0data16  
#1data16  
A 32-bit constant that is immediately addressed in an instruction. The upper word is filled  
with zeros (#0data16) or ones (#1data16).  
#short  
A constant, equal to 1, 2, or 4, that is immediately addressed in an instruction.  
Rev. A - May 7, 1999  
16  
 
 
TSC80251G2D  
Table 17. Notation for Bit Addressing  
Direct Address  
Description  
C251  
C51  
A directly addressed bit (bit number= 00h-FFh) in memory or an SFR. Bits 00h-7Fh are  
the 128 bits in byte locations 20h-2Fh in the on-chip RAM. Bits 80h-FFh are the 128 bits  
in the 16 SFRs with addresses that end in 0h or 8h, S:80h, S:88h, S:90h,..., S:F0h, S:F8h.  
bit51  
bit  
A directly addressed bit in memory locations 00:0020h-00:007Fh or in any defined SFR.  
Table 18. Notation for Destination in Control Instructions  
Description  
Direct Address  
C251  
C51  
A signed (two’s complement) 8-bit relative address. The destination is -128 to +127 bytes  
relative to the next instruction’s first byte.  
rel  
An 11-bit target address. The target is in the same 2-Kbyte block of memory as the next  
instruction’s first byte.  
addr11  
A 16-bit target address. The target can be anywhere within the same 64-Kbyte region as  
the next instruction’s first byte.  
addr16  
addr24  
A 24-bit target address. The target can be anywhere within the 16-Mbyte address space.  
Table 19. Notation for Register Operands  
Register  
Description  
C251  
C51  
@Ri  
A memory location (00h-FFh) addressed indirectly via byte registers R0 or R1  
Rn  
n
Byte register R0-R7 of the currently selected register bank  
Byte register index: n= 0-7  
Rm  
Rmd  
Byte register R0-R15 of the currently selected register file  
Destination register  
Rms  
m, md, ms  
Source register  
Byte register index: m, md, ms= 0-15  
WRj  
Word register WR0, WR2, ..., WR30 of the currently selected register file  
Destination register  
Source register  
A memory location (00:0000h-00:FFFFh) addressed indirectly through word register WR0-  
WR30, is the target address for jump instructions.  
A memory location (00:0000h-00:FFFFh) addressed indirectly through word register (WR0-  
WR30) + 16-bit signed (two’s complement) displacement value  
Word register index: j, jd, js= 0-30  
WRjd  
WRjs  
@WRj  
@WRj +dis16  
j, jd, js  
DRk  
Dword register DR0, DR4, ..., DR28, DR56, DR60 of the currently selected register file  
Destination register  
Source register  
A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register DR0-  
DR28, DR56 and DR60, is the target address for jump instruction  
A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register (DR0-  
DR28, DR56, DR60) + 16-bit (two’s complement) signed displacement value  
Dword register index: k, kd, ks= 0, 4, 8..., 28, 56, 60  
DRkd  
DRks  
@DRk  
@DRk +dis16  
k, kd, ks  
17  
Rev. A - May 7, 1999  
TSC80251G2D  
7.2 Size and Execution Time for Instruction Families  
Table 20. Summary of Add and Subtract Instructions  
Add  
ADD <dest>, <src>  
dest opnd dest opnd + src opnd  
Subtract  
Add with Carry  
Subtract with Borrow  
SUB <dest>, <src>  
ADDC <dest>, <src>  
SUBB <dest>, <src>  
dest opnd dest opnd - src opnd  
(A) (A) + src opnd + (CY)  
(A) (A) - src opnd - (CY)  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
A, Rn  
Register to ACC  
1
2
1
2
3
3
3
4
5
5
4
4
5
5
4
4
1
1
2
2
2
2
2
2
2
3
4
4
3
3
4
4
3
3
2
2
(2)  
(2)  
A, dir8  
Direct address to ACC  
1
1
ADD  
A, @Ri  
Indirect address to ACC  
2
1
2
3
5
3
4
3
1
1
2
4
2
3
A, #data  
Immediate data to ACC  
Rmd, Rms  
WRjd, WRjs  
DRkd, DRks  
Rm, #data  
WRj, #data16  
DRk, #0data16  
Rm, dir8  
Byte register to/from byte register  
Word register to/from word register  
Dword register to/from dword register  
Immediate 8-bit data to/from byte register  
Immediate 16-bit data to/from word register  
16-bit unsigned immediate data to/from dword register  
Direct address (on-chip RAM or SFR) to/from byte register  
Direct address (on-chip RAM or SFR) to/from word register  
Direct address (64K) to/from byte register  
Direct address (64K) to/from word register  
Indirect address (64K) to/from byte register  
Indirect address (16M) to/from byte register  
Register to/from ACC with carry  
6
5
ADD / SUB  
(2)  
(2)  
3
2
WRj, dir8  
Rm, dir16  
WRj, dir16  
Rm, @WRj  
Rm, @DRk  
A, Rn  
4
3
(3)  
(3)  
3
2
(4)  
(3)  
(3)  
(4)  
(3)  
(3)  
4
3
4
3
2
3
1
2
Direct address (on-chip RAM or SFR) to/from ACC with  
carry  
(2)  
(2)  
A, dir8  
2
1
2
1
ADDC / SUBB  
A, @Ri  
A, #data  
Indirect address to/from ACC with carry  
Immediate data to/from ACC with carry  
1
2
2
1
2
2
3
1
Notes:  
1. A shaded cell denotes an instruction in the C51 Architecture.  
2. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.  
3. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).  
4. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).  
Rev. A - May 7, 1999  
18  
TSC80251G2D  
Table 21. Summary of Increment and Decrement Instructions  
Increment  
Increment  
Decrement  
Decrement  
INC <dest>  
INC <dest>, <src>  
DEC <dest>  
dest opnd dest opnd + 1  
dest opnd dest opnd + src opnd  
dest opnd dest opnd - 1  
DEC <dest>, <src>  
dest opnd dest opnd - src opnd  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
A
ACC by 1  
1
1
2
1
3
3
3
3
1
1
1
2
2
2
2
2
2
2
1
1
Rn  
Register by 1  
1
2
INC  
DEC  
(2)  
(2)  
dir8  
Direct address (on-chip RAM or SFR) by 1  
Indirect address by 1  
2
2
@Ri  
3
2
2
4
5
1
4
1
1
3
4
1
Rm, #short  
WRj, #short  
DRk, #short  
DRk, #short  
DPTR  
Byte register by 1, 2, or 4  
INC  
DEC  
Word register by 1, 2, or 4  
Double word register by 1, 2, or 4  
Double word register by 1, 2, or 4  
Data pointer by 1  
INC  
DEC  
INC  
Notes:  
1. A shaded cell denotes an instruction in the C51 Architecture.  
2. If this instruction addresses an I/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.  
Table 22. Summary of Compare Instructions  
Compare  
CMP <dest>, <src>  
dest opnd - src opnd  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(2)  
Comments  
Bytes States Bytes States  
Rmd, Rms  
Register with register  
3
3
3
4
5
5
5
4
4
5
5
4
4
2
3
5
3
4
6
2
2
2
3
4
4
4
3
3
4
4
3
3
1
2
4
2
3
5
WRjd, WRjs  
DRkd, DRks  
Rm, #data  
Word register with word register  
Dword register with dword register  
Register with immediate data  
WRj, #data16  
DRk, #0data16  
DRk, #1data16  
Rm, dir8  
Word register with immediate 16-bit data  
Dword register with zero-extended 16-bit immediate data  
Dword register with one-extended 16-bit immediate data  
Direct address (on-chip RAM or SFR) with byte register  
Direct address (on-chip RAM or SFR) with word register  
Direct address (64K) with byte register  
CMP  
6
5
(1)  
(1)  
3
2
WRj, dir8  
4
3
(2)  
(2)  
Rm, dir16  
3
2
(3)  
(2)  
(2)  
(3)  
(2)  
(2)  
WRj, dir16  
Rm, @WRj  
Rm, @DRk  
Direct address (64K) with word register  
4
3
4
3
2
3
Indirect address (64K) with byte register  
Indirect address (16M) with byte register  
Notes:  
1. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.  
2. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).  
3. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).  
19  
Rev. A - May 7, 1999  
TSC80251G2D  
Table 23. Summary of Logical Instructions (1/2)  
(1)  
Logical AND  
Logical OR  
ANL <dest>, <src>  
ORL <dest>, <src>  
XRL <dest>, <src>  
CLR A  
CPL A  
RL A  
dest opnd dest opnd Λ src opnd  
dest opnd dest opnd ς src opnd  
dest opnd dest opnd src opnd  
(A) 0  
(1)  
(1)  
Logical Exclusive OR  
(1)  
Clear  
(1)  
Complement  
Rotate Left  
(A) ←  
(A)  
(A)  
(A) , n= 0..6  
n+1  
n
(A) (A)  
0
7
Rotate Left Carry  
RLC A  
(A)  
(A) , n= 0..6  
n+1 n  
(CY) (A)  
7
(A) (CY)  
0
Rotate Right  
RR A  
(A) (A) , n= 7..1  
n-1 n  
(A) (A)  
7
0
Rotate Right Carry  
RRC A  
(A) (A) , n= 7..1  
n-1 n  
(CY) (A)  
0
(A) (CY)  
7
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
A, Rn  
register to ACC  
1
2
1
2
2
3
3
3
4
5
4
4
5
5
4
4
1
1
1
1
1
1
1
2
2
2
2
2
3
2
2
3
4
3
3
4
4
3
3
1
1
1
1
1
1
2
(3)  
(3)  
A, dir8  
A, @Ri  
A, #data  
dir8, A  
dir8, #data  
Rmd, Rms  
WRjd, WRjs  
Rm, #data  
WRj, #data16  
Rm, dir8  
WRj, dir8  
Rm, dir16  
WRj, dir16  
Rm, @WRj  
Rm, @DRk  
A
Direct address (on-chip RAM or SFR) to ACC  
Indirect address to ACC  
1
1
2
3
Immediate data to ACC  
1
1
(4)  
(4)  
ACC to direct address  
2
2
(4)  
(4)  
Immediate 8-bit data to direct address  
Byte register to byte register  
3
3
2
3
3
1
2
2
ANL  
ORL  
XRL  
Word register to word register  
Immediate 8-bit data to byte register  
Immediate 16-bit data to word register  
Direct address (on-chip RAM or SFR) to byte register  
Direct address (on-chip RAM or SFR) to word register  
Direct address (64K) to byte register  
Direct address (64K) to word register  
Indirect address (64K) to byte register  
Indirect address (16M) to byte register  
Clear ACC  
4
3
(3)  
(3)  
3
2
4
3
(5)  
(5)  
3
2
(6)  
(5)  
(5)  
(6)  
(5)  
(5)  
4
3
4
3
2
3
CLR  
CPL  
RL  
1
1
1
1
1
1
1
1
1
1
1
1
A
Complement ACC  
A
Rotate ACC left  
RLC  
RR  
A
Rotate ACC left through CY  
A
Rotate ACC right  
RRC  
A
Rotate ACC right through CY  
Notes:  
1. Logical instructions that affect a bit are in Table 29.  
2. A shaded cell denotes an instruction in the C51 Architecture.  
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.  
4. If this instruction addresses an I/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.  
5. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).  
6. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).  
Rev. A - May 7, 1999  
20  
TSC80251G2D  
Table 24. Summary of Logical Instructions (2/2)  
Shift Left Logical  
Shift Right Arithmetic  
Shift Right Logical  
Swap  
SLL <dest>  
SRA <dest>  
SRL <dest>  
SWAP A  
<dest> 0  
0
<dest>  
<dest> , n= 0..msb-1  
n+1  
n
(CY) <dest>  
msb  
<dest>  
<dest>  
msb  
msb  
<dest> <dest> , n= msb..1  
n-1  
n
(CY) <dest>  
0
<dest>  
0  
msb  
<dest> <dest> , n= msb..1  
n-1  
n
(CY) <dest>  
0
A
A
7:4  
3:0  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
Rm  
WRj  
Rm  
WRj  
Rm  
WRj  
A
Shift byte register left through the MSB  
Shift word register left through the MSB  
Shift byte register right  
3
3
3
3
3
3
1
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
2
SLL  
SRA  
SRL  
Shift word register right  
Shift byte register left  
Shift word register left  
SWAP  
Swap nibbles within ACC  
Note:  
1. A shaded cell denotes an instruction in the C51 Architecture.  
Table 25. Summary of Multiply, Divide and Decimal-adjust Instructions  
Multiply  
Divide  
Divide  
MUL AB  
MUL <dest>, <src>  
DIV AB  
(B:A) (A)×(B)  
extended dest opnd dest opnd × src opnd  
(A) Quotient ((A) (B))  
(B) Remainder ((A) (B))  
ext. dest opnd high Quotient (dest opnd src opnd)  
ext. dest opnd low Remainder (dest opnd src opnd)  
DIV <dest>, <src>  
DA A  
Decimal-adjust ACC  
for Addition (BCD)  
IF [[(A) > 9] [(AC)= 1]]  
3:0  
THEN (A) (A) + 6 !affects CY;  
3:0  
3:0  
IF [[(A) > 9] [(CY)= 1]]  
7:4  
THEN (A) (A) + 6  
7:4  
7:4  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
AB  
Multiply A and B  
1
3
3
1
3
3
1
5
6
1
2
2
1
2
2
1
5
5
MUL  
Rmd, Rms  
WRjd, WRjs  
AB  
Multiply byte register and byte register  
Multiply word register and word register  
Divide A and B  
12  
10  
11  
21  
1
11  
10  
10  
20  
1
DIV  
Rmd, Rms  
WRjd, WRjs  
A
Divide byte register and byte register  
Divide word register and word register  
Decimal adjust ACC  
DA  
Note:  
1. A shaded cell denotes an instruction in the C51 Architecture.  
21  
Rev. A - May 7, 1999  
TSC80251G2D  
Table 26. Summary of Move Instructions (1/3)  
Move to High word  
Move with Sign extension  
Move with Zero extension  
Move Code  
MOVH <dest>, <src>  
MOVS <dest>, <src>  
MOVZ <dest>, <src>  
MOVC A, <src>  
dest opnd  
src opnd  
31:16  
dest opnd src opnd with sign extend  
dest opnd src opnd with zero extend  
(A) src opnd  
Move eXtended  
MOVX <dest>, <src>  
dest opnd src opnd  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(2)  
Comments  
Bytes States Bytes States  
MOVH  
MOVS  
MOVZ  
DRk, #data16  
WRj, Rm  
16-bit immediate data into upper word of dword register  
Byte register to word register with sign extension  
Byte register to word register with zeros extension  
Code byte relative to DPTR to ACC  
5
3
3
1
1
1
1
1
1
3
2
4
2
2
1
1
1
1
1
1
2
1
WRj, Rm  
2
1
(3)  
(3)  
A, @A +DPTR  
A, @A +PC  
A, @Ri  
6
6
MOVC  
(3)  
(3)  
Code byte relative to PC to ACC  
6
6
(2)  
Extended memory (8-bit address) to ACC  
4
5
(2)  
(4)  
(4)  
A, @DPTR  
@Ri, A  
Extended memory (16-bit address) to ACC  
3
3
MOVX  
(2)  
ACC to extended memory (8-bit address)  
4
4
(2)  
(3)  
(3)  
@DPTR, A  
ACC to extended memory (16-bit address)  
4
4
Notes:  
1. A shaded cell denotes an instruction in the C51 Architecture.  
2. Extended memory addressed is in the region specified by DPXL (reset value= 01h).  
3. If this instruction addresses external memory location, add N+1 to the number of states (N: number of wait states).  
4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).  
Table 27. Summary of Move Instructions (2/3)  
(1)  
Move  
MOV <dest>, <src>  
dest opnd src opnd  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(2)  
Comments  
Bytes States Bytes States  
A, Rn  
Register to ACC  
1
2
1
2
1
2
2
2
2
3
2
3
1
2
2
3
1
2
2
2
2
2
3
3
2
3
3
3
3
2
3
3
3
2
(3)  
(3)  
A, dir8  
Direct address (on-chip RAM or SFR) to ACC  
Indirect address to ACC  
1
1
A, @Ri  
2
1
3
1
A, #data  
Rn, A  
Immediate data to ACC  
ACC to register  
1
2
(3)  
(3)  
Rn, dir8  
Rn, #data  
dir8, A  
Direct address (on-chip RAM or SFR) to register  
Immediate data to register  
1
2
1
2
(3)  
(3)  
ACC to direct address (on-chip RAM or SFR)  
Register to direct address (on-chip RAM or SFR)  
Direct address to direct address (on-chip RAM or SFR)  
Indirect address to direct address (on-chip RAM or SFR)  
Immediate data to direct address (on-chip RAM or SFR)  
ACC to indirect address  
2
2
MOV  
(3)  
(4)  
(3)  
(3)  
(3)  
(4)  
(3)  
(3)  
dir8, Rn  
dir8, dir8  
dir8, @Ri  
dir8, #data  
@Ri, A  
2
3
3
3
3
3
4
3
3
4
(3)  
(3)  
@Ri, dir8  
@Ri, #data  
DPTR, #data16  
Direct address (on-chip RAM or SFR) to indirect address  
Immediate data to indirect address  
3
4
3
2
4
2
Load Data Pointer with a 16-bit constant  
Notes:  
1. Instructions that move bits are in Table 29.  
2. Move instructions from the C51 Architecture.  
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.  
4. Apply note 3 for each dir8 operand.  
Rev. A - May 7, 1999  
22  
TSC80251G2D  
Table 28. Summary of Move Instructions (3/3)  
(1)  
Move  
MOV <dest>, <src>  
dest opnd src opnd  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
Rmd, Rms  
WRjd, WRjs  
DRkd, DRks  
Rm, #data  
Byte register to byte register  
3
3
3
4
5
5
5
4
4
4
5
5
5
4
4
4
4
4
4
4
5
5
5
4
4
4
4
5
5
5
5
5
5
5
5
2
2
3
3
3
5
2
2
2
3
4
4
4
3
3
3
4
4
4
3
3
3
3
3
3
3
4
4
4
3
3
3
3
4
4
4
4
4
4
4
4
1
1
2
2
2
4
Word register to word register  
Dword register to dword register  
Immediate 8-bit data to byte register  
WRj, #data16  
DRk, #0data16  
DRk, #1data16  
Rm, dir8  
Immediate 16-bit data to word register  
zero-ext 16bit immediate data to dword register  
one-ext 16bit immediate data to dword register  
Direct address (on-chip RAM or SFR) to byte register  
Direct address (on-chip RAM or SFR) to word register  
Direct address (on-chip RAM or SFR) to dword register  
Direct address (64K) to byte register  
5
4
(3)  
(3)  
3
2
WRj, dir8  
4
3
DRk, dir8  
6
5
(4)  
(4)  
Rm, dir16  
3
2
(5)  
(6)  
(4)  
(4)  
(5)  
(5)  
(3)  
(5)  
(6)  
(4)  
(4)  
(5)  
(5)  
(3)  
WRj, dir16  
DRk, dir16  
Rm, @WRj  
Rm, @DRk  
WRjd, @WRjs  
WRj, @DRk  
dir8, Rm  
Direct address (64K) to word register  
4
6
3
4
4
5
4
3
5
2
3
3
4
3
Direct address (64K) to dword register  
Indirect address (64K) to byte register  
Indirect address (16M) to byte register  
Indirect address (64K) to word register  
Indirect address (16M) to word register  
Byte register to direct address (on-chip RAM or SFR)  
Word register to direct address (on-chip RAM or SFR)  
Dword register to direct address (on-chip RAM or SFR)  
Byte register to direct address (64K)  
MOV  
dir8, WRj  
5
4
dir8, DRk  
7
6
(4)  
(4)  
dir16, Rm  
4
3
(5)  
(6)  
(4)  
(4)  
(5)  
(5)  
(4)  
(5)  
(4)  
(5)  
(4)  
(5)  
(4)  
(5)  
(5)  
(6)  
(4)  
(4)  
(5)  
(5)  
(4)  
(5)  
(4)  
(5)  
(4)  
(5)  
(4)  
(5)  
dir16, WRj  
dir16, DRk  
@WRj, Rm  
@DRk, Rm  
@WRjd, WRjs  
@DRk, WRj  
Word register to direct address (64K)  
5
7
4
5
5
6
6
7
7
8
6
7
7
8
4
6
3
4
4
5
5
6
6
7
5
6
6
7
Dword register to direct address (64K)  
Byte register to indirect address (64K)  
Byte register to indirect address (16M)  
Word register to indirect address (64K)  
Word register to indirect address (16M)  
Rm, @WRj +dis16 Indirect with 16-bit displacement (64K) to byte register  
WRj, @WRj +dis16 Indirect with 16-bit displacement (64K) to word register  
