TSC80C31-L20IBD [TEMIC]

Microcontroller, 8-Bit, 20MHz, CMOS, PQCC44,;
TSC80C31-L20IBD
型号: TSC80C31-L20IBD
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

Microcontroller, 8-Bit, 20MHz, CMOS, PQCC44,

微控制器
文件: 总19页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSC80C31/80C51  
CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller  
Description  
The TSC80C31/80C51 is high performance SCMOS In addition, the TSC80C31/80C51 has two  
versions of the 8051 NMOS single chip 8 bit µC.  
software-selectable modes of reduced activity for further  
reduction in power consumption. In the Idle Mode the  
CPU is frozen while the RAM, the timers, the serial port,  
and the interrupt system continue to function. In the  
Power Down Mode the RAM is saved and all other  
functions are inoperative.  
The fully static design of the TSC80C31/80C51 allows to  
reduce system power consumption by bringing the clock  
frequency down to any value, even DC, without loss of  
data.  
The TSC80C31/80C51 retains all the features of the 8051  
: 4 K bytes of ROM ; 128 bytes of RAM ; 32 I/O lines ;  
two 16 bit timers ; a 5-source, 2-level interrupt structure  
; a full duplex serial port ; and on-chip oscillator and clock  
circuits.  
The TSC80C31/80C51 is manufactured using SCMOS  
process which allows them to run from 0 up to 44 MHz  
with VCC = 5 V. The TSC80C31/80C51 is also available  
at 20 MHz with 2.7 V < Vcc < 5.5 V.  
D TSC80C31/80C51-L16 : Low power version  
Vcc : 2.7–5.5 V Freq : 0–16 MHz  
D TSC80C31/80C51-30 : 0 to 30 MHz  
D TSC80C31/80C51-36 : 0 to 36 MHz  
D TSC80C31/80C51-40 : 0 to 40 MHz  
D TSC80C31/80C51-44 : 0 to 44 MHz*  
D TSC80C31/80C51-L20 : Low power version  
Vcc : 2.7–5.5 V Freq : 0–20 MHz  
D TSC80C31/80C51-12 : 0 to 12 MHz  
D TSC80C31/80C51-20 : 0 to 20 MHz  
D TSC80C31/80C51-25 : 0 to 25 MHz  
* Commercial and Industrial temperature range only. For other speed  
and range please consult your sale office.  
Features  
D Power control modes  
D Fully static design  
D 128 bytes of RAM  
D 0.8 µm CMOS process  
D Boolean processor  
D 4 K bytes of ROM (TSC80C31/80C51)  
D 32 programmable I/O lines  
D Two 16 bit timer/counter  
D 64 K program memory space  
D 64 K data memory space  
D 5 interrupt sources  
D Programmable serial port  
D Temperature range : commercial, industrial, automotive and  
military  
Optional  
D Secret ROM : Encryption  
D Secret TAG : Identification number  
MATRA MHS  
1
Rev. E (14 Jan.97)  
TSC80C31/80C51  
Interface  
Figure 1. Block Diagram  
2
MATRA MHS  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
Figure 2. Pin Configuration  
P1.5  
P1.6  
P1.7  
RST  
P0.4/A4  
P0.5/A5  
P0.6/A6  
P0.7/A7  
EA  
DIL40  
RxD/P3.0  
NC  
NC  
PLCC44  
ALE  
TxD/P3.1  
INT0/P3.2  
INT1/P3.3  
T0/P3.4  
T1/P3.5  
PSEN  
P2.7/A15  
P2.6/A14  
P2.5/A13  
P
/A4  
/A5  
/A6  
/A7  
P
04  
15  
P
P
16  
05  
P
P
17  
06  
P
RST  
07  
RxD/P  
EA  
NC  
30  
PQFP44  
NC  
ALE  
TxD/P  
31  
INT0/P  
PSEN  
32  
INT1/P  
P
/A15  
33  
27  
T0/P  
P
/A14  
/A13  
34  
26  
T1/P  
P
25  
35  
Diagrams are for reference only. Packages sizes are not to scale.  
MATRA MHS  
3
Rev. E (14 Jan.97)  
TSC80C31/80C51  
Pin Description  
It also receives the high-order address bits and control  
signals during program verification in the  
TSC80C31/80C51. Port 2 can sink or source three LS  
TTL inputs. It can drive CMOS inputs without external  
pullups.  
VSS  
Circuit ground potential.  
VCC  
Supply voltage during normal, Idle, and Power Down  
operation.  
Port 3  
Port 3 is an 8 bit bi-directional I/O port with internal  
pullups. Port 3 pins that have 1’s written to them are  
pulled high by the internal pullups, and in that state can  
be used as inputs. As inputs, Port 3 pins that are externally  
being pulled low will source current (ILL, on the data  
sheet) because of the pullups. It also serves the functions  
of various special features of the TEMIC C51 Family, as  
listed below.  
Port 0  
Port 0 is an 8 bit open drain bi-directional I/O port. Port 0  
pins that have 1’s written to them float, and in that state  
can be used as high-impedance inputs.  
Port 0 is also the multiplexed low-order address and data  
bus during accesses to external Program and Data  
Memory. In this application it uses strong internal pullups  
when emitting 1’s. Port 0 also outputs the code bytes  
during program verification in the TSC80C31/80C51.  
External pullups are required during program  
verification. Port 0 can sink eight LS TTL inputs.  
Port Pin  
Alternate Function  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