Rm, @DRk +dis24 Indirect with 16-bit displacement (16M) to byte register  
WRj, @WRj +dis24 Indirect with 16-bit displacement (16M) to word register  
@WRj +dis16, Rm Byte register to indirect with 16-bit displacement (64K)  
@WRj +dis16, WRj Word register to indirect with 16-bit displacement (64K)  
@DRk +dis24, Rm Byte register to indirect with 16-bit displacement (16M)  
@DRk +dis24, WRj Word register to indirect with 16-bit displacement (16M)  
Notes:  
1. Instructions that move bits are in Table 29.  
2. Move instructions unique to the C251 Architecture.  
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.  
4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).  
5. If this instruction addresses external memory location, add 2(N+1) to the number of states (N: number of wait states).  
6. If this instruction addresses external memory location, add 4(N+2) to the number of states (N: number of wait states).  
23  
Rev. A - May 7, 1999  
TSC80251G2D  
Table 29. Summary of Bit Instructions  
Clear Bit  
CLR <dest>  
dest opnd 0  
Set Bit  
Complement Bit  
AND Carry with Bit  
SETB <dest>  
CPL <dest>  
ANL CY, <src>  
dest opnd 1  
dest opnd ←  
(CY) (CY) src opnd  
bit  
AND Carry with Complement of Bit ANL CY, /<src>  
OR Carry with Bit ORL CY, <src>  
OR Carry with Complement of Bit ORL CY, /<src>  
(CY) (CY)  
(CY) (CY) src opnd  
(CY) (CY)  
src opnd  
src opnd  
Move Bit to Carry  
Move Bit from Carry  
MOV CY, <src>  
MOV <dest>, CY  
(CY) src opnd  
dest opnd (CY)  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
CY  
Clear carry  
1
2
4
1
2
4
1
2
4
2
4
2
4
2
4
2
4
2
4
2
4
1
1
2
3
1
2
3
1
2
3
2
3
2
3
2
3
2
3
2
3
2
3
1
(3)  
(3)  
CLR  
bit51  
Clear direct bit  
2
2
(3)  
(3)  
bit  
Clear direct bit  
4
3
CY  
Set carry  
1
1
(3)  
(3)  
SETB  
CPL  
bit51  
Set direct bit  
2
2
(3)  
(3)  
bit  
Set direct bit  
4
3
CY  
Complement carry  
Complement direct bit  
Complement direct bit  
And direct bit to carry  
And direct bit to carry  
1
1
(3)  
(3)  
bit51  
2
2
(3)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(3)  
(3)  
(3)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(3)  
(3)  
bit  
4
1
3
1
3
1
3
1
3
1
3
2
4
3
1
2
1
2
1
2
1
2
1
2
2
3
CY, bit51  
CY, bit  
CY, /bit51  
CY, /bit  
CY, bit51  
CY, bit  
CY, /bit51  
CY, /bit  
CY, bit51  
CY, bit  
bit51, CY  
bit, CY  
ANL  
ORL  
And complemented direct bit to carry  
And complemented direct bit to carry  
Or direct bit to carry  
Or direct bit to carry  
Or complemented direct bit to carry  
Or complemented direct bit to carry  
Move direct bit to carry  
Move direct bit to carry  
MOV  
Move carry to direct bit  
Move carry to direct bit  
Notes:  
1. A shaded cell denotes an instruction in the C51 Architecture.  
2. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.  
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.  
Rev. A - May 7, 1999  
24  
TSC80251G2D  
Table 30. Summary of Exchange, Push and Pop Instructions  
Exchange bytes  
Exchange Digit  
Push  
XCH A, <src>  
XCHD A, <src>  
PUSH <src>  
(A) src opnd  
(A) src opnd  
(SP) (SP) +1; ((SP)) src opnd;  
(SP) (SP) + size (src opnd) - 1  
(SP) (SP) - size (dest opnd) + 1;  
dest opnd ((SP)); (SP) (SP) -1  
3:0  
3:0  
Pop  
POP <dest>  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
A, Rn  
A, dir8  
A, @Ri  
A, @Ri  
dir8  
ACC and register  
1
2
1
1
2
4
5
3
3
3
2
3
3
3
3
2
2
2
2
2
3
4
2
2
2
2
2
2
2
4
(3)  
(3)  
XCH  
ACC and direct address (on-chip RAM or SFR)  
ACC and indirect address  
3
3
4
5
XCHD  
ACC low nibble and indirect address (256 bytes)  
Push direct address onto stack  
4
5
(2)  
(2)  
2
2
#data  
#data16  
Rm  
Push immediate data onto stack  
4
5
4
5
3
5
3
4
Push 16-bit immediate data onto stack  
Push byte register onto stack  
PUSH  
WRj  
Push word register onto stack  
DRk  
Push double word register onto stack  
Pop direct address (on-chip RAM or SFR) from stack  
Pop byte register from stack  
9
8
(2)  
(2)  
dir8  
3
3
Rm  
3
5
9
2
4
8
POP  
WRj  
Pop word register from stack  
DRk  
Pop double word register from stack  
Notes:  
1. A shaded cell denotes an instruction in the C51 Architecture.  
2. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.  
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.  
Table 31. Summary of Conditional Jump Instructions (1/2)  
Jump conditional on status  
Jcc rel  
(PC) (PC) + size (instr);  
IF [cc] THEN (PC) (PC) + rel  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
JC  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
Jump if carry  
2
2
3
3
3
3
3
3
3
3
1/4  
1/4  
2/5  
2/5  
2/5  
2/5  
2/5  
2/5  
2/5  
2/5  
2
2
2
2
2
2
2
2
2
2
1/4  
1/4  
1/4  
1/4  
1/4  
1/4  
1/4  
1/4  
1/4  
1/4  
JNC  
JE  
Jump if not carry  
Jump if equal  
JNE  
JG  
Jump if not equal  
Jump if greater than  
JLE  
Jump if less than, or equal  
JSL  
Jump if less than (signed)  
JSLE  
JSG  
JSGE  
Notes:  
Jump if less than, or equal (signed)  
Jump if greater than (signed)  
Jump if greater than or equal (signed)  
1. A shaded cell denotes an instruction in the C51 Architecture.  
2. States are given as jump not-taken/taken.  
3. In internal execution only, add 1 to the number of states of the ‘jump taken’ if the destination address is internal and odd.  
25  
Rev. A - May 7, 1999  
TSC80251G2D  
Table 32. Summary of Conditional Jump Instructions (2/2)  
Jump if bit  
JB <src>, rel  
(PC) (PC) + size (instr);  
IF [src opnd= 1] THEN (PC) (PC) + rel  
(PC) (PC) + size (instr);  
IF [src opnd= 0] THEN (PC) (PC) + rel  
(PC) (PC) + size (instr);  
Jump if not bit  
Jump if bit and clear  
JNB <src>, rel  
JBC <dest>, rel  
IF [dest opnd= 1] THEN  
dest opnd 0  
(PC) (PC) + rel  
Jump if accumulator is zero  
Jump if accumulator is not zero  
Compare and jump if not equal  
JZ rel  
(PC) (PC) + size (instr);  
IF [(A)= 0] THEN (PC) (PC) + rel  
(PC) (PC) + size (instr);  
IF [(A) 0] THEN (PC) (PC) + rel  
(PC) (PC) + size (instr);  
JNZ rel  
CJNE <src1>, <src2>, rel  
IF [src opnd1 < src opnd2] THEN (CY) 1  
IF [src opnd1 src opnd2] THEN (CY) 0  
IF [src opnd1 src opnd2] THEN (PC) (PC) + rel  
(PC) (PC) + size (instr); dest opnd dest opnd -1;  
IF [ϕ (Z)] THEN (PC) (PC) + rel  
Decrement and jump if not zero  
DJNZ <dest>, rel  
Binary Mode(2) Source Mode(2)  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
(3)(6)  
(3)(6)  
(3)(6)  
(3)(6)  
(5)(6)  
(5)(6)  
(3)(6)  
(3)(6)  
(3)(6)  
(3)  
bit51, rel  
bit, rel  
Jump if direct bit is set  
3
5
3
5
3
5
2
2
3
3
3
3
2
3
2/5  
4/7  
2/5  
4/7  
4/7  
3
4
3
4
3
4
2
2
3
3
4
4
3
3
2/5  
3/6  
2/5  
JB  
Jump if direct bit of 8-bit address location is set  
Jump if direct bit is not set  
bit51, rel  
bit, rel  
JNB  
JBC  
Jump if direct bit of 8-bit address location is not set  
Jump if direct bit is set & clear bit  
3/6  
(5)(6)  
(5)(6)  
(6)  
bit51, rel  
bit, rel  
4/7  
6/9  
Jump if direct bit of 8-bit address location is set and clear  
Jump if ACC is zero  
7/10  
2/5  
(6)  
(6)  
JZ  
rel  
2/5  
(6)  
JNZ  
rel  
Jump if ACC is not zero  
2/5  
2/5  
(3)(6)  
(6)  
(3)(6)  
(6)  
A, dir8, rel  
A, #data, rel  
Rn, #data, rel  
@Ri, #data, rel  
Rn, rel  
Compare direct address to ACC and jump if not equal  
Compare immediate to ACC and jump if not equal  
Compare immediate to register and jump if not equal  
Compare immediate to indirect and jump if not equal  
Decrement register and jump if not zero  
Decrement direct address and jump if not zero  
2/5  
2/5  
2/5  
2/5  
CJNE  
(6)  
(6)  
(6)  
(6)  
(6)  
(6)  
2/5  
3/6  
3/6  
2/5  
4/7  
3/6  
DJNZ  
(4)(6)  
(4)(6)  
dir8, rel  
3/6  
3/6  
Notes:  
1. A shaded cell denotes an instruction in the C51 Architecture.  
2. States are given as jump not-taken/taken.  
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.  
4. If this instruction addresses an I/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.  
5. If this instruction addresses an I/O Port (Px, x= 0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.  
6. In internal execution only, add 1 to the number of states of the ‘jump taken’ if the destination address is internal and odd.  
Rev. A - May 7, 1999  
26  
TSC80251G2D  
Table 33. Summary of unconditional Jump Instructions  
Absolute jump  
Extended jump  
Long jump  
AJMP <src>  
EJMP <src>  
LJMP <src>  
SJMP rel  
(PC) (PC) +2; (PC)  
(PC) (PC) + size (instr); (PC)  
(PC) (PC) + size (instr); (PC)  
src opnd  
10:0  
src opnd  
src opnd  
23:0  
15:0  
Short jump  
(PC) (PC) +2; (PC) (PC) +rel  
Jump indirect  
No operation  
JMP @A +DPTR  
NOP  
(PC)  
(PC) (PC) +1  
FFh; (PC)  
(A) + (DPTR)  
15:0  
23:16  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
(2)(3)  
(2)(4)  
(2)(4)  
(2)(4)  
(2)(4)  
(2)(4)  
(2)(4)  
(2)(3)  
(2)(4)  
(2)(4)  
(2)(4)  
(2)(4)  
(2)(4)  
(2)(4)  
AJMP  
EJMP  
addr11  
addr24  
@DRk  
@WRj  
addr16  
rel  
Absolute jump  
Extended jump  
2
5
3
3
3
2
1
1
3
6
7
6
5
4
5
2
4
2
2
3
2
1
1
3
5
6
5
5
4
5
Extended jump (indirect)  
Long jump (indirect)  
LJMP  
Long jump (direct address)  
Short jump (relative address)  
Jump indirect relative to the DPTR  
No operation (Jump never)  
SJMP  
JMP  
@A +DPTR  
NOP  
1
1
Notes:  
1. A shaded cell denotes an instruction in the C51 Architecture.  
2. In internal execution only, add 1 to the number of states if the destination address is internal and odd.  
3. Add 2 to the number of states if the destination address is external.  
4. Add 3 to the number of states if the destination address is external.  
Table 34. Summary of Call and Return Instructions  
Absolute call  
Extended call  
Long call  
ACALL <src>  
ECALL <src>  
LCALL <src>  
(PC) (PC) +2; push (PC)  
;
15:0  
(PC)  
src opnd  
10:0  
(PC) (PC) + size (instr); push (PC)  
;
;
23:0  
15:0  
(PC)  
src opnd  
23:0  
(PC) (PC) + size (instr); push (PC)  
(PC)  
src opnd  
15:0  
Return from subroutine  
Extended return from subroutine  
Return from interrupt  
RET  
ERET  
RETI  
pop (PC)  
pop (PC)  
IF [INTR= 0] THEN pop (PC)  
15:0  
23:0  
15:0  
IF [INTR= 1] THEN pop (PC) ; pop (PSW1)  
23:0  
Trap interrupt  
TRAP  
(PC) (PC) + size (instr);  
IF [INTR= 0] THEN push (PC)  
15:0  
IF [INTR= 1] THEN push (PSW1); push (PC)  
23:0  
Binary Mode  
Source Mode  
Mnemonic  
<dest>, <src>(1)  
Comments  
Bytes States Bytes States  
(2)(3)  
(2)(3)  
(2)(3)  
(2)(3)  
ACALL  
ECALL  
addr11  
@DRk  
addr24  
@WRj  
addr16  
Absolute subroutine call  
Extended subroutine call (indirect)  
Extended subroutine call  
Long subroutine call (indirect)  
Long subroutine call  
2
3
5
3
3
1
3
1
2
9
2
2
4
2
3
1
2
1
1
9
14  
14  
10  
13  
(2)(3)  
(2)(3)  
(2)(3)  
13  
(2)(3)  
(2)(3)  
(2)  
9
9
LCALL  
(2)(3)  
(2)  
9
RET  
ERET  
RETI  
TRAP  
Notes:  
Return from subroutine  
7
7
(2)  
(2)  
Extended subroutine return  
Return from interrupt  
9
8
(2)(4)  
(2)(4)  
7
7
(4)  
(4)  
Jump to the trap interrupt vector  
12  
11  
1. A shaded cell denotes an instruction in the C51 Architecture.  
2. In internal execution only, add 1 to the number of states if the destination/return address is internal and odd.  
3. Add 2 to the number of states if the destination address is external.  
4. Add 5 to the number of states if INTR= 1.  
27  
Rev. A - May 7, 1999  
TSC80251G2D  
8. Programming and Verifying Non-Volatile Memory  
8.1 Internal Features  
The internal non-volatile memory of the TSC80251G2D derivatives contains five different areas:  
Code Memory  
Configuration Bytes  
Lock Bits  
Encryption Array  
Signature Bytes  
8.1.1 EPROM/OTPROM Devices  
All the internal non-volatile memory but the Signature Bytes of the TSC87251G2D products is made of EPROM  
cells. The Signature Bytes of the TSC87251G2D products are made of Mask ROM.  
The TSC87251G2D products are programmed and verified in the same manner as TEMIC’s TSC87251G1A, using  
a SINGLE-PULSE algorithm, which programs at V = 12.75V using only one 100 µs pulse per byte. This results  
PP  
in a programming time of less than 10 seconds for the 32 Kbytes on-chip code memory.  
(1)  
The EPROM of the TSC87251G2D products in Window package is erasable by Ultra-Violet radiation (UV).  
UV erasure set all the EPROM memory cells to one and allows a reprogramming. The quartz window must be  
(2)  
covered with an opaque label when the device is in operation. This is not so much to protect the EPROM array  
from inadvertent erasure, as to protect the RAM and other on-chip logic. Allowing light to impinge on the silicon  
die during device operation may cause a logical malfunction.  
The TSC87251G2D products in plastic packages are One Time Programmable (OTP). Then an EPROM cell cannot  
be reset by UV once programmed to zero.  
Notes:  
2
1. The recommended erasure procedure is exposure to ultra-violet light (at 2537 Å) to an integrated dose of at least 20 W-sec/cm . Exposing  
2
the EPROM to an ultra-violet lamp of 12000 µW/cm rating for 30 minutes should be sufficient.  
2. Erasure of the EPROM begins to occur when the chip is exposed to light wavelength shorter than 4000 Å. Since sunlight and fluorescent  
light have wavelength in this range, exposure to these light sources over an extended time (1 week in sunlight or 3 years in room-level  
fluorescent lighting) could cause inadvertent erasure.  
8.1.2 Mask ROM Devices  
All the internal non-volatile memory of TSC83251G2D products is made of Mask ROM cells. They can only be  
verified by the user, using the same algorithm as the EPROM/OTPROM devices.  
8.1.3 ROMless Devices  
The TSC80251G2D products do not include on-chip Configuration Bytes, Code Memory and Encryption Array.  
They only include Signature Bytes made of Mask ROM cells which can be read using the same algorithm as the  
EPROM/OTPROM devices.  
8.2 Security Features  
In some microcontrollers applications, it is desirable that the user’s program code be secured from unauthorized  
access. The TSC83251G2D and TSC87251G2D offer two kinds of protection for program code stored in the on-  
chip array:  
Program code in the on-chip Code Memory is encrypted when read out for verification if the Encryption Array is  
programmed.  
A three-level lock bit system restricts external access to the on-chip code memory.  
Rev. A - May 7, 1999  
28  
TSC80251G2D  
8.2.1 Lock Bit System  
The TSC87251G2D products implement 3 levels of security for User’s program as described in Table 35. The  
TSC83251G2D products implement only the first level of security.  
Level 0 is the level of an erased part and does not enable any security features.  
Level 1 locks the programming of the User’s internal Code Memory, the Configuration Bytes and the Encryption  
Array.  
Level 2 locks the verifying of the User’s internal Code Memory. It is always possible to verify the Configuration  
Bytes and the Lock Bits. It is never possible to verify the Encryption Array.  
Level 3 locks the external execution.  
Table 35. Lock Bits Programming  
External  
Lock bits  
LB[2:0]  
Internal  
External  
Level  
Verification  
Programming  
PROM read  
(MOVC)  
Execution  
Execution  
(1)  
(2)  
0
1
2
3
000  
001  
Enable  
Enable  
Enable  
Enable  
Enable  
Enable  
Enable  
Disable  
Enable  
Enable  
Disable  
Disable  
Disable  
Enable  
(1)  
Enable  
Disable  
Disable  
Disable  
(3)  
01x  
Disable  
Disable  
(3)  
1xx  
Notes:  
1. Returns encrypted data if Encryption Array is programmed.  
2. Returns non encrypted data.  
3. x means don’t care. Level 2 always enables level 1, and level 3 always enables levels 1 and 2.  
The security level may be verified according to Table 36.  
Table 36. Lock Bits Verifying  
Level  
Lock bits Data(1)  
0
1
2
3
xxxxx000  
xxxxx001  
xxxxx01x  
xxxxx1xx  
Note:  
1. x means don’t care.  
8.2.2 Encryption Array  
The TSC83251G2D and TSC87251G2D products include a 128-byte Encryption Array located in non-volatile  
memory outside the memory address space. During verification of the on-chip code memory, the seven low-order  
address bits also address the Encryption Array. As the byte of the code memory is read, it is exclusive-NOR’ed  
(XNOR) with the key byte from the Encryption Array. If the Encryption Array is not programmed (still all 1s),  
the user program code is placed on the data bus in its original, unencrypted form. If the Encryption Array is  
programmed with key bytes, the user program code is encrypted and cannot be used without knowledge of the  
key byte sequence.  
To preserve the secrecy of the encryption key byte sequence, the Encryption Array can not be verified.  
Cautions:  
1. When a MOVC instruction is executed, the content of the ROM is not encrypted. In order to fully protect the user program code, the lock  
bit level 1 (see Table 35) must always be set when encryption is used.  
2. If the encryption feature is implemented, the portion of the on-chip code memory that does not contain program code should be filled with  
“random” byte values to prevent the encryption key sequence from being revealed.  
29  
Rev. A - May 7, 1999  
 
 
TSC80251G2D  
8.3 Signature Bytes  
The TSC80251G2D derivatives contain factory-programmed Signature Bytes. These bytes are located in non-volatile  
memory outside the memory address space at 30h, 31h, 60h and 61h. To read the Signature Bytes, perform the  
procedure described in section 8.5, using the verify signature mode (see Table 39). Signature byte values are listed  
in Table 37.  
Table 37. Signature Bytes (Electronic ID)  
Signature Address  
Signature Data  
Vendor  
TEMIC  
30h  
31h  
58h  
40h  
F7h  
77h  
FDh  
Architecture  
C251  
32 Kbytes EPROM or OTPROM  
32 Kbytes MaskROM or ROMless  
TSC80251G2D derivative  
Memory  
Revision  
60h  
61h  
8.4 Programming Algorithm  
Figure 9 shows the hardware setup needed to program the TSC87251G2D EPROM/OTPROM areas:  
The chip has to be put under reset and maintained in this state until the completion of the programming sequence.  
PSEN# and the other control signals (ALE and Port 0) have to be set to a high level.  
Then PSEN# has to be to forced to a low level after two clock cycles or more and it has to be maintained in  
this state until the completion of the programming sequence (see below).  
The voltage on the EA# pin must be set to V  
.
DD  
The programming mode is selected according to the code applied on Port 0 (see Table 38). It has to be applied  
until the completion of this programming operation.  
The programming address is applied on Ports 1 and 3 which are respectively the Most Significant Byte (MSB)  
and the Least Significant Byte (LSB) of the address.  
The programming data are applied on Port 2.  
The EPROM Programming is done by raising the voltage on the EA# pin to V , then by generating a low  
PP  
level pulse on ALE/PROG# pin.  
The voltage on the EA# pin must be lowered to V  
before completing the programming operation.  
DD  
It is possible to alternate programming and verifying operation (See Paragraph 8.5). Please make sure the  
voltage on the EA# pin has actually been lowered to V before performing the verifying operation.  
DD  
PSEN# and the other control signals have to be released to complete a sequence of programming operations  
or a sequence of programming and verifying operations.  
Rev. A - May 7, 1999  
30  
 