RXD (serial input port)  
TXD (serial output port)  
INT0 (external interrupt 0)  
INT1 (external interrupt 1)  
TD (Timer 0 external input)  
T1 (Timer 1 external input)  
WR (external Data Memory write strobe)  
RD (external Data Memory read strobe)  
Port 1  
Port 1 is an 8 bit bi-directional I/O port with internal Port 3 can sink or source three LS TTL inputs. It can drive  
pullups. Port 1 pins that have 1’s written to them are CMOS inputs without external pullups.  
pulled high by the internal pullups, and in that state can  
be used as inputs. As inputs, Port 1 pins that are externally  
being pulled low will source current (IIL, on the data  
RST  
A high level on this for two machine cycles while the  
oscillator is running resets the device. An internal  
pull-down resistor permits Power-On reset using only a  
sheet) because of the internal pullups.  
Port 1 also receives the low-order address byte during  
program verification. In the TSC80C31/80C51, Port 1  
can sink or source three LS TTL inputs. It can drive  
CMOS inputs without external pullups.  
capacitor connected to V . As soon as the Reset is  
CC  
applied (Vin), PORT 1, 2 and 3 are tied to one. This  
operation is achieved asynchronously even if the  
oscillator does not start-up.  
Port 2  
ALE  
Port 2 is an 8 bit bi-directional I/O port with internal  
pullups. Port 2 pins that have 1’s written to them are Address Latch Enable output for latching the low byte of  
pulled high by the internal pullups, and in that state can the address during accesses to external memory. ALE is  
be used as inputs. As inputs, Port 2 pins that are externally activated as though for this purpose at a constant rate of  
being pulled low will source current (ILL, on the data 1/6 the oscillator frequency except during an external  
sheet) because of the internal pullups. Port 2 emits the data memory access at which time one ALE pulse is  
high-order address byte during fetches from external skipped. ALE can sink/source 8 LS TTL inputs. It can  
Program Memory and during accesses to external Data drive CMOS inputs without an external pullup.  
Memory that use 16 bit addresses (MOVX @DPTR). In If desired, ALE operation can be disabled by setting bit  
this application, it uses strong internal pullups when 0 of SFR location AFh (MSCON). With the bit set, ALE  
emitting 1’s. During accesses to external Data Memory is active only during MOVX instruction and external  
that use 8 bit addresses (MOVX @Ri), Port 2 emits the fetches. Otherwise the pin is pulled low. MSCON SFR is  
contents of the P2 Special Function Register.  
set to XXXXXXX0 by reset.  
4
MATRA MHS  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
PSEN  
XTAL1  
Program Store Enable output is the read strobe to external  
Program Memory. PSEN is activated twice each machine  
cycle during fetches from external Program Memory.  
(However, when executing out of external Program  
Memory, two activations of PSEN are skipped during  
Input to the inverting amplifier that forms the oscillator.  
Receives the external oscillator signal when an external  
oscillator is used.  
each access to external Data Memory). PSEN is not XTAL2  
activated during fetches from internal Program Memory.  
PSEN can sink or source 8 LS TTL inputs. It can drive  
CMOS inputs without an external pullup.  
Output of the inverting amplifier that forms the oscillator.  
This pin should be floated when an external oscillator is  
used.  
EA  
When EA is held high, the CPU executes out of internal  
Program Memory (unless the Program Counter exceeds  
3 FFFH). When EA is held low, the CPU executes only out  
of external Program Memory. EA must not be floated.  
Idle And Power Down Operation  
Figure 3. shows the internal Idle and Power Down clock  
configuration. As illustrated, Power Down operation  
stops the oscillator. Idle mode operation allows the  
interrupt, serial port, and timer blocks to continue to  
function, while the clock to the CPU is gated off.  
PCON : Power Control Register  
(MSB)  
SMOD  
(LSB)  
IDL  
GF1  
GF0  
PD  
These special modes are activated by software via the  
Special Function Register, PCON. Its hardware address is  
87H. PCON is not bit addressable.  
Symbol  
Position  
Name and Function  
SMOD  
PCON.7  
Double Baud rate bit. When set to  
a 1, the baud rate is doubled when  
the serial port is being used in  
either modes 1, 2 or 3.  
Figure 3. Idle and Power Down Hardware.  
GF1  
GF0  
PD  
PCON.6  
PCON.5  
PCON.4  
PCON.3  
PCON.2  
PCON.1  
(Reserved)  
(Reserved)  
(Reserved)  
General-purpose flag bit.  
General-purpose flag bit.  
Power Down bit. Setting this bit  
activates power down operation.  
Idle mode bit. Setting this bit  
activates idle mode operation.  
IDL  
PCON.0  
If 1’s are written to PD and IDL at the same time. PD  
takes, precedence. The reset value of PCON is  
(000X0000).  
Idle Mode  
The instruction that sets PCON.0 is the last instruction There are three ways to terminate the Idle mode.  
executed before the Idle mode is activated. Once in the Activation of any enabled interrupt will cause PCON.0 to  
Idle mode the CPU status is preserved in its entirety : the be cleared by hardware, terminating Idle mode. The  
Stack Pointer, Program Counter, Program Status Word, interrupt is serviced, and following RETI, the next  
Accumulator, RAM and all other registers maintain their instruction to be executed will be the one following the  
data during idle. Table 1 describes the status of the instruction that wrote 1 to PCON.0.  
external pins during Idle mode.  
MATRA MHS  
5
Rev. E (14 Jan.97)  
TSC80C31/80C51  
The flag bits GF0 and GF1 may be used to determine The second way of terminating the Idle mode is with a  
whether the interrupt was received during normal hardware reset. Since the oscillator is still running, the  
execution or during the Idle mode. For example, the hardware reset needs to be active for only 2 machine  
instruction that writes to PCON.0 can also set or clear one cycles (24 oscillator periods) to complete the reset  
or both flag bits. When Idle mode is terminated by an operation.  
enabled interrupt, the service routine can examine the  
status of the flag bits.  
Power Down Mode  
The instruction that sets PCON.1 is the last executed prior Table 1 describes the status of the external pins while in  
to entering power down. Once in power down, the the power down mode. It should be noted that if the power  
oscillator is stopped. The contents of the onchip RAM and down mode is activated while in external program  
the Special Function Register is saved during power down memory, the port data that is held in the Special Function  
mode. The hardware reset initiates the Special Fucntion Register P2 is restored to Port 2. If the data is a 1, the port  
Register. In the Power Down mode, VCC may be lowered pin is held high during the power down mode by the  
to mi-nimize circuit power consumption. Care must be strong pullup, T1, shown in Figure 4.  
taken to ensure the voltage is not reduced until the power  
down mode is entered, and that the voltage is restored  
before the hardware reset is applied which freezes the  
oscillator. Reset should not be released until the oscillator  
has restarted and stabilized. A hardware reset is the only  
way of exiting the power down mode.  
Table 1. Status of the external pins during idle and power down modes.  
MODE  
Idle  
PROGRAM MEMORY  
ALE  
PSEN  
PORT0  
Port Data  
Floating  
Port Data  
Floating  
PORT1  
Port Data  
Port Data  
Port Data  
Port Data  
PORT2  
Port Data  
Address  
PORT3  
Port Data  
Port Data  
Port Data  
Port Data  
Internal  
External  
Internal  
External  
1
1
0
0
1
1
0
0
Idle  
Power Down  
Power Down  
Port Data  
Port Data  
Stop Clock Mode  
Due to static design, the TSC80C31/80C51 clock speed  
can be reduced until 0 MHz without any data loss in  
memory or registers. This mode allows step by step  
utilization, and permits to reduce system power  
consumption by bringing the clock frequency down to  
any value. At 0 MHz, the power consumption is the same  
as in the Power Down Mode.  
Figure 4. I/O Buffers in the TSC80C31/80C51 (Ports  
1, 2, 3).  
I/O Ports  
The I/O buffers for Ports 1, 2 and 3 are implemented as  
shown in Figure 4.  
6
MATRA MHS  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
When the port latch contains a 0, all pFETS in Figure 4.  
When an I/O pin son Ports 1, 2, or 3 is used as an input,  
are off while the nFET is turned on. When the port latch the user should be aware that the external circuit must  
makes a 0-to-1 transition, the nFET turns off. The strong sink current during the logical 1-to-0 transition. The  
pFET, T1, turns on for two oscillator periods, pulling the maximum sink current is specified as ITL under the D.C.  
output high very rapidly. As the output line is drawn high, Specifications. When the input goes below  
pFET T3 turns on through the inverter to supply the IOH approximately 2 V, T3 turns off to save ICC current. Note,  
source current. This inverter and T form a latch which when returning to a logical 1, T2 is the only internal  