 
TSC80251G2D  
VDD  
VDD  
RST  
VDD  
V
EA#/VPP  
ALE/PROG#  
PSEN#  
PP  
100 µs pulses  
TSC87251G2D  
Mode  
A[7:0]  
A[14:8]  
Data  
P0[7:0]  
P3[7:0]  
P1[7:0]  
P2[7:0]  
4 to 12 MHz  
XTAL1  
VSS/VSS1/VSS2  
Figure 9. Setup for Programming  
Table 38. Programming Modes  
ROM Area(1)  
RST  
EA#/VPP PSEN# ALE/PROG#(2)  
P0  
P2  
P1(MSB) P3(LSB)  
16-bit Address  
0000h-7FFFh (32 Kbytes)  
On-chip Code Memory  
1
V
0
0
1 Pulse  
1 Pulse  
68h  
Data  
PP  
PP  
CONFIG0: FFF8h  
CONFIG1: FFF9h  
Configuration Bytes  
Lock Bits  
1
V
69h  
Data  
LB0: 0001h  
LB1: 0002h  
LB2: 0003h  
1
1
V
V
0
0
1 Pulse  
1 Pulse  
6Bh  
6Ch  
X
PP  
Encryption Array  
Data  
0000h-007Fh  
PP  
Notes:  
1. Signature Bytes are not user-programmable.  
2. The ALE/PROG# pulse waveform is shown in Figure 31 page 54.  
8.5 Verify Algorithm  
Figure 10 shows the hardware setup needed to verify the TSC87251G2D EPROM/OTPROM or TSC83251G2D  
ROM areas:  
The chip has to be put under reset and maintained in this state until the completion of the verifying sequence.  
PSEN# and the other control signals (ALE and Port 0) have to be set to a high level.  
Then PSEN# has to be to forced to a low level after two clock cycles or more and it has to be maintained in  
this state until the completion of the verifying sequence (see below).  
The voltage on the EA# pin must be set to V  
and ALE must be set to a high level.  
DD  
The Verifying Mode is selected according to the code applied on Port 0. It has to be applied until the completion  
of this verifying operation.  
The verifying address is applied on Ports 1 and 3 which are respectively the MSB and the LSB of the address.  
Then device is driving the data on Port 2.  
It is possible to alternate programming and verification operation (see Paragraph 8.4). Please make sure the  
voltage on the EA# pin has actually been lowered to V  
before performing the verifying operation.  
DD  
PSEN# and the other control signals have to be released to complete a sequence of verifying operations or a  
sequence of programming and verifying operations.  
31  
Rev. A - May 7, 1999  
TSC80251G2D  
Table 39. Verifying Modes  
ROM Area(1)  
RST  
EA#/VPP PSEN# ALE/PROG#  
P0  
P2  
P1(MSB) P3(LSB)  
16-bit Address  
0000h-7FFFh (32 Kbytes)  
On-chip code memory  
1
1
1
0
0
1
1
28h  
Data  
CONFIG0: FFF8h  
CONFIG1: FFF9h  
Configuration Bytes  
1
29h  
Data  
Lock Bits  
Signature Bytes  
Note:  
1
1
1
1
0
0
1
1
2Bh  
29h  
Data  
Data  
0000h  
0030h, 0031h, 0060h, 0061h  
1. To preserve the secrecy of on-chip code memory when encrypted, the Encryption Array can not be verified.  
VDD  
VDD  
RST  
VDD  
EA#/VPP  
ALE/PROG#  
PSEN#  
TSC8x251G2D  
Mode  
A[7:0]  
P0[7:0]  
P3[7:0]  
P1[7:0]  
P2[7:0]  
Data  
XTAL1  
4 to 12 MHz  
A[14:8]  
VSS/VSS1/VSS2  
Figure 10. Setup for Verifying  
Rev. A - May 7, 1999  
32  
TSC80251G2D  
9. Absolute Maximum Rating and Operating Conditions  
9.1 Absolute Maximum Rating  
Table 40. Absolute Maximum Ratings  
Storage Temperature......................... -65 to +150°C  
Voltage on any other Pin to VSS.... -0.5 to +6.5 V  
I  
per I/O Pin ................................. 15 mA  
Power Dissipation ............................. 1.5 W  
OL  
9.2 Operating Conditions  
Table 41. Operating Conditions  
Ambient Temperature Under Bias  
Commercial ....................................... 0 to +70°C  
Industrial............................................ -40 to +85°C  
V  
DD  
High Speed versions......................... 4.5 to 5.5 V  
Low Voltage versions....................... 2.7 to 5.5 V  
Note:  
Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage. These are stress ratings only. Operation beyond  
the “operating conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability.  
Rev. A - May 7, 1999  
33  
TSC80251G2D  
10. DC Characteristics - Commercial & Industrial  
10.1 DC Characteristics: High Speed versions - Commercial & Industrial  
Table 42. DC Characteristics; V = 4.5 to 5.5 V, T = -40 to +85°C  
DD  
A
Symbol  
Parameter  
Min  
Typical(4)  
Max  
Units  
Test Conditions  
V
Input Low Voltage  
-0.5  
0.2·V  
- 0.1  
V
IL  
DD  
(except EA#, SCL, SDA)  
(5)  
V
Input Low Voltage  
(SCL, SDA)  
-0.5  
0
0.3·V  
V
V
V
V
V
IL1  
DD  
V
Input Low Voltage  
(EA#)  
0.2·V  
- 0.3  
DD  
IL2  
V
Input high Voltage  
(except XTAL1, RST, SCL, SDA)  
0.2·V  
+ 0.9  
V
V
+ 0.5  
+ 0.5  
IH  
DD  
DD  
DD  
(5)  
V
Input high Voltage  
(XTAL1, RST, SCL, SDA)  
0.7·V  
IH1  
DD  
(1)(2)  
V
Output Low Voltage  
(Ports 1, 2, 3)  
0.3  
0.45  
1.0  
I
I
I
= 100 µA  
= 1.6 mA  
= 3.5 mA  
OL  
OL  
OL  
OL  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
V
Output Low Voltage  
(Ports 0, ALE, PSEN#, Port 2 in Page  
Mode during External Address)  
0.3  
0.45  
1.0  
V
V
V
I
I
I
= 200 µA  
= 3.2 mA  
= 7.0 mA  
OL1  
OL  
OL  
OL  
(3)  
(3)  
(3)  
V
Output high Voltage  
(Ports 1, 2, 3, ALE, PSEN#)  
V
V
V
- 0.3  
- 0.7  
- 1.5  
I
I
I
= -10 µA  
= -30 µA  
= -60 µA  
OH  
DD  
DD  
DD  
OH  
OH  
OH  
V
Output high Voltage  
(Port 0, Port 2 in Page Mode during  
External Address)  
V
V
V
- 0.3  
- 0.7  
- 1.5  
I
I
I
= -200 µA  
= -3.2 mA  
= -7.0 mA  
OH1  
DD  
DD  
DD  
OH  
OH  
OH  
V
I
V
data retention limit  
1.8  
V
RET  
DD  
Logical 0 Input Current  
(Ports 1, 2, 3)  
- 50  
µA  
V
V
= 0.45 V  
IL0  
IN  
I
Logical 1 Input Current  
(NMI)  
+ 50  
± 10  
- 650  
225  
µA  
µA  
µA  
= V  
DD  
IL1  
IN  
I
Input Leakage Current  
(Port 0)  
0.45 V < V < V  
IN DD  
LI  
I
Logical 1-to-0 Transition Current  
(Ports 1, 2, 3 - AWAIT#)  
V = 2.0 V  
IN  
TL  
R
I
RST Pull-Down Resistor  
Pin Capacitance  
40  
110  
10  
kΩ  
pF  
RST  
C
T = 25°C  
A
IO  
Operating Current  
20  
25  
35  
25  
30  
40  
mA  
F
F
F
= 12 MHz  
= 16 MHz  
= 24 MHz  
DD  
OSC  
OSC  
OSC  
I
Idle Mode Current  
5
6.5  
9.5  
6
8
12  
mA  
F
F
F
= 12 MHz  
= 16 MHz  
= 24 MHz  
DL  
OSC  
OSC  
OSC  
I
Power-Down Current  
2
20  
13  
75  
µA  
V
V
< V  
< 5.5 V  
PD  
RET  
DD  
V
Programming supply voltage  
Programming supply current  
12.5  
T = 0 to +40°C  
A
PP  
PP  
I
mA  
T = 0 to +40°C  
A
34  
Rev. A - May 7, 1999  
TSC80251G2D  
Notes:  
1. Under steady-state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I  
Maximum I  
per port pin:............................................. 10 mA  
OL  
OL  
per 8-bit port:  
Port 0................. 26 mA  
Ports 1-3............ 15 mA  
Output Pins ....... 71 mA  
Maximum Total I for all:  
OL  
If I  
exceeds the test conditions, V  
may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and  
3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In  
applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify  
ALE or other signals with a Schmitt Trigger or CMOS-level input logic.  
3. Capacitive loading on Ports 0 and 2 causes the V  
on ALE and PSEN# to drop below the specification when the address lines are stabilizing.  
OH  
4. Typical values are obtained using V = 5 V and T = 25°C. They are not tested and there is not guarantee on these values.  
DD  
A
2
5. The input threshold voltage of SCL and SDA meets the I C specification, so an input voltage below 0.3·V  
will be recognized as a logic  
DD  
0 while an input voltage above 0.7·V  
will be recognized as a logic 1.  
DD  
40  
30  
20  
10  
0
20  
2
4
6
8
10  
12  
14  
16  
18  
22  
24  
max Active mode (mA)  
typ Active mode (mA)  
max Idle mode (mA)  
typ Idle mode (mA)  
(1)  
Frequency at X  
(MHz)  
TAL  
Note:  
1. The clock prescaler is not used: F  
= F  
.
OSC  
XTAL  
Figure 11. I /I Versus Frequency; V = 4.5 to 5.5 V  
DD DL  
DD  
Rev. A - May 7, 1999  
35  
TSC80251G2D  
10.2 DC Characteristics: Low Voltage versions - Commercial & Industrial  
Table 43. DC Characteristics; V = 2.7 to 5.5 V, T = -40 to +85°C  
DD  
A
Symbol  
Parameter  
Min  
Typical(4)  
Max  
Units  
Test Conditions  
V
Input Low Voltage  
-0.5  
0.2·V  
- 0.1  
V
IL  
DD  
(except EA#, SCL, SDA)  
(5)  
V
Input Low Voltage  
(SCL, SDA)  
-0.5  
0
0.3·V  
V
V
V
V
V
V
IL1  
DD  
V
Input Low Voltage  
(EA#)  
0.2·V  
- 0.3  
IL2  
DD  
V
Input high Voltage  
(except XTAL1, RST, SCL, SDA)  
0.2·V  
+ 0.9  
V
V
+ 0.5  
+ 0.5  
IH  
(5)  
DD  
DD  
DD  
V
Input high Voltage  
(XTAL1, RST, SCL, SDA)  
0.7·V  
IH1  
DD  
(1)(2)  
V
Output Low Voltage  
(Ports 1, 2, 3)  
0.45  
I
I
= 0.8 mA  
OL  
OL  
(1)(2)  
V
Output Low Voltage  
0.45  
= 1.6 mA  
OL1  
OL  
(Ports 0, ALE, PSEN#, Port 2 in Page  
Mode during External Address)  
(3)  
V
Output high Voltage  
(Ports 1, 2, 3, ALE, PSEN#)  
0.9·V  
0.9·V  
V
V
I
I
= -10 µA  
= -40 µA  
OH  
DD  
DD  
OH  
V
Output high Voltage  
OH1  
OH  
(Port 0, Port 2 in Page Mode during  
External Address)  
V
I
V
data retention limit  
DD  
1.8  
V
RET  
Logical 0 Input Current  
(Ports 1, 2, 3 - AWAIT#)  
- 50  
µA  
V
V
= 0.45 V  
IL0  
IN  
I
Logical 1 Input Current  
(NMI)  
+ 50  
± 10  
- 650  
225  
µA  
µA  
µA  
= V  
DD  
IL1  
IN  
I
Input Leakage Current  
(Port 0)  
0.45 V < V < V  
IN DD  
LI  
I
Logical 1-to-0 Transition Current  
(Ports 1, 2, 3)  
V = 2.0 V  
IN  
TL  
R
I
RST Pull-Down Resistor  
Pin Capacitance  
40  
110  
10  
kΩ  
pF  
RST  
C
T = 25°C  
A
IO  
Operating Current  
4
8
9
8
mA  
5 MHz, V < 3.6 V  
DD  
10 MHz, V < 3.6 V  
12 MHz, V < 3.6 V  
DD  
16 MHz, V < 3.6 V  
DD  
11  
12  
14  
DD  
11  
DD  
I
Idle Mode Current  
0.5  
1.5  
2
1
4
5
7
mA  
5 MHz, V < 3.6 V  
DD  
DL  
10 MHz, V < 3.6 V  
DD  
12 MHz, V < 3.6 V  
DD  
3
16 MHz, V < 3.6 V  
DD  
I
Power-Down Current  
1
10  
µA  
V
< V  
< 3.6 V  
PD  
RET  
DD  
36  
Rev. A - May 7, 1999  
TSC80251G2D  
Notes:  
1. Under steady-state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I  
Maximum I  
per port pin:............................................. 10 mA  
OL  
OL  
per 8-bit port:  
Port 0................. 26 mA  
Ports 1-3............ 15 mA  
Output Pins ....... 71 mA  
Maximum Total I for all:  
OL  
If I  
exceeds the test conditions, V  
may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and  
3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In  
applications where capacitive loading exceeds 100 pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify  
ALE or other signals with a Schmitt Trigger or CMOS-level input logic.  
3. Capacitive loading on Ports 0 and 2 causes the V  
on ALE and PSEN# to drop below the specification when the address lines are stabilizing.  
OH  
4. Typical values are obtained using V = 3 V and T = 25°C. They are not tested and there is not guarantee on these values.  
DD  
A
2
5. The input threshold voltage of SCL and SDA meets the I C specification, so an input voltage below 0.3·V  
will be recognized as a logic  
DD  
0 while an input voltage above 0.7·V  
will be recognized as a logic 1.  
DD  
15  
10  
5
0
2
4
6
8
10  
12  
14  
16  
max Active mode (mA)  
typ Active mode (mA)  
max Idle mode (mA)  
typ Idle mode (mA)  
(1)  
Frequency at X  
(MHz)  
TAL  
Note:  
1. The clock prescaler is not used: F  
= F  
.
XTAL  
OSC  
Figure 12. I /I Versus X  
Frequency; V = 2.7 to 3.6 V  
DD  
DD DL  
TAL  
Rev. A - May 7, 1999  
37  
TSC80251G2D  
10.3 DC Characteristics: I  
I
and I Test Conditions  
DD, DL PD  
VDD  
VDD  
I
DD  
RST  
VDD  
VDD  
TSC80251G2D  
P0  
(NC)  
Clock Signal  
XTAL2  
XTAL1  
EA#  
VSS  
All other pins are unconnected  
Figure 13. I Test Condition, Active Mode  
DD  
VDD  
I
DL  
RST  
VDD  
VDD  
TSC80251G2D  
P0  
(NC)  
Clock Signal  
XTAL2  
XTAL1  
EA#  
VSS  
All other pins are unconnected  
Figure 14. I Test Condition, Idle Mode  
DL  
VDD  
I
PD  
RST  
VDD  
VDD  
TSC80251G2D  
P0  
(NC)  
XTAL2  
XTAL1  
EA#  
VSS  
All other pins are unconnected  
Figure 15. I Test Condition, Power-Down Mode  
PD  
38  
Rev. A - May 7, 1999  
TSC80251G2D  
11. AC Characteristics - Commercial & Industrial  
11.1 AC Characteristics - External Bus Cycles  
Definition of symbols  
Table 44. External Bus Cycles Timing Symbol Definitions  
Signals  
Conditions  
A
D
L
Address  
H
L
High  
Data In  
ALE  
Low  
V
X
Z
Valid  
Q
R
W
Data Out  
RD#/PSEN#  
WR#  
No Longer Valid  
Floating  
Timings  
Test conditions: capacitive load on all pins= 50 pF.  
Table 45 and Table 46 list the AC timing parameters for the TSC80251G2D derivatives with no wait states. External  
wait states can be added by extending PSEN#/RD#/WR# and or by extending ALE. In these tables, Note 2 marks  
parameters affected by one ALE wait state, and Note 3 marks parameters affected by PSEN#/RD#/WR# wait states.  
Figure 16 to Figure 21 show the bus cycles with the timing parameters.  
Rev. A - May 7, 1999  
39  
TSC80251G2D  
Table 45. Bus Cycles AC Timings; V = 4.5 to 5.5 V, T = -40 to 85°C  
DD  
A
12 MHz  
16 MHz  
24 MHz  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
T
1/F  
83  
78  
62  
58  
41  
38  
37  
3
ns  
OSC  
OSC  
(2)  
T
ALE Pulse Width  
ns  
LHLL  
AVLL  
LLAX  
(2)  
T
T
Address Valid to ALE Low  
78  
58  
ns  
Address hold after ALE Low  
RD#/PSEN# Pulse Width  
19  
11  
ns  
(1)  
RLRH  
(3)  
T
162  
165  
22  
121  
124  
14  
78  
81  
6
ns  
(3)  
T
WR# Pulse Width  
ns  
WLWH  
(1)  
T
ALE Low to RD#/PSEN# Low  
ALE High to Address Hold  
ns  
LLRL  
(2)  
T
99  
70  
40  
ns  
LHAX  
(1)  
(3)  
T
RD#/PSEN# Low to Valid Data  
Data Hold After RD#/PSEN# High  
Address Hold After RD#/PSEN# High  
RD#/PSEN# Low to Address Float  
Instruction Float After RD#/PSEN# High  
Data Float After RD#/PSEN# High  
RD#/PSEN# high to ALE High (Instruction)  
RD#/PSEN# high to ALE High (Data)  
WR# High to ALE High  
146  
104  
61  
ns  
RLDV  
RHDX  
RHAX  
(1)  
(1)  
T
T
T
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
0
0
0
RLAZ  
T
45  
40  
30  
RHDZ1  
RHDZ2  
RHLH1  
RHLH2  
T
T
T
215  
165  
115  
49  
43  
31  
215  
215  
169  
169  
115  
115  
T
ns  
WHLH  
(2)(3)  
T
T
T
Address (P0) Valid to Valid Data In  
Address (P2) Valid to Valid Data In  
Address (P0) Valid to Valid Instruction In  
Data Hold after Address Hold  
Address Valid to RD# Low  
250  
306  
150  
175  
223  
109  
105  
140  
68  
ns  
AVDV1  
AVDV2  
AVDV3  
(2)(3)  
ns  
(3)  
ns  
T
0
0
0
ns  
AXDX  
(1)  
(2)  
T
100  
100  
158  
90  
70  
40  
40  
74  
32  
72  
84  
ns  
AVRL  
(2)  
T
Address (P0) Valid to WR# Low  
Address (P2) Valid to WR# Low  
Data Hold after WR# High  
70  
ns  
ns  
AVWL1  
AVWL2  
(2)  
T
115  
69  
T
ns  
WHQX  
QVWH  
WHAX  
(3)  
T
Data Valid to WR# High  
133  
167  
102  
125  
ns  
T
WR# High to Address Hold  
ns  
Notes:  
1. Specification for PSEN# are identical to those for RD#.  
2. If a wait state is added by extending ALE, add 2·T  
OSC.  
3. If wait states are added by extending RD#/PSEN#/WR#, add 2N·T  
(N= 1..3).  
OSC  
40  
Rev. A - May 7, 1999  
 