holds the 1 and is supported by T2.  
pullup that is on. This will result in a slow rise time if the  
user’s circuit does not force the input line high.  
When Port 2 is used as an address port, for access to  
external program of data memory, any address bit that  
contains a 1 will have his strong pullup turned on for the  
entire duration of the external memory access.  
Oscillator Characteristics  
XTAL1 and XTAL2 are the input and output respectively, To drive the device from an external clock source,  
of an inverting amplifier which is configured for use as an XTAL1 should be driven while XTAL2 is left  
on-chip oscillator, as shown in Figure 5. Either a quartz unconnected as shown in Figure 6. There are no  
crystal or ceramic resonator may be used.  
requirements on the duty cycle of the external clock  
signal, since the input to the internal clocking circuitry is  
through a divide-by-two flip-flop, but minimum and  
maximum high and low times specified on the Data Sheet  
must be observed.  
Figure 5. Crystal Oscillator.  
Figure 6. External Drive Configuration.  
TSC80C51 with Secret ROM  
TEMIC offers TSC80C31/80C51 with the encrypted  
secret ROM option to secure the ROM code contained in  
the TSC80C31/80C51 microcontrollers.  
Everytime a byte is addressed during a verify of the  
ROM content, a byte of the encryption array is  
selected.  
MOVC instructions executed from external program  
memory are disabled when fetching code bytes from  
internal memory.  
The clear reading of the program contained in the ROM  
is made impossible due to an encryption through several  
random keys implemented during the manufacturing  
process.  
EA is sampled and latched on reset, thus all state  
modification are disabled.  
The keys used to do such encryption are selected  
randomwise and are definitely different from one For further information please refer to the application  
microcontroller to another.  
note (ANM053) available upon request.  
This encryption is activated during the following phases :  
MATRA MHS  
7
Rev. E (14 Jan.97)  
TSC80C31/80C51  
TSC80C31/80C51 with Secret TAG  
TEMIC offers special 64-bit identifier called “SECRET This Secret Tag option can be read-out by a software  
TAG” on the microcontroller chip.  
routine and thus enables the user to do an individual  
identity check per device. This routine is implemented  
inside the microcontroller ROM memory in case of  
masked version which can be kept secret (and then the  
value of the Secret Tag also) by using a ROM Encryption.  
The Secret Tag option is available on both ROMless and  
masked microcontrollers.  
The Secret Tag feature allows serialization of each  
microcontroller for identification of  
equipment. A unique number per device is implemented  
in the chip during manufacturing process. The serial  
number is a 64-bit binary value which is contained and  
addressable in the Special Function Registers (SFR) area.  
a
specific  
For further information, please refer to the application  
note (ANM031) available upon request.  
8
MATRA MHS  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
Electrical Characteristics  
* Notice  
Absolute Maximum Ratings*  
Stresses at or above those listed under “ Absolute Maximum Ratings”  
may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions  
above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Ambiant Temperature Under Bias :  
C = commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
I = industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . –65°C to + 150°C  
Voltage on VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to + 7 V  
Voltage on Any Pin to VSS . . . . . . . . . . . . . . . . . . . –0.5 V to V + 0.5 V  
CC  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W**  
** This value is based on the maximum allowable die temperature and  
the thermal resistance of the package  
DC Parameters  
TA = 0°C to 70°C ; VSS = 0 V ; VCC = 5 V ± 10 % ; F = 0 to 44 MHz  
TA = –40°C + 85°C ; VSS = 0 V ; VCC = 5 V ± 10 % ; F = 0 to 44 MHz  
Symbol  
Parameter  
Min  
Typ (3)  
Max  
Unit  
Test Conditions  
VIL  
VIH  
Input Low Voltage  
– 0.5  
0.2 Vcc + 0.9  
0.7 Vcc  
0.2 Vcc – 0.1  
Vcc + 0.5  
V
V
V
Input High Voltage (Except XTAL and RST)  
Input High Voltage (for XTAL and RST)  
Output Low Voltage (Port 1, 2 and 3) (4)  
VIH1  
VOL  
Vcc + 0.5  
0.3  
0.45  
1.0  
V
V
V
IOL = 100 µA  
IOL = 1.6 mA (2)  
IOL = 3.5 mA  
VOL1 Output Low Voltage (Port 0, ALE, PSEN) (4)  
0.3  
0.45  
1.0  
V
V
V
IOL = 200 µA  
IOL = 3.2 mA (2)  
IOL = 7.0 mA  
VOH  
Output High Voltage Port 1, 2, 3  
Vcc – 0.3  
Vcc – 0.7  
Vcc – 1.5  
V
V
V
IOH = – 10 µA  
IOH = – 30 µA  
IOH = – 60 µA  
VCC = 5 V ± 10 %  
VOH1 Output High Voltage (Port 0, ALE, PSEN)  
Vcc – 0.3  
Vcc – 0.7  
Vcc – 1.5  
V
V
V
IOH = – 200 µA  
IOH = – 3.2 mA  
IOH = – 7.0 mA  
VCC = 5 V ± 10 %  
IIL  
ILI  
Logical 0 Input Current (Ports 1, 2 and 3)  
Input leakage Current  
– 50  
± 10  
– 650  
30  
µA  
µA  
µA  
Vin = 0.45 V  
0.45 < Vin < Vcc  
Vin = 2.0 V  
ITL  
IPD  
Logical 1 to 0 Transition Current (Ports 1, 2 and 3)  
Power Down Current  
5
µA Vcc = 2.0 V to 5.5 V (1)  
KW  
RRST RST Pulldown Resistor  
50  
90  
200  
10  
CIO  
ICC  
Capacitance of I/O Buffer  
pF  
fc = 1 MHz, Ta = 25_C  
Vcc = 5.5 V  
Power Supply Current  
Freq = 1 MHz Icc op  
Icc idle  
Freq = 6 MHz Icc op  
0.7  
0.5  
4.2  
1.4  
1.8  
1
9
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Icc idle  
3.5  
Freq 12 MHz Icc op max = 0.9 Freq (MHz) + 5  
Icc idle max = 0.3 Freq (MHz) + 1.7  
Freq 20 MHz Icc op typ = 0.7 Freq (MHz)  
Freq 20 MHz Icc op typ = 0.5 Freq (MHz) + 4  
Freq 20 MHz Icc idle typ = 0.16 Freq (MHz) + 0.4  
Freq 20 MHz Icc idle typ = 0.12 Freq (MHz) + 1.2  
MATRA MHS  
9
Rev. E (14 Jan.97)  
TSC80C31/80C51  
** This value is based on the maximum allowable die temperature and  
the thermal resistance of the package  
Absolute Maximum Ratings*  
Ambient Temperature Under Bias :  
* Notice  
A = Automotive . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . –65°C to + 150°C  
Voltage on VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to + 7 V  
Voltage on Any Pin to VSS . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W**  
Stresses above those listed under “ Absolute Maximum Ratings” may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
DC Parameters  
TA = –40°C + 125°C ; VSS = 0 V ; VCC = 5 V ± 10 % ; F = 0 to 40 MHz  
Symbol  
VIL  
Parameter  
Min  
– 0.5  
Typ (3)  
Max  
Unit  
V
Test Conditions  
Input Low Voltage  
0.2 Vcc – 0.1  
Vcc + 0.5  
Vcc + 0.5  
VIH  
Input High Voltage (Except XTAL and RST)  
Input High Voltage (for XTAL and RST)  
Output Low Voltage (Port 1, 2 and 3) (4)  
0.2 Vcc + 0.9  
0.7 Vcc  
V
VIH1  
VOL  
V
0.3  
0.45  
1.0  
V
V
V
IOL = 100 µA  
IOL = 1.6 mA (2)  
IOL = 3.5 mA  
VOL1 Output Low Voltage (Port 0, ALE, PSEN) (4)  
0.3  
0.45  
1.0  
V
V
V
IOL = 200 µA  
IOL = 3.2 mA (2)  
IOL = 7.0 mA  
Vcc – 0.3  
Vcc – 0.7  
Vcc – 1.5  
V
V
V
IOH = – 10 µA  
IOH = – 30 µA  
VOH  
Output High Voltage Port 1, 2 and 3  
IOH = – 60 µA  
VCC = 5 V ± 10 %  
Vcc – 0.3  
Vcc – 0.7  
Vcc – 1.5  
V
V
V
IOH = – 200 µA  
VOH1 Output High Voltage (Port 0, ALE, PSEN)  
IOH = – 3.2 mA  
IOH = – 7.0 mA  
VCC = 5 V ± 10 %  
IIL  
ILI  
Logical 0 Input Current (Ports 1, 2 and 3)  
Input leakage Current  
– 75  
±10  
– 750  
75  
µA Vin = 0.45 V  
µA 0.45 < Vin < Vcc  
µA Vin = 2.0 V  
ITL  
Logical 1 to 0 Transition Current (Ports 1, 2 and 3)  
Power Down Current  
IPD  
RRST  
CIO  
ICC  
5
µA Vcc = 2.0 V to 5.5 V (1)  
KW  
RST Pulldown Resistor  
50  
90  
200  
10  
Capacitance of I/O Buffer  
pF fc = 1 MHz, Ta = 25_C  
Power Supply Current  
Vcc = 5.5 V  
Freq = 1 MHz Icc op  
Icc idle  
Freq = 6 MHz Icc op  
0.7  
0.5  
4.2  
1.4  
1.8  
1
9
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Icc idle  
3.5  
Freq 12 MHz Icc op max = 0.9 Freq (MHz) + 5  
Icc idle max = 0.3 Freq (MHz) + 1.7  
Freq 20 MHz Icc op typ = 0.7 Freq (MHz)  
Freq 20 MHz Icc op typ = 0.5 Freq (MHz) + 4  
Freq 20 MHz Icc idle typ = 0.16 Freq (MHz) + 0.4  
Freq 20 MHz Icc idle typ = 0.12 Freq (MHz) + 1.2  
10  
MATRA MHS  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
** This value is based on the maximum allowable die temperature and  
the thermal resistance of the package  
Absolute Maximum Ratings*  
Ambient Temperature Under Bias :  
* Notice  
M = Military . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . –65°C to + 150°C  
Voltage on VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to + 7 V  
Voltage on Any Pin to VSS . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W**  
Stresses at or above those listed under “ Absolute Maximum Ratings”  
may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions  
above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
DC Parameters  
TA = –55°C + 125°C ; Vss = 0 V ; Vcc = 5 V ± 10 % ; F = 0 to 40 MHz  
Symbol  
Parameter  
Min  
Typ (3)  
Max  
Unit  
Test Conditions  
VIL  
VIH  
Input Low Voltage  
– 0.5  
0.2 Vcc + 0.9  
0.7 Vcc  
0.2 Vcc – 0.1  
Vcc + 0.5  
Vcc + 0.5  
0.45  
V
V
V
V
V
V
Input High Voltage (Except XTAL and RST)  
Input High Voltage (for XTAL and RST)  