TSC80251G2D  
Table 46. Bus Cycles AC Timings; V = 2.7 to 5.5 V, T = -40 to 85°C  
DD  
A
12 MHz  
16 MHz  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
T
1/F  
83  
72  
62  
52  
51  
6
ns  
OSC  
OSC  
(2)  
T
ALE Pulse Width  
ns  
LHLL  
AVLL  
LLAX  
(2)  
T
T
Address Valid to ALE Low  
71  
ns  
Address hold after ALE Low  
14  
ns  
(1)  
RLRH  
(3)  
T
RD#/PSEN# Pulse Width  
163  
165  
17  
121  
124  
11  
57  
ns  
(3)  
T
WR# Pulse Width  
ns  
WLWH  
(1)  
T
ALE Low to RD#/PSEN# Low  
ALE High to Address Hold  
ns  
LLRL  
(2)  
T
90  
ns  
LHAX  
(1)  
(3)  
T
RD#/PSEN# Low to Valid Data  
Data Hold After RD#/PSEN# High  
Address Hold After RD#/PSEN# High  
RD#/PSEN# Low to Address Float  
Instruction Float After RD#/PSEN# High  
Data Float After RD#/PSEN# High  
RD#/PSEN# high to ALE High (Instruction)  
RD#/PSEN# high to ALE High (Data)  
WR# High to ALE High  
133  
92  
ns  
RLDV  
RHDX  
RHAX  
(1)  
(1)  
T
T
T
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
0
0
RLAZ  
T
59  
48  
RHDZ1  
RHDZ2  
RHLH1  
RHLH2  
T
T
T
225  
175  
60  
47  
226  
226  
172  
172  
T
ns  
WHLH  
(2)(3)  
T
T
T
Address (P0) Valid to Valid Data In  
Address (P2) Valid to Valid Data In  
Address (P0) Valid to Valid Instruction In  
Data Hold after Address Hold  
Address Valid to RD# Low  
289  
296  
144  
160  
211  
98  
ns  
AVDV1  
AVDV2  
AVDV3  
(2)(3)  
ns  
(3)  
ns  
T
0
0
ns  
AXDX  
(1)  
(2)  
T
111  
111  
158  
82  
64  
ns  
AVRL  
(2)  
T
Address (P0) Valid to WR# Low  
Address (P2) Valid to WR# Low  
Data Hold after WR# High  
64  
ns  
ns  
AVWL1  
AVWL2  
(2)  
T
116  
66  
T
ns  
WHQX  
QVWH  
WHAX  
(3)  
T
Data Valid to WR# High  
135  
168  
103  
125  
ns  
T
WR# High to Address Hold  
ns  
Notes:  
1. Specification for PSEN# are identical to those for RD#.  
2. If a wait state is added by extending ALE, add 2·T  
OSC.  
3. If wait states are added by extending RD#/PSEN#/WR#, add 2N·T  
(N= 1..3).  
OSC  
Rev. A - May 7, 1999  
41  
TSC80251G2D  
Waveforms in Non-Page Mode  
ALE  
(1)  
T
LHLL  
(1)  
(1)  
RLRH  
T
T
T
RHLH1  
LLRL  
PSEN#  
(1)  
RLDV  
T
T
RLAZ  
(1)  
T
T
LHAX  
RHDZ1  
(1)  
T
T
T
RHDX  
AVLL  
LLAX  
P0  
A7:0  
D7:0  
(1)  
Instruction In  
T
AVRL  
(1)  
T
T
AVDV1  
(1)  
RHAX  
T
AVDV2  
P2/A16/A17  
A15:8/A16/A17  
Note:  
1. The value of this parameter depends on wait states. See Table 45 and Table 46.  
Figure 16. External Bus Cycle: Code Fetch (Non-Page Mode)  
ALE  
(1)  
T
LHLL  
(1)  
(1)  
RLRH  
T
T
T
RHLH2  
LLRL  
RD#/PSEN#  
(1)  
RLDV  
T
T
RLAZ  
(1)  
T
T
LHAX  
RHDZ2  
(1)  
T
T
T
RHDX  
AVLL  
LLAX  
P0  
A7:0  
D7:0  
(1)  
Data In  
T
AVRL  
(1)  
T
T
AVDV1  
(1)  
RHAX  
T
AVDV2  
P2/A16/A17  
A15:8/A16/A17  
Note:  
1. The value of this parameter depends on wait states. See Table 45 and Table 46.  
Figure 17. External Bus Cycle: Data Read (Non-Page Mode)  
42  
Rev. A - May 7, 1999  
TSC80251G2D  
ALE  
WR#  
(1)  
T
LHLL  
(1)  
WLWH  
T
T
WHLH  
(1)  
T
LHAX  
T
QVWH  
(1)  
T
T
T
AVLL  
LLAX  
WHQX  
P0  
A7:0  
D7:0  
(1)  
Data Out  
T
AVWL1  
(1)  
T
T
AVWL2  
WHAX  
P2/A16/A17  
A15:8/A16/A17  
Note:  
1. The value of this parameter depends on wait states. See Table 45 and Table 46.  
Figure 18. External Bus Cycle: Data Write (Non-Page Mode)  
Waveforms in Page Mode  
ALE  
(1)  
T
LHLL  
(1)  
T
LLRL  
(3)  
PSEN#  
(1)  
RLDV  
T
T
RLAZ  
(1)  
T
LHAX  
T
RHDZ1  
(1)  
T
T
LLAX  
AVLL  
T
RHDX  
P2  
A15:8  
D7:0  
D7:0  
Instruction In  
(1)  
Instruction In  
T
AVRL  
(1)  
T
T
AXDX  
AVDV1  
(1)  
(1)  
AVDV3  
T
T
AVDV2  
T
RHAX  
P0/A16/A17  
A7:0/A16/A17  
A7:0/A16/A17  
(2)  
(2)  
Page Miss  
Page Hit  
Notes:  
1. The value of this parameter depends on wait states. See Table 45 and Table 46.  
2. A page hit (i.e., a code fetch to the same 256-byte “page” as the previous code fetch) requires one state (2·T  
);  
OSC  
a page miss requires two states (4·T  
).  
OSC  
3. During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.  
Figure 19. External Bus Cycle: Code Fetch (Page Mode)  
Rev. A - May 7, 1999  
43  
TSC80251G2D  
ALE  
(1)  
T
LHLL  
(1)  
(1)  
RLRH  
T
T
T
RHLH2  
LLRL  
RD#/PSEN#  
(1)  
RLDV  
T
T
RLAZ  
(1)  
T
T
LHAX  
RHDZ2  
(1)  
T
T
T
RHDX  
AVLL  
LLAX  
P2  
A15:8  
D7:0  
(1)  
Data In  
T
AVRL  
(1)  
T
T
AVDV1  
(1)  
RHAX  
T
AVDV2  
P0/A16/A17  
A7:0/A16/A17  
Note:  
1. The value of this parameter depends on wait states. See Table 45 and Table 46.  
Figure 20. External Bus Cycle: Data Read (Page Mode)  
ALE  
WR#  
(1)  
T
LHLL  
(1)  
T
T
WLWH  
WHLH  
(1)  
T
LHAX  
T
QVWH  
(1)  
T
T
T
AVLL  
LLAX  
WHQX  
P2  
A15:8  
D7:0  
(1)  
Data Out  
T
AVWL1  
(1)  
T
T
AVWL2  
WHAX  
P0/A16/A17  
A7:0/A16/A17  
Note:  
1. The value of this parameter depends on wait states. See Table 45 and Table 46.  
Figure 21. External Bus Cycle: Data Write (Page Mode)  
44  
Rev. A - May 7, 1999  
TSC80251G2D  
11.2 AC Characteristics - Real-Time Synchronous Wait State  
Definition of symbols  
Table 47. Real-Time Synchronous Wait Timing Symbol Definitions  
Signals  
Conditions  
C
WCLK  
L
Low  
R
RD#/PSEN#  
WR#  
V
X
Valid  
W
Y
No Longer Valid  
WAIT#  
Timings  
Table 48. Real-Time Synchronous Wait AC Timings; V = 2.7 to 5.5 V, T = -40 to 85°C  
DD  
A
Symbol  
Parameter  
Min  
Max  
Unit  
T
T
T
T
Wait Clock Low to Wait Set-up  
0
T
- 20  
ns  
ns  
ns  
ns  
ns  
ns  
CLYV  
CLYX  
RLYV  
RLYX  
WLYV  
WLYX  
OSC  
Wait Hold after Wait Clock Low  
PSEN#/RD# Low to Wait Set-up  
Wait Hold after PSEN#/RD# Low  
WR# Low to Wait Set-up  
2W·T  
2W·T  
2W·T  
+ 5  
+ 5  
+ 5  
(1+2W)·T  
- 20  
- 20  
- 20  
OSC  
OSC  
0
T
- 20  
OSC  
(1+2W)·T  
OSC  
OSC  
T
T
0
T
- 20  
OSC  
Wait Hold after WR# Low  
(1+2W)·T  
OSC  
OSC  
Waveforms  
State 1  
State 2  
State 3  
State 1 (next cycle)  
WCLK  
T
min  
CLYX  
T
max  
CLYX  
ALE  
T
CLYV  
RD#/PSEN#  
RD#/PSEN# stretched  
T
T
max  
RLYX  
min  
RLYX  
T
RLYV  
WAIT#  
P0  
A7:0  
D7:0  
stretched  
stretched  
A7:0  
P2  
A15:8  
A15:8  
Figure 22. Real-time Synchronous Wait State: Code Fetch/Data Read  
Rev. A - May 7, 1999  
45  
TSC80251G2D  
State 1  
State 2  
State 3  
State 1 (next cycle)  
WCLK  
T
min  
CLYX  
T
max  
CLYX  
ALE  
T
CLYV  
RD#/PSEN#  
WR# stretched  
T
T
max  
WLYX  
min  
WLYX  
T
WLYV  
WAIT#  
P0  
A7:0  
D7:0  
stretched  
stretched  
P2  
A15:8  
Figure 23. Real-time Synchronous Wait State: Data Write  
11.3 AC Characteristics - Real-Time Asynchronous Wait State  
Definition of symbols  
Table 49. Real-Time Asynchronous Wait Timing Symbol Definitions  
Signals  
Conditions  
S
PSEN#/RD#/WR#  
AWAIT#  
L
Low  
Y
V
X
Valid  
No Longer Valid  
Timings  
Table 50. Real-Time Asynchronous Wait AC Timings; V = 2.7 to 5.5 V, T = -40 to 85°C  
DD  
A
Symbol  
Parameter  
Min  
Max  
Unit  
T
PSEN#/RD#/WR# Low to Wait Set-up  
Wait Hold after PSEN#/RD#/WR# Low  
T
- 10  
ns  
SLYV  
SLYX  
OSC  
(1)  
T
(2N-1)·T  
+ 10  
ns  
OSC  
Note:  
1. N is the number of wait states added (N1).  
Waveforms  
RD#/PSEN#/WR#  
T
SLYX  
T
SLYV  
AWAIT#  
Figure 24. Real-time Asynchronous Wait State Timings  
46  
Rev. A - May 7, 1999  
TSC80251G2D  
11.4 AC Characteristics - Serial Port in Shift Register Mode  
Definition of symbols  
Table 51. Serial Port Timing Symbol Definitions  
Signals  
Conditions  
D
Q
X
Data In  
H
L
High  
Data Out  
Clock  
Low  
V
X
Valid  
No Longer Valid  
Timings  
Table 52. Serial Port AC Timing -Shift Register Mode; V = 2.7 to 5.5 V, T = -40 to 85°C  
DD  
A
12 MHz  
16 MHz  
24 MHz(1)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
T
Serial Port Clock Cycle Time  
998  
833  
165  
0
749  
625  
124  
0
500  
417  
82  
ns  
ns  
ns  
ns  
ns  
XLXL  
QVXH  
XHQX  
XHDX  
XHDV  
T
T
T
T
Output Data Setup to Clock Rising Edge  
Output Data hold after Clock Rising Edge  
Input Data Hold after Clock Rising Edge  
Clock Rising Edge to Input Data Valid  
0
974  
732  
482  
Note:  
1. For high speed versions only.  
Waveforms  
T
XLXL  
TXD  
T
(1)  
QVXH  
Set TI  
T
XHQX  
RXD (Out)  
RXD (In)  
0
1
2
3
4
5
6
7
(1)  
T
Set RI  
XHDX  
T
XHDV  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Note:  
1. TI and RI are set during S1P1 of the peripheral cycle following the shift of the eight bit.  
Figure 25. Serial Port Waveforms - Shift Register Mode  
Rev. A - May 7, 1999  
47  
TSC80251G2D  
11.5 AC Characteristics - SSLC: I C Interface  
2
Timings  
2
Table 53. I C Interface AC Timing; V = 2.7 to 5.5 V, T = -40 to 85°C  
DD  
A
INPUT  
OUTPUT  
Symbol  
Parameter  
Min  
Max Min  
Max  
(4)  
(4)  
(4)  
(1)  
THD; STA  
TLOW  
Start condition hold time  
14·TCLCL  
16·TCLCL  
14·TCLCL  
4.0 µs  
4.7 µs  
(1)  
SCL low time  
SCL high time  
SCL rise time  
SCL fall time  
Data set-up time  
(1)  
THIGH  
4.0 µs  
(2)  
TRC  
1 µs  
-
(3)  
TFC  
0.3 µs  
0.3 µs  
(4)  
TSU; DAT1  
TSU; DAT2  
TSU; DAT3  
THD; DAT  
TSU; STA  
TSU; STO  
TBUF  
250 ns  
20·TCLCL - TRD  
(1)  
SDA set-up time (before repeated START condition)  
SDA set-up time (before STOP condition)  
Data hold time  
250 ns  