Output Low Voltage (Port 1, 2 and 3) (4)  
VIH1  
VOL  
IOL = 1.6 mA (2)  
IOL = 3.2 mA (2)  
VOL1 Output Low Voltage (Port 0, ALE, PSEN) (4)  
VOH Output High Voltage (Port 1, 2 and 3)  
0.45  
2.4  
IOH = – 60 µA  
Vcc = 5 V ± 10 %  
0.75 Vcc  
0.9 Vcc  
2.4  
V
V
V
IOH = – 25 µA  
IOH = – 10 µA  
IOH = – 400 µA  
Vcc = 5 V ± 10 %  
VOH1 Output High Voltage  
(Port 0 in External Bus Mode, ALE, PEN)  
0.75 Vcc  
0.9 Vcc  
V
IOH = – 150 µA  
IOH = – 40 µA  
Vin = 0.45 V  
V
IIL  
ILI  
Logical 0 Input Current (Ports 1, 2 and 3)  
Input leakage Current  
– 75  
+/– 10  
– 750  
75  
µA  
µA  
µA  
0.45 < Vin < Vcc  
Vin = 2.0 V  
ITL  
IPD  
Logical 1 to 0 Transition Current (Ports 1, 2 and 3)  
Power Down Current  
5
µA Vcc = 2.0 V to 5.5 V (1)  
KΩ  
RRST RST Pulldown Resistor  
50  
90  
200  
CIO  
ICC  
Capacitance of I/O Buffer  
10  
pF  
fc = 1 MHz, Ta = 25_C  
Vcc = 5.5 V  
Power Supply Current  
Freq = 1 MHz Icc op  
Icc idle  
Freq = 6 MHz Icc op  
0.7  
0.5  
4.2  
1.4  
1.8  
1
9
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Icc idle  
3.5  
Freq 12 MHz Icc op max = 0.9 Freq (MHz) + 5  
Icc idle max = 0.3 Freq (MHz) + 1.7  
Freq 20 MHz Icc op typ = 0.7 Freq (MHz)  
Freq 20 MHz Icc op typ = 0.5 Freq (MHz) + 4  
Freq 20 MHz Icc idle typ = 0.16 Freq (MHz) + 0.4  
Freq 20 MHz Icc idle typ = 0.12 Freq (MHz) + 1.2  
MATRA MHS  
11  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
* Notice  
Absolute Maximum Ratings*  
Stresses at or above those listed under “ Absolute Maximum Ratings”  
may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions  
above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Ambient Temperature Under Bias :  
C = Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
I = Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . –65°C to + 150°C  
Voltage on VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to + 7 V  
Voltage on Any Pin to VSS . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W**  
** This value is based on the maximum allowable die temperature and  
the thermal resistance of the package  
DC Characteristics : Low Power Version  
TA = 0°C to 70°C ; Vcc = 2.7 V to 5.5 V ; Vss = 0 V ; F = 0 to 20 MHz  
TA = –40°C to 85°C ; Vcc = 2.7 V to 5.5 V ; F = 0 to 20 MHz  
Symbol  
VIL  
Parameter  
Min  
Typ (3)  
Max  
Unit  
V
Test Conditions  
Input Low Voltage  
– 0.5  
0.2 V – 0.1  
CC  
VIH  
Input High Voltage (Except XTAL and RST)  
Input High Voltage to RST for Reset  
Input High Voltage to XTAL1  
0.2 V + 0.9  
V
V
V
+ 0.5  
+ 0.5  
+ 0.5  
V
CC  
CC  
CC  
CC  
VIH2  
VIH1  
VPD  
0.7 V  
0.7 V  
2.0  
V
CC  
CC  
V
Power Down Voltage to Vcc in PD Mode  
Output Low Voltage (Ports 1, 2, 3) (4)  
5.5  
V
VOL  
0.45  
0.45  
V
IOL = 0.8 mA (2)  
IOL = 1.6 mA (2)  
VOL1 Output Low Voltage Port 0, ALE, PSEN (4)  
VOH Output High Voltage (Port 1, 2 and 3)  
V
0.9 Vcc  
0.9 Vcc  
V
V
IOH = – 10 µA  
IOH = – 40 µA  
VOH1 Output High Voltage (Port 0 in External Bus Mode),  
ALE, PSEN  
IIL  
ILI  
Logical 0 Input Current Ports 1, 2, 3  
Input Leakage Current  
– 50  
± 10  
– 650  
30  
µA  
µA  
µA  
µA  
Vin = 0.45 V  
0.45 < Vin < V  
Vin = 2.0 V  
CC  
ITL  
IPD  
Logical 1 to 0 Transition Current (Ports 1, 2, 3)  
Power Down Current  
5
V
= 2.0 V to 5.5 V  
CC  
(1)  
RRST RST Pulldown Resistor  
CIO Capacitance of I/O Buffer  
50  
90  
200  
10  
kΩ  
pF  
fc = 1 MHz, T = 25_C  
A
Icc (mA)  
Operating (1)  
Idle (1)  
2.7 V  
3 V  
3.3 V  
2.7 V  
3 V  
3.3 V  
Frequency/Vcc  
Max  
0.8  
4
Typ  
0.37  
2.2  
4
Max  
1
Typ  
0.42  
2.5  
Max  
1.1  
6
Typ  
0.46  
2.7  
Max  
0.4  
1.5  
2.5  
3
Typ  
Max  
Typ  
0.24  
1.4  
Max  
0.6  
2
Typ  
0.27  
1.6  
2.6  
3
1 MHz  
6 MHz  
0.22  
1.2  
1.7  
1.9  
0.5  
1.7  
3
5
12 MHz  
16 MHz  
8
10  
12  
4.7  
12  
5.3  
2.2  
3.5  
4.5  
10  
5
5.8  
14  
6.6  
3.8  
2.5  
Freq > 12MHz (Vcc = 5.5 V)  
Icc op max (mA) = 0.9 × Freq (MHz) + 5  
Icc Idle max (mA) = 0.3 × Freq (MHz) + 1.7  
12  
MATRA MHS  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
Idle ICC is measured with all output pins disconnected ;  
XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL =  
VSS + 0.5 V, VIH = VCC – 0.5 V ; XTAL2 N.C ; Port 0 =  
VCC ; EA = RST = VSS.  
Figure 7. ICC Test Condition, Idle Mode.  
Power Down ICC is measured with all output pins  
disconnected ; EA = PORT 0 = VCC ; XTAL2 N.C. ;  
RST = VSS.  
Note 2 : Capacitance loading on Ports 0 and 2 may cause  
spurious noise pulses to be superimposed on the VOLS of  
ALE and Ports 1 and 3. The noise is due to external bus  
capacitance discharging into the Port 0 and Port 2 pins  