1 µs  
(4)  
250 ns  
8·TCLCL  
(4)  
0 ns  
8·TCLCL - TFC  
(4)  
(4)  
(4)  
(1)  
Repeated START set-up time  
STOP condition set-up time  
Bus free time  
14·TCLCL  
14·TCLCL  
14·TCLCL  
4.7 µs  
(1)  
4.0 µs  
(1)  
4.7 µs  
(2)  
(3)  
TRD  
SDA rise time  
1 µs  
-
TFD  
SDA fall time  
0.3 µs  
0.3 µs  
Notes:  
1. At 100 kbit/s. At other bit-rates this value is inversely proportional to the bit-rate of 100 kbit/s.  
2. Determined by the external bus-line capacitance and the external bus-line pull-up resistor, this must be < 1 µs.  
3. Spikes on the SDA and SCL lines with a duration of less than 3·TCLCL will be filtered out. Maximum capacitance on bus-lines SDA and  
SCL= 400 pF.  
4. TCLCL= T  
OSC  
= one oscillator clock period.  
Waveforms  
Repeated START condition  
START or Repeated START condition  
START condition  
STOP condition  
TSU;STA  
TRD  
0.7 V  
DD  
SDA  
0.3 V  
(INPUT/OUTPUT)  
DD  
TFD  
TSU;STO  
TBUF  
TSU;DAT3  
TRC  
TFC  
0.7 V  
DD  
SCL  
0.3 V  
(INPUT/OUTPUT)  
DD  
THD;STA  
TLOW THIGH TSU;DAT1 THD;DAT  
TSU;DAT2  
2
Figure 26. I C Waveforms  
48  
Rev. A - May 7, 1999  
TSC80251G2D  
11.6 AC Characteristics - SSLC: SPI Interface  
Definition of symbols  
Table 54. SPI Interface Timing Symbol Definitions  
Signals  
Conditions  
C
I
Clock  
H
L
High  
Data In  
Data Out  
SS#  
Low  
O
S
V
X
Z
Valid  
No Longer Valid  
Floating  
Timings  
Table 55. SPI Interface AC Timing; V = 2.7 to 5.5 V, T = -40 to 85°C  
DD  
A
Symbol  
Parameter  
Min  
Max  
Unit  
Slave mode(1)  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
Clock Period  
8
T
T
T
CHCH  
CHCX  
CLCX  
OSC  
Clock High Time  
Clock Low Time  
SS# Low to Clock edge  
3.2  
3.2  
200  
100  
100  
OSC  
OSC  
, T  
ns  
SLCH  
SLCL  
IVCH  
CHIX  
, T  
Input Data Valid to Clock Edge  
Input Data Hold after Clock Edge  
Output Data Valid after Clock Edge  
Output Data Hold Time after Clock Edge  
SS# High after Clock Edge  
Input Data Valid to Clock Edge  
Input Data Hold after Clock Edge  
SS# Low to Output Data Valid  
Output Data Hold after SS# High  
SS# High to SS# Low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IVCL  
CLIX  
, T  
T
100  
CLOV, CHOV  
, T  
0
CLOX  
CHOX  
CHSH  
IVCH  
, T  
0
CLSH  
, T  
, T  
100  
100  
IVCL  
CLIX  
CHIX  
130  
130  
SLOV  
SHOX  
SHSL  
ILIH  
(2)  
Input Rise Time  
2
µs  
µs  
ns  
ns  
Input Fall Time  
2
IHIL  
Output Rise time  
100  
100  
OLOH  
OHOL  
Output Fall Time  
Rev. A - May 7, 1999  
49  
TSC80251G2D  
Symbol  
Parameter  
Min  
Max  
Unit  
Master mode(3)  
T
T
T
T
T
T
T
T
T
T
T
Clock Period  
4
T
T
T
CHCH  
CHCX  
CLCX  
OSC  
Clock High Time  
Clock Low Time  
1.6  
1.6  
50  
50  
OSC  
OSC  
, T  
Input Data Valid to Clock Edge  
Input Data Hold after Clock Edge  
Output Data Valid after Clock Edge  
Output Data Hold Time after Clock Edge  
Input Data Rise Time  
ns  
IVCL  
CLIX  
IVCH  
CHIX  
, T  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
T
65  
CLOV, CHOV  
, T  
0
CLOX  
ILIH  
CHOX  
2
2
Input Data Fall Time  
IHIL  
Output Data Rise time  
50  
50  
OLOH  
Output Data Fall Time  
OHOL  
Notes:  
1. Capacitive load on all pins= 200 pF in slave mode.  
2. The value of this parameter depends on software.  
3. Capacitive load on all pins= 100 pF in master mode.  
Waveforms  
(1)  
SS#  
(output)  
T
CHCH  
T
T
CLCH  
SCK  
(SSCPOL= 0)  
(output)  
T
T
CLCX  
CHCX  
CHCL  
SCK  
(SSCPOL= 1)  
(output)  
T
T
T
T
IVCH  
IVCL  
CHIX  
CLIX  
MISO  
(input)  
MSB IN  
BIT 6  
LSB IN  
T
T
T
T
CLOV  
CHOV  
CLOX  
CHOX  
MOSI  
(output)  
Port Data  
MSB OUT  
BIT 6  
LSB OUT  
Port Data  
Note:  
1. SS# handled by software.  
Figure 27. SPI Master Waveforms (SSCPHA= 0)  
50  
Rev. A - May 7, 1999  
TSC80251G2D  
(1)  
SS#  
(output)  
T
CHCH  
T
T
CLCH  
CHCL  
SCK  
(SSCPOL= 0)  
(output)  
T
T
CLCX  
CHCX  
SCK  
(SSCPOL= 1)  
(output)  
T
T
T
T
IVCH  
IVCL  
CHIX  
CLIX  
MISO  
(input)  
MSB IN  
BIT 6  
LSB IN  
T
T
T
T
CLOV  
CHOV  
CLOX  
CHOX  
MOSI  
(output)  
Port Data  
MSB OUT  
BIT 6  
LSB OUT  
Port Data  
Note:  
1. SS# handled by software.  
Figure 28. SPI Master Waveforms (SSCPHA= 1)  
SS#  
(input)  
T
T
T
T
SLCH  
SLCL  
CLSH  
CHSH  
T
T
SHSL  
CHCH  
T
T
CLCH  
SCK  
(SSCPOL= 0)  
(input)  
T
T
CLCX  
CHCX  
CHCL  
SCK  
(SSCPOL= 1)  
(input)  
T
T
T
T
CLOV  
CHOV  
CLOX  
CHOX  
T
T
SHOX  
SLOV  
MISO  
(output)  
(1)  
SLAVE MSB OUT  
BIT 6  
SLAVE LSB OUT  
T
T
T
T
IVCH  
IVCL  
CHIX  
CLIX  
MOSI  
(input)  
MSB IN  
BIT 6  
LSB IN  
Note:  
1. Not Defined but normally MSB of character just received.  
Figure 29. SPI Slave Waveforms (SSCPHA= 0)  
Rev. A - May 7, 1999  
51  
TSC80251G2D  
SS#  
(input)  
T
T
T
T
SLCH  
SLCL  
CLSH  
CHSH  
T
T
SHSL  
CHCH  
T
T
CLCH  
CHCL  
SCK  
(SSCPOL= 0)  
(input)  
T
T
CLCX  
CHCX  
SCK  
(SSCPOL= 1)  
(input)  
T
T
T
T
CHOV  
CLOV  
CHOX  
CLOX  
T
T
SHOX  
SLOV  
MISO  
(output)  
(1)  
SLAVE MSB OUT  
BIT 6  
SLAVE LSB OUT  
T
T
T
T
IVCH  
IVCL  
CHIX  
CLIX  
MOSI  
(input)  
MSB IN  
BIT 6  
LSB IN  
Note:  
1. Not Defined but generally the LSB of the character which has just been received.  
Figure 30. SPI Slave Waveforms (SSCPHA= 1)  
52  
Rev. A - May 7, 1999  
TSC80251G2D  
11.7 AC Characteristics - EPROM Programming and Verifying  
Definition of symbols  
Table 56. EPROM Programming and Verifying Timing Symbol Definitions  
Signals  
Conditions  
A
E
G
Q
S
Address  
H
L
High  
Enable: mode set on Port 0  
Program  
Low  
V
X
Z
Valid  
Data Out  
No Longer Valid  
Floating  
Supply (V  
)
PP  
Timings  
Table 57. EPROM Programming AC timings; V = 4.5 to 5.5 V, T = 0 to 40°C  
DD  
A
Symbol  
Parameter  
Min  
Max  
Unit  
T
XTAL1 Period  
83.5  
48  
48  
48  
48  
48  
10  
10  
0
250  
ns  
OSC  
T
Address Setup to PROG# low  
T
T
T
T
T
AVGL  
GHAX  
OSC  
OSC  
OSC  
OSC  
T
Address Hold after PROG# low  
Data Setup to PROG# low  
Data Hold after PROG#  
T
DVGL  
GHDX  
T
T
ENABLE High to V  
PP  
ELSH  
SHGL  
GHSL  
OSC  
T
T
V
V
Setup to PROG# low  
µs  
PP  
PP  
Hold after PROG#  
µs  
ns  
µs  
T
ENABLE Hold after V  
PROG# Width  
SLEH  
PP  
T
90  
110  
GLGH  
Table 58. EPROM Verifying AC timings; V = 4.5 to 5.5 V, V = 2.7 to 5.5 V, T = 0 to 40°C  
DD  
DD  
A
Symbol  
Parameter  
Min  
Max  
Unit  
T
XTAL1 Period  
83.5  
250  
48  
ns  
OSC  
T
T
Address to Data Valid  
Address to Data Invalid  
ENABLE low to Data Valid  
Data Float after ENABLE  
T
AVQV  
AXQX  
OSC  
0
0
0
ns  
T
T
48  
48  
T
T
ELQV  
EHQZ  
OSC  
OSC  
Rev. A - May 7, 1999  
53  
TSC80251G2D  
Waveforms  
P1= A15:8  
P3= A7:0  
Address  
Data  
T
T
GHAX  
AVGL  
P2= D7:0  
T
T
GHDX  
DVGL  
V
PP  
V
T
T
T
GHSL  
EA#/VPP  
DD  
SHGL  
GLGH  
V
SS  
ALE/PROG#  
P0  
T
T
SLEH  
ELSH  
Mode= 68h, 69h, 6Bh or 6Ch  
Figure 31. EPROM Programming Waveforms  
P1= A15:8  
P3= A7:0  
Address  
T
T
AXQX  
AVQV  
P2= D7:0  
Data  
T
T
EHQZ  
ELQV  
P0  
Mode= 28h, 29h or 2Bh  
Figure 32. EPROM Verifying Waveforms  
54  
Rev. A - May 7, 1999  
TSC80251G2D  
11.8 AC Characteristics - External Clock Drive and Logic Level References  
Definition of symbols  
Table 59. External Clock Timing Symbol Definitions  
Signals  
Conditions  
C
Clock  
H
L
High  
Low  
X
No Longer Valid  
Timings  
Table 60. External Clock AC Timings; V = 4.5 to 5.5 V, T = -40 to +85°C  
DD  
A
Symbol  
Parameter  
Min  
Max  
Unit  
F
Oscillator Frequency  
High Time  
24  
MHz  
ns  
OSC  
T
10  
10  
3
CHCX  
T
T
T
Low Time  
ns  
CLCX  
CLCH  
CHCL  
Rise Time  
ns  
Fall Time  
3
ns  
Waveforms  
T
T
CHCX  
CLCH  
V
- 0.5  
DD  
V
IH1  
T
CLCX  
V
IL  
0.45 V  
T
T
CLCL  
CHCL  
Figure 33. External Clock Waveform  
INPUTS  
0.2 V + 0.9  
OUTPUTS  
min  
V
- 0.5  
DD  
V
DD  
IH  
0.2 V - 0.1  
V
max  
DD  
IL  
0.45 V  
Note:  
During AC testing, all inputs are driven at V  
-0.5 V for a logic 1 and 0.45 V for a logic 0.  
DD  
Timing measurements are made on all outputs at V min for a logic 1 and V max for a logic 0.  
IH  
IL  
Figure 34. AC Testing Input/Output Waveforms  
V
+ 0.1 V  
- 0.1 V  
V
V
- 0.1 V  
+ 0.1 V  
LOAD  
OH  
OL  
V
Timing Reference Points  
LOAD  
V
LOAD  
Note:  
For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV  
change from the loading V /V level occurs with I /I = ±20 mA.  
OH OL  
OL OH  
Figure 35. Float Waveforms  
Rev. A - May 7, 1999  
55  
TSC80251G2D  
12. Packages  
12.1 List of Packages  
PDIL 40  
CDIL 40 with window  
PLCC 44  
CQPJ 44 with window  
VQFP 44 (10x10)  
12.2 PDIL 40 - Mechanical Outline  
Figure 36. Plastic Dual In Line  
Table 61. PDIL Package Size  
MM  
INCH  
Min  
Max  
Min  
Max  
A
A1  
A2  
B
-
5.08  
-
.200  
-
0.38  
3.18  
0.36  
0.76  
0.20  
50.29  
15.24  
12.32  
-
.015  
.125  
.014  
.030  
.008  
1.980  
.600  
.485  
4.95  
.195  
.022  
.070  
.015  
2.095  
.625  
.580  
0.56  
B1  
C
1.78  
0.38  
D
53.21  
E
15.87  
E1  
e
14.73  
2.54 B.S.C.  
.100 B.S.C.  
.600 B.S.C.  
eA  
eB  
L
15.24 B.S.C.  
-
17.78  
3.81  
-
-
.700  
.150  
-
2.93  
0.13  
.115  
.005  
D1  
Rev. A - May 7, 1999  
56  
TSC80251G2D  