when these pins make 1 to 0 transitions during bus  
operations. In the worst cases (capacitive loading 100  
pF), the noise pulse on the ALE line may exceed 0.45 V  
with maxi VOL peak 0.6 V. A Schmitt Trigger use is not  
necessary.  
All other pins are disconnected.  
Figure 8. ICC Test Condition, Active Mode.  
Note 3 : Typicals are based on a limited number of  
samples and are not guaranteed. the values listed are at  
room temperature and 5V.  
Note 4 : Under steady state (non–transient)) conditions,  
IOL must be externally limited as follows :  
Maximum IOL per port pin :  
Maximum IOL per 8–bit port :  
Port 0 :  
Ports 1, 2 and 3 :  
Maximum total IOL for all output pins :  
10 mA  
All other pins are disconnected.  
26 mA  
15 mA  
71 mA  
Figure 9. ICC Test Condition, Power Down Mode.  
If IOL exceed the test condition, VOL may exceed the  
related specification. Pins are not guaranteed to sink  
current greater than the listed test conditions.  
All other pins are disconnected.  
Figure 10. Clock Signal Waveform for ICC Tests in Active and Idle Modes.  
TCLCH = TCHCL = 5 ns.  
MATRA MHS  
13  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
Explanation of the AC Symbol  
Each timing symbol has 5 characters. The first character Example :  
is always a “T” (stands for time). The other characters,  
TAVLL = Time for Address Valid to ALE low.  
depending on their positions, stand for the name of a  
signal or the logical status of that signal. The following  
is a list of all the characters and what they stand for.  
TLLPL = Time for ALE low to PSEN low.  
A : Address.  
C : Clock.  
D : Input data.  
Q : Output data.  
R : READ signal.  
T : Time.  
H : Logic level HIGH  
I : Instruction (program memory contents).  
L : Logic level LOW, or ALE.  
P : PSEN.  
V : Valid.  
W : WRITE signal.  
X : No longer a valid logic level.  
Z : Float.  
AC Parameters  
TA= 0 to + 70°C ; Vss= 0 V ; Vcc= 5 V ± 10 % ; F= 0 to 44 MHz  
TA= 0 to +70°C ; Vss= 0 V ; 2.7 V <Vcc < 5.5 V ; F= 0 to 16 MHz  
TA=–40°to+85°C;Vss=0V;2.7V<Vcc<5.5V;F=0to16MHz  
TA= –55° + 125°C; Vss= 0 V; Vcc= 5 V ± 10 % ; F= 0 to 40 MHz  
(Load Capacitance for PORT 0, ALE and PSEN = 100 pF ; Load  
Capacitance for all other outputs = 80 pF)  
External Program Memory Characteristics (values in ns)  
16 MHz 20 MHz 25 MHz 30 MHz 36 MHz 40 MHz 44 MHz  
min max min max min max min max min max min max min max  
SYMBOL  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
TLLPL  
TPLPH  
TPLIV  
PARAMETER  
ALE Pulse Width  
110  
40  
90  
30  
35  
70  
20  
35  
60  
15  
35  
50  
10  
35  
40  
9
30  
7
Address valid to ALE  
Address Hold After ALE  
ALE to valid instr in  
35  
30  
20  
185  
170  
130  
100  
80  
70  
65  
ALE to PSEN  
45  
40  
30  
25  
80  
20  
75  
15  
65  
12  
54  
PSEN pulse Width  
165  
130  
100  
PSEN to valid instr in  
Input instr Hold After PSEN  
Input instr Float After PSEN  
PSEN to Address Valid  
Address to Valid instr in  
PSEN low to Address Float  
125  
50  
110  
45  
85  
35  
65  
30  
50  
25  
45  
20  
35  
10  
TPXIX  
TPXIZ  
0
0
0
0
0
0
0
TPXAV  
TAVIV  
TPLAZ  
55  
50  
40  
35  
30  
25  
15  
230  
10  
210  
10  
170  
8
130  
6
90  
5
80  
5
70  
5
External Program Memory Read Cycle  
TAVIV  
14  
MATRA MHS  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
External Data Memory Characteristics (values in ns)  
16 MHz 20 MHz 25 MHz 30 MHz 36 MHz 40 MHz 44 MHz  
min max min max min max min max min max min max min max  
SYMBOL  
PARAMETER  
TRLRH  
RD pulse Width  
340  
340  
85  
270  
270  
85  
210  
210  
70  
180  
180  
55  
120  
120  
35  
100  
100  
30  
80  
80  
25  
TWLWH WR pulse Width  
TLLAX  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
TAVDV  
TLLWL  
TAVWL  
Address Hold After ALE  
RD to Valid data in  
Data hold after RD  
Data float after RD  
ALE to Valid Data In  
Address to Valid Data IN  
ALE to WR or RD  
240  
210  
175  
135  
110  
90  
70  
0
0
0
0
0
0
0
90  
90  
80  
70  
50  
45  
150  
180  
95  
35  
130  
170  
85  
435  
480  
370  
400  
350  
300  
235  
260  
115  
170  
190  
100  
150 250 135 170 120 130  
90  
115  
20  
70  
75  
60  
65  
50  
55  
6
Address to WR or RD  
180  
35  
180  
35  
140  
30  
TQVWX Data valid to WR transition  
TQVWH Data Setup to WR transition  
TWHQX Data Hold after WR  
15  
10  
380  
40  
325  
35  
250  
30  
215  
20  
170  
15  
160  
10  
140  
6
TRLAZ  
RD low to Address Float  
0
0
0
0
0
0
0
TWHLH RD or WR high to ALE high  
35  
90  
35  
60  
25  
45  
20  
40  
20  
40  
15  