12.3 CDIL 40 with Window - Mechanical Outline  
Figure 37. Ceramic Dual In Line  
Table 62. CDIL Package Size  
MM  
INCH  
Min  
Max  
Min  
Max  
A
b
-
5.71  
-
.225  
.023  
.065  
.015  
2.105  
.605  
0.36  
1.14  
0.20  
-
0.58  
.014  
.045  
.008  
-
b2  
c
1.65  
0.38  
D
E
53.47  
13.06  
15.37  
.514  
e
2.54 B.S.C.  
.100 B.S.C.  
.600 B.S.C.  
eA  
L
15.24 B.S.C.  
3.18  
0.38  
0.13  
5.08  
.125  
.015  
.005  
.200  
.055  
-
Q
S1  
a
1.40  
-
0 - 15  
0 - 15  
N
40  
57  
Rev. A - May 7, 1999  
TSC80251G2D  
12.4 PLCC 44 - Mechanical Outline  
Figure 38. Plastic Lead Chip Carrier  
Table 63. PLCC Package Size  
MM  
INCH  
Min  
Max  
Min  
Max  
A
A1  
D
4.20  
2.29  
4.57  
.165  
.090  
.685  
.647  
.590  
.685  
.647  
.590  
.180  
.120  
.695  
.656  
.630  
.695  
.656  
.630  
3.04  
17.40  
16.44  
14.99  
17.40  
16.44  
14.99  
17.65  
D1  
D2  
E
16.66  
16.00  
17.65  
E1  
E2  
e
16.66  
16.00  
1.27 BSC  
.050 BSC  
G
1.07  
1.07  
0.51  
0.33  
1.22  
.042  
.042  
.020  
.013  
.048  
.056  
-
H
1.42  
J
-
K
0.53  
.021  
Nd  
Ne  
11  
11  
11  
11  
Rev. A - May 7, 1999  
58  
TSC80251G2D  
12.5 CQPJ 44 with Window - Mechanical Outline  
Figure 39. Ceramic Quad Pack J  
Table 64. CQPJ Package size  
MM  
INCH  
Min  
Max  
Min  
Max  
A
-
4.90  
-
.193  
.010  
.691  
.656  
C
0.15  
17.40  
16.36  
0.25  
.006  
.685  
.644  
D - E  
17.55  
D1 - E1  
16.66  
e
f
1.27 TYP  
0.53  
.050 TYP  
0.43  
0.86  
.017  
.034  
.610  
.021  
.044  
.630  
J
1.12  
Q
R
15.49  
16.00  
0.86 TYP  
11  
.034 TYP  
N1  
N2  
11  
11  
11  
59  
Rev. A - May 7, 1999  
TSC80251G2D  
12.6 VQFP 44 (10x10) - Mechanical Outline  
Figure 40. Shrink Quad Flat Pack (Plastic)  
Table 65. VQFP Package Size  
MM  
INCH  
Min  
Max  
Min  
Max  
A
A1  
A2  
A3  
D
-
1.60  
0.64 REF  
0.64 REF  
1.45  
-
.063  
.025 REF  
.025REF  
1.35  
11.90  
9.90  
.053  
.468  
.390  
.468  
.390  
.002  
.018  
.057  
.476  
.398  
.476  
.398  
6
12.10  
D1  
E
10.10  
11.90  
9.90  
12.10  
E1  
J
10.10  
0.05  
-
L
0.45  
0.75  
.030  
e
0.80 BSC  
0.35 BSC  
.0315 BSC  
.014 BSC  
f
Rev. A - May 7, 1999  
60  
TSC80251G2D  
13. Ordering Information  
13.1 TSC80251G2D ROMless  
TEMIC Part Number  
ROM  
Description  
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial  
TSC80251G2D-16CB  
TSC80251G2D-24CB  
TSC80251G2D-24CED  
TSC80251G2D-24IA  
TSC80251G2D-24IB  
ROMless  
ROMless  
ROMless  
ROMless  
ROMless  
16 MHz, Commercial 0° to 70°C, PLCC 44  
24 MHz, Commercial 0° to 70°C, PLCC 44  
24 MHz, Commercial 0° to 70°C, VQFP 44, Dry pack  
24 MHz, Industrial -40° to 85°C, PDIL 40  
24 MHz, Industrial -40° to 85°C, PLCC 44  
(1)  
Low Voltage Versions 2.7 to 5.5 V, Commercial  
TSC80251G2D-L16CB  
TSC80251G2D-L16CED  
ROMless  
ROMless  
16 MHz, Commercial, PLCC 44  
(1)  
16 MHz, Commercial, VQFP 44, Dry pack  
Note:  
1. Dry Pack mandatory for VQFP package.  
13.2 TSC83251G1D 16 Kbytes Mask ROM  
TEMIC Part Number(2)  
ROM  
Description  
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial  
TSC251G1Dxxx-16CB  
TSC251G1Dxxx-24CB  
TSC251G1Dxxx-24CED  
TSC251G1Dxxx-24IA  
TSC251G1Dxxx-24IB  
16K MaskROM  
16K MaskROM  
16K MaskROM  
16K MaskROM  
16K MaskROM  
16 MHz, Commercial 0° to 70°C, PLCC 44  
24 MHz, Commercial 0° to 70°C, PLCC 44  
24 MHz, Commercial 0° to 70°C, VQFP 44, Dry pack  
24 MHz, Industrial -40° to 85°C, PDIL 40  
24 MHz, Industrial -40° to 85°C, PLCC 44  
(1)  
Low Voltage Versions 2.7 to 5.5 V, Commercial  
TSC251G1Dxxx-L16CB  
TSC251G1Dxxx-L16CED  
16K MaskROM  
16K MaskROM  
16 MHz, Commercial 0° to 70°C, PLCC 44  
(1)  
16 MHz, Commercial 0° to 70°C, VQFP 44, Dry pack  
Notes:  
1. Dry Pack mandatory for VQFP package.  
2. xxx: means ROM code, is Cxxx in case of encrypted code.  
13.3 TSC83251G2D 32 Kbytes MaskROM  
TEMIC Part Number(2)  
ROM  
Description  
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial  
TSC251G2Dxxx-16CB  
TSC251G2Dxxx-24CB  
TSC251G2Dxxx-24CED  
TSC251G2Dxxx-24IA  
TSC251G2Dxxx-24IB  
32K MaskROM  
32K MaskROM  
32K MaskROM  
32K MaskROM  
32K MaskROM  
16 MHz, Commercial 0° to 70°C, PLCC 44  
24 MHz, Commercial 0° to 70°C, PLCC 44  
24 MHz, Commercial 0° to 70°C, VQFP 44, Dry pack  
24 MHz, Industrial -40° to 85°C, PDIL 40  
24 MHz, Industrial -40° to 85°C, PLCC 44  
(1)  
Low Voltage Versions 2.7 to 5.5 V, Commercial  
TSC251G2Dxxx-L16CB  
TSC251G2Dxxx-L16CED  
32K MaskROM  
32K MaskROM  
16 MHz, Commercial 0° to 70°C, PLCC 44  
(1)  
16 MHz, Commercial 0° to 70°C, VQFP 44, Dry pack  
Notes:  
1. Dry Pack mandatory for VQFP package.  
2. xxx: means ROM code, is Cxxx in case of encrypted code.  
Rev. A - May 7, 1999  
61  
TSC80251G2D  
13.4 TSC87251G2D OTPROM  
TEMIC Part Number  
ROM  
Description  
High Speed Versions 4.5 to 5.5 V, Commercial and Industrial  
TSC87251G2D-16CB  
TSC87251G2D-24CB  
TSC87251G2D-24CED  
TSC87251G2D-24IA  
TSC87251G2D-24IB  
32K OTPROM  
32K OTPROM  
32K OTPROM  
32K OTPROM  
32K OTPROM  
16 MHz, Commercial 0° to 70°C, PLCC 44  
24 MHz, Commercial 0° to 70°C, PLCC 44  
24 MHz, Commercial 0° to 70°C, VQFP 44, Dry pack  
24 MHz, Industrial -40° to 85°C, PDIL 40  
24 MHz, Industrial -40° to 85°C, PLCC 44  
(1)  
Low Voltage Versions 2.7 to 5.5 V, Commercial  
TSC87251G2D-L16CB  
TSC87251G2D-L16CED  
32K OTPROM  
32K OTPROM  
16 MHz, Commercial 0° to 70°C, PLCC 44  
(1)  
16 MHz, Commercial 0° to 70°C, VQFP 44, Dry pack  
Note:  
1. Dry Pack mandatory for VQFP package.  
13.5 TSC87251G2D EPROM - UV Window package  
TEMIC Part Number  
ROM  
Description  
High Speed Versions 4.5 to 5.5 V, Industrial  
TSC87251G2D-24IC  
TSC87251G2D-24IJ  
32K EPROM  
32K EPROM  
24 MHz, Industrial -40° to 85°C, window CQPJ 44  
24 MHz, Industrial -40° to 85°C, window CDIL 40  
Low Voltage Versions 2.7 to 5.5 V, Industrial  
TSC87251G2D-L16IC  
32K EPROM  
16 MHz, Commercial -40° to 85°C, window CQPJ 44  
13.6 Options (Please consult TEMIC sales)  
ROM code encryption  
Tape & Real or Dry Pack  
Known good dice  
Ceramic packages  
Extended temperature range: -55°C to +125°C  
13.7 Starter Kit  
TEMIC Part Number  
Description  
TSC80251-SK  
TSC80251 Starter Kit  
13.8 Products Marking  
ROMless versions  
Mask ROM versions  
OTP versions  
TEMIC  
TEMIC  
Customer Part number  
Temic Part number  
TEMIC  
Temic Part number(1)  
Temic Part number(1)  
M
C
M
C
M C  
INTEL’97  
YYWW . Lot Number  
INTEL’97  
YYWW . Lot Number  
INTEL’97  
YYWW . Lot Number  
Note:  
1. Dry Pack letter (D) not included in the marking.  
62  
Rev. A - May 7, 1999  
Sales Offices  
Sales Locations  
Europe Sales Offices  
Finland  
Germany  
Italy  
United Kingdom  
TEMIC Nordic AB  
c/o Atmel OY  
Kappelitie 6B  
FIN–02200  
Tel: 358 9 4520 8219  
Fax: 358 9 529 619  
TEMIC Semiconductor  
GmbH  
Erfurter Strasse 31  
85386 Eching  
Tel: 49 89 3 19 70 0  
Fax: 49 89 3 19 46 21  
TEMIC Italiana  
Via Grosio, 10/8  
20151 Milano  
Tel: 39 02 38 03 71  
Fax: 39 02 38 03 72 34  
TEMIC U.K. Ltd.  
Easthampstead Road  
Bracknell, Berkshire RG12 1LX  
Tel: 44 1344 707 300  
Fax: 44 1344 427 371  
Spain  
TEMIC Iberica  
Principe de Vergara, 112  
28002 Madrid  
Tel: 34 91 564 51 81  
Fax: 34 91 562 75 14  
France  
TEMIC Semiconductor  
GmbH  
Kruppstrasse 6  
45128 Essen  
Tel: 49 2 01 24 73 00  
Fax: 49 2 01 2 47 30 47  
TEMIC France  
Les Quadrants – 3,  
avenue du centre  
B.P. 309  
78054 St.–Quentin–en–Yvelines  
Cedex  
Sweden  
TEMIC Nordic AB  
Kavallerivaegen 24, Rissne  
Box 2042  
17202 Sundbyberg  
Tel: 46 8 587 48 800  
Fax: 46 8 587 48 850  
TEMIC Semiconductor  
GmbH  
Theresienstrasse 2  
74072 Heilbronn  
Tel: 49 71 31 67 3636  
Fax: 49 71 31 67 3163  
Tel: 33 1 30 60 70 00  
Fax: 33 1 30 60 71 11  
North America Sales Offices  
Western  
Eastern  
TEMIC North America  
c/o Atmel Corporation  
2325 Orchard Parkway  
San Jose  
TEMIC North America Inc.  
180 Mount Airy Road, Ste. 100  
Basking Ridge  
New Jersey 07920  
California 95131  
Tel: 1 408 441 0311  
Fax: 1 408 436 4200  
Tel: 1 908 630 9200  
Fax: 1 908 630 9201  
Asia Pacific / Japan Sales Offices  
China  
Japan  
Korea  
Taiwan, R.O.C.  
TEMIC Shanghai  
c/o Atmel Corp  
4th floor, Block A  
Shanghai Eastern Business Bldg  
586 Fanyu Road, Shanghai  
200052 China  
Tel: 86 21 6280 9241  
Fax: 86 21 6283 8816  
TEMIC Semiconductors  
c/o Atmel Japan K.K.  
Tonetsushinkawa Bldg.  
1–24–8, Shinkawa, chuku  
Tokyo 104–0033  
TEMIC Korea Ltd.  
Suite 605, Singsong Bldg.  
25–4 Yoido–dong  
Youngdeungpo–Ku  
150–010 Seoul  
TEMIC Taiwan, c/o Atmel Corp.  
9F–1 NO.266  
SEC.1 Wen HWA 2RD  
Lin Kon Hsiang  
Taipei Hsien  
Tel: 886 2 2609 5581  
Fax: 886 2 2600 2735  
Tel: 81 3 3523 3551  
Fax: 81 3 3523 7581  
Tel: 82 2 785 1136  
Fax: 82 2 785 1137  
Hong Kong  
Rep. of Singapore  
TEMIC Hong Kong Ltd.  
c/o Atmel Asia Ltd  
# 1216, Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon, Hong Kong  
Tel: 852 23 789 789  
TEMIC Singapore Pte Ltd  
Keppel Building, #03–00  
25 Tampines Street 92  
Singapore 528877  
Tel: 65 260 8223  
Fax: 65 787 9819  
Fax: 852 23 755 733  
63  
May 1999  

相关型号:

TSC80251G2D-L16CER

IC MCU 8BIT ROMLESS 44VQFP
MICROCHIP

TSC80251G2D_06

8/16-bit Microcontroller with Serial Communication Interfaces
ATMEL

TSC8031I2-24C

Microcontroller, 8-Bit, 8051 CPU, 24MHz, CMOS, PQFP44,
VISHAY

TSC8031I2-24E

Microcontroller, 8-Bit, 8051 CPU, 24MHz, CMOS, PQCC52,
VISHAY

TSC8031I2-24IA

暂无描述
VISHAY

TSC8031I2-24IB

Microcontroller, 8-Bit, 8051 CPU, 24MHz, CMOS, PQCC44,
VISHAY

TSC8031I2-24IC

Microcontroller, 8-Bit, 8051 CPU, 24MHz, CMOS, PQFP44,
VISHAY

TSC8031I2-L16B

Microcontroller, 8-Bit, 8051 CPU, 16MHz, CMOS, PQCC44,
VISHAY

TSC8031I2-L16C

Microcontroller, 8-Bit, 8051 CPU, 16MHz, CMOS, PQFP44,
VISHAY

TSC8031I2-L16E

Microcontroller, 8-Bit, 8051 CPU, 16MHz, CMOS, PQCC52,
VISHAY

TSC8031I2-L16IA

Microcontroller, 8-Bit, 8051 CPU, 16MHz, CMOS, PDIP40,
VISHAY

TSC8031I2-L16IB

暂无描述
VISHAY