35  
13  
33  
External Data Memory Write Cycle  
TAVWL  
TQVWX  
External Data Memory Read Cycle  
MATRA MHS  
15  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
Serial Port Timing – Shift Register Mode (values in ns)  
16 MHz 20 MHz 25 MHz 30 MHz 36 MHz 40 MHz 44 MHz  
min max min max min max min max min max min max min max  
SYMBOL  
TXLXL  
PARAMETER  
Serial Port Clock Cycle Time  
750  
563  
600  
480  
480  
380  
400  
300  
330  
220  
250  
170  
227  
140  
TQVXH  
Output Data Setup to Clock  
Rising Edge  
TXHQX  
TXHDX  
TXHDV  
Output Data Hold after Clock  
Rising Edge  
90  
0
90  
0
65  
0
50  
0
45  
0
35  
0
25  
0
Input Data Hold after Clock  
Rising Edge  
Clock Rising Edge to Input Data  
Valid  
563  
450  
350  
300  
250  
200  
160  
Shift Register Timing Waveforms  
16  
MATRA MHS  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
External Clock Drive Characteristics (XTAL1)  
SYMBOL  
FCLCL  
PARAMETER  
Oscillator Frequency  
Oscillator period  
High Time  
MIN  
MAX  
UNIT  
MHz  
ns  
44  
TCLCL  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
22.7  
5
ns  
Low Time  
5
ns  
Rise Time  
5
5
ns  
Fall Time  
ns  
External Clock Drive Waveforms  
AC Testing Input/Output Waveforms  
AC inputs during testing are driven at Vcc – 0.5 for a logic  
“1” and 0.45 V for a logic “0”. Timing measurements are  
made at VIH min for a logic “1” and VIL max for a logic  
“0”.  
Float Waveforms  
For timing purposes as port pin is no longer floating when  
a 100 mV change from load voltage occurs and begins to  
float when a 100 mV change from the loaded VOH/VOL  
level occurs. Iol/IoH ≥ ± 20 mA.  
MATRA MHS  
17  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
Clock Waveforms  
This diagram indicates when signals are clocked  
internally. The time it takes the signals to propagate to the  
pins, however, ranges from 25 to 125 ns. This propagation  
delay is dependent on variables such as temperature and  
pin loading. Propagation also varies from output to output  
and component. Typically though (T = 25°C fully  
A
loaded) RD and WR propagation delays are  
approximately 50 ns. The other signals are typically 85  
ns. Propagation delays are incorporated in the AC  
specifications.  
18  
MATRA MHS  
Rev. E (14 Jan.97)  
TSC80C31/80C51  
Ordering Information  
TSC  
80C51  
XXX  
–20  
C
B
R
Blank: Standard  
/883: MIL 883  
Compliant  
P883: MIL 883  
Compliant  
Packaging  
A: PDIL 40  
B: PLCC 44  
C: PQFP 44 (fp 13.9mm)  
D: PQFP 44 (fp 12.3mm)  
E: VQFP 44 (1.4mm)  
F: TQFP 44 (1mm)  
G: CDIL 40 (.6)  
H: LCC 44  
Part Number  
80C31: External ROM  
80C51: 4Kx8 Mask ROM  
80C51C: Secret ROM version  
80C51T: Secret Tag version  
–12: 12 MHz version  
–16: 16 MHz version  
–20: 20 MHz version  
–25: 25 MHz version  
–30: 30 MHz version  
–36: 36 MHz version  
–40: 40 MHz version  
–44: 44 MHz version  
–L16: Low Power  
(VCC: 2.7–5.5V,  
with  
PIND test.  
I: CQPJ 44  
Freq.: 0–16 MHz)  
–L20: Low Power  
(VCC: 2.7–5.5V,  
Die form:  
W: Wafer  
X: Dice Form  
Y: Wafer on Ring  
Freq.: 0–20 MHz)  
Conditioning  
R : Tape & Reel  
D : Dry Pack  
Customer ROM Code  
(Not used for external ROM Device)  
B : Tape & Reel and  
Dry Pack  
TEMIC Semiconductor  
Microcontroller Product Line  
Temperature Range  
C : Commercial 0° to 70°C  
I : Industrial –40° to 85°C  
A : Automotive –40° to 125°C  
M : Military –55° to 125°C  
Examples :  
Mask ROM version XXX, PDIL 40, 20 MHz version, Commercial Temperature Range . TSC80C31/80C51XXX–20CA  
(1) Ceramic of multi–layer packages: contact TEMIC Sales office  
Product Marking :  
For PDIL 40, PLCC 44 & QFP 44 Packages  
TEMIC  
Customer P/N  
Temic P/N  
Intel 80, 82  
YYWW Lot Number  
MATRA MHS  
19  
Rev. E (14 Jan.97)  

相关型号:

TSC80C31-L20IBD/883

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC

TSC80C31-L20IBR/883

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC

TSC80C31-L20IBR/P883

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC

TSC80C31-L20IC

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC

TSC80C31-L20ICB/883

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC

TSC80C31-L20ICD/883

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC

TSC80C31-L20ICR

Microcontroller, 8-Bit, 20MHz, CMOS, PQFP44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC

TSC80C31-L20ICR/883

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC

TSC80C31-L20ICR/P883

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC

TSC80C31-L20ID

CMOS 0 to 44 MHz Single-Chip 8 Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TEMIC